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Abstract

The paper presents the basic ideas and the mathematical foundation of
the partition of unity finite element method (PUFEM). We will show how
the PUFEM can be used to employ the structure of the differential equation
under consideration to construct effective and robust methods. Although the
method and its theory are valid in n dimensions, a detailed and illustrative
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classes of non-standard problems which can profit highly from the advantages
of the PUFEM and conclude this paper with some open questions concerning
implementational aspects of the PUFEM.

Keywords: Finite element method, meshless finite element method, robust finite
element methods, finite element methods for highly oscillatory solutions

1TICAM, The University of Texas at Austin, Austin, TX 78712, USA



1 Introduction

The aim of this paper is to present a new method for solving differential equations,
the “partition of unity finite element method” (PUFEM). We explain the mathematical
foundation of the PUFEM and discuss some of its features. The most prominent among
them are

1. the ability to include a priori knowledge about the local behavior of the solution in
the finite element space;

2. the ability to construct finite element spaces of any desired regularity (as may be
important for the solution of higher order equations);

3. the fact that the PUFEM falls into the category of “meshless” methods; a mesh in
the classical sense does not have to be created and thus the complicated meshing
process is avoided;

4. the fact that the PUFEM can be understood as a generalization of the classical h,
p, and hp versions of the finite element method.

In this paper, we will mostly concentrate on the first of these four features. In particular,
the one dimensional example of section 4 illustrates the fact that the PUFEM enables
us to construct finite element spaces which perform very well in cases where the classical
finite element methods fail or are prohibitively expensive. The success of the PUFEM in
this example is precisely due to the fact that the PUFEM offers an easy way to include
analytical information about the problem being solved in the finite element space. A
similar example was analyzed in [15] for a problem with a boundary layer. Again, the
PUFEM permitted the construction of finite element spaces which account for the bound-
ary layer behavior and thus led to a robust method in the sense that the performance of
the method is independent of the actual strength of the boundary layer. An application
of the PUFEM to the Timoshenko beam with hard elastic support can be found in [16].
The paper is organized as follows. The rest of section 1 establishes that the two main
ingredients of finite element spaces are local approximation properties and some interele-
ment continuity. The PUFEM constructs a global conforming finite element space out
of a set of given local approximation spaces – the precise construction is described in
section 2. Therefore, the PUFEM separates the issues of interelement continuity and
local approximability and allows us to concentrate on finding good local approximation
spaces for a given problem. In section 3, we give a few examples of spaces with good
local approximation properties for several differential equations. A detailed example of
the PUFEM is presented in section 4 for a one dimensional model problem with rough
coefficients. In section 4 we construct local approximation spaces which reflect the rough
behavior of the solution and show that they are robust. The numerical example of 4.3
illustrates the robust performance of the PUFEM. We conclude the paper in section
5 with an application of the PUFEM to the two dimensional Helmholtz equation and
identify some open questions concerning implementational aspects.
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1.1 The Finite Element Method

The finite element method (FEM) for the solution of linear problems can be understood
as follows. The problem is formulated in a weak form

find u ∈ X : B(u, v) = F (v) ∀v ∈ Y (1)

where X , Y are Hilbert spaces with norms ‖ · ‖X , ‖ · ‖Y . B : X × Y %→ R is continuous
and bilinear, and F : Y %→ R is continuous and linear. Of course, in all problems
of interest, the spaces X , Y are infinite dimensional. In the FEM finite dimensional
subspaces Xn ⊂ X (called the trial spaces), Yn ⊂ Y (called the test spaces) of dimension
n are chosen and the finite element approximation uFE is defined as the solution of

find uFE ∈ Xn : B(uFE, v) = F (v) ∀v ∈ Yn. (2)

In order for the approximations uFE to converge to the exact solution u, the following
two conditions are necessary:

• Approximability: u can be approximated well by the subspaces Xn; at least, we
need inf{‖u− v‖Xn | v ∈ Xn} → 0 as n → ∞;

• Stability: The bilinear form B (together with the subspaces Xn, Yn) satisfies an
inf-sup condition (also known as the BB condition, see [1]).

In particular, if the stability condition holds, then problem (2) has a unique solution uFE

which satisfies
‖u− uFE‖X ≤ C inf

v∈Xn

‖u− v‖X (3)

with a constant C > 0 independent of u and n. Thus the error of the finite element
approximation is – up to the constant C – as small as the error of the best approximant
in the space Xn. Therefore, given stability, the performance of the finite element method
is determined by the approximation properties of the spaces Xn for the approximation of
the solution u. These observations lead to the problem of constructing spaces Xn which
are conforming (i.e., Xn ⊂ X ) and which have good approximation properties for the
approximation of the exact solution u.

1.2 Local Approximability and Interelement Continuity

Let us now consider some of the classical choices of the trial spaces Xn and see how the
condition to be conforming and the approximation properties are realized. In many ap-
plications (e.g., the heat equation, the elasticity equations in displacement formulation)
the space X is a subspace of the Sobolev space H1. We will therefore concentrate on
the classical piecewise polynomial subspaces of H1. In the classical FEM the spaces Xn

are chosen such that they have good local approximation properties and are conforming;
more precisely, they are chosen to consist of piecewise polynomials (or mapped poly-
nomials) and are continuous across element boundaries. In the h-version of the FEM,
the polynomial degree is fixed (typically, p ≤ 2) and the approximation is realized by
decreasing the mesh size h. If the function u to be approximated is sufficiently smooth
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(in Hk, say), an appropriate interpolant Iu (for example, for p = 1 and piecewise linear
functions on triangles, one can choose the nodal interpolant) satisfies an estimate of the
form

‖u− Iu‖H1 ≤ Ck,ph
min(k−1,p)|u|Hk (4)

where Ck,p is independent of u and h. We see that the approximation properties of these
classical h-version type finite element spaces are good whenever the exact solution is
not “rough”. By “rough” we mean here and in the rest of this paper that either higher
derivatives of u are not square integrable (i.e., the case that k is close to 1) or that
they exist but are very large (i.e., |u|Hk is big). In both cases, the approximation with
piecewise polynomial functions performs very poorly and the mesh size h has to be chosen
very small before a reasonable accuracy is achieved (cf. section 4 and lemma 4.1).
In the p version of the FEM, the mesh is fixed and the local approximation is realized by
polynomials (or mapped polynomials) of increasing degree. Again, continuity across the
interelement boundaries is enforced in order to ensure conformity of the finite element
spaces. The error estimates typically have the form

‖u− Iu‖H1 ≤ Ckp
−(k−1)|u|Hk , (5)

and thus the p version can be expected to work well whenever the exact solution is
reasonably smooth; however, the p version exhibits the same deficiencies as the h version
whenever the exact solution is rough.
In conclusion, the approximation properties of both the h and the p version of the finite
element method are based on the fact that

1. (local approximability) a smooth function can be approximated locally by polyno-
mials, and

2. (conformity of the finite element spaces/interelement continuity) polynomial spaces
are big enough to absorb extra constraints of continuity across interelement bound-
aries without loosing the approximation properties.

Conversely, any system of functions which have good local approximation properties and
can be constrained to satisfy some interelement continuity leads to a good finite element
method.
Let us first elaborate the problem of local approximability. There are many systems of
functions which have good local approximation properties. For certain types of equations,
one can exploit the structure of the differential equation to construct spaces of functions
which can approximate the solution even better than the spaces of polynomials. In sec-
tion 3 we give a few examples of spaces which have very good approximation properties
for the solution of Laplace’s equation, the homogeneous Helmholtz equation, and the
elasticity equations in two dimensions. For example, for the approximation of harmonic
functions, it is enough to approximate locally with harmonic polynomials–it is not neces-
sary to use the full space of polynomials. In the example of Helmholtz’s equation, we see
below that local approximation can be done with systems of plane waves or with spaces
based on radial Bessel functions. Finally, in section 4, we consider a one dimensional
model problem with rough coefficients and construct spaces of functions (which take into
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account the rough behavior of the coefficients of the differential equation) which have
good local approximation properties for the approximation of the (also rough) solution.
In this example, the PUFEM based on these special functions leads to a robust method,
i.e., a method which performs as well as the classical FEM performs for a problem with
smooth coefficients. This is due to the fact that the special ansatz functions incorporate
the rough behavior of the solution.
Let us now turn to the problem of conformity of the finite element space/interelement
continuity. We have just seen that it is possible to construct many spaces of functions
(typically non-polynomial) which have good local approximation properties for the ap-
proximation of a solution u of a differential equation. In general, it is not possible to
enforce conformity, i.e., interelement continuity, for these non-polynomial local approx-
imation spaces. The PUFEM, however, offers a means to construct a conforming space
out of any given system of local approximation spaces without sacrificing the approxi-
mation properties. This is done as follows. Let {Ωi} be a system of overlapping patches
which cover the domain Ω of interest. Let {ϕi} be a partition of unity subordinate to
the cover. On each patch Ωi, let Vi ⊂ H1(Ωi) be a space of functions by which u|Ωi

can
be approximated well. The global finite element space V is then defined by

∑

i ϕiVi.
Theorem 2.1 below states that the global space V inherits the approximation properties
of the local spaces Vi, i.e., the function u can be approximated on Ω by functions of V as
well as the functions u|Ωi

can be approximated in the local spaces Vi. Moreover, the space
V inherits the smoothness of the partition of unity ϕi. In particular, the smoothness of
the partition of unity enforces the conformity of the global space V .

