
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
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Abstract

Based on a genuine multi-dimensional numerical scheme, called Method

of Transport, we derive a form of the compressible Euler-equations, capable

of a linearization for any space dimension. This form allows a rigorous error

analysis of the linearization error without the knowledge of the numerical

method. The generated error can be eliminated by special correction terms in

the linear equations. Hence, existing scalar high order methods can be used

to solve the linear equations and obtain high order accuracy in space and time

for the non-linear conservation law.

In our approach, the scalar version of the method of transport is used to

solve the linear equations. This method is multi-dimensional and reduces the

solution of the partial differential equation to an integration process. Con-

vergence histories presented at the end of the paper show that the numerical

results agree with the theoretical predictions.
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1 Introduction

For the class of scalar conservation laws, the theory of convergence and
stability is well established for a large number of numerical methods. This
is also true in view of error estimates and convergence properties, i.e. the
order of convergence. Even for multi-dimensional calculations, there are
more and more attempts to design high order schemes [3, 10, 19].

For the class of systems of conservation laws, the situation is quite dif-
ferent. For most of the existing schemes, there are only heuristic arguments,
that these methods are of the same order as their scalar counterparts. In the
case of numerical methods for multi-dimensional systems, it is even worse.
Here, Strang [17] showed that most of the methods are limited to second
order accuracy.

To obtain high order method for systems, it is necessary to take into
account all sources of errors. In several space dimensions, there is mainly
the dimension splitting error that restricts the order to at most two. But
even in one space dimension, the error due to the linearization of a non-
linear system plays an important role. This kind of error is introduced,
if the method relies on approximate Riemann solver, e.g. flux-difference or
flux-vector splitting.

Based on the derivation of a multi-dimensional method, called Method
of Transport (MoT), we introduce a new form of the compressible Euler
equations that is capable of linearization, i.e. decoupling into a finite number
of advection equations, independent of the space dimension.

Most of the attempts to derive a ’truly’ multi-dimensional method in the
sense of a mesh independent discretization, start with the scalar advection
equation, e.g. [3, 11, 15]. The adaption to the non-linear system case than
becomes more complicated, since it requires some kind of linearized version
of the equations. This is in most cases not obvious without reintroducing
the coordinate axis.

The MoT on the other hand, is originally derived for the non-linear Euler-
equations with the intention to include the physical propagation directions
of the linearized equations, e.g. the characteristic hyper-surface or Monge
cone, into the numerical method. Although the first version (c.f. [5]) was not
quite competitive to the splitting approach because of the complexity and
the large amount of computational work per grid point, it provided some
insight in the discretization of multi-dimensional conservation laws. In fact,
it leads to the linearization of the multi-dimensional system that is missing
in the other attempts.

We are able to decompose the non-linear system of conservation laws
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into a finite number of scalar advection equations with variable coefficients.
This allows us to compare the Taylor expansion of the exact solution at time
t + ∆t with the expansion of the exact solution of the linearized equations,
to obtain the splitting and truncation errors. It simplifies a rigorous error
analysis and makes it visible.

A direct comparison of the linearized equations and the non-linear Euler
equations shows that the local approximation error isO(∆t2), i.e. we obtain a
first order approximation of the non-linear system independent of the spatial
discretization. Because of the special structure of the error terms they can be
included into the linear equations to eliminate the resulting approximation
error. These correction terms, added to the scalar advection equation, do
not change the character of the equations, nor is their influence limited to
a second order correction. It has been verified that these correction terms
exist for the Euler equations at least up to third order accuracy.

In this paper we first recall the process of linearization in one space
dimension including the flux-difference and flux-vector splitting methods
[9, 16]. Then, using the ideas of the MoT we derive a simple decomposition
of the multi-dimensional Euler equations into a set of linear advection equa-
tions. To obtain the linearization error in the smooth part of the solution
we compare the Taylor expansions of both solutions. We will explain this
procedure for the conservation of mass in 1-D only and give the results for
the 1-D and the 2-D case.

We then briefly introduce a numerical algorithm to solve these equations
efficiently and to high order of accuracy. In some numerical experiments at
the end we verify the theoretical results. Convergence histories for smooth
solutions in one and two space dimensions illustrate the influence of the
second order correction terms. A solution of a Mach 10 flow indicates the
robustness of the method even for strong shocks.

