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to the Picard-Lindelöf Iteration Operator

S. Hyvönen

Research Report No. 96-03
April 1996

Seminar für Angewandte Mathematik
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1 Introduction

The Picard-Lindelöf iteration is a commonly used iterative method when large sys-
tems of initial value problems are solved. Here we shall restrict our attention to
linear problems. The iteration operator corresponding to the Picard-Lindelöf itera-
tion is an interesting example of an operator encountered in the theory of iterative
methods which is not self-adjoint.

Here the iteration operator corresponding to the Picard-Lindelöf iteration is consid-
ered as a model case in order to investigate the convergence theory of the Arnoldi
process. More specifically we ask whether it is possible to use a result by Nevanlinna
and Vainikko [12] which tells us that under certain circumstances it is possible to
obtain the spectrum of the local operator by looking at those of the Hessenberg
matrices generated by the Arnoldi process. Our result is negative: we show that if
in the cases considered we choose a bad starting vector for the Arnoldi process then
the assumptions of the Nevanlinna-Vainikko theorem do not hold.

A description of the problem as well as some theoretical background is given in
Section 2. In Section 3 we show how the Arnoldi process works in practice by
looking at a simple example. We shall then show in Section 4 that in the scalar
case the assumptions of the Nevanlinna-Vainikko theorem do not hold. In Section
5 we shall extend this result to the matrix case. Much of the theory presented is
valid in general. The whole proof of a result similar to the scalar case is carried
through in the case where the decomposition of the coefficient matrix is such that
the resulting matrices can be transformed into their respective Jordan forms by the
same transformation matrix.

2 The Problem

Suppose we have a linear constant coefficient initial value problem

ẋ+ Ax = f(t), t > 0,

x(0) = x0,

where x(t), f(t), x0 ∈ Cd and A is a d × d matrix. Introducing the decomposition
of A : A = M −N , we get the iteration

ẋn +Mxn = Nxn−1 + f(t), t > 0, (1)

xn(0) = x0, n = 1, 2, . . .

1



If nothing better is available we can take x0(t) = x0. The original Picard-Lindelöf
iteration corresponds to the decomposition M = 0 and N = −A. This however only
converges on finite intervals. We shall look at the equations (1) in [0,∞) and make
the assumption that both A and M have spectra strictly in the right half plane, i.e.
if λ ∈ {σ(A), σ(M)}, then Reλ > 0.

Now let K be the convolution operator Kx(t) =
∫ t
0 e

−M(t−s)Nx(s) ds. The iteration
(1) can be rewritten as a fixed point iteration

xn = Kxn−1 + ϕ,

where ϕ := e−Mtx0+

∫ t

0

e−M(t−s)f(s) ds. We shall study the operatorK in L2(R+,Cd)

and its invariant subspaces, with the inner product (x, y) =
∫∞
0 y∗(t)x(t)dt, where

y∗ denotes the complex conjugate transpose ȳT of y.

We denote by K(z) the symbol of the operator K:

K(z) := (z +M)−1N.

As customary, the spectrum of the operator K is denoted by σ(K) and the spectral
radius by ρ(K).

From [8] we have the following result:

Theorem 1 σ(K) = cl
⋃

Rez≥0

σ(K(z)).

This yields a number of corollaries:

Corollary 1 ρ(K) = max
ξ∈R

ρ(K(iξ))

Corollary 2 σ(K) is connected.

Corollary 3 ρ(K) = 0 if and only if there exists m ≤ d such that Km = 0.

Here it is natural to introduce a few concepts. Let A be a bounded linear operator
in a Hilbert space H . Now by definition the operator A is called nilpotent if there

2



exists a positive integer m such that Am = 0. Furthermore it is quasinilpotent if
ρ(A) = 0. And as we are at it, let us list a couple of more definitions. The operator
A is algebraic if there exists a polynomial q such that q(A) = 0. It is quasialgebraic
if inf ‖Qj(A)‖1/j = 0 where the infimum is over all j and over all monic polynomials
of degree j. And last of all, the operator A on a separable, infinite dimensional,
complex Hilbert space H is said to be quasitriangular if there exists a sequence
{Pn} of finite rank (orthogonal) projections on H converging strongly to 1 such that
‖PnAPn−APn‖ → 0. We shall denote by N , QN , QA and QT the sets of nilpotent,
quasinilpotent, quasialgebraic and quasitriangular operators respectively. Note that
in general it is true that N ⊂ QN ⊂ QA ⊂ QT .

By a theorem by Halmos [6] an operatorA is quasialgebraic if and only if cap(σ(A)) =
0. Here cap(σ(A)) denotes the capacity of the spectrum. In general, capacities can
be thought of as nonlinear generalizations of measures [3]. The logaritmic capacity
of a set E is obtained from the Green’s function, which is defined as follows. Given
a compact set E ⊂ C, denote by G∞ the unbounded component of the complement
C−E of E. The (classical) Green’s function for G∞ with a pole at ∞ is the unique
function g(λ) defined in G∞, with the following properties:







g is a harmonic function in G∞
g(λ) = log |λ|+O(1) as |λ| →∞
g(λ) → 0 as λ → ζ from G∞ for every ζ ∈ ∂G∞.

Because g(λ)− log |λ| is bounded near ∞ and harmonic, it has a removable singu-
larity there. The value of the limit,

γ := lim
λ→∞

[g(λ)− log |λ|]

is the Robin’s constant for E and the (logaritmic) capacity is given by cap(E) = e−γ.
If the set E is such that a Green’s function for G∞ with the above mentioned
properties does not exits, the capacity of the set is zero. To illustrate the idea of
capacities note that the capacity of a line segment of length l is l/4, whereas the
capacity of a disk with radius r is r. Since σ(K) is connected and contains both 0
and ρ(K)eiθ for some θ we have

ρ(K) ≥ cap(σ(K)) ≥ 1

4
ρ(K).

So σ(K) has zero capacity exactly when ρ(K) = 0.

By Corollary 3 K is nilpotent iff it is quasinilpotent, that is, ρ(K) = 0. This on the
other hand is equivalent to the spectrum of K having a zero capacity which in turn
is true iff K is quasialgebraic. So we have the following corollary of Theorem 2:

3



Corollary 4 K is nilponent ⇔ K is quasinilpotent ⇔ K is quasialgebraic.

Since quasialgebraicity implies quasitriangularity, the nilpotency ofK will also imply
the quasitriangularity of K. In Corollary 4 we have shown that in the case of the
Picard-Lindelöf operator the first three inclusions in N ⊂ QN ⊂ QA ⊂ QT can be
replaced by equalities: N = QN = QA. Is this true for the last inclusion as well?
We shall not try to answer this question as it is here, but it is related to the question
we set to examine.

In order to discuss quasitriangularity we need the following definition:

Definition 1 An operator A ∈ L(X, Y ) is semi-Fredholm, if the range of A, R(A) ⊂
Y is closed, and either the dimension of the null space N (A) or the codimension of
the range R(A) is finite. In this case the index of A is defined by

indA = dimN (A)− codimR(A).

Note that in the above case codimR(A) = dimN (A∗), and therefore indA = dimN (A)−
dimN (A∗).

The following characterization is due to Douglas and Pearcy [4] and to Apostol,
Foias and Voiculescu [1].

Theorem 2 Let A ∈ L(H). The following are equivalent:

(i) there exists a complex λ such that A − λ is a semi-Fredholm operator with a
negative index

(ii) A is not quasitriangular.

A good source on this is Douglas and Pearcy [5].

Let A be a bounded linear operator in a Hilbert space H , and let b ∈ H . Re-
call the Arnoldi process for creating an orthonormal basis {vj} for K(A, b) :=
cl span{b, Ab, A2b, ...}:

Start: Choose an initial function b and set v1 = b/‖b‖.
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Iterate: for j = 1, 2, ... compute:
hij = (Avj , vi), i = 1, ..., j
wj+1 = Avj −

∑j
i=1 hijvi

hj+1,j = ‖wj+1‖
vj+1 = wj+1/hj+1,j

The Arnoldi process generates the Hessenberg matrix h the elements of which are hij.
Note that the Hessenberg matrices generated by the Arnoldi process when applied
to A and A−λ are related: if the previous is h, the latter is h−λ, so they have the
same subdiagonal elements.

From [11] we know that

Theorem 3 The Arnoldi process yields [Πn
1hj,j−1]1/n → 0 for every b ∈ H if and

only if A is quasialgebraic.

Let us now denote by A[b] the ”local operator” obtained by restricting A to the
invariant subspace K(A, b) = cl span{b, Ab, A2b, ...}. Then it is true that

Proposition 1 The operator A[b] is quasitriangular if the Arnoldi process satisfies
infn hn,n−1 = 0.

In particular by Theorem 3 quasialgebraicity implies that infn hn,n−1 = 0. The
reverse is not necessarily true. It could be that infn hn,n−1 = 0 which by Proposition
1 means that A[b] is quasitriangular, but still [Πn

1hj,j−1]1/n +→ 0, which would mean
that A is not quasialgebraic. The question is, is this the case for the Picard-Lindelöf
operator. As long as K is not nilpotent, which by Corollary 4 means it is also
not quasialgebraic, i.e. [Πn

1hj,j−1]1/n +→ 0, is it true that infn hn,n−1 > 0? That is,
is it true, that the operator K[b] is not quasitriangular for all nonnilpotent K and
b +∈ N (N)?