1.3 Potential Applications of the PUFEM

We already mentioned above that one potential field of application of the PUFEM are
problems where the classical polynomial based FEM fail. In this category fall problems
where the solution is rough (or highly oscillatory) and the usual piecewise polynomial
spaces cannot resolve the essential features of the solution unless the mesh size h is very
small or the polynomial degree p is very large. In both cases the computational costs are
high or even too high for today’s computers. Examples of problems with rough or highly
oscillatory solutions are the elasticity equations for laminated materials, materials with
stiffeners, or the Helmholtz equation for large wave numbers to mention but a few. In
section 4 the PUFEM is applied to a problem with rough coefficients.
Problems of singularly perturbed type or problems where the solution exhibits a boundary
layer can also be dealt with very successfully in the framework of the PUFEM. If the
singular behavior of the solution is known, the PUFEM allows us to incorporate this
knowledge directly into the finite element space. In contrast to this, the classical FEM
has to use very small mesh sizes in order to resolve the singular behavior of the solution
([15]).
We mentioned above that the PUFEM falls in the general category of “meshless” meth-
ods. This feature might be exploited for certain problems where the usual methods
involve frequent remeshing. For example, in the problem of the optimal placement of a
fastener, the engineer has to try several locations of the fastener. For each run, he has to
remesh parts of the domain in order to account for the changed position of the fastener.
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One could construct a local approximation space which models the fastener and then
changing the position of the fastener simply means changing the local approximation
spaces.

2 Mathematical Foundation of the PUFEM

In this section, we present a method of constructing conforming subspaces of H1(Ω). We
construct finite element spaces which are subspaces of H1(Ω) as an example because of
their importance in applications. We would like to stress at this point that the method
leads to the construction of smoother spaces (subspaces of Hk, k > 1) or subspaces of
Sobolev spaces W k,p in a straight forward manner. The main technical notion in the
construction of the PUFEM spaces is the (M,C∞, CG) partition of unity.

Definition 2.1 Let Ω ⊂ Rn be an open set, {Ωi} be an open cover of Ω satisfying a
pointwise overlap condition

∃M ∈ N ∀x ∈ Ω card{i | x ∈ Ωi} ≤ M.

Let {ϕi} be a Lipschitz partition of unity subordinate to the cover {Ωi} satisfying

suppϕi ⊂ closure(Ωi) ∀i, (6)
∑

i

ϕi ≡ 1 on Ω, (7)

‖ϕi‖L∞(Rn) ≤ C∞, (8)

‖∇ϕi‖L∞(Rn) ≤ CG

diamΩi
, (9)

where C∞, CG are two constants. Then {ϕi} is called a (M,C∞, CG) partition of unity
subordinate to the cover {Ωi}. The partition of unity {ϕi} is said to be of degree m ∈ N0

if {ϕi} ⊂ Cm(Rn). The covering sets {Ωi} are called patches.

Definition 2.2 Let {Ωi} be an open cover of Ω ⊂ Rn and let {ϕi} be a (M,C∞, CG)
partition of unity subordinate to {Ωi}. Let Vi ⊂ H1(Ωi ∩ Ω) be given. Then the space

V :=
∑

i

ϕiVi = {
∑

i

ϕivi | vi ∈ Vi} ⊂ H1(Ω)

is called the PUFEM space. The PUFEM space V is said to be of degree m ∈ N if
V ⊂ Cm(Ω).The spaces Vi are referred to as the local approximation spaces.

Theorem 2.1 Let Ω ⊂ Rn be given. Let {Ωi}, {ϕi}, and {Vi} be as in definitions 2.1,
2.2. Let u ∈ H1(Ω) be the function to be approximated. Assume that the local approxi-
mation spaces Vi have the following approximation properties: On each patch Ωi ∩ Ω, u
can be approximated by a function vi ∈ Vi such that

‖u− vi‖L2(Ωi∩Ω) ≤ ε1(i),

‖∇(u− vi)‖L2(Ωi∩Ω) ≤ ε2(i).
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Then the function
uap =

∑

i

ϕivi ∈ V ⊂ H1(Ω)

satisfies

‖u− uap‖L2(Ω) ≤
√
MC∞

(

∑

i

ε21(i)

)1/2

, (10)

‖∇(u− uap)‖L2(Ω) ≤
√
2M

(

∑

i

(

CG

diamΩi

)2

ε21(i) + C2
∞ε22(i)

)1/2

. (11)

Proof: We will only show estimate (11) because (10) is proved similarly. Let uap be
defined as in the statement of the theorem. Since the functions ϕi form a partition of
unity, we have 1 · u = (

∑

i ϕi)u =
∑

i ϕiu and thus

‖∇(u− uap)‖2L2(Ω) = ‖∇
∑

i

ϕi(u− vi)‖2L2(Ω)

≤ 2‖
∑

i

∇ϕi(u− vi)‖2L2(Ω) + 2‖
∑

i

ϕi∇(u− vi)‖2L2(Ω).

Now, since not more than M patches overlap in any given point x ∈ Ω, the sums
∑

i ∇ϕi(u − vi) and
∑

i ϕi∇(u − vi) also contain at most M terms for any fixed x ∈ Ω.
Thus, |

∑

i ∇ϕi(u−vi)|2 ≤ M
∑

i |∇ϕi(u−vi)|2 and |
∑

i ϕi∇(u−vi)|2 ≤ M
∑

i |ϕi∇(u−
vi)|2 for any x ∈ Ω. Hence, if we observe that suppϕi ⊂ Ωi

2‖
∑

i

∇ϕi(u− vi)‖2L2(Ω) + 2‖
∑

i

ϕi∇(u− vi)‖2L2(Ω) ≤

2M
∑

i

‖∇ϕi(u− vi)‖2L2(Ω) + 2M
∑

i

‖ϕi∇(u− vi)‖2L2(Ω) ≤

2M
∑

i

‖∇ϕi(u− vi)‖2L2(Ωi∩Ω) + 2M
∑

i

‖ϕi∇(u− vi)‖2L2(Ωi∩Ω) ≤

2M
∑

i

(

C2
G

(diamΩi)2
ε21(i) + C2

∞ε22(i)

)

which finishes the proof. !

Remark 2.1: The constant M controls the overlap of the patches. In particular, not
more than M patches overlap in any given point x ∈ Ω of the domain. The patches have
to overlap because the functions ϕi are supposed to form a sufficiently regular (here:
Lipschitz) partition of unity. Condition (9) expresses the fact that we need to control
the gradient of the partition of unity functions ϕi if we are interested in H1 estimates.
Note that typically ε1(i) ≤ C(diamΩi)ε2(i) so that the terms in the sum of (11) are in a
sense balanced.
The usual piecewise linear hat functions on a regular (triangular) mesh in two dimensions
satisfy the above conditions of a (M,C∞, CG) partition of unity; actually,M = 3, C∞ = 1,
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and condition (9) is satisfied because of the regularity of the mesh, i.e., the minimum angle
condition satisfied by the triangulation. Similarly, the classical bilinear finite element
functions on quadrilateral meshes form a (M,C∞, CG) partition of unity (M = 4, C∞ =
1).
The PUFEM has approximation properties very similar to the usual h and p version if the
local approximation spaces Vi are chosen to be spaces of polynomials. In fact, if the local
approximation spaces consist of polynomials of fixed degree p and the approximation in Vi

is achieved through the smallness of the patch Ωi, the method behaves like the h version.
If the patches are kept fixed and the local approximation is achieved by increasing the
degree p of the polynomials, which comprise the local spaces Vi, the method behaves like
the p version. In this sense, the PUFEM is a generalization of the h and p version.

3 Examples of Local Approximation Spaces

Let us consider a few examples of systems of functions which have good approximation
properties for the solutions to a given differential equation and additionally solve the
differential equation themselves. A minimal condition on such a system is that it be dense
in the set of all solution. We will see that these systems are not unique and that there are
many dense system for a given differential equation. The choice of a particular system
thus depends on practical aspects (cost of constructing the functions, ease of evaluation
of the functions, i.e., cost of construction of the stiffness matrix; conditioning number
of the resulting stiffness matrix) and theoretical aspects (optimality of the system; see
remark 3.5 below).

