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1 Introduction

As in Part I [12] we consider the singularly perturbed system of ODEs (1) below admitting

a highly attractive invariant manifold Mε. In Part I we have shown that appropriate RK-

methods applied to Eq.(1) preserve this strong geometric property, i.e., they admit an

attractive invariant manifold close to Mε. Linear multistep methods (LMMs), however,

cannot be considered as a map from phase space into itself. They are best described

by a map in some high dimensional space. We show that in the high dimensional space

the LMM-map admits an attractive invariant manifold Sh,ε of the same dimension as Mε.

This invariant manifold Sh,ε may be projected onto a manifold Mh,ε close to Mε. On Sh,ε

the LMM-map may be viewed as a one-step method acting onMh,ε. This means that also

for appropriate LMMs the strong geometric property of the ODE (1) is preserved. These

geometric results are worked out in Section 2 for BDF-like methods and in Section 4 for

general stiff LMMs.

The dynamical systems restricted to the invariant manifoldsMε andMh,ε, respectively,

are no longer stiff as ε → 0. The dynamics of the full continuous system (1) is essentially

described by the dynamics of the system reduced toMε. Analogously, the dynamics of the

full discrete system defined by the LMM is essentially described by the reduced dynamics

on Mh,ε. Since the manifolds Mε and Mh,ε are close to each other the discrete system on

Mh,ε approximates the continuous system onMε. Due to the attractivity of the manifolds

Mε and Mh,ε the full discrete system approximates the full continuous system. This allows

to introduce the following concept. The LMM applied to the stiff system (1) is reduced

to a one-step method on Mh,ε approximating the reduced nonstiff continuous system

on Mε. Certain properties of the nonstiff continuous system are preserved under one-

step discretisation. Moreover, bounds for the one-step approximation may be derived.

Examples are: Global error bounds, existence of hyperbolic invariant curves (cf. Beyn

[1], Eirola [3]), existence of attracting sets (cf. Kloeden, Lorenz [6]), behaviour near a

hyperbolic equilibrium (cf. Beyn [2]). It is often possible to transfer these properties with

the corresponding error bounds to the full systems.

This concept works for the above examples. In Sections 3 and 4 we carry out this

procedure to derive global error bounds for LMMs applied to Eq.(1). Such error bounds

were first obtained by Lubich [7] using completely different methods. Our results slightly

generalize and slightly improve the results in [7] (cf. Remark 5) below).

The general concept of transferring properties of the reduced system on an attractive

invariant manifold to the full system has been used in the following related situations:

In Part I [12] to derive global error bounds for implicit RK-methods applied to Eq.(1);

1



in Lubich, Nipp, Stoffer [8] to describe the behaviour of RK-solutions near a hyperbolic

equilibrium of Eq.(1); to show the existence of hyperbolic invariant curves (in the nonstiff

case) for general linear methods in Stoffer [14] and for variable step-size one-step methods

in Stoffer, Nipp [16].

We consider the singularly perturbed autonomous system

dx

dt
= f(x, y)

ε
dy

dt
= g(x, y)

(1)

where x ∈ lRm, y ∈ lRn and ε ∈ (0, ε0). We denote by Cr
b spaces of functions of class Cr

with bounded derivatives.

We make the following

Hypothesis HDE

1) f and g are bounded and there is r with 3 ≤ r < ∞ such that f ∈ Cr
b (lR

m×lRn, lRm),

g ∈ Cr
b (lR

m × lRn, lRn).

2) There is a function s0 ∈ Cr
b (lR

m, lRn) such that g(x, s0(x)) = 0 for x ∈ lRm.

3) There is a positive constant b0 such that all eigenvalues of the Jacobian B0(x) :=

gy(x, s0(x)) have real parts smaller than −b0 for all x ∈ lRm.

Under the above assumptions it can be shown that for all ε > 0 small enough Eq.(1)

admits an attractive invariant manifold Mε = {(x, y) | x ∈ lRm, y = s(x, ε)} which is

O(ε)-close to the so-called reduced manifold M0 := {(x, y) | x ∈ lRm, y = s0(x)}. The

precise result is proved in Nipp [9], [10] and summarized in Part I [12].

In this paper we investigate the geometric behaviour of the discrete system generated

by a LMM applied to Eq.(1). A LMM of k steps applied to the differential equation

dw/dt = F (w) is defined by

k∑

j=0

αjwj = h
k∑

j=0

βj F (wj) , αk = 1 ,

where w0, ..., wk−1 are given starting values approximating the solution w(t) at t = 0,

h, ..., (k − 1) h. For a general discussion of LMMs, see Hairer, Norsett, Wanner [4]. We

make the following assumptions on the LMM which are appropriate to integrate stiff

systems.
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Hypothesis HLMM

1) The LMM is an irreducible k-step method of order p ≥ 1.

2) The LMM is ρ1-strictly stable, i.e., the polynomial ρ(z) :=
k∑

j=0
αjzj has 1 as a simple

zero and all other zeros have modulus smaller than ρ1 < 1.

3) The LMM is σ1-stiffly stable, i.e., βk (= 0 and all zeros of the polynomial σ(z) :=
k∑

j=0
βjzj have modulus smaller than σ1 < 1.

Notation: It is convenient to introduce the vectors α := (α0, ...,αk−1)T and β :=

(β0, ..., βk−1)T .

Remarks:

1) A LMM is called irreducible if the polynomials ρ and σ have no common zero. In

the case β = 0 (BDF-like methods) this implies α0 (= 0.