2 Linearisation of the Equations in 1-D

The one-dimensional compressible Euler equations in conservation form can
be written as

∂

∂t
U+

∂

∂x
F(U) = 0 (1)

where U is the state vector of the conserved quantities and F(U) is the flux
given by

U =





ρ
m
E



 , F(U) =





m
ρu2 + p
u (E + p)



 .

2



Here, ρ is the mass density, m = ρu is the momentum, E is the total energy,
u is the velocity and p is the pressure related to U by the equation of state

p = (γ − 1)(E − ρ
u2

2
).

The ration of the specific heat capacities γ takes the value 1.4 for air.
The simplest approach to solve the non-linear system is to use the quasi-

linear form of (1), i.e.

Ut +
∂F

∂U
Ux =: Ut +AUx = 0.

Since equation (1) is hyperbolic, the matrix A has only real eigenvalues and
a full set of eigenvectors. Thus, the Jacobian matrix A can be diagonalized
by the matrix R of right eigenvectors. We have the relation

A = RΛR−1 or Λ = R−1 AR,

where Λ = diag(λ1,λ2,λ3) = diag(u + c, u, u − c). Freezing the matrix A

locally, the transformation W = R−1 U leads to an approximation of (1),
that decouples the equations, i.e.

R−1 Ut +ΛR−1 Ux ≈ Wt +ΛWx = 0.

This is called the local characteristic approach (for further references, see
[19]).

A less obvious linearization of the equations is used in the flux-vector
splitting in Steger and Warming [16] and in the flux-difference splitting
introduced by Roe [14]. In both approaches the homogeneity of the Euler-
equations, i.e. the flux can be written as

F(U) =
∂F

∂U
U =: AU, (2)

for any state vector U, is used. We can write (2) as

F(U) = RΛR−1 U =
3

∑

i=1

(αi ri)λi, (3)

where R = (r1, r2, r3) is the matrix of right eigenvectors of A. The vector
(α1,α2,α3)T := R−1 U and c is the speed of sound, given by c2 = γ p/ρ.
Using (3) and the fact that

U = IU = RR−1U =
3

∑

i=1

(αi ri) (4)

3



can be decomposed into the same vectors (αi ri) as the flux, (1) becomes

3
∑

i=1

(

∂

∂t
(αi ri) +

∂

∂x
((αi ri)λi)

)

= 0. (5)

The non-linear system (5) can locally be approximated by three linear sys-
tems or a total of nine scalar advection equations of the form

∂

∂t
ω +

∂

∂x
(a(x)ω) = 0, (6)

where ω is one of the components of αi ri, i = 1, 2, 3 and a is the corre-
sponding characteristic speed λi, i = 1, 2, 3 which in this process becomes a
function of space only. The resulting numerical scheme is consistent since
the sum of all equations in (6) gives (5). After solving the decoupled scalar
equations for a small time step ∆t an approximation of the solution of the
non-linear system is obtained by adding up the linear solutions. Iteration
of this propagation step with updated values of ri and λi yields the nu-
merical scheme. This can be interpreted as a Heugens principal for short
times, i.e. interaction between different ’waves’ are neglected. The non-
linear coupling takes place during the averaging process in the finite volume
discretization.

3 Linearization of the 2-D Euler-equations

Unfortunately, the above approach is not possible in several space dimen-
sions. In the 2-D case, the equations have the form

∂

∂t
U+

∂

∂x
F1(U) +

∂

∂y
F2(U) = 0, (7)

with

U =









ρ
m
n
E









, F1 =









ρu
ρu2 + p
ρuv

u(E + p)









, F2 =









ρv
ρuv

ρv2 + p
v(E + p)









.