3.1 Laplace’s Equation

Let us begin with Laplace’s equation

−∆u = 0 (12)

on a bounded Lipschitz domain Ω ⊂ R2. The classical approximation theory in L∞ with
harmonic polynomials leads to results of the following form.

Theorem 3.1 (Szegö) Let Ω ⊂ R2 be a simply connected, bounded Lipschitz domain.
Let Ω̃ ⊃⊃ Ω and assume that u ∈ L2(Ω̃) is harmonic on Ω̃. Then there is a sequence
(up)∞p=0 of harmonic polynomials of degree p such that

‖u− up‖L∞(Ω) ≤ Ce−γp‖u‖L2(Ω̃),

‖∇(u− up)‖L∞(Ω) ≤ Ce−γp‖u‖L2(Ω̃)

where γ, C > 0 depend only on Ω, Ω̃.

Proof: See [17], [20]. !
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Theorem 3.2 Let Ω be a bounded Lipschitz domain, star-shaped with respect to a ball.
Let the exterior angle of Ω be bounded from below by λπ, 0 < λ < 2. Assume that u ∈
Hk(Ω), k > 1, is harmonic. Then there is a sequence (up)∞p=2 of harmonic polynomials
of degree p such that

‖u− up‖Hj(Ω) ≤ C(diamΩ)k−j

(

ln p

p

)λ(k−j)

‖u‖Hk(Ω), j = 0, . . . , [k]

where C > 0 depends only on the shape of Ω and k.

See [8] for a proof of theorem 3.2. Note that typically λ ≤ 1 and that for domains with
re-entrant corners, λ can be significantly less than 1.
Remark 3.2: The restriction in theorem 3.2 that Ω be star-shaped with respect to a
ball is not a big constraint for our purposes because we are interested in local estimates
on patches and the patches are typically chosen to be star-shaped.

Remark 3.3: We note that the error estimates of theorem 3.1 are (up to the constants
involved) similar to the estimates one obtains for the approximation with full spaces of
polynomials in that the dependence on p is essentially the same. However, since the
number of harmonic polynomials of degree p is 2p + 1 and the number of polynomials
of degree p is p(p+1)

2 , the approximation with harmonic polynomials is (asymptotically)
better in terms of error versus degrees of freedom.

Remark 3.4: We formulated theorem 3.2 in an H1 framework. Similar results in an
L∞ setting can be found in [9], for example. Those estimates also exhibit the loss in the
rate of the approximability when the domain Ω has re-entrant corners.

Remark 3.5: Harmonic polynomials are not the only system of functions which
are dense in the class of solutions to Laplace’s equation. For example, the systems
{Re enz, Im enz |n ∈ N0}, or {Re z−n, Im z−n |n ∈ N0} (if 0 1∈ Ω), or the system of rational
functions are dense in the set of solutions of Laplace’s equation. The system of harmonic
polynomials is optimal in the sense of n-width for the approximation of rotationally
invariant spaces of harmonic functions on discs (see [15]).

3.2 Elasticity Equations

The solutions of the equations of linear elasticity (in the absence of body forces) in two
dimensions can be expressed in terms of two holomorphic functions (see [10]). Let us
consider the case of plain strain on a bounded Lipschitz domain Ω ⊂ R2 and let λ,
µ be the Lamé constants of the material (for the case of plain stress, replace in what
follows λ by λ∗ = 2λµ/(λ+ 2µ)). The displacement field (u, v) can be expressed by two
holomorphic functions ϕ, ψ:

2µ (u(x, y) + iv(x, y)) = κϕ(z)− zϕ′(z)− ψ(z) (13)

where κ = (λ + 3µ)/(λ + µ) and we set z = x + iy. For a given displacement state,
the holomorphic functions ϕ, ψ are unique up to the normalization of ϕ(z0) = 0 in a
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point z0 ∈ Ω. Thus, we may approximate the displacement field (u, v) by “generalized
harmonic polynomials”

2µ(u+ iv) = κϕp(z)− zϕ′
p(z)− ψp(z) (14)

where the functions ϕp, ψp are complex polynomials of degree p

ϕp(z) =
p

∑

n=1

an(z − z0)
n

ψp(z) =
p

∑

n=0

bn(z − z0)
n

with complex coefficients an, bn. In a real formulation, the displacements u and v are
obtained by taking the real and imaginary parts of the elements of the space V (as a
vector space over R of dimension 2 + 4p)

V = span {1, i, (z − z0)n, i(z − z0)n,

κ(z − z0)
n − n(z − z0)(z − z0)n−1,

iκ(z − z0)
n − in(z − z0)(z − z0)n−1 |n = 1, . . . , p}.

The approximation properties of these “generalized harmonic polynomials” are very sim-
ilar to the approximation properties of the harmonic polynomials for the approximation
of solutions of Laplace’s equation. Obviously, in the case that the displacement field sat-
isfies the elasticity equations on a domain Ω̃ ⊃⊃ Ω, the estimates of theorem 3.1 produce
similar estimates for the error in the displacement field and stress field for the approxima-
tion with “generalized harmonic polynomials”. The analogous theorem to theorem 3.2
takes the form

Theorem 3.3 Let Ω ⊂ R2 be a bounded Lipschitz domain, star-shaped with respect to
a ball. Let the exterior angle of Ω be bounded from below by λ̃π. Assume that the
displacement field (u, v) ∈ Hk(Ω), k ≥ 1. Then (u, v) can be approximated by “generalized
harmonic polynomials” of degree p such that

‖2µ(u+ iv)− (κϕp − (z − z0)ϕ′
p − ψp)‖Hj(Ω) ≤ C(diamΩ)k−j

(

ln p

p

)λ̃(k−j)

‖(u, v)‖Hk(Ω)

for j = 0, 1. The constant C depends only on the shape of Ω and k.

Proof: The proof can be found [8]. A density assertion for these “generalized harmonic
polynomials” in the space of solutions of the elasticity equations can also be found in [6]
(under stronger assumptions, however). !

Remark 3.6: As in the example with Laplace’s equation, we are not restricted to
using “harmonic polynomials”. Analogous systems based on functions of the form enz,
or polynomials in 1/z are also dense in the set of solutions of the elasticity equations.
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Remark 3.7: The theory can be extended to problems with certain loads. In many
practical applications the load is simple (constant, polynomial) and an explicit particular
solution of the elasticity equations is known. Thus, augmenting the space V by this
particular solution allows us to deal with these problems successfully in the framework
of approximating the sought solution by functions which solve the differential equation.

3.3 Helmholtz’s Equation

In this section let us consider the Helmholtz equation on a bounded Lipschitz domain
Ω ⊂ R2:

−∆u+ k2u = 0 on Ω ⊂ R
2 (15)

where k > 0 is the wave number. For this problem we discuss two sets of functions which
have good approximation properties for the general solution of (15). Define “generalized
harmonic polynomials” of degree p by

V V (p) = span {e±inθJn(kr) |n = 0, . . . , p} (16)

where we used polar coordinates (r, θ) and the functions Jn are the usual Bessel functions
of the first kind (see, e.g., [5]). The nomenclature “generalized harmonic polynomials”
comes from the fact that these functions are the direct analogues of harmonic polynomials
via the theory of Bergman and Vekua ([3], [19]). In fact, the approximation results for the
approximation of harmonic functions with harmonic polynomials carry over to the case
of the approximation of the solutions of (15) with “generalized harmonic polynomials”:

Theorem 3.4 Let Ω be a bounded Lipschitz domain, star-shaped with respect to a ball.
Let the exterior angle of Ω be bounded from below by λπ and assume that u ∈ Hs(Ω),
s ≥ 1, solves (15). Then there are functions up ∈ V V (p) such that

‖u− up‖Hj(Ω) ≤ C(Ω, s, k)

(

ln p

p

)λ(s−j)

‖u‖Hs(Ω) j = 0, 1

where C(Ω, s, k) > 0 depends only on Ω, k, and s.

Proof: see [8]. !

As in the case of the approximation of solutions to Laplace’s equation, there are many
other alternatives to the choice of “generalized harmonic polynomials”. For example, one
can approximate the solutions of (15) with systems of plane waves:

W (p) = span {exp [ik(x cos θj + y sin θj)] | θj =
2π

p
j, j = 0, . . . , p− 1}. (17)

One can show that these systems of plane wave have approximation properties which are
very similar to the approximation with “generalized harmonic polynomials”:
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Theorem 3.5 Under the same assumptions as in theorem 3.4 there are functions up ∈
W (p) such that

‖u− up‖Hj(Ω) ≤ C(Ω, s, k)

(

ln2 p

p

)λ(s−j)

‖u‖Hs(Ω) j = 0, 1

where C(Ω, s, k) > 0 depends only on Ω, k, and s.