2) Our Hypothesis HLMM is sufficient to show the results below for ε << h which is

the important case for approximating solutions of Eq.(1) near the invariant manifold

Mε. The same results also hold for ε ≤ ch, c > 0, under the following additional

assumptions (used in Lubich [7]):

i) There is α ∈ (0, π/2) such tat all eigenvalues λ of gy(x, s0(x)) lie in the open

sector | arg λ− π| < α.

ii) The LMM is A(α)-stable. )

We apply a LMM satisfying Hypothesis HLMM with p < r to Eq.(1):

k∑

j=0

αj xj = h
k∑

j=0

βj f(xj , yj)

, αk = 1 .
k∑

j=0

αj yj =
h

ε

k∑

j=0

βj g(xj, yj)

(2)

We show that for given starting values (xj, yj), j = 0, ..., k − 1, Eq.(2) has a unique

solution (xk, yk) in a neighbourhood of the invariant manifold Mε. We introduce the new

coordinate z measuring the difference to the manifold Mε by the change of coordinates

y = s(x, ε) + z .

3



Notation: In functions depending on h and/or ε we shall mostly suppress these argu-

ments, for short. E.g., we shall write s(x) instead of s(x, ε).

We choose starting values with |zj | ≤ d, 0 ≤ j < k, where d will be determined later.

In the y-equation of Eq.(2) we expand g(xk, s(xk) + zk) about zk = 0 and obtain

k∑

j=0

αj(s(xj) + zj) =
h

ε
βk[g(xk, s(xk)) + (B(xk) + B̂(xk, zk))zk]

+
h

ε

k−1∑

j=0

βj g(xj, s(xj) + zj)

with B(xj) := gy(xj , s(xj)) = B0(xj)+O(ε) and B̂(xj , zj) = O(|zj|). Collecting the terms

in zk (and using αk = 1) yields

zk = C(xk, zk)−1
{
βk g(xk, s(xk))−

ε

h
s(xk)

+
k−1∑

j=0

βj g(xj, s(xj) + zj)−
ε

h

k−1∑

j=0

αj(s(xj) + zj)
}

with

C(xk, zk) := −βk(B(xk) + B̂(xk, zk)) +
ε

h
In

where we have suppressed the dependence on ε and ε/h in C. Note that the matrix C is

invertible for |zk| ≤ dk small enough. Eq.(2) now may be written as

xk = −
k−1∑

j=0

[αj xj − h βj f(xj, s(xj) + zj)] + h βk f(xk, s(xk) + zk)

zk = C(xk, zk)−1
{ k−1∑

j=0

[βj g(xj , s(xj) + zj)−
ε

h
αj(s(xj) + zj)]

+ βk g(xk, s(xk))−
ε

h
s(xk)

}
.

(3)

Using the Newton-Kantorovich theorem (cf., e.g., Ortega, Rheinboldt [13]) it can be

shown that for h, ε/h and |β|d sufficiently small Eq.(3) has a solution (xk, zk) in a ball

Bµ1
(x0

k, 0), with x0
k := −

k−1∑

j=0
αj xj , µ1 = O(h + ε/h + |β|d), and this solution is unique

in lRm × {|zk| ≤ dk} ∩ Bµ2
(x0

k, 0), with µ2 = O(1/(h + ε/h + |β|d)). From the implicit

function theorem it follows that for small h, ε/h, |β|d this solution is smooth with bounded

derivatives.

It is useful to describe the LMM in the high dimensional space lRkm × lRkn with

’coordinates‘ (X, Y ) for Eq.(2) and with ’coordinates‘ (X,Z) for Eq.(3), respectively. The

’components‘ of (X,Z) in lRkm × lRkn are [X ]j ∈ lRm, j = 0, ..., k− 1, and [Z]j ∈ lRn, j =

0, ..., k − 1. Thus, in (X,Z)-coordinates the starting values (xj , zj), j = 0, ..., k − 1, may
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be dscribed as (X0, Z0) with [X0]j = xj , [Z0]j = zj , j = 0, ..., k − 1. We also introduce

the vectors

Xi :=






xi
...

xi+k−1




 , Zi :=






zi
...

zi+k−1




 , i ≥ 0,

s(X) :=





s([X ]0)
...

s([X ]k−1)



 , g(X, s(X)) :=





f([X ]0, s([X ]0))
...

f([X ]k−1, s([X ]k−1))



 , etc. ,

in lRkm and lRkn, respectively, as well as the (kn×kn)-block diagonal matrix diag[B(X)+

B̂(X,Z)] consisting of the (n × n)-blocks B([X ]j) + B̂([X ]j, [Z]j), j = 0, ..., k − 1. We

shall also need the k × k matrices

R :=





0 1 0. . .
0 1. . .

0 0



 , Lα := ek α
T =




0

α0 · · ·αk−1



 , Lβ := ek β
T =




0

β0 · · ·βk−1





where ek = (0, ..., 1)T . Now the LMM may be regarded as a map from lRkm × lRkn into

itself. Note that Y = s(X) + Z describes the coordinate change from (X, Y ) to (X,Z).

With the notation introduced this map is implicitly given by (cf. Eq.(3))

X1 =
(
(R− Lα)⊗ Im

)
X0 + h(Lβ ⊗ Im) f(X0, s(X0) + Z0)

+ h βk

(
ek ⊗ f(xk, s(xk) + zk)

)

Z1 = D(X0, Z0, xk, zk)Z0 −
ε

h

(
ek ⊗ C(xk, zk)

−1
)
E(xk, X0)

(4)

where

D(X0, Z0, xk, zk) := (R⊗ In)−
ε

h

(
Lα ⊗ C(xk, zk)

−1
)

+
(
Lβ ⊗ C(xk, zk)

−1
)
diag[B(X0) + B̂(X0, Z0)]

E(xk, X0) := s(xk)−
h

ε
βk g(xk, s(xk)) + (αT ⊗ In) s(X0)−

h

ε
(βT ⊗ In) g(X0, s(X0)) .