The reason we are interested in infn hn,n−1 is that by [12] the condition infn hn,n−1 =
0 allows a convergence theorem for Arnoldi. For let An be the n×n Hessenberg ma-
trix created on the nth iteration step of the Arnoldi process and denote by Σ((An)n∈N)
the limit spectrum of the sequence (An), which is defined as follows:

Definition 2 For n ∈ N let An be a bounded linear operator in some complex

5



Banach space Bn. Define

Σi((An)n∈N) = {λ ∈ C : lim inf
n∈N

‖(λIn −An)
−1‖ = ∞}.

Σs((An)n∈N) = {λ ∈ C : lim sup
n∈N

‖(λIn −An)
−1‖ = ∞}.

If Σi((An)n∈N) = Σs((An)n∈N) we call this set the limit spectrum of the sequence
(An) and denote it by Σ((An)n∈N).

Here ‖(λIn − An)−1‖ = ∞ means simply that λ ∈ σ(An). Then it is true that [12]

Theorem 4 If in the Arnoldi process {nj} is a sequence such that

hnj ,nj−1 → 0 as j → ∞

then
σ(A[b]) = Σ((Anj

)j∈N).

What Theorem 4 actually says is that if the subdiagonal of the Hessenberg matrices
created by the Arnoldi process has a subsequence which tends to zero, then the
spectrum of the local operator is obtained from those of the Hessenberg matrices.

3 Functions Generated by the Arnoldi Process:

an Example

We shall now look at the behavior of the Arnoldi process a simple example case,
namely K with M = 1/2 and N = −1. The Arnoldi process was introduced in

Section 2. We apply this process to our operator T x(t) = −
∫ t

0

e−(t−s)/2x(s)ds,

where x(t) is a function in L2(R+,C).The inner product is (x, y) =
∫∞
0 x(s)y(s)ds.

We choose the initial function v1(t) = e−t/2.

Before we continue let us introduce the Laguerre polynomials. They are defined
by Ln(t) =

∑n
k=0

(

n
k

)

(−1)k tk

k! . Here we shall need the following properties of the
Laguerre polynomials: first of all, the set of functions φn(t) = e−t/2Ln(t) is or-
thonormal on the interval t ∈ [0,∞), i.e.

∫∞
0 e−tLi(t)Lj(t)dt = δij . Furthermore,
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∫ t
0 Ln(s)ds = Ln(t)− Ln+1(t). For further details on the Laguerre polynomials, see
Appendix A and [2].

Now let us apply the Arnoldi algorithm to this case. First let j = 1. Then

v1 = e−t/2 = e−t/2L0

h11 = (T v1, v1) = −
∫ ∞

0

e−t/2te−t/2dt = −1

w2 = T v1 − h11v1 = (1− t)e−t/2 = L1e
−t/2

h2
21 = (w2, w2) =

∫ ∞

0

L2
1e

−tdt = 1

v2 = e−t/2L1

Let vj+1 = e−t/2Lj(t) for all j ≤ n. Now when j = n+ 1

T vn+1 = −
∫ t

0

e−(t−s)/2e−s/2Ln(s)ds

= −e−t/2

∫ t

0

Ln(s)ds = e−t/2(Ln+1(t)− Ln(t))

hi,n+1 = (T vn+1, vi) = (e−t/2(Ln+1(t)− Ln(t)), e
−t/2Li−1(t))

= [(e−t/2Ln+1, e
−t/2Li−1)− (e−t/2Ln, e

−t/2Li−1)]

= −δi,n+1, i = 1, ..., n+ 1,

wn+2 = T vn+1 − hn+1,n+1vn+1 = e−t/2(Ln+1(t)− Ln(t)) + e−t/2Ln(t)

= e−t/2Ln+1(t)

h2
n+2,n+1 = (wn+2, wn+2) = (e−t/2Ln+1, e

−t/2Ln+1) = 1

vn+2 = e−t/2Ln+1(t),

So the functions generated by Arnoldi are the Laguerre functions vn+1 = e−t/2Ln(t).
Moreover, the Hessenberg matrix generated by the Arnoldi process on the nth iter-
ation step is the n× n matrix

hn =











−1

1
. . .
. . . −1

1 −1











so subdiagonal elements of the Hessenberg matrix are hn,n−1 = 1 for all n and it is
true that infn hn,n−1 > 0. This means that we cannot use Theorem 4 to obtain the
spectrum of T by looking at those of the Hessenberg matrices. Clearly σ(hn) = {−1}
for all n so the limit spectrum of the sequence (hn) is Σ((hn)n∈N) = {−1}. In the next
section we shall see that σ(T ) = {λ : |λ+ 1| ≤ 1}, so indeed Σ((hn)n∈N) += σ(T ).
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4 The Scalar Case

We shall now consider same problem as in the previous section, namely the oper-

ator T x(t) = −
∫ t

0

e−(t−s)/2x(s)ds, where x(t) is a function in L2(R+,C), but in a

different formalism.

The Laguerre polynomials introduced in Section 3 and discussed in Appendix A
shall be needed here. We shall also need the following proposition by Szegö [15]:

Proposition 2 The Laguerre functions {φm}∞m=0 = {e−t/2Lm(t)}∞m=0 form an or-
thonormal basis of L2(R+). Furthermore, the Laguerre functions are dense in L1.

Let v1(t) = e−t/2 = e−t/2L0(t) and look at the space K(v1, (T +1)) := cl span{(T +
1)nv1}∞n=0. Note that T kv1 = (−1)ke−t/2 tk

k! . Now for all n > 1

vn+1 := (T + 1)nv1 =
n

∑

k=0

(

n

k

)

T kv1 = e−t/2
n

∑

k=0

(

n

k

)

(−1)k
tk

k!
= e−t/2Ln(t),

where Ln is the nth Laguerre polynomial. Thus by Proposition 2 the vn’s form an
orthonormal basis of L2. That is, K(v1, (T + 1)) = cl span{e−t/2Ln(t)} = L2.

We have now shown that the functions vn(t) form an orthonormal basis of L2(R+,C).
Furthermore (T + 1)vn = vn+1 for all n ≥ 1. This means that T + 1 shifts each
basis vector vn to the next one and can thus be identified with the shift operator S
in l2(Z+).

Let us consider the shift operator S in l2(Z+) = cl spann≥0{en}: Sen = en+1. The
following results are easily obtained. First of all, ‖T +1‖ = ‖S‖ = 1. Also, ‖T ‖ = 2.
This is easy to see by first noting that

‖T ‖ = ‖S − 1‖ ≤ ‖S‖+ ‖1‖ = 2.

The inequality in the opposite direction follows by choosing

xn =
1√
n
(−1, 1,−1, 1, . . . , (−1)n, 0, . . .),

where the n first elements of xn are xn
j = (−1)j√

n , j = 1, . . . , n, and the rest of the

elements are 0. Evidently ‖xn‖ = 1 and

‖S − 1‖ = sup
‖x‖=1

‖(S − 1)x‖ ≥ ‖(S − 1)xn‖ −→ 2, n → ∞.
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S∗ is the inverse shift operator defined by S∗en+1 = en. Now N (S) = {0}, N (S∗) =
span{e0} and the range R(S) of S is R(S) = N (S∗)⊥ = span{e0}⊥ which is closed.
Precisely these properties, the boundedness of the operator and the nontriviality
of the kernel of its adjoint, are the essence of quasitriangularity. So N (T + 1) =
{x | x = 0 a.e.}, N (T ∗ + 1) = span{v1} = span{e−t/2} and R(T + 1) is closed.

Now we have the following result.

Proposition 3 T is not quasitriangular.

Proof. ‖T ‖ = 2 so T is a bounded linear operator in L2. Since N (T +1) = {x | x =
0 a.e.} and N (T ∗+1) = span{e− 1

2 t}, the index of T +1 is negative: ind(T +1) =
dimN (T +1)−dimN (T ∗+1) < 0. The range R(T +1) = N (T ∗+1)⊥ = span{v1}⊥
is closed. So T ∈ L(L2) and T +1 is a semi-Fredholm operator with negative index.
From Theorem 2 it follows that T is not quasitriangular.

In order to prove that T is not quasitriangular it is sufficient to consider T +
1. However the proof above can be done not only by considering T + 1 but by
considering T − λ for any λ for which |λ + 1| < 1. Define α := λ + 1 so that
T −λ ∼ S−α and T ∗− λ̄ ∼ S∗− ᾱ. Any x ∈ l2 can be expressed as x =

∑∞
n=0 xnen.

Now if x ∈ N (S∗ − ᾱ) then x must be of the form

x = x0

∞
∑

n=0

ᾱnen,

which belongs to l2 for |ᾱ| = |α| < 1, that is, for |λ + 1| < 1, so if x ∈ N (T ∗ − λ̄)
then x must be of the form

x = x0

∞
∑

n=0

ᾱnvn+1 = e−t/2x0

∞
∑

n=0

ᾱn
n

∑

k=0

(

n

k

)

(−1)k
tk

k!
.

Let us examine the coefficients of e−t/2tp:

ap = x0

∞
∑

n=p

ᾱn

(

n

p

)

(−1)p
1

p!
=

x0(−1)p

p!

∞
∑

n=p

(

n

p

)

ᾱn.

By using the series expansion of (1 + x)k for x = −ᾱ and k = −p− 1 we get

(1− ᾱ)−(p+1) =
∞
∑

k=0

ᾱk

(

p + k

p

)

.
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This holds again for |x| = |− ᾱ| = |α| = |λ+ 1| < 1. By multiplying this by ᾱp we
get

ᾱp

(1− ᾱ)p+1
=

∞
∑

k=0

ᾱk+p

(

p+ k

p

)

=
∞
∑

n=p

ᾱn

(

n

p

)

,

so that ap =
x0(−1)p

p!