What are the differences between the generalized harmonic polynomials and the systems
of plane waves? Just as the harmonic polynomials were optimal in the sense of n-width
for the approximation of rotationally invariant spaces of harmonic functions on discs, the
generalized harmonic polynomials are optimal in the sense of n-width for rotationally
invariant spaces of solutions of (15) for the special case of Ω being a disc.
An advantage of systems of plane waves is that they might be easier to use in practical
applications. Plane waves can be written as products of functions of x and of y only;
thus, if the patches consists of rectangles aligned with the coordinate axes, then the
integrals appearing in the stiffness matrix can written as products of one dimensional
integrals and evaluated cheaply. This observation has been exploited in section 5.1. Let
us finish this section by mentioning that these “generalized harmonic polynomials” and
the systems of plane waves lead to exponential rates of convergence if the function u is
analytic up to boundary:

Theorem 3.6 Let Ω ⊂ R2 be a simply connected, bounded Lipschitz domain. Let Ω̃ ⊃⊃
Ω and assume that u ∈ L2(Ω̃) solves the homogeneous Helmholtz equation on Ω̃. Then

inf
up∈V V (p)

‖u− up‖H1(Ω) ≤ Ce−γp‖u‖L2(Ω̃)

inf
wp∈W (p)

‖u− wp‖H1(Ω) ≤ C̃e−γ̃p/ ln p‖u‖L2(Ω̃)

where C, C̃, γ, and γ̃ depend only on Ω, Ω̃, and k.

3.4 Change of Variables Techniques: Rough Coefficients and
Elasticity Equations with Corners

The idea of the PUFEM is to enable the user to employ functions with good local
approximation properties. These functions do not necessarily have to solve the differential
equation. In fact, it can sometimes be too costly to create “optimal” functions. One
method to create functions which have good local approximation properties is obtained
by an appropriate change of variables. Let us assume that the change of variables x %→ x̃
transforms the sought solution u into a function ũ which is smoother than u. Then, this
transformed function ũ can be approximated well by polynomials P̃ (x̃). This suggests
that a good choice for the approximation of u are the mapped “polynomials” P (x) = P̃ (x̃)
where the functions P̃ are polynomials.
This idea has been analyzed for a model problem with unilaterally rough coefficients in
[13] (the next section considers in detail the one dimensional analogue of the problem
considered in [13]).
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The idea of exploiting the improved approximation properties of mapped “polynomials”
has been applied very successfully to the problem of the elasticity equations with singu-
larities ([11], [12]). The natural change of variables (in a two dimensional setting) is a
conformal map which makes corner singularities or singularities arising at interfaces less
pronounced. The mapped function can be approximated well by polynomials. Mapping
the polynomials back under this conformal map leads to the ansatz functions used.

3.5 The Choice of the Partition of Unity Functions

In the preceding subsections, we described various choices of local approximation spaces
which have better approximation properties than the spaces of polynomials of degree p.
Let us now turn to the problem of the choice of the partition of unity which puts a given
set of local approximation spaces together to produce a conforming global space. The
conditions on the partition of unity are very weak: a Lipschitz partition of unity suffices
to construct a subspace of H1 according to theorem 2.1.
Let us consider a domain Ω ⊂ R2. One possible choice of a partition of unity is a collection
of finite element functions. Let Ω̃ ⊃ Ω be any domain on which a mesh (consisting of
triangles or rectangles, say) has been defined. The usual piecewise linear or bilinear
hat functions associated with the nodes of this mesh form a partition of unity for Ω̃
and therefore for Ω as well. The supports of these hat functions can then be taken as
the patches Ωi. If the mesh satisfies a minimum angle condition, this partition of unity
satisfies all the requirements of theorem 2.1. This particular choice has been made for
the numerical example of section 5.1.
A more general choice of a partition of unity is given by the following procedure. Let
{Ωi} be a collection of overlapping patches which cover Ω and let {ψi} be a collection of
functions which are supported by the patches Ωi. Then the normalization

ϕi =
ψi

∑

j ψj
(18)

yields a partition of unity subordinate to the cover {Ωi}. Note that for given i the sum
in (18) actually only extends over those j which satisfy Ωi ∩ Ωj 1= ∅. The functions ϕi

inherit the smoothness of the functions ψi and thus this normalization technique gives
one possible construction of finite element spaces with higher regularity, for example,
subspaces of H2.
We have seen in the introduction that a finite element method is completely determined
by the bilinear form and the finite dimensional trial and test spaces. In order to solve (2)
in practice, we have to find bases for the test and trial spaces. Since the finite element
spaces V constructed by the PUFEM are of the form V =

∑

ϕiVi where the ϕi are a
partition of unity and the Vi are the local approximation spaces, it is natural to seek a
basis of V based on bases of the spaces Vi. If {vi,p | p = 0, . . .} are basis functions of the
local spaces Vi, one can hope that the functions

B = {ϕivi,p} (19)

form a basis of V . However, there are a few cases, where the set B is not linearly
independent. In order to see this, let us consider a one dimensional example. Define
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Ω = (0, 1), h = 1/n, xi = ih, i = 0, . . . , n, Ωi = (xi − h, xi + h), and let ϕi be the
usual piecewise linear hat function associated with the node xi. Now choose for the local
approximation spaces Vi = span {1, x, . . . , xp}, p ∈ N. The PUFEM space V is then
precisely the space of continuous functions which are piecewise polynomials of degree
p+ 1, i.e., dimV = n(p+ 1) + 1. On the other hand, the set B contains n(p+ 1) + p+ 1
elements. Thus, B cannot form a basis of V . Of course, this particular example is
somewhat contrived and in general the set B will form a basis of V . However, this
example shows that we may have to expect that the elements of B could be nearly
linearly dependent which would lead to badly conditioned stiffness matrices.
One way to ensure that the sets B of the form (19) are linearly independent is to constrain
the partition of unity in such a way that each function ϕi is identically 1 on a subset of
Ωi and all other functions ϕj vanish on this subset.
The linear dependencies in the one dimensional example above can be removed by a
slight change of the partition of unity functions. It is enough to change those partition of
unity functions which are close to boundary. Since we will use this particular partition
of unity for the numerical example in section 4.3, we describe it in more detail:

xi = ih i = 1, . . . , n− 1
Ω1 = (0, 2h)
Ωi = (xi − h, xi + h) i = 2, . . . , n− 2

Ωn−1 = (1− 2h, 1)

ϕ1 =

{

1 if x ∈ (0, h)
1− x−h

h if x ∈ (h, 2h)

ϕi =

{

1 + x−xi

h if x ∈ (xi − h, xi)
1− x−xi

h if x ∈ (xi, xi + h)
i = 2, . . . , n− 2

ϕn−1 =

{

1 + x−(1−h)
h if x ∈ (1− 2h, 1− h)

1 if x ∈ (1− h, 1)

(20)

4 A Robust Method for an Equation with Rough
Coefficients

4.1 Construction of Robust Local Approximation Spaces

In this section, we want to construct a robust method for the approximation of the
solution of an equation with rough coefficients. As a model problem let us consider the
elliptic boundary value problem

Lu = −(a(x)u′)′ + b(x)u = f on Ω = (0, 1)
u(0) = u(1) = 0

(21)

where the coefficients a, b ∈ L∞(Ω) satisfy

0 < a0 ≤ a(x) ≤ ‖a‖L∞ < ∞, 0 ≤ b(x) ≤ ‖b‖L∞ < ∞ on Ω.

We assume that the function f ∈ L∞. Observe that the solution u of (21) and the
function au′ are Lipschitz continuous, i.e.,

u, au′ ∈ W 1,∞(Ω).
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However, if a is merely in L∞, we cannot expect the solution u to be in some H1+ε(Ω),
ε > 0. Thus, the classical piecewise polynomial finite element spaces may perform very
poorly. In fact, the following result holds:

Lemma 4.1 Let b = 0, f = 1 in problem (21) and let Φ(n) be any sequence of numbers
which decreases monotonically to 0. Then one can find a function a ∈ L∞ with 1 ≤
a(x) ≤ 2 and a constant C > 0 such that for any n dimensional space Vn of continuous,
piecewise linear functions

inf
un∈Vn

‖u− un‖H1(Ω) ≥ CΦ(n). (22)

Proof: [2] !