We have again suppressed the dependence on ε and ε/h. Note that using the definition

of C(xk, zk) and the fact that
∑k−1

j=0 αj = −1 the term
(
Lβ ⊗ C(xk, zk)−1

)
diag[B(X0) +

B̂(X0, Z0)] may easily be estimated as − 1
βk
(Lβ ⊗ In) + |β|O(max0≤j<k{|xj − x0|} + h +

d + ε/h). Eq.(4) is a formulation of the LMM equivalent to Eq.(3) and therefore has a

unique solution. Hence, Eq.(4) defines a smooth map P̃ of the form

P̃ :

(
X0

Z0

)

,−→
(

X1

Z1

)

=





(
(R− Lα)⊗ Im

)
X0 + F̂ (X0, Z0)

D(X0, Z0)Z0 + Ĝ(X0, Z0)



(4)

5



defined for X0 ∈ lRkm, Z0 ∈ lRkn with |Z0|∞ ≤ d. The functions D, F̂ , Ĝ are of class Cr
b .

Here we use the norm |Z0|∞ := max0≤j<k{|zj|} where | · | is an arbitrary norm in lRn.

2 An invariant manifold result for BDF-like methods

In this section we investigate LMMs with β = 0 satisfying Hypothesis HLMM (e.g., BDF-

methods with k ≤ 6). Methods with β = 0 are particularly well suited for integrating

stiff systems since they are σ1-stiffly stable for σ1 arbitrarily small. Although the choice

σ1 = 0 is not possible, σ1 may be allowed to depend on ε and h.

For β = 0 the implicit form of the map P̃ (cf. Eq.(4)) simplifies to

X1 =
(
(R− Lα)⊗ Im

)
X0 + h βk(ek ⊗ f(xk, s(xk) + zk)

)

Z1 =
{
(R⊗ In)−

ε

h

(
Lα ⊗ C(xk, zk)

−1
)}

Z0 −
ε

h

(
ek ⊗ C(xk, zk)

−1
)
E(xk, X0)

(5)

with E(xk, X0) = s(xk) + (αT ⊗ In) s(X0)− h
ε βk g(xk, s(xk)). The k-th component zk of

Z1 is O(ε/h) whereas the first k − 1 components are O(|Z0|∞). Since the map P̃ shifts

the components of Z0 one position upwards it maps the set lRkm × {Z ∈ lRkn
∣∣∣ |Z|∞ ≤ d}

into itself for ε/h sufficiently small. Moreover, all Z-components of the k-th iterate of P̃

are of order O(ε/h). It is therefore useful to investigate the map

Ψ :

(
X0

Z0

)

,−→
(

Xk

Zk

)

:= P̃ k

(
X0

Z0

)

=:

(
AX0 + Û(X0, Z0)

V (X0, Z0)

)

(6)

where A is invertible since α0 (= 0 (cf. Remark 1)). The map Ψ is given by an implicit

equation of the form

Xk = AX0 + hU(Xk, Zk)

Zk =
ε

h

[
H(Xk, Zk)Z0 + V (X0, Xk, Zk)

](6)

where the functions H , U , V (also depending on h and ε/h) are bounded with bounded

derivatives for X0, Xk ∈ lRkm, Zk ∈ lRkn with |Zk|∞ ≤ d, h and ε/h sufficiently small.

We apply Theorem 5 of [11] to the map Ψ. Let a := |A−1| and let Lij be the Lipschitz

constants of the functions Û and V with respect to X0 and Z0. The constants Lij may be
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estimated as follows. Taking the derivatives with respect to X0 and Z0 in Eq.(6) yields

∂Xk

∂X0
= A+O(h)

∂Xk

∂X0
+O(h)

∂Zk

∂X0

∂Zk

∂X0
= O

( ε

h

)
+O

( ε

h

) ∂Xk

∂X0
+O

( ε

h

) ∂Zk

∂X0

∂Xk

∂Z0
= O(h)

∂Xk

∂Z0
+O(h)

∂Zk

∂Z0

∂Zk

∂Z0
= O

( ε

h

)
+O

( ε

h

) ∂Xk

∂Z0
+O

( ε

h

) ∂Zk

∂Z0
.

Solving for the partial derivatives one gets for h and ε/h small enough

∂Xk

∂X0
= A +O(h),

∂Xk

∂Z0
= O(ε) ,

∂Zk

∂X0
= O

( ε

h

)
,

∂Zk

∂Z0
= O

( ε

h

)
.

It follows that the Lipschitz constants Lij satisfy

L11 = O(h) , L12 = O(ε) ,

L21 = O
( ε

h

)
, L22 = O

( ε

h

)
.