ᾱp

(1 + ᾱ)p+1
and

x =
∞
∑

p=0

ape
−t/2tp =

e−t/2x0

1− ᾱ

∞
∑

p=0

(−1)p

p!
(

ᾱ

1− ᾱ
)ptp =

x0

1− ᾱ
e−t/2

∞
∑

p=0

tp

p!
(1 +

1

ᾱ− 1
)p

= Ce−t/2
∞
∑

p=0

tp

p!
(1 +

1

λ̄
)p = Ce−t/2et(1+

1
λ̄
) = Cet(1/2+1/λ̄),

where C = x0
1−ᾱ is a constant. We have shown that if x ∈ N (T ∗ − λ̄) then

x = Cet(1/2+1/λ̄), which does belong to L2 when |λ + 1| < 1. So N (T ∗ − λ̄) =
span{et(1/2+1/λ̄)}. On the other hand S −α has no nontrivial kernel so N (T − λ) =
{x | x = 0 a.e.}. The range of S − α is l2 so the range R(T − λ) of T − λ is L2

which is closed. That |λ+ 1| < 1 actually means that λ belongs to the spectrum of
T , since the spectrum of the shift operator is {λ : |λ| ≤ 1}, so the spectrum of T
is

σ(T ) = σ(S − 1) = {λ− 1 : |λ| ≤ 1} = {λ : |λ+ 1| ≤ 1}.

So the proof above can be done by considering T − λ for any λ inside the spectrum
of T .

The above was done for M = 1
2 , N = −1 for the very reason that in this case

T + 1 is a shift operator in the basis {vn}∞n=1. What about the general scalar
case Ku(t) =

∫ t

0 e
−µ(t−s)νu(s)ds, ν += 0, Reµ > 0? Define γ := 2Reµ > 0. Now

{√γe−µtLn(γt)}∞n=0 =: {un+1}∞n=0 is also an orthonormal basis for L2 and

Kun =

∫ t

0

e−µ(t−s)ν
√
γe−µsLn(γs)ds =

ν
√
γ

γ
e−µt(Ln(γt)−Ln+1(γt)) =

ν

γ
(un−un+1)

so un+1 = (1 − γ
νK)un and 1− γ

νK is the shift operator in the basis {un}∞n=1. Now
ν
γ − K can be identified with ν

γS, where S is the shift operator in l2(Z+), and we

can proceed as before to show that if Ku(t) =
∫ t

0 e
−µ(t−s)νu(s)ds, where ν and µ are

scalars, ν += 0, Reµ > 0 and Reµ > Reν, then

Proposition 4 K is not quasitriangular.

10



By using the shift analogy it is easy to show that

K(u1,K) = cl span{(ν
γ
)n

n+1
∑

k=0

uk+1(−1)k
(

n+ 1

k

)

}∞n=0 = cl span{un+1}∞n=0 = L2.

Since K[u1] = K|L2
= K and K is not quasitriangular, by Proposition 1 we can

conclude that infn hn,n−1 > 0 so Theorem 4 cannot be used.

Note that b = u1 ∈ N (( νγ −K)∗) is a special starting vector, for it has the property
that K(u1,K) = L2. This is true for any vector of the form b =

∑∞
i=1 αiui, α1 += 0.

If however α1 = 0 this result cannot be used, for then K(b,K) = {u1, . . . , um−1}⊥,
where m is the first index for which αm += 0. If we then try to apply Theorem 2
in K(b,K) instead of L2 we run into problems, since N (( νγ −K)∗) will no longer be
nonempty, for u1 +∈ K(b,K). However if we just look at the Arnoldi process, it is
obvious that infn hn,n−1 = 1 > 0 if we choose any of the (scaled) Laguerre functions
as the initial function.

5 The General Case

5.1 The Key Result

We have the following theorem regarding the Arnoldi process. A theorem by Douglas
and Pearcy [4] presents in a different formalism a related result the proof of which
is similar to the proof of this theorem.

Theorem 5 Let H be a Hilbert space. Suppose that A ∈ L(H) is bounded below
satisfying ‖Au‖ ≥ α‖u‖ for all u and A∗ has a non-trivial null space. Choose the
initial vector b from the kernel N (A∗) of A∗. Then the elements of the Hessenberg
matrix generated by the Arnoldi process satisfy hn+1,n ≥ α.

Proof. Let Pn be an ortogonal projection onto the n-dimensional Krylov subspace
Kn(A, b) = span{b, Ab, ..., An−1b}. Let b ∈ N (A∗) and consider An := PnAPn|Kn.
Since Pn is an orthogonal projection, Pn = P ∗

n so A∗
n = PnA∗Pn. Moreover Pnb =

b ∈ Kn. Now A∗
nb = 0 and An is finite so there exist some vector a ∈ Kn, a += 0,

‖a‖ = 1 such that Ana = 0. Thus PnAPna = 0 and

‖APn − PnAPn‖ ≥ ‖(APn − PnAPn)a‖ = ‖APna‖ = ‖Aa‖ ≥ α
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if ‖Ax‖ ≥ α‖x‖ for all x. It is easy to verify that ‖APn − PnAPn‖ = hn+1,n.

!

Thus the Theorem 4 by Nevanlinna and Vainikko cannot be used if the operator
is bounded from below and its adjoint has a nontrivial null space, from which the
starting vector for the Arnoldi process is chosen. We shall apply this to the operator
λ−K. We examine the null space of (λ− K)∗ in Section 5.2 and the boundedness
from below of λ − K in Section 5.3. A few comments on the subject are given in
Section 5.4.

5.2 The Null Space of (λ−K)∗

Let us consider the operator Ku(t) =

∫ t

0

e−(t−s)MNu(s)ds, where u(s) is a function

in L2(R+,Cd). Now

(Ku, v) =

∫ ∞

0

[

∫ t

0

e−(t−s)MNu(s)ds]∗v(t)dt

=

∫ ∞

0

∫ t

0

u(s)∗N∗e−(t−s)M∗

v(t)dsdt

=

∫ ∞

0

u∗(s)

∫ ∞

s

N∗e−(t−s)M∗

v(t)dtds,

so the adjoint of K is given by

K∗u(t) =

∫ ∞

t

N∗e(t−s)M∗

u(s)ds.

If u ∈ N (λ−K), then (λ−K)u = 0 and

e−tM

∫ t

0

esMNu(s)ds = λu(t)

∫ t

0

esMNu(s)ds = λetMu(t)

and by differentiating we get

etMNu(t) = λetMMu(t) + λetMu′(t)

u′(t) = (
1

λ
N −M)u(t)

u(t) = e(
1
λ
N−M)tu0,
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where u0 = u(0). But u(0) = 0 so u(t) ≡ 0. Thus we have the following result:

Proposition 5 If λ += 0 then λ−K has no nontrivial null space. If λ = 0, the null
space of λ−K consists of all u(t) ∈ N (N).

Similarily, if v ∈ N (λ̄−K∗), then (λ̄−K∗)v = 0, and

N∗etM
∗

∫ ∞

t

e−sM∗

v(s)ds = λ̄v(t).

Let us consider the case λ̄ += 0. Set u(t) := 1
λ̄
etM

∗
∫∞
t e−sM∗

v(s)ds. Now v(t) :=
N∗u(t), so that the above becomes

N∗etM
∗

∫ ∞

t

e−sM∗

N∗u(s)ds = λ̄N∗u(t).

Now this holds when

etM
∗

∫ ∞

t

e−sM∗

N∗u(s)ds = λ̄u(t)
∫ ∞

t

e−sM∗

N∗u(s)ds = λ̄e−tM∗

u(t)

and now by differentiating we get

−e−tM∗

N∗u(t) = −λ̄e−tM∗

M∗u(t) + λ̄e−tM∗

u′(t)

(λ̄M∗ −N∗)u(t) = λ̄u′(t)

u′(t) = (M∗ − 1

λ̄
N∗)u(t)

u(t) = e(M
∗− 1

λ̄
N∗)tC.

So our candidates for functions belonging to the null space of λ̄−K∗ are the functions
v(t) = N∗e(M

∗− 1
λ̄
N∗)tC. For these to be members of the null space of λ̄ − K∗ they

must belong to L2. Now assume that M∗− 1
λ̄
N∗ has at least one eigenvalue µj with a

negative real part. Choose C to be the eigenvector corresponding to this eigenvalue.
Then

v(t) = N∗e(M
∗− 1

λ̄
N∗)tC = N∗

∑

k≥0

tk(M∗ − 1
λ̄
N∗)k

k!
C

= N∗
∑

k≥0

tk(µj)k

k!
C = N∗eµjtC = eµjtN∗C.
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Now v +≡ 0 if C does not belong to the null space of N∗. But if C did belong to
N (N∗), then (M∗ − 1

λ̄
N∗)C = M∗C = µjC, which means that µj ∈ σ(M∗). But in

chapter 3 we required that M be such that all eigenvalues of M have positive real
parts, which means that also all eigenvalues of M∗ must have positive real parts,
and so does µj , which is a contradiction. We have the following result:

Proposition 6 If λ is such that M∗ − 1
λ̄
N∗ has at least one eigenvalue µj with a

negative real part, and C is the eigenvector corrensponding to this eigenvalue, then
0 +≡ v(t) = N∗e(M

∗− 1
λ̄
N∗)tC ∈ L2 belongs to the null space of λ̄−K∗.

5.3 The Boundedness from Below of λ−K

In the following cases it is possible to prove that λ−K is bounded from below:

• N = ν, M = T−1JµT

• M = µ, N = T−1JνT

• N = T−1JνT, M = T−1JµT

• M and N are transformed into their Jordan forms by the same transformation
matrix T .