The lemma shows that the usual FEM may converge arbitrarily slowly (as the number of
degrees of freedom n is increased) if the coefficient a is sufficiently rough. Note that (22)
holds for all spaces of continuous, piecewise linear functions, and thus we cannot improve
the rate of convergence by choosing the meshes judiciously. In practice this means that
the classical FEM breaks down for these rough coefficients because “convergence” is only
achieved for extremely small mesh sizes h.
Remark 4.1: The case that the coefficients a, b are smooth but highly oscillatory (i.e.,
large derivatives) is also covered by the ensuing theory. When the coefficients are smooth
but highly oscillatory, the exact solution u may be smooth (in H2, say), but ‖u‖H2(Ω) is
so large that the asymptotic behavior of the FEM is visible for very small mesh sizes only.
The special ansatz functions constructed below circumvent this phenomenon and lead to
robust finite element methods which behave like the usual FEM for smooth coefficients
a, b (with reasonable bounds on the derivatives).

The goal of this subsection is to construct (local) approximation spaces for the approx-
imation of u which are robust. We construct spaces with any desired order of approx-
imability (for sufficiently smooth right hand side f – the coefficients a, b, however, are
still assumed to be merely in L∞). In proposition 4.2 we exhibit such spaces. However,
since the functions of proposition 4.2 are the solutions of auxiliary problems, which are
not necessarily easier to solve than the original problem, we present approximations of
these functions in theorem 4.1 which have approximation properties as good as those of
proposition 4.2.

Define

B =
‖b‖L∞

a0
and let us consider the approximation of u on an interval I ⊂ Ω of length h by two
functions u0, u1 which form a fundamental system for L, i.e., any solution v of the
equation Lv = 0 can be expressed as a linear combination of u0, u1.

Proposition 4.1 (Approximation with fundamental systems) Let u be the solu-
tion of (21), I ⊂ Ω be an interval of length h, and let u0, u1 be a fundamental system for
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L. Under the assumption that Bh ≤ γ < 1, there is uh ∈ V = span {u0, u1} such that

‖u− uh‖L∞(I) ≤ 1

a0(1− γ)
h2‖f‖L∞(I)

‖(u− uh)
′‖L∞(I) ≤ 1

a0(1− γ)
h‖f‖L∞(I).

Proof: Fix x0 ∈ I. Choose uh ∈ V such that the function e = u− uh satisfies

Le = f e(x0) = 0 (ae′)(x0) = 0.

Then we have an explicit formula for the error e

(ae′)(x) = −
∫ x

x0

f − be dt. (23)

Since e(x0) = 0, we have ‖e‖L∞(I) ≤ h‖e′‖L∞(I) and hence (23) allows us to bound

a0‖e′‖L∞(I) ≤ ‖ae′‖L∞(I) ≤ h‖f‖L∞(I) + ‖b‖L∞(I)h‖e′‖L∞(I).

With the assumption that 1− Bh ≥ 1− γ we conclude

‖e′‖L∞(I) ≤
1

a0(1− γ)
‖f‖L∞(I).

!

Remark 4.2: One choice of the fundamental system is the following one. Let x0 ∈ I
be a reference point and let u0, u1 solve the initial value problems

Lu0 = 0 u0(x0) = 1 (au′
0)(x0) = 0

Lu1 = 0 u1(x0) = 0 (au′
1)(x0) = 1.

Then the function
uh = u(x0)u0 + (au′)(x0)u1 ∈ V

satisfies the estimates of proposition 4.1.

We note that the estimates of proposition 4.1 are robust in the following sense. The
exact solution, in spite of being merely in W 1,∞, can be approximated with accuracy
O(h) independently of the roughness of the coefficients a and b: Only the bounds a0 and
‖b‖L∞ enter in the estimates.
Proposition 4.1 gives local approximation spaces which are first order accurate. Let us
now construct local approximation spaces which have higher order of accuracy (assuming
that the right hand side f is sufficiently smooth). To that end we will augment the space
V of proposition 4.1 by particular solutions to certain right hand sides.
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Proposition 4.2 (Approximation with augmented fundamental systems) Let u
be the solution of (21), I ⊂ Ω be an interval of length h, x0 ∈ I be a reference point,
and let u0, u1 be a fundamental system for L. Let vi, i ∈ N0, be functions such that
Lvi = (x− x0)i. For p ∈ N0 ∪ {−1} define the space

Vp =

{

span {u0, u1, v0, . . . , vp} if p ∈ N0

span {u0, u1} if p = −1.

Under the assumption that Bh ≤ γ < 1 and f ∈ Cp+1(Ω), there is uh ∈ Vp such that

‖u− uh‖L∞(I) ≤ 1

a0(1− γ)(p+ 1)!
hp+3‖f (p+1)‖L∞(I)

‖(u− uh)
′‖L∞(I) ≤ 1

a0(1− γ)(p+ 1)!
hp+2‖f (p+1)‖L∞(I).

Proof: The case p = −1 has been handled in proposition 4.1. Let therefore p ∈ N0.
Taylor’s theorem allows us to write f =

∑p
n=0 fn(x − x0)n + R(x) where ‖R‖L∞(I) ≤

hp+1

(p+1)!‖f
(p+1)‖L∞(I). Then the function e = u −

∑p
n=0 fnvn satisfies Le = R on I. Using

proposition 4.1 we can approximate e with the functions u0, u1 and arrive at the desired
estimates. !

Proposition 4.2 permits us to construct robust methods of any desired order (assuming
that the right hand side f is sufficiently smooth) if we can find the local approximation
functions u0, u1, v0, . . .. In the special case b ≡ 0, these functions are explicitly available:

u0 = 1 u1(x) =

∫ x

x0

1

a(t)
dt vi(x) = − 1

i+ 1

∫ x

x0

(t− x0)i+1

a(t)
dt.

In the general case, b 1≡ 0, finding u0, u1, and the vi amounts to solving appropriate
auxiliary problems on I. In practice, we have to find approximations to the functions
u0, u1, vi. In the rest of this section, we will describe one method to approximate these
functions and analyze how accurate these approximations have to be. For the approxi-
mation of these functions, we will use the fact that they can be written as the solutions
of appropriate Volterra integral equations which can be solved by an iterative method.
We will see that only few iterations are necessary to yield satisfactory approximations of
the functions u0, u1, vi.
For the remainder of the section, let I ⊂ Ω be an interval of length h and let x0 ∈ I be
a reference point in I. Let us consider the initial value problem

Lw = g ∈ L∞(I) w(x0) = w0 (aw′)(x0) = w1. (24)

The function w is the solution of the following Volterra integral equation

w = Kw + w̃ (25)

where the operator K and the function w̃ are defined by

(Kw)(x) =

∫ x

x0

1

a(t)

∫ t

x0

b(τ)w(τ)dτdt (26)

w̃(x) = w0 + w1

∫ x

x0

1

a(t)
dt−

∫ x

x0

1

a(t)

∫ t

x0

g(τ)dτdt. (27)
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The theory of Volterra integral equations (see, e.g., [7]) allows us to expand the solution
operator (I −K)−1 in a Neumann series, and we can write

w =
∞
∑

n=0

Knw̃.

We introduce now approximations to the exact solution w by partial sums of this series:

wN =

{

∑N
n=0K

nw̃ if N ∈ N0

0 if N = −1.
(28)

We need to estimate w−wN . The next two lemmas clarify the approximation properties
of the approximants wN .

Lemma 4.2 Let the operator K be defined as in (26). Then for any w ∈ L∞(I) and any
n ∈ N0 we have

|(Knw)(x)| ≤ Bn|x− x0|2n

(2n)!
‖w‖L∞(I)

|(Kn+1w)′(x)| ≤ Bn+1|x− x0|2n+1

(2n+ 1)!
‖w‖L∞(I)

where again B = a−1
0 ‖b‖L∞.

Proof: The first estimate is the classical estimate for Volterra integral equations (in a
C0 setting) and may be proved by induction. The second estimate follows from the first
one with the observation

|(KKnw)′(x)| =
∣

∣

∣

∣

1

a(x)

∫ x

x0

b(t)(Knw)(t)dt

∣

∣

∣

∣

≤ B

∣

∣

∣

∣

∫ x

x0

|(Knw)(t)| dt
∣

∣

∣

∣

.

!

Remark 4.3: Lemma 4.2 shows that the fixed point equation (25) can be solved by a
Neumann series expansion in an C0 or an W 1,∞ setting. The Neumann series converges
for any h > 0.

Lemma 4.3 Let w be the solution of the fixed point problem (25) and let wN be the
approximation given by (28) for N ∈ N0 ∪ {−1}. Then

‖w − wN‖L∞(I) ≤ h2N+2C1(N, h,B)‖w̃‖L∞(I)

‖(w − wN)′‖L∞(I) ≤
{

h2N+1C2(N, h,B)‖w̃‖L∞(I) if N ∈ N0

‖w̃′‖L∞(I) + hC2(0, h, B)‖w̃‖L∞(I) if N = −1

where C1, C2 are defined by

C1(N, h,B) =
BN+1

(2N + 2)!