Here, m = (m,n)T is the momentum and u = (u, v)T = (m/ρ, n/ρ)T is the
velocity. The pressure p is given by

p = (γ − 1)

(

E − ρ
u2 + v2

2

)

.
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The equations are still hyperbolic and a linearization of the form

Ut +
∂F1

∂U
Ux +

∂F2

∂U
Uy = 0

is still possible, but the Jacobian matrices of F1 and F2 cannot be diago-
nalized simultaneously, i.e. there is no matrix R. Hyperbolicity allows the
diagonalization of each Jacobian matrix and any linear combination of both.
Thus a number of methods use the one-dimensional decomposition in (5) in
each space direction. Let Λ = R−1AR be the decomposition of the flux
in x-direction with eigenvalues Λ = diag(λ1, ..,λ4) and Λ̃ = S−1BS the de-
composition of the flux in y-direction with eigenvalues Λ̃ = diag(µ1, .., µ4).
With R = (r1, .., r4), R−1U = (α1, ..,α4)T , S = (s1, .., s4) and S−1U =
(β1, ..,β4)T we can decompose the one-dimensional problems into

4
∑

i=1

(

(αi ri)t + (λi(αi ri))x
)

= Ut + F1(U)x,

4
∑

i=1

(

(βi si)t + (µi(βi si))y
)

= Ut + F2(U)y.

(8)

In this representation we get twice the amount of the conserved quantity U.
We need to modify the decomposition:

1

2

(

4
∑

i=1

(αi ri)t + (2λi(αi ri))x

)

=
1

2
Ut + F1(U)x,

1

2

(

4
∑

i=1

(βi si)t + (2µi(βi si))y

)

=
1

2
Ut + F2(U)y,

so that the sum gives the original system of the Euler-equations. Hence,
the propagation velocity of the linearized operators seems to be twice as
large as in the 1-D case, which leads to the well known restriction of the
CFL-number to 1/2 in the 2-D case and to 1/3 in the 3-D case, respectively.
This analysis shows that we get a stability problem with the above approach
(c.f. [12]).

On the other hand, an operator splitting approach, i.e. using the one-
dimensional operators in (8) one after the other, leads to the well known
restriction of the order to at most two [17].

The MoT provides the necessary information to find a linearization in
the multi-dimensional case. We are not interested in a direction wise decom-
position which directly leads to the dimensional splitting approach. Instead,
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we are seeking for an approximation of the non-linear system by a set of lin-
ear but multi-dimensional advection equations equivalent to the 1-D case.
Before we briefly introduce the idea of the MoT, we rewrite (7) in a more
convenient form. Let

F(U) = (F1,F2) = UuT +





0T

I

uT



 p (9)

be the (N + 2) × N matrix representing the multi-dimensional flux. N
denotes the dimension of the space, I is the N ×N identity matrix and 0 is
the N -dimensional vector of zeros. Then (7) becomes

Ut +∇ · (F(U)) = 0 (10)

where the divergence acts on the rows of F.
The MoT described in [4] is a multi-dimensional generalization of the

flux-vector decomposition in (3). The vectors αi ri are moving with the
characteristic speeds λi. In several space dimensions an equivalent quantity
propagates along the characteristic surfaces called Monge cone. The deriva-
tion of the MoT shows that three quantities are necessary and sufficient to
obtain a consistent method. We define

R1(U) :=
1

γ





ρ
ρu
ρH



 , R2(U) :=
γ − 1

γ





ρ
ρu

ρu2/2



 , L(U) :=
ρc

γ





0T

I

uT



 .

Here H = (E + p)/ρ denotes the total enthalpy and c is the speed of sound.
Notice the structure of L, which is similar to the part in front of the pressure
in the multi-dimensional flux (9). In the 1-D case, R1, R2 and L are related
to the vectors αiri as follows:

R1 = α1r1 + α3r3, R2 = α2r2, L = α1r1 − α3r3.

The propagation of these quantities along the characteristic directions, i.e. the
flow direction u for R2 and the Monge cone for R1 and L leads to a con-
sistent numerical method. Notice, that this approach introduces infinitely
many propagation directions into the numerical scheme.

It turns out that a finite number of directions is sufficient in terms of
accuracy and consistency of the method. This approximation corresponds
to the use of an integration rule for the surface integral over the Monge cone.
It is not related to the projection onto some arbitrary coordinate lines as in
the dimensional splitting case.
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For given directions ni, i = 1, ..., k we want to decompose the state vector
U into

U = R1 +R2 +
1

k

k
∑

i=1

L · ni, (11)

which is equivalent to (4) in the 1-D case. Equation (11) leads to the fol-
lowing consistency constrains on the directions ni:

k
∑

i=1

ni = 0, (12)

k
∑

i=1

nij nik = kδjk or
k

∑

i=1

ni n
T
i = k I, (13)

These conditions lead to a consistent decomposition of the flux, too. We
can rewrite the Euler equations (10) as

Ut +∇ · (F(U)) = (R2)t +∇ ·
(

R2 u
T
)

+
1

4

4
∑

i=1

(

(R1 + L · ni)t +∇ ·
(

(R1 + L · ni) (u+ ni c)
T
)

)

= 0.