Theorem 5 of [11] implies the existence of an invariant Cr
b -manifoldÑh,ε for the map Ψ if

the conditions

2
√
L12 L21 <

1

a
− L11 − L22 ,

L22 + L12 λ <
(1

a
− L11 − L12 λ

)r
(7)

with

λ =
2L21

1/a− L11 − L22 +
√
(1/a− L11 − L22)2 − 4L12 L21

hold. Using the estimates for Lij above we find that for h and ε/h small enough λ =

O(ε/h) and the two conditions are satisfied. (Note that the larger r the smaller ε/h

has to be taken.) The invariant manifold Ñh,ε is the graph of a smooth function Σ̃, i.e.,

Ñh,ε = {(X,Z))
∣∣∣ X ∈ lRkm, Z = Σ̃(X, h, ε)}, and has the following properties.

a) Σ̃ is of order O(ε/h), λ-Lipschitz and is of class Cr
b with respect to X.
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b) Ñh,ε is uniformly attractive for the map Ψ with attractivity constant χ(h, ε) =

O(ε/h) < 1, i.e., for every (X0, Z0) with |Z0|∞ ≤ d

|Zk − Σ̃(Xk, h, ε)|∞ ≤ χ(h, ε) |Z0 − Σ̃(X0, h, ε)|∞(8)

where (Xk, Zk) := Ψ(X0, Z0).

c) Ñh,ε has the “property of asymptotic phase”, i.e., for every (X0, Z0) with

|Z0|∞ ≤ d there is (X̃0,Z̃0) ∈Ñh,ε such that for (Xjk, Zjk) := Ψj(X0, Z0), (X̃jk,Z̃jk) :=

Ψj(X̃0,Z̃0)

|X̃jk −Xjk|∞ ≤ c χ(h, ε)j |Z0 − Σ̃(X0, h, ε)|∞
, j ≥ 0 ,

|Z̃jk − Zjk|∞ ≤ (1 + λ c) χ(h, ε)j |Z0 − Σ̃(X0, h, ε)|∞

holds with c = O(ε).

The manifold Ñh,ε is also invariant for the map P̃ given by Eq.(5) (cf. [11]). We

transformÑh,ε and P̃ back to the original coordinates (X, Y ). In (X, Y )-coordinates the

LMM generates a map

P :

(
X0

Y0

)

=






x0
...

xk−1

y0
...

yk−1






,−→
(

X1

Y1

)

=






x1
...
xk

y1
...
yk






(9)

defined for X0 ∈ lRkm, Y0 ∈ lRkn with |Y0− s(X0)|∞ ≤ d admitting the invariant manifold

Nh,ε := {(X, Y ) | X ∈ lRkm, Y = Σ(X, h, ε) := s(X, ε) + Σ̃(X, h, ε)} with the properties

given in

Proposition 1 Let the differential equation (1) satisfy Hypothesis HDE. Apply a LMM

with β = 0 satisfying Hypothesis HLMM to Eq.(1) and assume p < r.

Then there are constants h0, δ0, d,K and a function Σ : Ωh0,δ0 → lRkn, Ωh0,δ0 :=

{(X, h, ε) |X ∈ lRkm, h ∈ (0, h0), ε ∈ (0, hδ0)}, Σ of class Cr
b with respect to X, such that

for all h ≤ h0, ε/h ≤ δ0 the following assertions hold.

i) The set Nh,ε := {(X, Y ) | X ∈ lRkm, Y = Σ(X, h, ε)} is invariant under the map P ,

i.e., P (Nh,ε) = Nh,ε.
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ii) The manifold Nh,ε is attractive for the map P in the following sense: For all (X0, Y0)

with |Y0 − s(X0, ε)|∞ ≤ d the estimates

|Y% − Σ(X%, h, ε)|∞ ≤ (1 +Kε) |Y0 − Σ(X0, h, ε)|∞ , 0 ≤ + < k ,

|Yk − Σ(Xk, h, ε)|∞ ≤ χ(h, ε) |Y0 − Σ(X0, h, ε)|∞

hold with χ(h, ε) = Kε/h < 1.

iii) The “property of asymptotic phase” holds, i.e., for every (X0, Y0) with

|Y0 − s(X0, ε)|∞ ≤ d there is (X̃0, Ỹ0) ∈ Nh,ε such that for (Xi, Yi) := P i(X0, Y0),

(X̃ i, Ỹi) := P i(X̃0, Ỹ0), i ≥ 0, the estimates

|X̃jk+% −Xjk+%|∞ ≤ K ε χ(h, ε)j |Y0 − Σ(X0, h, ε)|∞
|Ỹjk+% − Yjk+%|∞ ≤ (1 +K ε)χ(h, ε)j |Y0 − Σ(X0, h, ε)|∞

hold for j ∈ lN0, 0 ≤ + < k.

iv) The function Σ satisfies the estimate

|Σ(X, h, ε)− s(X, ε)|∞ ≤ K
ε

h
.

Proof: ii) It suffices to verify the first estimate for + = 1 (cf. Eq.(8)). We show the estimate

in the (X,Z)-coordinates:

|Z1 − Σ̃(X1)|∞ ≤ (1 +K ε) |Z0 − Σ̃(X0)|∞ .

Let (Xj , Zj) := P̃ j(X0, Σ̃(X0)), j ≥ 0. For the components of X1, X1, Z1, Z1 = Σ̃(X1)

we have
[X1]i = xi+1 = [X0]i+1 , 0 ≤ i < k − 1 ,

[X1]i = xi+1 = [X0]i+1 , 0 ≤ i < k − 1 ,

[X1]k−1 = xk = [Xk]0

[X1]k−1 = [Xk]0

(10)

and
[Z1]i = zi+1 = [Z0]i+1 , 0 ≤ i < k − 1 ,

[Σ̃(X1)]i = [Z1]i = [Z0]i+1 = [Σ̃(X0)]i+1, , 0 ≤ i < k − 1 ,

[Z1]k−1 = zk = [Zk]0

[Σ̃(X1)]k−1 = [Zk]0 = [Σ̃(Xk)]0 .

(11)

Note that (Xk, Zk) = Ψ(X0, Z0), (Xk, Zk) = Ψ(X0, Σ̃(X0)) for the map Ψ given in Eq.(6).