∞
∑

n=0

(2N + 2)!

(2N + 2n + 2)!
(Bh2)n

C2(N, h,B) =
BN+1

(2N + 1)!

∞
∑

n=0

(2N + 1)!

(2N + 2n + 1)!
(Bh2)n.
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Proof: We can write w −wN =
∑∞

n=N+1K
nw̃ and use the bounds on the operators Kn

obtained in lemma 4.2. !

Remark 4.4: Under the assumption w̃ ∈ W 1,∞(I), w̃(x0) = 0, the estimate on
(w − wN)′ can be formulated in the following, more compact form:

‖(w − wN)′‖L∞(I) ≤ h2N+2C3(N, h,B)‖w̃′‖L∞(I)

where C3 is given by

C3(N, h,B) =

{

C2(N, h,B) if N ∈ N0

1 + h2C2(0, h, B) if N = −1.

Remark 4.5: Under the assumptions Bh ≤ γ < 1, h < 1, we can easily bound C1, C2

by

C1(N, h,B) ≤ BN+1

(2N + 2)!

1

1− γh
for N ∈ N0 ∪ {−1}

C2(N, h,B) ≤ BN+1

(2N + 1)!

1

1− γh
for N ∈ N0.

This analysis of the fixed point problem (25) is now the tool for the approximation of a
fundamental system u0, u1 and for the approximation of particular solutions vi. Let u0,
u1, vi be given by

Lu0 = 0 u0(x0) = 1 (au′
0)(x0) = 0

Lu1 = 0 u1(x0) = 0 (au′
1)(x0) = 1

Lvi = (x− x0)i vi(x0) = 0 (av′i)(x0) = 0

which are solutions of problem (25) for appropriately chosen w0, w1, and g. Let uN
0 , u

N
1 ,

and vNi , N ∈ N0∪{−1}, be the approximations to the exact solutions as defined by (28).
Then, the following lemma holds:

Lemma 4.4

‖u0 − uN
0 ‖L∞(I) ≤ h2N+2C1(N, h,B)

‖(u0 − uN
0 )

′‖L∞(I) ≤ h2N+1C2(N, h,B) for N ∈ N0

‖u1 − uN
1 ‖L∞(I) ≤ h2N+3C1(N, h,B)

1

a0

‖(u1 − uN
1 )

′‖L∞(I) ≤ h2N+2C3(N, h,B)
1

a0

‖vi − vNi ‖L∞(I) ≤ h2N+4+iC1(N, h,B)
1

a0(i+ 1)(i+ 2)

‖(vi − vNi )′‖L∞(I) ≤ h2N+3+iC3(N, h,B)
1

a0(i+ 1)
.
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Proof: The proof follows directly from lemma 4.3 and remark 4.4. !

We would like to construct an approximation of the space Vp of proposition 4.2. Lemma 4.4
enables us now to calculate how many terms of the Neumann expansion suffice. Recall
that the error estimate of proposition 4.2 for the approximation in Vp is O(hp+2) (for the
error in the derivative). The approximations uN

0 , v
N
1 , and vNi have to be calculated with

the same accuracy. This gives for the number of terms:

N0 ≥ p+ 1

2
for the approximation of u0

N1 ≥ p

2
for the approximation of u1

Ñi ≥ p− i− 1

2
for the approximation of vi

where N0, N1, Ñi ∈ N0 ∪ {−1}. Choosing the smallest N0, N1, and Ñi such that these
three inequalities are satisfied, we can define

Ṽp =

{

span {uN0

0 , uN1

1 , vÑi

i | i = 0, . . . , p} for p ∈ N0

span {u0
0, u

0
1} for p = −1.

(29)

For example, we have

Ṽ−1 = span {u0
0, u

0
1} = span {1,

∫ x

x0

1

a(t)
dt}

Ṽ0 = span {u1
0, u

0
1, v

0
0} = span {1 +

∫ x

x0

1

a(t)

∫ t

x0

b(τ)dτdt,

∫ x

x0

1

a(t)
dt,

∫ x

x0

t− x0

a(t)
dt}

Ṽ1 = span {u1
0, u

1
1, v

0
0, v

0
1}

Ṽ2 = span {u2
0, u

1
1, v

1
0, v

0
1, v

0
2}.

We now show that the space Ṽp has indeed the desired approximation properties, i.e.,
the approximation properties of Ṽp are essentially the same as those of the spaces Vp.

Theorem 4.1 (approximate augmented fundamental system) Let I ⊂ Ω be an
interval of length h, x0 ∈ I be any reference point in I, and let u be the solution of (21).
Let p ∈ N0 ∪ {−1}, f ∈ Cp+1(Ω), Ṽp be defined as in (29) and assume that Bh ≤ γ < 1.
Then there is uh ∈ Ṽp such that

‖u− uh‖L∞(I) ≤ hp+3C(p, B, a0, γ)‖f‖Cp+1(Ω)

‖(u− uh)
′‖L∞(I) ≤ hp+2C(p, B, a0, γ)‖f‖Cp+1(Ω)

where C(p, B, a0, γ) depends only on p, B, a0, γ, and Ω.

Proof: The proof follows very closely the proof of proposition 4.2. Let us write

f(x) =
p

∑

n=0

f (n)(x0)

n!
(x− x0)

n +R(x)
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where the remainder R(x) satisfies ‖R‖L∞(I) ≤ hp+1

(p+1)!‖f
(p+1)‖L∞(I). If we agree to assign

the empty sum the value 0, the estimate for R also holds for p = −1. The approximant
of proposition 4.2 could be chosen to be (cf. also remark 4.2)

uap = u(x0)u0 + (au′)(x0)u1 +
p

∑

n=0

f (n)(x0)

n!
vn.

Because the functions vn satisfy vn(x0) = (av′n) (x0) = 0, the error r = u− uap satisfies

Lr = R r(x0) = 0 (ar′)(x0) = 0.

Let us approximate u in Ṽp by

uh = u(x0)u
N0

0 + (au′)(x0)u
N1

1 +
p

∑

n=0

f (n)(x0)

n!
vÑi

i ,

and we get the following representation for the error:

u− uh = u(x0)(u0 − uN0

0 ) + (au′)(x0)(u1 − uN1

1 ) +
p

∑

n=0

f (n)(x0)

n!
(vi − vÑi

i ) + r.

From lemma 4.3 with N = −1, we can bound r

‖r‖L∞(I) ≤ C1(−1, h, B)
h2

a0
‖R‖L∞(I) ≤ C1(−1, h, B)

hp+3

a0(p+ 1)!
‖f (p+1)‖L∞(I)

‖r′‖L∞(I) ≤ C3(−1, h, B)
h

a0
‖R‖L∞(I) ≤ C3(−1, h, B)

hp+2

a0(p+ 1)!
‖f (p+1)‖L∞(I).

Applying the estimates of lemma 4.4 to the remaining terms of the error represen-
tation finishes the proof, if we observe that ‖u‖L∞(I), ‖au′‖L∞(I) can be bounded by
C(a0, B,Ω)‖f‖L∞(Ω); C(a0, B,Ω) depends only on a0, B, and Ω according to standard
regularity theory. !

Remark 4.6: The approximation properties of the space Ṽ−1 can be understood with
the ideas of section 3.4 as well. If one introduces the change of variables x̃ =

∫ x

0
1

a(t)dt,

then problem (21) is transformed to a problem of the form

−ũ′′ + b̃ũ = f̃

where b̃, f̃ are still in L∞ and hence ũ ∈ W 2,∞. The elements of Ṽ−1 transform to linear
functions. Therefore, the approximation of u in Ṽ−1 can be expected to behave like the
approximation of a W 2,∞ function by linear functions.
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4.2 Construction of the Global Finite Element Space

We will now construct a global conforming finite element space from the spaces Ṽp (cf.
(29)), which have good local approximation properties for the approximation of the
solution of (21). We proceed as outlined in section 2. Let (Ωi)Ni=1 be a covering of
Ω = (0, 1) satisfying the overlap condition. Let (ϕi)Ni=1 be a (M,C∞, CG) partition of
unity associated with this covering (Ωi). The local approximation spaces Vi are given by
theorem 4.1 as follows. In each patch, we choose a reference point zi ∈ Ωi (which plays
the role of the point x0 of theorem 4.1). For p ∈ N0 ∪ {−1}, the local approximation
spaces Vi = Vi(p) are then taken as the spaces Ṽp of (29) with reference point zi instead
of x0. Theorem 4.1 immediately gives for the local approximation properties (expressed
in the notation of theorem 2.1)

ε1(i) ≤ C(p, B, a0, γ,Ω)(diamΩi)
p+3+1/2‖f‖Cp+1(Ω)

ε2(i) ≤ C(p, B, a0, γ,Ω)(diamΩi)
p+2+1/2‖f‖Cp+1(Ω).