Reordering of terms and the use of (11) shows that

Ut =

(

R2 +R1 +
1

4

4
∑

i=1

L · ni

)

t

,

∇ ·
(

UuT
)

= ∇ ·

((

R2 +R1 +
1

4

4
∑

i=1

L · ni

)

uT

)

.

The remaining linear terms in ni vanish because of (12). For the quadratic
term, we get

1

4
cL

4
∑

i=1

nin
T
i =

1

4
4 cL =





0T

I

uT



 p

because of (13) and the definition of L. This proves that the decomposition
is valid and that the linearization

(R2)t +∇ ·
(

R2 u
T
)

= 0
1

4

{

(R1 + L · ni)t +∇ ·
(

(R1 + L · ni) (u+ ni c)
T
)

}

= 0, i = 1, ..., 4

(14)

7



is locally a first order approximation of (10). The solution of the non-linear
system (10) can be replaced by solving 20 scalar advection equations of the
form

ht +∇(̇ha) = 0 (15)

where h is one of the components in R2 or R1+L ·ni and a is u or u+ni c,
respectively.

In the following, we choose

ni ∈

{(

1
1

)

,

(

−1
1

)

,

(

1
−1

)

,

(

−1
−1

)}

(16)

as directions, since for this choice the resulting method has a simple form
and (12) and (13) are valid. A more general choice for the ni and the
resulting consistency equations are shown in [6]. Notice that the choice of
vectors along the coordinate axes in (16) will not lead to the dimensional
splitting. In this case one use a different integration rule for the Monge cone.
The propagation directions are in general not aligned with the coordinate
directions.

4 Error Analysis

To obtain the error due to the linearization process we compare the Taylor
expansions of the solution in (10) with the sum of solutions in (14) after
time ∆t. In principal there is no difference between the expansions in one
and two dimensions and therefore we illustrate this process for the equation
of mass conservation in the 1-D case only.

For the density after time ∆t we get

ρ(x, t0 + ∆t) = ρ(x, t0) + ∆t ρt(x, t0) +
∆t2

2
ρtt(x, t0) +O(∆t3)

and with the Euler equations the time derivatives can be replaced by spatial
derivatives, i.e.

ρt = −(ρu)x,

ρtt = (−mx)t = (ρu2 + p)xx =

(

ρ

(

u2 +
c2

γ

))

xx

.

To advance the solution in terms of the linearized equations we first decom-
pose the density at time t0 into

ρ(x, t0) = ρ1(x, t0)+ρ3(x, t0)+ρ3(x, t0) with ρ1 = ρ3 =
1

2γ
ρ and ρ2 =

γ − 1

γ
ρ.

8



For each part ρi we consider the advection equations

(ρ1/3)t + ((u± c)ρ1/3)x = 0 and (ρ2)t + (uρ2)x = 0,

which leads to

(ρ1/3)t = −((u± c)ρ1/3)x,

(ρ1/3)tt = ((u± c)((u ± c)ρ1/3)x)x,

(ρ2)t = −(u ρ2)x,

(ρ2)tt = (u(u ρ2)x)x.

Since (ρ1 + ρ2+ ρ3)t = −(u(ρ1 + ρ2+ ρ3))x = −(u ρ)x, the first order part is
equal in both cases which proves consistency. In the second order term we
get