Here Ja is a Jordan block with a’s on the diagonal. The first three of these cases
are ofcourse special cases of the fourth. We shall however present all of the proofs,
though the basic structure in all of them is the same, since we are not only interested
in proving the boundedness from below but we also wish to get an estimate for the
lower bounds in the different cases.

We shall need the following result:

Lemma 1 Let
∑

|αk|2 < ∞. Then
∑

|aαk + bαk−1|2 ≥ D2
∑

|αk|2 where D =
mint∈[−π,π] |a+ beit|.

Proof. Let ϕk = aαk + bαk−1, in which case
∑

k |ϕk|2 < ∞ since
∑

|αk|2 < ∞. By
the Riesz-Fischer theorem there exists a function g, the Fourier series of which is

∑

k

ϕke
ikt =

∑

k

(aαk + beitαk)e
ikt = (a + beit)

∑

k

αke
ikt,
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where
∑

k αkeikt is the Fourier series of some function h, g = (a + beit)h. Now by
the Parseval theorem

∑

k

|ϕk|2 =
1

2π

∫ π

−π

|g|2 = 1

2π

∫ π

−π

|(a+ beit)h|2 ≥ min
t∈[−π,π]

|a+ beit|2 1

2π

∫ π

−π

|h|2

= min
t∈[−π,π]

|a+ beit|2
∑

k

|αk|2

which completes the proof.!

Note that as long as |a| += |b|, D > 0. We shall apply this lemma to cases where
a and b depend on the elements of the matrices M and N and the parameter λ,
namely a = λ − ν

γ and b = ν
γ , in which case we shall write Dλ instead of D:

Dλ = mint∈[−π,π] |(λ − ν
γ ) +

ν
γ e

it|. In the following we shall treat sums ot the from
∑∞

k=0 |αk|2 as sums of the form
∑∞

k=−∞ |αk|2 by defining αk = 0 for k < 0.

We shall also need the following lemma:

Lemma 2 Choose εd and set

εm := c
d

∑

j=m+1

(
2

γ
)j−mεj, m = 1, . . . , d− 1.

Then

εm = c(
2

γ
)d−m(c+ 1)d−m−1εd, m = 1, . . . , d− 1. (2)

Proof. Obviously this is true for m = d − 1. Assume (2) holds for all d > j > m.
Then

εm = c
d

∑

j=m+1

(
2

γ
)j−m = c

d−1
∑

j=m+1

(
2

γ
)j−mc(

2

γ
)d−j(c+ 1)d−j−1εd + c(

2

γ
)d−mεd

= c(
2

γ
)d−mεd[c

d−1
∑

j=m+1

(c+ 1)d−j−1 + 1] = c(
2

γ
)d−mεd[c

d−m−2
∑

i=0

(c+ 1)i + 1]

= c(
2

γ
)d−mεd[c

1− (c+ 1)d−m−1

1− (c+ 1)
+ 1] = c(

2

γ
)d−m(c+ 1)d−m−1εd,

so (2) holds for m. !
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Let T be an invertible matrix. Then ‖x‖T := ‖Tx‖ defines a norm with the proper-
ties ‖x‖T ≤ ‖T‖‖x‖ and ‖x‖ ≤ ‖T−1‖‖x‖T . So if ‖f‖T ≤ C‖u‖T , then

1

‖T−1‖
‖f‖ ≤ ‖f‖T ≤ C‖u‖T ≤ C‖T‖‖u‖

so
‖f‖ ≤ C‖T−1‖‖T‖‖u‖ = Cκ(T )‖u‖

whereas if ‖f‖T ≥ C‖u‖T , then

‖T‖‖f‖ ≥ ‖f‖T ≥ C‖u‖T ≥ C

‖T−1
‖u‖

so

‖f‖ ≥ C

‖T−1‖‖T‖‖u‖ =
C

κ(T )
‖u‖,

where κ(T ) := ‖T−1‖‖T‖ is the condition number of matrix T .

Remember that the scaled Laguerre functions {√γe−µtLn(γt)}∞n=0 =: {ϕn}∞n=0, where
γ := 2Reµ > 0, form an orthonormal basis for L2.

Proposition 7 Let N = ν and M = T−1JµT , where Jµ is a d×d Jordan block with
µ’s on the diagonal. Furhtermore let λ be such that |λ− ν

γ | += | νγ |, where γ = 2Reµ.
Then λ−K is bounded from below.

Proof. Assume first that ν = 0. Then K ≡ 0 and ‖λ − K‖ = ‖λ‖ > 0, as
|λ− νm

γm
| = |λ| += | νmγm | = 0, and so ‖λ−K‖ is bounded from below. Now assume that

ν += 0. Then

f = (λ−K)u = λu−
∫ t

0

e−(t−s)MNu(s)ds = T−1[λv − ν

∫ t

0

e−(t−s)Jµv(s)ds],

where v = Tu can be written in terms of the scaled Laguerre functions ϕn:

v =







v1
...
vd






=







∑

k α1,ke−µt√γLk(γt)
...

∑

k αd,ke−µt√γLk(γt)






.

Let f̂ := Tf . Note that

eJµt = eµt











1 t . . . td−1

(d−1)!
. . . . . .

...
1 t

1
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so f̂ =












λ
∑

α1,ke−µt√γLk(γt)− e−µtν
∫ t
0

∑

(α1,k + (s− t)α2,k + . . .+ (s−t)d−1

(d−1)! αd,k)Lk(γs)
√
γds

λ
∑

α2,ke−µt√γLk(γt)− e−µtν
∫ t

0

∑

(α2,k + (s− t)α3,k + . . .+ (s−t)d−2

(d−2)! αd,k)Lk(γs)
√
γds

...
λ
∑

αd,ke−µt√γLk(γt)− e−µtν
∫ t

0 αd,kLk(γs)
√
γds













.

The mth component of f̂ is

f̂m = λ
∑

k

e−µtαm,kLk(γt)
√
γ − e−µtν

∑

k

d−m
∑

j=0

αj+m,k

j!

∫ t

0

(s− t)jLk(γs)ds
√
γ

Now

∫ t

0

(s− t)jLk(γs)ds =
j!

γj+1

j+1
∑

i=0

(

j + 1

i

)

(−1)j+iLk+i(γt) so

f̂m = λ
∑

k

e−µtαm,kLk(γt)
√
γ − νe−µt

∑

k

d−m
∑

j=0

αj+m,k

γj+1

j+1
∑

i=0

(−1)j+i

(

j + 1

i

)

Lk+i(γt)
√
γ

=
∑

k

λαm,ke
−µtLk(γt)

√
γ − νe−µt

d−m
∑

j=0

j+1
∑

i=0

(−1)j+i

γj+1

(

j + 1

i

)

∑

k

αj+m,kLk+i(γt)
√
γ

=
∑

k

λαm,ke
−µtLk(γt)

√
γ − νe−µt

d−m
∑

j=0

j+1
∑

i=0

(−1)j+i

γj+1

(

j + 1

i

)

∑

k

αj+m,k−iLk(γt)
√
γ

=
∑

k

[λαm,k − ν
d−m
∑

j=0

j+1
∑

i=0

(−1)j+i

γj+1

(

j + 1

i

)

αj+m,k−i]e
−µtLk(γt)

√
γ.

So

‖f̂m‖2 =
∑

k

∣

∣

∣
λαm,k − ν

d−m
∑

j=0

j+1
∑

i=0

(−1)j+i

γj+1

(

j + 1

i

)

αj+m,k−i

∣

∣

∣

2

and the norm squared of f̂ is

‖f̂‖2 =
d

∑

m=1

‖f̂m‖2 =
d

∑

m=1

∑

k

∣

∣

∣
λαm,k − ν

d−m
∑

j=0

j+1
∑

i=0

(−1)j+i

γj+1

(

j + 1

i

)

αj+m,k−i

∣

∣

∣

2

Now ‖v‖2 =
d

∑

j=1

∑

k

|αj,k|2 =
d

∑

j=1

‖vj‖2, where ‖vj‖2 =
∑

k

|αj,k|2. Fix β > 0 and

define c = β 2|ν|
γDλ

and

M = max(1, max
1≤m≤d−1

(
2

γ
)mc(c+ 1)m−1) = max(1,

2

γ
c, (

2

γ
)d−1c(c+ 1)d−2).
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Choose εd, 0 < εd <
1

M
√
d
and set εm := c

∑d
j=m+1(

2
γ )

j−mεj, m = 1, . . . , d− 1. Then
by Lemma 2

εm = c(
2

γ
)d−m(c+ 1)d−m−1εd, m = 1, . . . , d− 1.

Note that now it is true for all m ∈ [1, d] that εm < 1√
d
.

If ‖vd‖ ≥ εd‖v‖ then by Lemma 1

‖f̂‖ ≥ ‖f̂d‖ =

√

∑

k

|λαd,k −
ν

γ
αd,k +

ν

γ
αd,k−1|2 ≥ Dλ

√

∑

k

|αd,k|2 = Dλ‖vd‖

≥ εdDλ‖v‖,

where Dλ = mint∈[−π,π] |(λ− ν
γ ) +

ν
γ e

it|.

Now assume that ‖vj‖ < εj‖v‖ ∀j > m and ‖vm‖ ≥ εm‖v‖. Then

‖f̂‖ ≥ ‖f̂m‖ =

√

√

√

√

∑

k

|λαm,k − ν
d−m
∑

j=0

j+1
∑

i=0

(

j + 1

i

)

(−1)j+i

γj+1
αj+m,k−i|2

≥
∣

∣

∣

√

∑

k

|(λ− ν

γ
)αm,k +

ν

γ
αm,k−1|2

−

√

√

√

√

∑

k

|ν
d−m
∑

j=1

j+1
∑

i=0

(

j + 1

i

)

(−1)j+i

γj+1
αj+m,k−i|2

∣

∣

∣
.