We estimate

|Z1 − Σ̃(X1)|∞ ≤ |Z1 − Σ̃(X1)|∞ + |Σ̃(X1)− Σ̃(X1)|∞ .(12)
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For the second term on the right-hand side we have |Σ̃(X1)− Σ̃(X1)|∞ ≤ λ |X1 −X1|∞.

Eq.(10) implies

|X1 −X1|∞ = |[Xk −Xk]0| ≤ |Xk −Xk|∞ .

From Eq.(6) we know that

|Xk −Xk|∞ ≤ |Û(X0, Z0)− Û(X0, Σ̃(X0))|∞
≤ L12 |Z0 − Σ̃(X0)|∞ .

(13)

Since L12 = O(ε) we have

|Σ̃(X1)− Σ̃(X1)|∞ ≤ constλ ε |Z0 − Σ̃(X0)|∞ .

For the first term on the right-hand side in (12) Eq.(11) implies

[Z1 − Σ̃(X1)]∞ = max{ max
0≤i<k−1

{|[Z0 − Σ̃(X0)]i+1|}, |[Zk − Σ̃(Xk)]0|}

≤ max{|Z0 − Σ̃(X0)|∞, |Zk − Σ̃(Xk)|∞} .

Using Eqs.(8), (13) we find

|Zk − Σ̃(Xk)|∞ ≤ |Zk − Σ̃(Xk)|∞ + |Σ̃(Xk)− Σ̃(Xk)|∞
≤ (χ(h, ε) + const λ ε) |Z0 − Σ̃(X0)|∞

and hence |Z1− Σ̃(X1)|∞ ≤ |Z0− Σ̃(X0)|∞ for ε sufficiently small. Inserting the estimates

obtained into Eq.(12) we conclude

|Z1 − Σ̃(X1)|∞ ≤ (1 + const λ ε) |Z0 − Σ̃(X0)|∞ .

iii) From the property of asymptotic phase of the map Ψ we know that there is c ≤ const ε

such that for j ∈ lN0, 0 ≤ + < k,

|X̃jk+% −Xjk+%|∞ ≤ cχj|Z% − Σ̃(X%)|∞

|Z̃jk+% − Zjk+%|∞ ≤ (1 + λc)χj|Z% − Σ̃(X%)|∞ .

Here we have viewed (X%, Z%) as starting point of the map Ψ. Now ii) implies the estimates

claimed. ⊥

Proposition 1 implies that the dynamics of the LMM is essentially described by its

dynamics restricted to the manifold Nh,ε. Y0 is entirely determined by X0 for any point

(X0, Y0) ∈ Nh,ε, i.e., Y0 = Σ(X0, h, ε). The LMM-map P is then determined by the map

PX : X0 =





x0
...

xk−1



 ,−→ X1 =





x1
...
xk



(14)
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where X1 is given by the implicit equation

X1 =
(
(R− Lα)

)
⊗ Im

)
X0 + hβk

(
ek ⊗ f(xk, [Σ(X1, h, ε)]k−1)

)
.(14)

Thus, restricting the LMM to the manifold Nh,ε reduces the original stiff problem to a

nonstiff one. Therefore the nonstiff theory may be applied. As shown in Kirchgraber [5],

Stoffer [15] there is an invariant manifold in lRkm of dimension m on which the map PX

is equivalent to a one-step method Φ. The existence of this manifold is established as

follows. Hypothesis HLMM 2) implies that the matrix R−Lα has 1 as a simple eigenvalue

and all other eigenvalues have modulus smaller than ρ1 < 1. Introducing new coordinates

(x∗, X∗
a) by

X = (T ⊗ Im)

(
x∗

X∗
a

)

with an appropriate choice of T it may be achieved that

T−1(R− Lα) T =

(
1 0
0 Qa

)

with |Qa|∞ < ρ1 .

In the new coordinates the map is contracting in the X∗
a -part. This allows to prove the

existence of an invariant manifold being the graph of some function ξ∗(x∗, h, ε). In the

original coordinates this manifold may be described as the graph of a function ξ(x, h, ε)

or by a one-step method Φ (Φi denotes the i-th iterate of Φ):

{
X =





x

ξ(x, h, ε)




∣∣∣ x ∈ lRm, [X ]i = Φi(x, h, ε), i = 0, ..., k − 1

}
.(15)

Projecting this manifold into the manifold Nh,ε one obtains an m-dimensional invariant

manifold Sh,ε in the space lRkm × lRkn with the following properties.

Theorem 2 Let the differential equation (1) satisfy Hypothesis HDE. Apply a LMM with

β = 0 satisfying Hypothesis HLMM to Eq.(1) and assume p < r.

Then there are constants h0, δ0, d,K and functions Φ : Dh0,δ0 → lRm, σ : Dh0,δ0 → lRn,

Dh0,δ0 := {(x, h, ε) | x ∈ lRm, h ∈ (0, h0), ε ∈ (0, hδ0)}, σ of class Cr
b with respect to x,

such that with

∆x(x0, ..., xk−1, h, ε) := max
1≤i<k

|xi − Φi(x0, h, ε)|
∆y(x0, ..., xk−1, y0, ..., yk−1, h, ε) := max

0≤i<k
|yi − σ(xi, h, ε)|

the following assertions hold for all h ≤ h0, ε/h ≤ δ0.
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i) The set Sh,ε := {(x0, ..., xk−1, y0, ..., yk−1) | x0 ∈ lRm, xi = Φi(x0, h, ε), yi = σ(xi, h, ε),

i = 0, ..., k − 1} is invariant under the map P , i.e., P (Sh,ε) = Sh,ε.