We define the global approximation space V = V (p) =
∑N

i=1 ϕiVi(p). Hence, for u solving
(21), there is uh ∈ V (p) such that

‖u− uh‖L2(Ω)≤
√
MC∞C(p, B, a0, γ,Ω)‖f‖Cp+1(Ω)

(

N
∑

i=1

(diamΩi)
2(p+3)+1

)1/2

‖(u− uh)
′‖L2(Ω) ≤

√

2M(C2
G + C2

∞)C(p, B, a0, γ,Ω)‖f‖Cp+1(Ω)

(

N
∑

i=1

(diamΩi)
2(p+2)+1

)1/2

So far we have not dealt with the essential boundary conditions at x = 0 and x = 1.
However, they are easily enforced by a judicious choice of the reference point for the
patches Ωi close to the boundary, i.e., Ωi ∩ ∂Ω 1= ∅. For these patches, we choose the
reference point zi to be the boundary point and then simply leave out the approximations
uN0

0 to u0 because all the other elements of Ṽp vanish at the reference point. The finite
element space V (p) is thus a subspace of H1(Ω) and satisfies the boundary conditions,
i.e., it is a conforming finite element space.
Let us give a more concrete example of the abstract procedure given above for the con-
struction of the global space V (p). Let n ∈ N, h = 1/n and define the patches Ωi and
the partition of unity ϕi as in equations (20). The local approximation spaces Vi(p)
associated with the patches Ωi are given by (29) where the reference point in each patch
Ωi is chosen to be the node xi for i = 2, . . . , n−2. For i = 1 the reference point is chosen
to the left boundary point x = 0 and for i = n − 1 the reference point is chosen to be
right boundary point x = 1. The approximation space V1(p) and Vn−1(p) associated with
the first and last patch are constrained to satisfy the essential boundary conditions by
omitting the approximations to u0. For example, the two simplest spaces are

V (−1) = span {ϕ1(x)

∫ x

0

1

a(t)
dt,ϕn−1(x)

∫ x

1

1

a(t)
dt,

ϕi(x),ϕi(x)

∫ x

xi

1

a(t)
dt | i = 2, . . . , n− 2} (30)
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V (0) = span {ϕ1(x)

∫ x

0

1

a(t)
dt,ϕ1(x)

∫ x

0

t

a(t)
dt,

ϕn−1(x)

∫ x

1

1

a(t)
dt,ϕn−1(x)

∫ x

1

t− 1

a(t)
dt,

ϕi(x)

(

1 +

∫ x

xi

1

a(t)

∫ t

xi

b(τ)dτdt

)

,

ϕi(x)

∫ x

xi

1

a(t)
dt,ϕi(x)

∫ x

xi

t− xi

a(t)
dt | i = 2, . . . , n− 2}. (31)

And the above theory gives that the spaces V (−1), V (0) approximate the solution u of
(21) such that

inf
uh∈V (−1)

‖u− uh‖L2(Ω) + h‖(u− uh)
′‖L2(Ω) ≤ C(B, a0, γ)‖f‖L∞(Ω)h

2 (32)

inf
uh∈V (0)

‖u− uh‖L2(Ω) + h‖(u− uh)
′‖L2(Ω) ≤ C(B, a0, γ)‖f‖C1(Ω)h

3 (33)

where the constant C(B, a0, γ) depends only on B, a0, and γ if Bh ≤ γ < 1. Let us note
that

dimV (−1) = 2(n− 3) + 2 dimV (0) = 3(n− 3) + 4. (34)

4.3 Numerical Example

Figure 1: Approximation in V (0) (+), V (−1) (o), and Vpoly(∗)

10
0

10
1

10
2

10
3

10
4

10
!12

10
!10

10
!8

10
!6

10
!4

10
!2

10
0

degrees of freedom

re
l.
 e

rr
o

r 
in

 e
n

e
rg

y

N=4096; b=0; a continuous

22



Figure 2: Approximation in V (0) (+), V (−1) (o), and Vpoly(∗)
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In this subsection, we apply the above constructed finite element spaces to a concrete
differential equation. We consider

Lu = −(a(Nx)u′)′ + bu = f(x) on Ω = (0, 1)
u(0) = u(1) = 0

(35)

where the function a is 1-periodic, N ∈ N large, and the coefficient b is either b = 0 or
b = 1. The right hand side f is taken to be f = x for b = 0 and f = 1 for b = 1. For the
1-periodic function a, we consider two cases:

a1(x) =
1

2 + cos(2πx)

a2(x) =

{

1 if x ∈ (0, 12)
2 if x ∈ (12 , 1).

The solution of (35) is in H2(Ω) (even piecewise C∞) for both choices of the coefficient a.
However, the solution is rough in our terminology as is has very large higher derivatives.
Associated with this problem is the notion of an “energy”

‖u‖2E =

∫ 1

0

a(Nx)|u′|2 + b|u|2dx

and an “energy” norm, which is the square root of the energy.
The typical behavior of the classical piecewise polynomial finite element methods for this
particular problem is to converge (in the energy norm) for very small mesh size only,
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Figure 3: Approximation in V (0) (+), V (−1) (o), and Vpoly (*)
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namely when the mesh size h is so small that the finite element space can resolve the
oscillation of the coefficient a. The classical finite element methods therefore converge
for h < N−1 only.
By the method outlined in the preceding subsection, we can create robust approximation
spaces of any desired order for the approximation of (35). However, we restrict ourselves
here to the two spaces V (−1), V (0) defined in (30), (31). For comparison, let us introduce
a third type of spaces, namely, a space where the local approximation spaces consist of
polynomials. Using the same partition of unity {ϕi} as in the construction of V (−1),
V (0) (cf. (20)), we define

Vpoly = span {ϕ1 · x,ϕn−1 · (x− 1),ϕi,ϕi · (x− xi) | i = 2, . . . , n− 2}. (36)

This space Vpoly contains all piecewise linear functions and is a subset of the usual piece-
wise quadratic finite element space. It will therefore serve as a comparison of the usual
finite element method with our robust spaces.
Fig. 1 and 2 show the performance of the three spaces V (0), V (−1), and Vpoly for the
coefficient a1 for the cases b = 0, N = 4096, and b = 1, N = 524288 whereas fig. 3 and 4
correspond to the coefficient a2 for the cases b = 0, N = 4096, and b = 1, N = 524288.
In all the graphs, the mesh size ranges from h = 1

4 to h = 1
4096 . (34) relates these mesh

sizes to the number of degrees of freedom; in particular, the number of degrees of freedom
is proportional to 1/h for both V (−1) and V (0). Therefore, estimates (32), (33) yield
bounds of the form

rel. error in energy ≤ Cdof−2, Cdof−4 (37)
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Figure 4: Approximation in V (0) (+), V (−1) (o), and Vpoly (*)
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for the approximation in V (−1) and V (0), respectively. The size of the constant C is
independent of the roughness of the coefficient a, i.e., it is independent of the number
N . We can see in fig. 1–4 that these rates of convergence are actually attained and that
the method is robust: Estimates (37) hold for very few degrees of freedom and the good
behavior of the method is independent of N (the PUFEM performs equally well for the
cases N = 4096 and N = 524288). The spaces Vpoly behave in a totally different way.
Since the graphs only cover the range h = 1

4 to h = 1
4096 , we still have h > N−1 and

cannot expect the usual FEM to work. Indeed, the error stays almost constant over the
whole range.
We considered two cases b = 0 and b = 1. The difference between those two cases lies
in the fact that for b = 0 the spaces V (−1) and V (0) are based on local approximation
spaces which contain an exact fundamental system whereas in the case b = 1 the local
approximation spaces contain only an approximate fundamental system. We see, how-
ever, that the approximate fundamental system is accurate enough not to upset the rate
of convergence, just as the theory of section 4.1 predicts.
Finally, let us mention that we chose a problem with periodic coefficients for computa-
tional convenience. In this particular case, the periodicity could be exploited in such a
way that the construction of the stiffness matrix and the evaluation of the right hand
side is achieved with an amount of work independent of the number N ; the work is – up
to a constant – the same as for the usual finite element method for N = 1.
This numerical example shows that the PUFEM based on the local approximation spaces
constructed in section 4.1 leads to a robust method: The performance of the finite element
spaces V (−1), V (0) is independent of the roughness of the coefficients of the differential
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Figure 5: The p version of the PUFEM
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Table 1: DOF necessary to obtain accuracy ε in L2 norm; k = 100
ε best p.w. linear QSFEM GLSFEM FEM

approximant
30% 2.045D+3 3.969D+3 2.016D+4 7.784D+4
10% 5.041D+3 1.000D+4 6.150D+4 2.352D+5
5% 8.464D+3 1.960D+4 1.274D+5 4.692D+5

operator and their performance is comparable to the classical piecewise linear or quadratic
finite element spaces for a problem with smooth coefficients.