Again
√

∑

k

|(λ− ν

γ
)αm,k +

ν

γ
αm,k−1|2 ≥ Dλ

√

∑

k

|αm,k|2 = Dλ‖vm‖ ≥ Dλεm‖v‖

and
√

√

√

√

∑

k

|ν
d−m
∑

j=1

j+1
∑

i=0

(

j + 1

i

)

(−1)j+i

γj+1
αj+m,k−i|2 ≤

d−m
∑

j=1

j+1
∑

i=0

| ν

γj+1
|
(

j + 1

i

)√

∑

k

|αj+m,k|2

=
d−m
∑

j=1

|ν|( 2
γ
)j+1‖vj+m‖ <

d−m
∑

j=1

|ν|( 2
γ
)j+1εj+m‖v‖ =

2|ν|
γ

d−m
∑

j=1

(
2

γ
)jεj+m‖v‖

=
Dλ

β
c

d
∑

j=m+1

(
2

γ
)j−mεj‖v‖ =

Dλ

β
εm‖v‖,
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so

‖f̂‖ > Dλ(1−
1

β
)εm.

Define

Cm := Dλ(1− 1
β )εm = Dλ(1− 1

β )(
2
γ )

d−mc(c+ 1)d−m−1εd

form = 1, . . . , d−1 and Cd = Dλεd. For some m it must be true that ‖vm‖ ≥ εm‖v‖,
for it it would not be so, then ‖vm‖ < εm‖v‖ < 1√

d
‖v‖ for all m, and

‖v‖2 =
d

∑

m=1

‖vm‖2 <
d

∑

m=1

1

d
‖v‖2 = ‖v‖2,

which is a contradiction. So choose the first m = d − k, k = 0, 1, 2, . . . , d − 1 for
which it is true that ‖vm‖ ≥ εm‖v‖ and set C = Cm for this m; then ‖f̂‖ > C‖v‖,
that is, ‖f‖T > C‖u‖T . So ‖f‖ > C

κ(T )‖u‖. !

Proposition 8 Let M = µ and N = T−1JνT , where Jν is a d×d Jordan block with
ν’s on the diagonal.Furthermore let λ be such that |λ− ν

γ | += | νγ |, where γ = 2Reµ.
Then λ−K is bounded from below.

Proof.

f = (λ−K)u = λu−
∫ t

0

e−(t−s)MNu(s)ds = T−1[λv −
∫

e−(t−s)µJνv(s)ds],

where v = Tu can be written in terms of the Laguerre functions:

v =







v1
...
vd






=







∑

α1,ke−µt√γLn(γt)
...

∑

αd,ke−µt√γLn(γt)






.

Let f̂ := Tf . Now

f̂ = λv −
∫ t

0

e−(t−s)µ















νv1 + v2
νv2 + v3

...
νvd−1 + vd

νvd















ds

= λv − e−tµ















∑

(α1,kν + α2,k)
∑

(α2,kν + α3,k)
...

∑

(αd−1,kν + αd,k)
∑

αd,kν















√
γ

∫ t

0

Lk(γs)ds
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Since
∫ t
0 L(γs)ds =

1
γ (Lk(γt)− Lk+1(γt)) we have

f̂ = e−µt√γ















∑

(λα1,kLk(γt)− (α1,kν + α2,k)
1
γ (Lk(γt)− Lk+1(γt)))

∑

(λα2,kLk(γt)− (α2,kν + α3,k)
1
γ (Lk(γt)− Lk+1(γt)))

...
∑

(λαd−1,kLk(γt)− (αd−1,kν + αd,k)
1
γ (Lk(γt)− Lk+1(γt)))

∑

(λαd,kLk(γt)− αd,kν
1
γ (Lk(γt)− Lk+1(γt)))















=















∑

(α1,k(λ− ν
γ ) +

ν
γα1,k−1 − 1

γα2,k +
1
γα2,k−1)

√
γLk(γt)e−µt

∑

(α2,k(λ− ν
γ ) +

ν
γα2,k−1 − 1

γα3,k +
1
γα3,k−1)

√
γLk(γt)e−µt

...
∑

(αd−1,k(λ− ν
γ ) +

ν
γαd−1,k−1 − 1

γαd,k +
1
γαd,k−1)

√
γLk(γt)e−µt

∑

(αd,k(λ− ν
γ ) +

ν
γαd,k−1)

√
γLk(γt)e−µt















So the normed squared of f̂ is

‖f̂‖2 =
d−1
∑

m=1

∑

k

|(λ− ν

γ
)αm,k +

ν

γ
αm,k−1 −

1

γ
αm+1,k +

1

γ
αm+1,k−1|2

+
∑

k

|(λ− ν

γ
)αd,k +

ν

γ
αd,k−1|2

Fix β > 1 and define M = max
0≤k≤d−1

(
2β

Dλγ
)k. Choose 0 < εd <

1√
dM

and set

εm = (
2β

Dλγ
)d−mεd, m = 1, . . . , d− 1.

Note that 0 < εm < 1√
d
for all m = 1, . . . , d. If ‖vd‖ ≥ εd‖v‖ then

‖f̂‖ ≥ ‖f̂d‖ =

√

∑

k

|(λ− ν

γ
)αd,k +

ν

γ
αd,k−1|2 ≥ Dλ

√

∑

k

|αd,k|2 = Dλ‖vd‖

≥ Dλεd‖v‖.

Else if for some m < d it is true that ‖vm+1‖ < εm+1‖v‖ and ‖vm‖ ≥ εm‖v‖ then

‖f̂‖ ≥ ‖f̂m‖ =

√

∑

k

|(λ− ν

γ
)αm,k +

ν

γ
αm,k−1 −

1

γ
αm+1,k +

1

γ
αm+1,k−1|2

≥
∣

∣

∣

√

∑

k

|(λ− ν

γ
)αm,k +

ν

γ
αm,k−1|2 −

√

∑

k

|1
γ
(αm+1,k + αm+1,k−1)|2

∣

∣

∣
.
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Now by Lemma 1
√

∑

k

|(λ− ν

γ
)αm,k +

ν

γ
αm,k−1|2 ≥ Dλ

√

∑

k

|αm,k−1|2 = Dλ‖vm‖

≥ Dλεm‖v‖ = Dλ(
2β

Dλγ
)d−mεd‖v‖

and
√

∑

k

|1
γ
(αm+1,k + αm+1,k−1)|2 ≤ 2

γ

√

∑

k

|αm+1,k|2 =
2

γ
‖vm+1‖

<
2

γ
εm+1‖v‖ =

Dλ

β
(
2β

Dλγ
)d−mεd‖v‖,

so

‖f̂‖ > Dλ(1−
1

β
)(

2β

Dλγ
)d−mεd‖v‖.

Define

Cm := Dλ(1−
1

β
)(

2β

Dλγ
)d−mεd, m = 1, . . . , d− 1,

and Cd := Dλεd. For some m it must be true that ‖vm‖ ≥ εm‖v‖ for if it would
not be so, then ‖vm‖ < εm‖v‖ < 1√

d
‖v‖ for all m and ‖v‖2 =

∑d
m=1 ‖vm‖2 <

∑d
m=1

1
d‖v‖

2 < ‖v‖2, which is a contradiction. Choose anym for which it is true that
‖vm+1‖ < εm+1‖v‖ and ‖vm‖ ≥ εm‖v‖ and set C = Cm for this m; if ‖vd‖ ≥ εd‖v‖
choose C = Cd. Then ‖f̂‖ > C‖v‖, that is, ‖f‖ > C

κ(T )‖u‖. !

Proposition 9 Let N = T−1JνT and M = T−1JµT , where Jν (respectively Jµ) is
a d × d Jordan block with ν’s (respectively µ’s) on the diagonal. Furthermore let λ
be such that |λ− ν

γ | += | νγ |, where γ = 2Reµ. Then λ−K is bounded from below.

Proof.

f = (λ−K)u = λu−
∫ t

0

e−(t−s)MNu(s)ds = T−1[λv −
∫

e−(t−s)JµJνv(s)ds],

where v = Tu can be written in terms of the Laguerre functions:

v =







v1
...
vd






=







∑

α1,ke−µt√γLn(γt)
...

∑

αd,ke−µt√γLn(γt)






.
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Note that

eJµtJν = eµt











1 t . . . td−1

(d−1)!
. . . . . .

...
t
1





















ν 1
. . . . . .

1
ν











= eµt











ν 1 + νt . . . td−2

(d−2)! + ν td−1

(d−1)!
. . . . . .

...
1 + νt

ν











so eJµtJνv =

eµt























νv1 + (1 + νt)v2 + . . .+ ( tj−2

(j−2)! + ν tj−1

(j−1)!)vj + . . .+ ( td−2

(d−2)! + ν td−1

(d−1)!)vd

νv2 + (1 + νt)v3 + . . .+ ( tj−3

(j−3)! + ν tj−2

(j−2)!)vj + . . .+ ( td−3

(d−3)! + ν td−2

(d−2)!)vd
...

νvm +
∑d

j=m+1(
tj−m−1

(j−m−1)! + ν tj−m

(j−m)!)vj
...

νvd























Let f̂ := Tf . The mth row of this is

f̂m = λvm −
∫ t

0

[

νvm(s) +
d

∑

j=m+1

vj
( (s− t)j−m−1

(j −m− 1)!
+ ν

(s− t)j−m

(j −m)!