ρtt − (ρ1 + ρ2 + ρ3)tt = −
ρ

2
(γ uux + c cx) &= 0 (17)

which shows accuracy of first order only.
A closer look at the structure of the coefficients suggests the use of

correction terms in the advection equations. The choice of

ρ̂1/3 = ρ1/3 ± kρ with kρ = −
∆tρ

2 c
(γ uux + c cx)

instead of ρ1/3 eliminates the error in (17). With

ρ(x, t0 + ∆t)− (ρ̂1(x, t0 + ∆t) + ρ2(x, t0 + ∆t) + ρ̂3(x, t0 + ∆t)) = O(∆t3),

we get a second order approximation in smooth regions of the solution. The
same analysis can be done for the other components of the state vector in
one dimension and also in the 2-D case. The resulting correction terms are

kρ = −
∆tρ

2 c
(γ uux + c cx),

km = −
∆t

2
ρ((γ − 2)c ux + u cx) + u kρ,

kE = −
∆t ρ c

2γ(γ − 1)
(uux − c cx) + u km −

u2

2
kρ

9



in the 1-D case and

kρ1 = −
∆t ρ

2 c γ
(γ(v uy + uux) + c cx) ,

kρ2 = −
∆t ρ

2 c γ
(γ(u vx + v vy) + c cy) ,

km1 = −
∆t ρ

2 γ
( c (γ − 1) (vy + ux) + v cy + u cx − c ux) + u kρ1 ,

km2 =
∆t ρ

2 γ
(c uy) + u kρ2 ,

kn1 =
∆t ρ

2 γ
(c vx) + v kρ1 ,

kn2 = −
∆t ρ

2 γ
(c (γ − 1) (ux + vy) + u cx + v cy − c vy) + v kρ2 ,

kE1 = −
∆t ρ c

2 γ (γ − 1)
(uux + v uy − c cx) + u km1 + v kn1 −

u2 + v2

2
kρ1 ,

kE2 = −
∆t ρ c

2 γ (γ − 1)
(v vy + u vx − c cy) + u km2 + v kn2 −

u2 + v2

2
kρ2

in the 2-D case with the special choice (16) for the ni. In the linearization
(14) the matrix L has to be replaced by L+K where K = (k1,k2).

5 Numerical solution of the scalar equations

From the previous considerations, we will focus on the linear advection equa-
tion in the form (15). Without loss of generality, we can restrict ourselves
to two space dimensions. We will use the notation

ht + (a(x, y)h)x + (b(x, y)h)y = 0 (18)

where h is the unknown solution and a, b : IR2 → IR are given real functions
in space only.

In this section we will briefly describe the main idea of transport as
proposed in [7]. The space is discretized with a Cartesian mesh of step size
∆x and ∆y in the x- and y-direction, respectively. The center of the finite
volumes denoted by (xi, yj) are located at xi = i∆x, yj = j ∆y with the cell
interfaces at xi±1/2 = (i ± 1/2)∆x and yj±1/2 = (j ± 1/2)∆y. Using the
average values of the function h over each cell as the dependent variables,
i.e.

hni,j =
1

|Vi,j |

∫

Vi,j

h(x, y, n∆t)dx dy, (19)

10



with Vi,j = [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2] the domain of cell (i, j). Inte-
grating the conservation law (18) over space and time

t+∆t
∫

t

∫

Vi,j

ht(x, y, t) dx dy dt+

t+∆t
∫

t

∫

Vi,j

div

(

h(x, y, t)

(

a(x, y)
b(x, y)

))

dx dy dt = 0

and using Gauss theorem and the definition in (19), we get

|Vi,j | (h
n+1
i,j − hni,j) +

t+∆t
∫

t

∫

∂Vi,j

h(x, y, t)

(

a(x, y)
b(x, y)

)

n dO dt = 0,

where |Vi,j | is the volume and ∂Vi,j the boundary of the domain Vi,j. For
the Cartesian grid we can write

|Vi,j| (h
n+1
i,j − hni,j) +

t+∆t
∫

t

yj+1/2
∫

yj−1/2

f(h, xi+1/2, y)− f(h, xi−1/2, y)dy dt+

t+∆t
∫

t

xi+1/2
∫

xi−1/2

g(h, x, yj+1/2)− g(h, x, yj−1/2)dx dt = 0

(20)
with the flux f(h, x, y) = h(x, y, t) a(x, y) and g(h, x, y) = h(x, y, t) b(x, y)
in x- and y-direction, respectively.