ii) The manifold Sh,ε is attractive for the map P in the following sense: For all starting

values (xi, yi), i = 0, .., k − 1, with |yi − s(xi, ε)| ≤ d the estimates

|xjk+%+1 − Φ(xjk+%, h, ε)| ≤ K κ(h)jk+%
(
∆x(x0, ..., xk−1, h, ε)

+ ε∆y(x0, ..., yk−1, h, ε)
)

|yjk+% − σ(xjk+%, h, ε)| ≤ K κ(h)jk+%
(
∆x(x0, ..., xk−1, h, ε)

+ ε∆y(x0, ..., yk−1, h, ε)
)

+ (1 +Kε)χ(h, ε)j ∆y(x0, ..., yk−1, h, ε)

hold for all j ≥ 0, 0 ≤ + < k, with κ(h) = ρ1 +Kh < 1 and χ(h, ε) = Kε/h < 1.

iii) The “property of asymptotic phase” holds, i.e., for all starting values (xi, yi),

i = 0, ..., k − 1, with |yi − s(xi, ε)| ≤ d there is x̂0 such that for x̂i := Φi(x̂0, h, ε),

ŷi := σ(x̂i, h, ε), i ≥ 0, the estimates

|x̂jk+% − xjk+%| ≤ K κ(h)jk+%
(
∆x(x0, ..., xk−1, h, ε) + ε∆y(x0, ..., yk−1, h, ε)

)

|ŷjk+% − yjk+%| ≤ K κ(h)jk+%
(
∆x(x0, ..., xk−1, h, ε) + ε∆y(x0, ..., yk−1, h, ε)

)

+ (1 +Kε)χ(h, ε)j ∆y(x0, ..., yk−1, h, ε)

hold for j ≥ 0, 0 ≤ + < k.

iv) The function σ satisfies the estimate

|σ(x, h, ε)− s(x, ε)| ≤ Kεhp .

v) The function Φ is a one-step method of order p for the differential equation

ẋ = f(x, s(x, ε)), i.e.,

Φ(x, h, ε)− ϕh(x, ε) = O(hp+1)

where ϕt(x, ε) is the solution of ẋ = f(x, s(x, ε)) with ϕ0(x, ε) = x.

The situation concerning the manifolds Nh,ε and Sh,ε as given in Proposition 1 and The-

orem 2, respectively, is sketched in Fig. 1.
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replacemen (X0, Y0)

Nh,ε

Sh,ε

(X1, Y1)

(X̃1, Ỹ1)
(X̃0, Ỹ0)

(X̂0, Ŷ0) (X̂1, Ŷ1)

Y

([X ]1, ..., [X ]k−1)

[X ]0

Fig. 1: The invariant manifolds Nh,ε and Sh,ε

Proof of Theorem 2: i) We have already shown that the map P generated by the LMM

has an invariant manifold Sh,ε. In (X,Z)-coordinates this invariant manifold is denoted

by S̃h,ε. We already know that

S̃h,ε = {(X,Z)| x ∈ lRm, [X ]i = Φi(x), i = 0, ..., k − 1, Z = Σ̃(X)} .

For xi = Φi(x0) we have

[Σ̃(x0, ..., xk−1)]i =
[
Σ̃
(
Φ−i(xi), ...,Φ

k−1−i(xi)
)]

i
, i = 0, ..., k − 1 ,

and hence we may define

σ̃i(x) :=
[
Σ̃
(
Φ−i(x), ...,Φk−1−i(x)

)]

i
, i = 0, ..., k − 1 .

The map P̃ shifts the components of X0, Z0 one position upwards (cf. Eq.(11)). Hence

for (X0, Z0) ∈ S̃h,ε

zi = [Σ̃(x0, ..., xk−1)]i = [Σ̃(x1, ..., xk)]i−1 , i = 1, ..., k − 1

holds. Using the definition of σ̃i we obtain

zi = σ̃i(xi) = σ̃i−1(xi) , i = 1, ..., k − 1 ,

implying σ̃0 = σ̃1 = ... = σ̃k−1 =: σ̃. It follows that in the (X, Y )-coordinates the manifold

Sh,ε is described by the functions Φ(x) and σ(x) := s(x) + σ̃(x).
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iii) We know from Proposition 1 iii) that for given (X0, Y0) ∈ lRkm × lRkn with |Y0 −
s(X0)|∞ ≤ d there is (X̃0, Ỹ0) ∈ Nh,ε such that the orbits {(Xi, Yi)}i≥0 := {P i(X0, Y0)}i≥0,

{(X̃i, Ỹi)}i≥0 := {P i(X̃0, Ỹ0)}i≥0 tend exponentially together. On the other hand, it follows

from [5], [15] that there is X̂0 = (x̂0, ξ(x̂0)) = (x̂0,Φ(x̂0), ...,Φk−1(x̂0)) ∈ Sh,ε such that for

X̂i := PX
i(X̂0) (PX defined in Eq.(14); note that X̃ i = PX

i(X̃0)) the following estimate

holds

|X̂i −X̃ i|∞ ≤ constκi ∆x(X̃0) .

From Proposition 1 iii) we get

∆x(X̃0) ≤ ∆x(X0) + Lip(∆x) |X̃0 −X0|∞
≤ ∆x(X0) + const ε |Y0 − Σ(X0))|∞ .

Combining these estimates with the first estimate of Proposition 1 iii) and using χj ≤
constκjk+% we find for j ≥ 0, 0 ≤ + < k,

|X̂jk+% −Xjk+%|∞ ≤ const κjk+%
(
∆x(X0) + ε |Y0 − Σ(X0)|∞)

)
.