)]

eµ(s−t)ds

= λ
∑

k

e−µt√γαm,kLk(γt)−
∫ t

0

[

ν
∑

k

αm,ke
−µs√γLk(γs)

+
d

∑

j=m+1

( (s− t)j−m−1

(j −m− 1)!
+ ν

(s− t)j−m

(j −m)!

)

∑

k

αj,ke
−µs√γLk(γs)

]

eµ(s−t)ds

= e−µt√γ
[

∑

k

αm,kλLk(γt)− ν
∑

k

αm,k

∫ t

0

Lk(γs)ds

−
d

∑

j=m+1

∑

k

αj,k

(j −m− 1)!

∫ t

0

(s− t)j−m−1Lk(γs)ds

−
d

∑

j=m+1

∑

k

ναj,k

(j −m)!

∫ t

0

(s− t)j−mLk(γs)ds
]

= e−µt√γ
[

∑

k

αm,kλLk(γt)− ν
∑

k

αm,k(Lk(γt)− Lk+1(γt))
1

γ
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−
d

∑

j=m+1

∑

k

αj,k

(j −m− 1)!

(j −m− 1)!

γj−m

j−m
∑

i=0

(

j −m

i

)

(−1)j−m−1+iLk+i(γt)

−
d

∑

j=m+1

∑

k

ναj,k

(j −m)!

(j −m)!

γj−m+1

j−m+1
∑

i=0

(

j −m+ 1

i

)

(−1)j−m+iLk+i(γt)
]

= e−µt√γ
[

∑

k

αm,k(λ− ν

γ
)Lk(γt) +

ν

γ

∑

k

αm,kLk+1(γt)

−
d

∑

j=m+1

j−m
∑

i=0

1

γj−m

(

j −m

i

)

(−1)j−m−1+i
∑

k

αj,kLk+i(γt)

−
d

∑

j=m+1

j−m+1
∑

i=0

ν

γj−m+1

(

j −m+ 1

i

)

(−1)j−m+i
∑

k

αj,kLk+i(γt)
]

=
∑

k

e−µt√γLk(γt)
[

(λ− ν

γ
)αm,k +

ν

γ
αm,k−1

−
d

∑

j=m+1

1

γj−m

j−m
∑

i=0

(

j −m

i

)

(−1)j−m−1+iαj,k−i

−
d

∑

j=m+1

ν

γj−m+1

j−m+1
∑

i=0

(

j −m+ 1

i

)

(−1)j−m+iαj,k−i

]

=
∑

k

e−µt√γLk(γt)
[

(λ− ν

γ
)αm,k +

ν

γ
αm,k−1

−
d

∑

j=m+1

1

γj−m

(−ν

γ
αj,k−j+m−1 +

j−m
∑

i=0

(ν

γ

(

j −m+ 1

i

)

−
(

j −m

i

)

)

(−1)j−m+iαj,k−i

)]

So

‖f̂m‖2 =
∑

k

∣

∣

∣
(λ− ν

γ
)αm,k +

ν

γ
αm,k−1 −

d
∑

j=m+1

1

γj−m

[−ν

γ
αj,k−j+m−1

+
j−m
∑

i=0

(
ν

γ

(

j −m+ 1

i

)

−
(

j −m

i

)

)(−1)j−m+iαj,k−i

]∣

∣

∣

2

and ‖f̂‖2 =
∑d

m=1 ‖f̂m‖2. Fix β > 1 and define c = β
Dλ

(2|ν|γ + 1) and

M = max
(

1, max
1≤m≤d−1

(
2

γ
)mc(c+ 1)m−1

)

.
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Choose 0 < εd < 1
M

√
d
and set εm = c

∑d
j=m+1(

2
γ )

j−mεj for m = 1, . . . , d − 1. Now
by Lemma 2

εm = c(
2

γ
)d−m(c+ 1)d−m−1εd

and εm < 1√
d
for m = 1, . . . , d. If ‖vd‖ ≥ εd‖v‖ then by Lemma 1

‖f̂‖ ≥ ‖f̂d‖ =

√

∑

k

|λαd,k −
ν

γ
αd,k +

ν

γ
αd,k−1|2 ≥ Dλ

√

∑

k

|αd,k|2 = Dλ‖vd‖ ≥ εdDλ‖v‖.

Else if ‖vj‖ < εj‖v‖ for all j > m and and ‖vm‖ ≥ εm‖v‖ then

‖f̂‖ ≥ ‖f̂m‖ =
(

∑

k

∣

∣

∣
(λ− ν

γ
)αm,k + αm,k−1 −

d
∑

j=m+1

1

γj−m

[−ν

γ
αj,k−j+m−1

+
j−m
∑

i=0

(
ν

γ

(

j−m+1
i

)

−
(

j−m
i

)

)(−1)j−m+iαj,k−i

]∣

∣

∣

2)1/2

≥
∣

∣

∣

(

∑

k

|(λ− ν

γ
)αm,k + αm,k−1|2

)1/2

−
(

∑

k

|
d

∑

j=m+1

1

γj−m

[−ν

γ
αj,k−j+m−1

+
j−m
∑

i=0

(
ν

γ

(

j −m+ 1

i

)

−
(

j −m

i

)

)(−1)j−m+iαj,k−i

]

|2
)1/2 ∣

∣

∣
.

Now by Lemma 1
√

∑

k

|(λ− ν

γ
)αm,k + αm,k−1|2 ≥ Dλ

√

∑

k

|αm,k|2 = Dλ‖vm‖ ≥ εmDλ‖v‖

while
√

√

√

√

∑

k

∣

∣

∣

d
∑

j=m+1

1

γj−m

[−ν

γ
αj,k−j+m−1 +

j−m
∑

i=0

(ν

γ

(

j −m+ 1

i

)

−
(

j −m

i

)

)

(−1)j−m+iαj,k−i

]∣

∣

∣

2

≤
d

∑

j=m+1

1

γj−m

[ |ν|
γ

+
j−m
∑

i=0

|ν|
γ

(

j −m+ 1

i

)

+
j−m
∑

i=0

(

j −m

i

)

]
√

|αj,k|2

=
d

∑

j=m+1

1

γj−m

[ |ν|
γ

+
|ν|
γ
2j−m+1 + 2j−m

]

‖vj‖ ≤
d

∑

j=m+1

(
2

γ
)j−m(

2|ν|
γ

+ 1)εj‖v‖

=
Dλ

β
c

d
∑

j=m+1

(
2

γ
)j−mεj‖v‖ =

Dλ

β
εm‖v‖ < Dλεm‖v‖
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So

‖f̂‖ ≥ ‖f̂m‖ ≥ Dλ(1−
1

β
)εm‖v‖.

Define

Cm = Dλ(1−
1

β
)εm = Dλ(1−

1

β
)c(

2

γ
)d−m(c+ 1)d−m−1εd

for m = 1, . . . , d − 1 and Cd = Dλεd. Again for some m it must be true that
‖vm‖ ≥ εm‖v‖, otherwise ‖v‖2 =

∑d
m=1 ‖vm‖2 <

∑d
m=1

1
d‖v‖

2 = ‖v‖2, which is a
contradiction. Choose the first m = d− k, k = 0, . . . , d− 1 for which ‖vm‖ ≥ εm‖v‖
and set C = Cm for this m; then ‖f̂‖ > C‖v‖, and ‖f‖ > C

κ(T )‖u‖. !

Proposition 10 Let N and M be d × d matrices that can be transformed to their
Jordan forms by the same transformation matrix T and let λ be such that |λ− νm

γm
| +=

| νmγm | ∀m = 1, . . . , d where νm and µm are the mth diagonal elements of the Jordan
forms of N and M respectively and γm = 2Reµm. Then λ − K is bounded from
below.

Proof. Let the Jordan form JM of M consist of n Jordan blocks Jµr , r = 1, . . . , n
where the rth block is of the size kr × kr and has µr’s on the diagonal. Define
dr :=

∑r
i=1 ki. Let the diagonal elements of the Jordan form JN of N be JNi,i

= νi,
i = 1, . . . , d and the superdiagonal elements be JNi−1,i = ρi, i = 2, . . . , d where ρi = 0
or ρi = 1.

f = (λ−K)u = λu−
∫ t

0

e−(t−s)MNu(s)ds = T−1[λv −
∫ t

0

e−(t−s)JMJNv(s)ds],

where v = Tu has the components v1, . . . , vd. Note that

eJM t =







eJµ1 t

. . .
eJµn







where each

eJµr t = eµrt











1 t . . . td−1

(d−1)!
. . . . . .

...
1 t

1











, r = 1, . . . , n

Now eJM tJN =

25





























ν1eµ1t (ρ2 + tν2)eµ1t . . . eµ1t(ρj
tj−2

(j−2)! + νj
tj−1

(j−1)! ) . . . eµ1t td1−1

(d1−1)!ρd1+1 0 . . . 0

ν2eµ1t . . . eµ1t(ρj
tj−3

(j−3)! + νj
tj−2

(j−2)! ) . . . eµ1t td1−2

(d1−2)!ρd1+1 0 . . . 0

. . .
νd1e

µ1t eµ1tρd1+1 0 . . . 0
νd1+1eµ2t (ρd1+2 + tνd1+2)eµ2t . . .

. . .



























.

The d1 first elements of eJM tJNv are of the form (m = 1, . . . , d1):

νme
µ1tvm + eµ1t

d1
∑

j=m+1

(

ρj
tj−m−1

(j −m− 1)!
+ νj

tj−m

(j −m)!

)

vj + eµ1t
td1−m

(d1 −m)!
ρd1+1vd1+1.