Since the function h is not known for a time larger than t the second
integral can only be computed approximately. The simplest choice is to keep
h, a and b constant in each cell.With the assumption that a, b > 0, we obtain
the following numerical method

|Vi,j| (h
n+1
i,j − hni,j) + ∆t (∆y (f(hni,j, xi, yj)− f(hni−1,j, xi−1, yj))+

∆x (g(hni,j , xi, yj)− g(hni,j−1, xi, yj−1))) = 0.
(21)

in conservation form. In the special case of the linear equation (18) the
functions a and b are known everywhere and can be evaluated at the cell
interfaces. In view of solving a non-linear system of equations the method
(21) is more appropriate since the velocities a and b are functions of the
solution. The approach (21) introduces the cell normals into the numerical
method as shown in Figure 1. This leads to a strong influence of the under-
lying grid on the numerical solution. It is the aim of this paper to replace
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these fluxes in normal direction by a procedure more related to the ’physics’
of the problem.

The theory of characteristics use a different property of (18) to advance
the solution in time. Along the integral curves (x(t), y(t))T given by

(

ẋ
ẏ

)

=

(

a(x, y, t)
b(x, y, t)

)

=: u with

(

x(0)
y(0)

)

=

(

x0
y0

)

, (22)

the solution h(x(t), y(t), t) of (18) reduces to the ODE

d

dt
h(x(t), y(t), t) = −h(x(t), y(t), t)

(

∂

∂x
a(x(t), y(t)) +

∂

∂y
b(x(t), y(t))

)

(23)
with initial conditions h(x0, y0, 0) = h0(x0, y0).

Independent of the space dimension there is only one propagation direc-
tion for each point. Therefore, in the scalar case this transformation always
reduces the problem to the integration of an ODE. For the linear equation
(18) and smooth functions a and b, (22) can always be integrated numeri-
cally and the solution of h at any time t can be computed in one step. This
idea can also be generalized to non-linear scalar equations (c.f. [1]). In the
case of a non-linear system, the equations no longer reduce to an ODE since
the characteristic of different families interact. The treatment of occurring
shocks is more difficult.

To achieve a mesh-independent solver both ideas are combined. The
finite volume part is taken to capture shocks and the characteristic part is
taken to use the physical propagation directions instead of coordinate axes
imposed by the grid. The characteristic curves (22) are used to trace the
transport of quantities, in the case of (18) the value of h. This gives a
mapping between the domain of influence (Figure 2) at the new time step
and the cell itself as the domain of dependence.

We can describe this behavior analytically using Dirac’s delta function.
Let hu be an approximation of h(x, y, t + ∆t) using (23). For small time
steps ∆t we can replace the integration in (22) by a simple Euler step and
get

hu(x, t,∆t) =

∫

IRN

h(y, t)δ(x − (y + ∆tu(y, t)))dy (24)

up to first order. The δ-function “searches” backward for the point y that
determines the value of h at (x, t+ ∆t). For simplicity, we drop the indices
i and j since all actions are the same on each cell. We define Ω0 = Vi,j , the
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Figure 1: Flux in dimensional splitting.
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Figure 2: Movement of all points with characteristic speed.
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domain of the center cell, and Ωi, i = 1, ..., 8, the neighboring cells. If we
now restrict the domain of dependence to Ω0, the function

huΩ0
(x, t,∆t) =

∫

Ω0

h(y, t) δ(x − (y + ∆tu(y, t)))dy (25)

represents the distribution or motion of the quantity h in Ω0 after time ∆t.
The transport from cell Ω0 to any other domain Ωi can be computed as

fu
Ω0Ωi

:=

∫

Ωi

huΩ0
(x, t,∆t) dx. (26)

The dashed line in Figure 2 shows the support of the function huΩ0
for a

constant velocity in the cell. The dark grey domain in the upper right corner
indicates the contribution to the diagonal cell that means a contribution to
a domain which has no finite boundary with the cell.

In a finite volume discretization, the update of the mean value in a cell
at time t+ ∆t can be done by adding all in- and outgoing fluxes:

hn+1
Ω0

= hnΩ0
−

1

|Ω0|

k
∑

j=1

(

fu
Ω0Ωj

− fu
ΩjΩ0

)

=
1

|Ω0|

k
∑

j=0

fu
ΩjΩ0

. (27)

Taking into account only the nearest neighbors on a Cartesian mesh, the
upper limit is 3N − 1 for N space dimensions.

The two approaches described in (21) and (22,23), respectively, differ in
the calculation of the net difference between in- and outgoing quantity h. In
(21) the flux across a cell interface during time ∆t is approximated, i.e. how
many ’mass’ points propagates across the cell surface. The second approach
(22,23) tries to detect where the ’mass’ points, initially in one cell, travel
during time ∆t, possibly crossing several cell interfaces.