Setting Ŷi := Σ(X̂i) we get from Proposition 1 iii) that

|Ŷjk+% − Yjk+%|∞ ≤ |Ŷjk+% − Ỹjk+%|∞ + |Ỹjk+% − Yjk+%|∞
= |Σ(X̂jk+%)− Σ(X̃jk+%)|∞ + |Ỹjk+% − Yjk+%|∞
≤ const κjk+%

(
∆x(X0) + const ε|Y0 − Σ(X0)|∞

)

+ (1 + const ε)χj |Y0 − Σ(X0)|∞ .

Estimating Y0 − Σ(X0) as

|Y0 − Σ(X0)|∞ ≤ |Y0 − Σ(x0, ξ(x0))|∞ + |Σ(x0, ξ(x0))− Σ(X0)|∞
≤ ∆y(X0, Y0) + Lip(Σ)∆x(X0)

we have shown that for (X0, Y0) with |Y0 − s(X0)|∞ ≤ d there is (X̂0, Ŷ0) ∈ Sh,ε such that

for (Xi, Yi) := P i(X0, Y0), (X̂i, Ŷi) := P i(X̂0, Ŷ0) ∈ Sh,ε, i ≥ 0, the estimates

|X̂jk+% −Xjk+%|∞ ≤ const κjk+%
(
∆x(X0) + ε∆y(X0, Y0)

)

|Ŷjk+% − Yjk+%|∞ ≤ const κjk+%
(
∆x(X0) + ε∆y(X0, Y0)

)

+ (1 + const ε)χj
(
const∆x(X0) +∆y(X0, Y0)

)

hold for j ≥ 0, 0 ≤ + < k. This proves assertion iii).
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ii) is a consequence of iii). We estimate

|xjk+%+1 − Φ(xjk+%)| ≤ |xjk+%+1 − x̂jk+%+1|+ |Φ(x̂jk+%)− Φ(xjk+%)|

≤ const κjk+%
(
∆x(x0, ..., xk−1) + ε∆y(x0, ..., yk−1)

)

|yjk+% − σ(xjk+%)| ≤ |yjk+% − ŷjk+%|+ |σ(x̂jk+%)− σ(xjk+%)|

≤ constκjk+%
(
∆x(x0, ..., xk−1) + ε∆y(x0, ..., yk−1)

)

+ (1 + const ε) χj ∆y(x0, ..., yk−1) .

iv) We apply the LMM to Eq.(1) with initial condition (x(0), y(0)), taking starting values

x0 = x(0), y0 = y(0) and (X0, Y0) ∈ Sh,ε. In (X,Z)-coordinates the LMM is described by

the map P̃ given in Eq.(5). In order to estimate |σ − s| we derive a better estimate for

E(xk, X0). We consider solutions (u(t), v(t)) of Eq.(1) on the manifold Mε with u(0) =

x(0). These solutions satisfy the differential equation

u̇ = f(u, s(u))

v̇ =
1

ε
g(u, s(u)) = s′(u) f(u, s(u)) .

(16)

The identity g(u, s(u)) = εs′(u)f(u, s(u)) follows from v(t) = s(u(t)). We apply the LMM

to Eq.(16) with starting values

ui = u(ih)
, i = 0, ..., k − 1 .

vi = v(ih) = s(u(ih))
(17)

We obtain
U1 =

(
(R− Lα)⊗ Im)U0 + h βk(ek ⊗ f(uk, s(uk))

)

V1 =
(
(R− Lα)⊗ In

)
V0 +

h

ε
βk(ek ⊗ g(uk, s(uk))

)
.

(18)

We first estimate E(uk, U0). By our choice of starting values we have V0 = s(U0). Using

the last component of the second equation of (18) we find

E(uk, U0) = s(uk) + (αT ⊗ In) s(U0)−
h

ε
βk g(uk, s(uk))

= s(uk)− vk .

Since the LMM is of order p and since f, g and s are of class Cr
b with r > p we have

O(hp+1) = vk − v(kh) = vk − s(u(kh)) = vk − s(uk) +O(hp+1)

implying E(uk, U0) = O(hp+1).

We next estimate E(xk, X0) − E(uk, U0). Taking the difference of the first equations

in Eqs. (5), (18) we obtain

xk − uk = O(1)(X0 − U0) +O(h)zk .(19)
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From the second equation of (5) we find

zk = O(1)Z0 +O
( ε

h

)
E(xk, X0)

= O(1)Z0 +O
( ε

h

) (
E(xk, X0)−E(uk, U0)

)
+O(εhp) .

Inserting this expression for zk into Eq.(19) and using E(xk, X0)−E(uk, U0) = O(1)(xk−
uk) +O(1)(X0 − U0) we get

E(xk, X0)− E(uk, U0) = O(1)(X0 − U0) +O(h)Z0 +O(εhp+1)

+ O(ε)
(
E(xk, X0)− E(uk, U0)

)
.

We solve for E(xk, X0)−E(uk, U0) and find with E(uk, U0) = O(hp+1) that

E(xk, X0) = O(1)(X0 − U0) +O(h)Z0 +O(hp+1) .

From Eq.(5) we obtain

Z1 =
[
(R⊗ In)−

ε

h

(
Lα ⊗ C(xk, zk)

−1
)
+O(ε)

]
Z0 +O

( ε

h

)
(X0 − U0) +O(εhp) .