As m = d1 + 1, . . . , d2 the elements of eJM tJNv are of the form:

νme
µ2tvm + eµ2t

d2
∑

j=m+1

(

ρj
tj−m−1

(j −m− 1)!
+ νj

tj−m

(j −m)!

)

vj + eµ2t td2−m

(d2 −m)!
ρd2+1vd2+1.

In general, when m = dr−1 + 1, . . . , dr, where r < n, the elements of eJM tJNv are of
the form:

νme
µrtvm + eµrt

dr
∑

j=m+1

(

ρj
tj−m−1

(j −m− 1)!
+ νj

tj−m

(j −m)!

)

vj + eµrt tdr−m

(dr −m)!
ρdr+1vdr+1.

Finally when m = dn−1 + 1, . . . , dn, the elements of eJM tJNv are of the form:

νme
µntvm + eµnt

dn
∑

j=m+1

(

ρj
tj−m−1

(j −m− 1)!
+ νj

tj−m

(j −m)!

)

vj .

So for m = dr−1 + 1, . . . , dr, r = 1, . . . , n,

(eJM tJNv)m = νme
µrtvm + eµrt

dr
∑

j=m+1

(

ρj
tj−m−1

(j −m− 1)!
+ νj

tj−m

(j −m)!

)

vj

+(1− δrn)e
µrt tdr−m

(dr −m)!
ρdr+1vdr+1.

Let f̂ := Tf . Now when m = dr−1 + 1, . . . , dr,

f̂m = λvm −
∫ t

0

[

νme
µr(s−t)vm(s) + eµr(s−t)

dr
∑

j=m+1

(

ρj
(s− t)j−m−1

(j −m− 1)!
+ νj

(s− t)j−m

(j −m)!

)

vj(s)

+eµr(s−t) (s− t)dr−m

(dr −m)!
ρdr+1vdr+1(s)(1− δrn)

]

ds
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Write vm(t) =
∑

k α
r
mke

−µrt√γrLk(γrt), where γr = 2Reµr. Now

f̂m = λ
∑

k

αr
mke

−µrt√γrLk(γrt)− νme
−µrt

∑

k

αr
mk

√
γr

∫ t

0

Lk(γrs)ds

−
dr
∑

j=m+1

ρj
∑

k

αr
jke

−µrt√γr

∫ t

0

(s− t)j−m−1

(j −m− 1)!
Lk(γrs)ds

−
dr
∑

j=m+1

νj
∑

k

αr
jke

−µrt√γr

∫ t

0

(s− t)j−m

(j −m)!
Lk(γrs)ds

−(1− δrn)e
−µrtρdr+1

∑

k

αr
dr+1,k

√
γr

∫ t

0

(s− t)dr−m

(dr −m)!
Lk(γrs)ds

= e−µrt√γr
[

λ
∑

k

αr
mkLk(γrt)− νm

∑

k

αr
mk

1

γr
(Lk(γrt)− Lk+1(γrt))

−
dr+1−δrn
∑

j=m+1

ρj
∑

k

αr
jk

1

γj−m
r

j−m
∑

i=0

(

j −m

i

)

(−1)j−m−1+iLk+i(γrt)

−
dr
∑

j=m+1

νj
∑

k

αr
jk

1

γj−m+1
r

j−m+1
∑

i=0

(

j −m+ 1

i

)

(−1)j−m+iLk+i(γrt)
]

= e−µrt√γr
[

(λ− νm
γr

)
∑

k

αr
mkLk(γrt) +

νm
γr

∑

k

αr
mkLk+1(γrt)

+
dr+1−δrn
∑

j=m+1

j−m
∑

i=0

ρj

γj−m
r

(

j −m

i

)

(−1)j−m+i
∑

k

αr
jkLk+i(γrt)

+
dr
∑

j=m+1

j−m+1
∑

i=0

νj

γj−m+1
r

(

j −m+ 1

i

)

(−1)j−m+i+1
∑

k

αr
jkLk+i(γrt)

]

=
∑

k

e−µrt√γrLk(γrt)
[

(λ− νm
γr

)αr
mk +

νm
γr

αr
m,k−1

+
dr+1−δrn
∑

j=m+1

j−m
∑

i=0

ρj

γj−m
r

(

j −m

i

)

(−1)j−m+iαr
j,k−i

+
dr
∑

j=m+1

j−m+1
∑

i=0

νj

γj−m+1
r

(

j −m+ 1

i

)

(−1)j−m+i+1αr
j,k−i

]

Define

Dm,r
λ = min

t∈[−π,π]
|(λ− νm

γr
) +

νm
γr

eit| and Dλ = min
1≤m≤d

1≤r≤n

Dm,r
λ .
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Define
ν̃ = max

1≤m≤d
|νm| and γ̃ = min

1≤r≤n
γr.

Fix β > 1 and define c = β
Dλ

(1 + 2ν̃
γ̃ ) and

M = max(1, max
1≤q≤n

max
dn−q+1≤m≤dn−q+1−δq1

(cq(
2

γ̃
)d−m(c+ 1)d−m−q)).

Choose εd, 0 < εd <
1

M
√
d
and define

εm = c
dr+1−δrn
∑

j=m+1

(
2

γ̃
)j−mεj.

for m = dr−1 + 1, . . . , dr − δrn, r = 1, . . . , n. By using Lemma 2 it is easy to show
that

εm = cq(
2

γ̃
)d−m(c+ 1)d−m−qεd, where q = n− r + 1,

and each εm < 1√
d
. Now if ‖vd‖ ≥ εd‖v‖, then by Lemma 1

‖f̂‖ ≥ ‖f̂d‖ =

√

∑

k

|(λ− νd
γn

)αn
d,k +

νd
γn

αn
d,k−1|2 ≥ Dd,n

λ

√

|αn
d,k|2 = Dd,n

λ ‖vd‖

≥ Dλεd‖v‖.

Else if ‖vj‖ < εj‖v‖ for all j > m and ‖vm‖ ≥ εm‖v‖ then

‖f̂‖ ≥ ‖f̂m‖ =
(

∑

k

∣

∣

∣
(λ− νm

γr
)αr

m,k +
νm
γr

αr
m,k−1 +

dr+1−δrn
∑

j=m+1

j−m
∑

i=0

ρj
γj−m
r

(

j−m
i

)

(−1)j−m+iαr
j,k−i +

dr
∑

j=m+1

j−m+1
∑

i=0

νj

γj−m+1
r

(

j−m+1
i

)

(−1)j−m+i+1αr
j,k−i

∣

∣

∣

2)1/2

≥
∣

∣

∣

(

∑

k

|(λ− νm
γr

)αr
m,k +

νm
γr

αr
m,k−1|2

)1/2

−
(

∑

k

|
dr+1−δrn
∑

j=m+1

j−m
∑

i=0

ρj

γj−m
r

(

j−m
i

)

(−1)j−m+iαr
j,k−i

+
dr
∑

j=m+1

j−m+1
∑

i=0

νj

γj−m+1
r

(

j−m+1
i

)

(−1)j−m+i+1αr
j,k−i|2

)1/2∣
∣

∣

Now by Lemma 1
√

∑

k

|(λ− νm
γr

)αr
m,k +

νm
γr

αr
m,k−1|2 ≥ Dm,r

λ

√

∑

k

|αr
m,k|2 = Dm,r

λ ‖vm‖ ≥ Dλεm‖v‖,
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while

(

∑

k

∣

∣

∣

dr+1−δrn
∑

j=m+1

j−m
∑

i=0

ρj

γj−m
r

(

j−m
i

)

(−1)j−m+iαr
j,k−i

+
dr
∑

j=m+1

j−m+1
∑

i=0

νj

γj−m+1
r

(

j −m+ 1

i

)

(−1)j−m+i+1αr
j,k−i

∣

∣

∣

2)1/2

≤
dr+1−δrn
∑

j=m+1

ρj

γj−m
r

j−m
∑

i=0

(

j −m

i

)√

∑

k

|αr
j,k|2 +

dr
∑

j=m+1

|νj|
γj−m+1
r

j−m+1
∑

i=0

(

j −m+ 1

i

)√

∑

k

|αr
j,k|2

=
dr+1−δrn
∑

j=m+1

ρj(
2

γr
)j−m‖vj‖+

dr
∑

j=m+1

|νj |(
2

γr
)j−m+1‖vj‖

<
dr
∑

j=m+1

(ρj +
2|νj|
γr

)(
2

γr
)j−mεj‖v‖+ (1− δrn)ρdr+1(

2

γr
)dr+1−mεdr+1‖v‖

≤
dr
∑

j=m+1

(1 +
2ν̃

γ̃
)(
2

γ̃
)j−mεj‖v‖+ (1− δrn)(

2

γ̃
)dr+1−mεdr+1‖v‖

≤
dr+1−δrn
∑

j=m+1

(1 +
2ν̃

γ̃
)(
2

γ̃
)j−mεj‖v‖

=
Dλ

β
εm‖v‖ < Dλεm‖v‖

So

‖f̂‖ ≥ ‖f̂m‖ ≥ Dλ(1−
1

β
)εm‖v‖.