We emphasize that during this transport process the conservation prop-
erty of the equation is still satisfied, because of

∫

IRN

huΩ0
(x, t,∆t)dx =

∫

IRN

∫

Ω0

h(y, t)δ(x − (y + ∆tu(y, t)))dydx

=

∫

Ω0

h(y, t)

∫

IRN

δ(x− (y + ∆tu(y, t)))dxdy (28)

=

∫

Ω0

h(y, t)dy,
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i.e. the integration of huΩ0
gives the ’amount’ of h within Ω0. Thus, we enforce

the conservation property already on the level of ’wave’ propagation, rather
than on the level of fluxes or contributions.

In the report [7] the convergence of this type of scheme for scalar con-
servation laws is proven. A similar idea, in the context of kinetic theory can
be found in [8]. The transport collapse operator described by K. W. Morton
and P. N. Childs in [2] and the rotated Riemann solver proposed by R. LeV-
eque [10] as well as the multidimensional method introduced by P. Collela
[3] lead in first order to the same result if applied to a scalar equation.

The approach described above can be extended naturally to higher order.
A proper reconstruction of the function h (and a and b) from the average
values hij and the integration of (22) and (23) with sufficient accuracy leads
to the numerical method of desired order independent of the dimension of
space.

6 Numerical Example

The first set of examples illustrates the influence of the correction terms on
the accuracy of the solution. The central part of the code is the solution of
the scalar advection equation of the form

ut + (a(x)u)x = 0

in 1-D. Table 1 shows the results for smooth initial values u(x, 0) = e−x2

and a(x) = −atan(x). Notice that the function a(x) has a sign change in the
region of interest x ∈ [−2, 2]. This is most like the case for the non-linear
system. The symbol C∞ denotes the maximum error and L1 the integral
error of the numerical solution. V1 and V2 are different limiter functions
with only minor influence in the smooth regions of the solutions. Because
of the sign change of a, the order of convergence in the maximum norm is
only one. This can be verified analytically. The integral error shows the
predicted second order convergence.

We use this method to solve the resulting linear equations in (14) for each
component. As initial values we use the constant states UL = (3/4, 1, 7/3)T

and UR = (1, 1, 3)T from a steady shock for |x| > 1. For the values of |x| < 1
we pick u(x, 0) such that u(x, 0) ∈ C2, i.e. the initial data is smooth enough.
Integration is stopped before the formation of the shock. Table 2 shows
the result for the Euler equations. Here, V1 denotes the calculation with
correction terms and V2 without them. The estimated error ismore than two
orders of magnitude smaller for V1 than V2. TheL1 error for V1 shows a nice
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second order convergence and even the maximum error decays faster than
first order. For the steady shock, only one of the characteristic velocities
change sign. Thus only one of the waves has the observed degeneracy of
the maximum error as shown above. The other waves have second order
convergence in the maximum norm, too. Without the correction terms, the
solution is only of first order in any norm.

scalar equation
n C∞-error L1-error order

V1 V2 V1 V2 C∞ L1

10 1.1e-1 7.0e-2 2.8e-2 1.7e-2 V1 V2 V1 V2
20 9.0e-2 8.4e-2 1.1e-2 9.3e-3 0.296 < 0 1.298 0.832
40 4.1e-2 3.8e-2 2.8e-3 3.0e-3 1.117 1.149 1.983 1.650
80 1.0e-2 1.0e-2 7.2e-4 7.4e-4 1.995 1.873 1.987 2.008
160 3.4e-3 3.3e-3 1.8e-4 1.8e-4 1.612 1.643 2.026 2.064
320 1.6e-3 1.4e-3 4.4e-5 4.4e-5 1.132 1.264 1.993 2.016
640 8.6e-4 6.4e-4 1.1e-5 1.1e-5 0.854 1.092 1.984 1.976
1280 4.0e-4 3.4e-4 2.8e-6 2.9e-6 1.093 0.939 1.991 1.921

Table 1: Convergence history for a scalar equation. V1 and V2 differ in

the choice of the limiter function.