5 Helmholtz’s Equation and Concluding Remarks

5.1 Helmholtz’s Equation

In this section, we present an application of the PUFEM to the Helmholtz equation in
two dimensions. We consider the problem

−∆u− k2u = 0 on Ω = (0, 1)× (0, 1) ⊂ R2

∂nu+ iku = g on ∂Ω
(38)

where g is chosen such that the exact solution is a plane wave of the form

u(x, y) = exp {ik(x cos θ + y sin θ)}, θ =
π

16
.
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Table 2: DOF necessary to achieve various accuracies in L2 for PUFEM with n = 4 and
various other methods; k = 100

p L2 error PUFEM best approx. QSFEM FEM
26 10.8% 6.50D+2 3.80D+3 7.95D+3 2.08D+5
30 0.69% 7.50D+2 5.89D+4 1.23D+5 3.23D+6
34 0.11% 8.50D+2 3.45D+5 7.23D+5 1.90D+7

Table 3: number of operations using band elimination – the p version of the PUFEM;
n = 4; k = 100; error in L2

p L2 error PUFEM QSFEM FEM
26 10.8% 1.76D+7 6.3D+7 4.3D+11
30 0.69% 2.71D+7 1.5D+10 1.01D+13
34 0.11% 3.94D+7 5.2D+11 3.6D+14

Table 4: number of operations for hp version of PUFEM; k = 100; L2 error
p n L2 error NOP PUFEM
26 4 10.8% 1.76D+7
18 8 10.6% 5.23D+7
14 16 9.5% 2.75D+8

Table 5: operation count for solving linear system; error in H1 norm;k = 32
Galerkin QSFEM√

DOF H1 error No. iter NOP H1 error No. iter NOP
32 65% 232 4.51D+6 30.5% 272 5.29D+6
64 21.7% 434 3.37D+7 14.3% 492 3.82D+7
128 8.16% 831 2.68D+8 7.02% 953 2.96D+8
256 3.64% 1665 2.07D+9 3.48% 1863 2.31D+9
512 1.72% 3263 1.62D+10 1.69% 3752 1.86D+10

Table 6: operation count for band elimination for PUFEM; k = 32, error in H1; n = 1
p H1 error NOP PUFEM
18 46% 1.3D+5
22 6.7% 2.3D+5
26 0.38% 3.8D+5
30 0.00025% 5.9D+5
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In section 3.3 we discussed two types of local approximation spaces in for the approxima-
tion of solutions of Helmholtz’s equation. We could take either the “generalized harmonic
polynomials” of (16) or the systems of plane waves (17). In the numerical examples pre-
sented here, we concentrate on the systems of plane waves (for a comparison of these two
different local spaces, see [8]). The partition of unity for this particular problem is given
by piecewise bilinear hat functions: For n ∈ N, the square Ω is subdivided into n × n
squares of side length h = 1

n . With each of the (n + 1)2 nodes (xi, yi) we associate a
piecewise bilinear hat function ϕi which vanishes in all nodes except (xi, yi). The patches
Ωi are taken to be the supports of these ϕi. The PUFEM is based on this partition of
unity and the local approximation spaces Vi are chosen to be the spaces W (p) of (17).
Remark 5.1: In this particular implementation we only used the space W (p) with p
of the form p = 4m+ 2, m ∈ N, to ensure that the exact solution of problem (38) is not
in the PUFEM space.

In this application of the PUFEM, we have thus two parameters which influence the
approximation properties of the global finite element space, namely, the mesh size of the
partition of unity, which is determined by n, and the size of the local approximation spaces
Vi, which is controlled by p. If the parameter p is fixed and the mesh size is variable, we
talk about the h version of the PUFEM; if the mesh is fixed and the approximation is
achieved by increasing the size of the local spaces (i.e., by increasing p), we talk about
the p version of the PUFEM. If both h and p are varied, we would then talk about the
hp version of the PUFEM. The estimates on local approximability of theorem 3.6 let us
expect exponential rates of convergence as a p version. This exponential convergence of
the p version of the PUFEM can be observed in fig. 5 for the cases n = 1 and n = 2.
We will discuss the numerical results only briefly; a more detailed analysis can be found
in [15]. In tables 1–6 the PUFEM is compared with the usual Galerkin finite element
method (FEM), the generalized least squares finite element method (GLSFEM) of [18],
and the quasi-stabilized finite element method (QSFEM) of [14]. Since all three methods
are based on piecewise linear functions on uniform grids, tables 1 and 2 include the
piecewise linear best approximant for reference. In tables 1–4, we use the norm L2 as the
error measure and analyze the case k = 100. Tables 5–6 deal with the case k = 32 and
the H1 semi norm as the error measure. Tables 1 and 2 show that the p version of the
PUFEM needs markedly fewer degrees of freedom to achieve the same accuracy in L2 as
the other methods, which are based on piecewise linear ansatz functions. This reduction
in degrees of freedom translates in a reduction of the number of operations when the
linear system is solved using Gaussian elimination. This is demonstrated in table 3. In
table 4 we list the various combinations of p and n which lead to the same accuracy
of 10% in L2. Since we expect the PUFEM to exhibit exponential rates of convergence
as a p version but only algebraic rates as an h version, the number of operations is
smallest for the largest mesh size h. In tables 5 and 6 we compare the operation count
of the Gaussian elimination for the PUFEM with the operation count of the Galerkin
method and the QSFEM. The linear systems in these latter two methods are solved by
the iterative method proposed in [4]. We see that here again, the PUFEM performs
better than the other two methods.
We have seen that the PUFEM is superior to the other methods both in terms of error

28



versus degrees of freedom and error versus number of operations. Let us point out that the
discrepancy between the PUFEM and the other methods becomes larger as the accuracy
requirement is increased.
Remark 5.2: We used systems of plane wave as local approximation spaces because
their specific structure and the particular form of the partition of unity allowed us to
create the stiffness matrix cheaply. Therefore, the overall amount of work for the PUFEM
is dominated by the operation count of the Gaussian elimination.

5.2 Concluding Remarks and Open Questions

We presented a new method which allows the user to include a priori knowledge about the
problem under consideration in the finite element space. We illustrated this procedure
in detail for a one dimensional model problem with rough coefficients. For this one
dimensional example, we constructed local approximation spaces which reflect the rough
behavior of the solution, and the PUFEM enabled us to build a robust finite element
method from these local spaces. A numerical example illustrated the robustness of the
method and thereby showed the superiority of the PUFEM over the classical FEM for
this particular kind of problem. With an application of the PUFEM to the Helmholtz
equation in two dimensions we demonstrated that the PUFEM can cope with highly
oscillatory problems in a very satisfactory fashion.
We mentioned only very briefly the other features of the PUFEM. Among them are the
ability to construct smoother space which are necessary for finite element methods for
higher order differential equations. Since the regularity of the PUFEM space is governed
by the smoothness of the partition of unity, such smoother spaces are easily constructed
with the PUFEM. The “meshless” aspect of the PUFEM has also not been addressed in
this paper. This is a feature of the PUFEM which can be important for problems which
involve frequent remeshing such as the optimal placement of a fastener alluded to in the
introduction.
We have seen that the PUFEM offers a new, very promising approach to dealing suc-
cessfully with non-standard problems where the usual finite element methods fail or are
too costly. Since the PUFEM is in still its infancy, there are also many open questions
about implementational aspects which need to be addressed. Among them are:

1. The choice of a basis of the PUFEM space. We discussed this topic briefly in
section 3.5. It is an important issue because the condition number of the stiffness
matrix depends on the choice of the basis.

2. The implementation of essential boundary conditions. We did not discuss this ques-
tion because we concentrated on a one dimensional model problem where essential
boundary conditions can be enforced very easily.

3. The integration of the elements of the stiffness matrix. This is a difficulty which
the PUFEM shares with all meshless methods. For the construction of the stiffness
matrix, one has to integrate shape functions against each other. Thus, the integra-
tor has to be able to integrate efficiently over the intersection of the supports of

29



the shape functions. Since the shape functions are not necessarily tied to a mesh,
the description of these intersections is potentially harder than in the usual FEM.
However, specific choices of the partition of unity and/or appropriately designed
integrators should be able to cope with the integration issues successfully.
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[1] A.K. Aziz and I.M. Babuška, editors. Mathematical Foundations of the Finite Ele-
ment Method with Applications to Partial Differential Equations. Academic Press,
New York, 1972.
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[15] I. Babuška and J. M. Melenk. The partition of unity finite element method. Tech-
nical Report BN–1185, University of Maryland, Institute for Physical Science and
Technology, College Park, MD 20742, 1995.
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