Define

Cm = Dλ(1−
1

β
)εm = Dλ(1−

1

β
)cq(

2

γ̃
)d−m(c+ 1)d−m−qεd.

for m ∈ dn−q + 1, . . . , dn−q+1 for some q = 1, . . . , n, m < d, and Cd = Dλεd. Clearly
for some m it must be true that ‖vm‖ ≥ εm‖v‖, for it it would not be so, then
‖vm‖ < εm‖v‖ < 1√

d
‖v‖ for all m, and

‖v‖2 =
d

∑

m=1

‖vm‖2 <
d

∑

m=1

1

d
‖v‖2 = ‖v‖2,

which is a contradiction. So choose the first m = d − k, k = 0, 1, 2, . . . , d − 1 for
which it is true that ‖vm‖ ≥ εm‖v‖ and set C = Cm for this m; then ‖f̂‖ > C‖v‖,
that is, ‖f‖ > C

κ(T )‖u‖. !
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5.4 Conclusion

What have we now learned about our special case, where M and N can be trans-
formed into their Jordan forms by the same transformation matrix T ? In Section
5.3 we showed that if λ is such that |λ − νm

γm
| += | νmγm | ∀m = 1, . . . , d where νm

and µm are the mth diagonal elements of the Jordan forms of N and M respec-
tively and γm = 2Reµm, then λ − K is bounded from below. In Section 5.2 we
showed that as long as λ is such that M∗ − 1

λ̄
N∗ has atleast one eigenvalue µj

with negative real part, λ̄ − K∗ has a nontrivial null space. In our special case
M∗ − 1

λ̄
N∗ = (T−1(JM − 1

λJN)T )∗, and for this to have, for some λ, an eigenvalue
with negative real part N must have atleast one nonzero eigenvalue.

So assume that M and N can be transformed into their Jordan forms by the same
transformation matrix T , that N has a nonzero eigenvalue, and that λ is chosen so
that M∗ − 1

λ̄
N∗ has an eigenvalue with negative real part and that |λ− νm

γm
| += | νmγm |

∀m = 1, . . . , d. If the starting vector b ∈ N (λ̄−K∗) then the subdiagonal elements of
the Hessenberg matrix generated by the Arnoldi process for λ−K satisfy hn,n−1 >
C

κ(T ) , where C is given in the proofs of the Propositions 7 – 10. The Hessenberg
matrices generated by K and λ−K have the same subdiagonal elements so also the
subdiagonal elements of the Hessenberg matrix generated by the Arnoldi process for
K satisfy hn,n−1 >

C
κ(T ) .

Our original question was, whether it is true, that the operator K[b] is not quasitri-
angular for all nonnilpotent K and b +∈ N (N). We only answer this in the case where
M and N can be transformed into their Jordan forms by the same transformation
matrix T and the b ∈ N (λ̄ − K∗) for a suitable λ. Clearly if the starting vector is
chosen from the null space of N , then the local operator is K[b] ≡ 0. In this case the
Nevanlinna-Vainikko theorem can be used but the result is not of general interest. If
b is chosen at random it might coincide with a vector from the null space of (λ−K)∗,
in which case the Nevanlinna-Vainikko theorem cannot be used.

Appendix A: The Laguerre functions

The Laguerre functions are defined by Ln(t) =
∑n

k=0

(

n
k

)

(−1)k tk

k! . The set of func-
tions φn(t) = e−t/2Ln(t) is orthonormal for the interval t ∈ [0,∞), i.e.

∫∞
0 e−tLi(t)Lj(t)dt =

δij . Note that Lk(0) = 1∀k.
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Proposition 11

∫ t

0

Ln(s)ds = Ln(t)− Ln+1(t).

Proof.

Ln(t)− Ln+1(t) =
n

∑

m=0

(−1)m
(

n

m

)

tm

m!
−

n+1
∑

m=0

(−1)m
(

n+ 1

m

)

tm

m!

=
n

∑

m=0

(−1)m[

(

n

m

)

−
(

n + 1

m

)

]
tm

m!
− (−1)n+1

(

n+ 1

n+ 1

)

tn+1

(n+ 1)!

=
n

∑

m=1

(−1)m−1

(

n

m− 1

)

tm

m!
+ (−1)n

(

n

n

)

tn+1

(n + 1)!

=
n−1
∑

m=0

(−1)m
(

n

m

)

tm+1

(m+ 1)!
+ (−1)n

(

n

n

)

tn+1

(n + 1)!

=
n

∑

m=0

(−1)m
(

n

m

)

tm+1

(m+ 1)!
=

∫ t

0

Ln(s)ds,

since
(

(

n
0

)

−
(

n+1
0

)

)

= 0 and for m > 0

(

(

n

m

)

−
(

n+ 1

m

)

)

=

(

n

m

)

(

1− n + 1

n+ 1−m

)

=

(

n

m

)

( −m

n + 1−m

)

= − n!

(m− 1)!(n−m+ 1)!
= −

(

n

m− 1

)

!

Proposition 12

∫ t

0

(s− t)jLk(s)ds = j!
j+1
∑

i=0

(

j + 1

i

)

(−1)j+iLk+i(t).

Proof.

∫ t

0

(s− t)jLk(s)ds =
∣

∣

∣

t

0
(s− t)j(Lk(s)− Lk+1(s))−

∫ t

0

j(s− t)j−1(Lk(s)− Lk+1(s))ds
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= −
∫ t

0

j(s− t)j−1(Lk(s)− Lk+1(s))ds

=
∣

∣

∣

t

0
− j(s− t)j−1(Lk(s)− 2Lk+1(s) + Lk+2(s))

+j(j − 1)

∫ t

0

(s− t)j−2(Lk(s)− 2Lk+1(s) + Lk+2(s))ds = . . .

= j(j − 1) . . . (j −m+ 1)(−1)m
∫ t

0

(s− t)j−m
m
∑

i=0

(

m

i

)

(−1)iLk+i(s)ds

= . . . = j!(−1)j
j

∑

i=0

(

j

i

)

(−1)i
∫ t

0

Lk+i(s)ds

= j!
j

∑

i=0

(

j

i

)

(−1)j+i(Lk+i(t)− Lk+i+1(t))

= j!
j

∑

i=0

(

j

i

)

(−1)j+iLk+i(t)− j!
j+1
∑

i=1

(

j

i− 1

)

(−1)j+i+1Lk+i(t)

= j!
j

∑

i=0

(

(

j

i

)

−
(

j

i− 1

)

)

(−1)j+iLk+i(t) + j!Lk(t)− j!Lk+j+1(t)

= j!
j

∑

i=1

(

j + 1

i

)

(−1)j+iLk+i(t) + j!Lk(t)− j!Lk+j+1(t)

= j!
j+1
∑

i=0

(

j + 1

i

)

(−1)j+iLk+i(t),

for
(

j

i

)

−
(

j

i− 1

)

=
j!

i!(j − i)!
+

j!

(i− 1)!(j − i+ 1)!
=

j!

(i− 1)!(j − i)!

(1

i
+

1

j − i+ 1

)

=
j!

(i− 1)!(j − i)!

(j − i+ 1 + i

i(j − i+ 1)

)

=
(j + 1)!

i!(j − i+ 1)!
=

(

j + 1

i

)

.

!

Proposition 13

∫ t

0

(s− t)jLk(γs)ds =
j!

γj+1

j+1
∑

i=0

(

j + 1

i

)

(−1)j+iLk+i(γt).
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Proof.
∫ t

0

(s− t)jLk(γs)ds =

∫ t

0

(γs− γt)t
1

γj
Lk(γs)γds

1

γ

=
1

γj+1

∫ γt

0

(u− γt)jLk(u)du

=
j!

γj+1

j+1
∑

i=0

(

j + 1

i

)

(−1)j+iLk+i(γt).

!

The following proposition by Szegö [15] was introduced in Section 4:

Proposition 2 The Laguerre functions {φm}∞m=0 = {e−t/2Lm(t)}∞m=0 form an or-
thonormal basis of L2(R+,R). Furthermore, the Laguerre functions are dense in
L1.

Corollary 5 Define γ := 2Reµ > 0. Now {(−1)n
√
γe−µtLn(γt)}∞n=0 =: {un}∞n=0 is

an orthonormal basis for L2(R+,C)

Proof. By Proposition 2 {φm}∞m=0 is a basis of L2(R+,R). But then it is also a
basis of L2(R+,C), for take a function f ∈ L2(R+,C). Then f = u + iv where
u, v ∈ L2(R+,R) and f can be expressed as f =

∑

k αkφk + i
∑

k βkφk =
∑

k(αk +
iβk)φk =

∑

k γkφk, γk := αk + iβk.

Let f now be any function in L2(R+,C), i.e.
∫

|f |2 < ∞. Fix ω, ρ ∈ R, ω += 0,
ρ > 0. Now

g(t) = eiωtf(t) ∈ L2(R
+,C) (since

∫

|g|2 =
∫

|f |2 < ∞) and

h(t) = g(
1

2ρ
t) ∈ L2(R

+,C) (since

∫

|h(t)|2 =
∫

|g( 1
2ρ

t)|2 = |2ρ|
∫

|f |2 < ∞).

So

h(t) =
∑

n

αne
−t/2Ln(t)

g(t) = h(2ρt) =
∑

n

αne
−ρtLn(2ρt)

f(t) = e−iωtg(t) =
∑

n

αne
−(ρ+iω)tLn(2ρt) =

∑

n

αne
−µtLn(γt)
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where µ := ρ+ iω and γ := 2ρ = 2Reµ. So {e−µtLn(γt)}∞n=0 is a basis of L2(R+,C)
and moreover {√γe−µtLn(γt)}∞n=0 is an orthonormal basis of L2(R+,C), since

(
√
γe−µtLn(γt),

√
γe−µtLm(γt)) = γ

∫ ∞

0

e−µtLn(γt)e
−µtLm(γt)dt

= γ

∫ ∞

0

e−γtLn(γt)Lm(γt)dt

= γ

∫ ∞

0

e−sLn(s)Lm(s)
1

γ
ds = δm,n.

!

For more information on the Laguerre polynomials see [2].
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