Euler equation
n C∞-error L1-error order

V1 V2 V1 V2 C∞ L1

20 5.1e-3 1.1e-2 7.9e-4 1.4e-3 V1 V2 V1 V2
40 2.5e-3 3.8e-3 2.5e-4 5.4e-4 1.041 1.521 1.634 1.354
80 8.4e-4 1.7e-3 5.4e-5 2.6e-4 1.570 1.155 2.228 1.057
160 2.2e-4 9.5e-4 1.0e-5 1.3e-4 1.909 0.845 2.386 0.998
320 6.9e-5 4.9e-4 2.4e-6 6.6e-5 1.700 0.936 2.124 0.977
640 2.2e-5 2.5e-4 5.8e-7 3.3e-5 1.647 0.972 2.026 0.988
1280 7.1e-6 1.3e-4 1.5e-7 1.7e-5 1.622 0.986 1.989 0.992

Table 2: Convergence history for the Euler equations. V1 with, V2 without

correction terms.

We get analogous results in the 2-D case. Table 3 shows the convergence
history for the scalar equation

ut + (−y u)x + (xu)y = 0.

The initial values are u(x, y, 0) = exp(−((x− 1/2)2 + y2)).
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scalar equation 2-D
n C∞-error L1-error order
5 1.0e-1 1.5e-2 C∞ L1

10 3.8e-2 5.0e-3 1.450 1.571
20 7.6e-3 1.0e-3 2.308 2.267
40 1.8e-3 2.1e-4 2.100 2.285
80 4.2e-4 4.7e-5 2.086 2.175
160 1.0e-4 1.1e-5 2.018 2.074
320 2.6e-5 2.7e-6 2.012 2.031
640 6.3e-6 6.8e-7 2.007 2.012

Table 3: Convergence history for a scalar

equation with smooth data in two space

dimensions.

Euler equation 2-D
n C∞-error L1-error order
18 C∞ L1

36 3.8e-2 5.0e-3
72 2.6e-2 8.3e-4
144 8.0e-3 1.8e-4 1.704 2.165
288 2.2e-3 2.4e-5 1.879 2.445
576 6.4e-4 6.8e-6 1.768 2.320
1152

Table 4: Convergence history for the Euler

equation with smooth data in two space

dimensions.

The first 2-D example for the Euler-equations consists of smooth pertur-
bations in the density, velocity and pressure. We use ρ1 = 1, ρ2 = 1.1 for the
density perturbation, u1 = 0, u2 = 0.1 in the x-velocity, v1 = 0, v2 = −0.1 in
the y-velocity and p1 = 1.0, p2 = 0.9 in the pressure. In the computational
domain [−2, 2]2 we used a radial symmetric function to connect the two val-
ues. The center of the perturbations is located at (1/2, 1/2)T , (1/2,−1/2)T ,
(−1/2,−1/2)T and (−1/2, 1/2)T for density, x-velocity, y-velocity and pres-
sure, respectively. Table 4 shows the convergence results.

The last example addresses the robustness of the method. We compute
the solution of a Richtmyer-Meshkov instability. A strong Mach 10 shock
hits a sinusoidal shaped contact surface that generates vorticity. Figure 3
shows the results for different times. In the first picture the incident shock
has already passed the contact surface. The numerical method in this ex-
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ample is exactly the same as in the convergence tests. The limiter function
used is a version of the monotonized central-differences but it is extendend
beond the TVD-region proposed by Sweby [18] to acieve better accurracy in
smooth regions of the flow. Even the contact survaces from the Mach stem
of the reflected shocks are visible. The disadvantage are small oszilations
behind the shocks.

0.50 1.00 1.50

Figure 3: Density contour lines at three different times for the

Richtmyer-Meshkov instability with an incident Mach 10 shock.

7 Conclusions

The multi-dimensional linearization of the Euler equations offers a simple
way to obtain high order methods that are independent of the space dimen-
sions. The solution of a non-linear system of equations is reduced to a finite
number of linear problems. This reduction is independent of the numerical
method and the discretization used. The numerical implementation needs
to meet the requirement of high accuracy for the scalar case.

The derivation shows that this linearization can be achieved for any
system of conservation laws as long as a decomposition of the state vector
and the flux in terms of the MoT is possible. For the shallow water equation
there exists such a decomposition as shown in [13] and thus all the results
carry over.
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