Since the initial values (X0, Z0) are in S̃h,ε we obtain for the last component

σ̃(xk) = O
( ε

h

)




σ̃(x0)
...

σ̃(xk−1)



+O
( ε

h

)
(X0 − U0) +O(εhp) .

This implies

|σ̃| ≤ const
[ ε

h
|σ̃|+

ε

h
|X0 − U0|∞ + εhp

]

and therefore

|σ̃| ≤ const
[ ε

h
|X0 − U0|∞ + εhp

]
.(20)

We apply the LMM to u̇ = f(u, s(u)). This LMM-map is given by the U -equation of

Eq.(18). We know from [15] that this map admits an invariant manifold {(u0, η(u0, h))}
and that our starting values U0 are O(hp+1)-close to this manifold. Since (X0, Z0) in

S̃h,ε we have zi = σ̃(xi), i = 0, ..., k (cf. proof of i)). Inserting these relations into the

X-equation of Eq.(5) we obtain

X1 =
(
(R− Lα)⊗ Im

)
X0 + h βk(ek ⊗ f

(
xk, s(xk) + σ̃(xk)

)
.(21)

We already know that the map PX : X0 ,−→ X1 admits the invariant manifold {(x0, ξ(x0, h, ε))}
(cf. Eq.(15)). Moreover, this map is a perturbation of the map U0 ,−→ U1. Therefore

Corollary 4 of [11] implies

ξ − η = O(h|σ̃|) = O(ε|X0 − U0|∞ + εhp+1) .
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SinceX0−U0 = [(x0, ξ(x0, h, ε))−(u0, η(u0, h))] +[(u0, η(u0, h))−U0] = O(|ξ−η|)+O(hp+1)

we get ξ − η = O(εhp+1) and therefore X0 − U0 = O(hp+1). From Eq.(20) we find

σ − s = σ̃ = O(εhp) .

v) Let us denote the solution of ẋ = f(x, s(x, ε) + σ̃(x, h, ε)) with initial value x by

ϕt
1(x, h, ε). The LMM applied to this differential equation has the form of Eq.(21). Ac-

cording to [5], [15] this LMM-map admits the invariant manifold (15) where the function

Φ is a one-step method of order p, i.e., it satisfies Φ(x, h, ε)−ϕh
1(x, h, ε) = O(hp+1). From

ϕh
1(x, h, ε)− ϕh(x, ε) = O(h|σ̃|) = O(εhp+1) it follows that

|Φ(x, h, ε)− ϕh(x, ε)| ≤ |Φ(x, h, ε)− ϕh
1(x, h, ε)|+ |ϕh

1(x, h, ε)|− ϕh(x, ε)|
≤ const (hp+1 + εhp+1) . ⊥

We stress the geometric aspects of a LMM applied to Eq.(1) in a corollary. The

differential equation (1) admits a highly attractive invariant manifold Mε = {(x, y)| x ∈
lRm, y = s(x, ε)}. From Theorem 2 we conclude that the discrete system generated by

the LMM admits a manifold Mh,ε = {(x, y)| x ∈ lRm, y = σ(x, h, ε)} close to Mε (cf. Fig.

2).

(X1, Y1)(X̂0, Ŷ0)

(X̂1, Ŷ1)

(X0, Y0)

Mh,ε

O(εhp)

(x̂0, σ(x̂0, h, ε))

(x̂1, σ(x̂1, h, ε))
Mε

[Y ]0

[X ]0

Sh,ε

([X ]1, ..., [Y ]k−1)

Fig. 2: The invariant manifolds Sh,ε, Mh,ε and Mε
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Corollary 3 Let the assumptions of Theorem 2 hold.

Then for the constants h0, δ0, d,K and the functions Φ, σ,∆x,∆y of Theorem 2 the

following assertions hold for h ≤ h0, ε/h ≤ δ0.

i) The set Mh,ε := {(x, y) | x ∈ lRm, y = σ(x, h, ε)} is invariant under the LMM in

the following sense: If the starting values (xi, yi) ∈ Mh,ε, i = 0, ..., k − 1, satisfy

∆x(x0, ..., xk−1, h, ε) = 0 then (xi, yi) ∈ Mh,ε for all i ≥ 0.

ii) The manifold Mh,ε is attractive, i.e.,

|yi − σ(xi, h, ε)| ≤ K κ(h)i
(
∆x(x0, ..., xk−1, h, ε) + ε∆y(x0, ..., yk−1, h, ε)

)

+ (1 +Kε) χ(h, ε)[i/k]∆y(x0, ..., yk−1, h, ε)

holds for all i ≥ 0 with κ(h) = ρ1 +Kh < 1, χ(h, ε) = Kε/h < 1.

iii) The manifold Mh,ε has the “property of asymptotic phase” stated in Theorem 2 iii).

iv) The manifold Mh,ε is O(εhp)-close to Mε.

3 Global error bounds for BDF-like methods

The geometric results of Section 2 allow to reduce the original stiff problem to a nonstiff

one. This fact may be used to transfer general properties of nonstiff problems to stiff

problems. Examples are the existence of invariant curves, the behaviour near a hyperbolic

equilibrium, the existence of attracting sets. In this section this general principle is used

to derive bounds of the global error for BDF-like methods applied to singularly perturbed

systems.

Theorem 4 Let the differential equation (1) satisfy Hypothesis HDE and let (x(t), y(t))

be a solution of Eq.(1). Let (xi, yi) be a LMM-approximation by a method with β = 0

satisfying Hypothesis HLMM . Let T > 0 and assume p < r.

Then there are constants h0, δ0, d,K such that for all h ≤ h0, ε/h ≤ δ0 the following

assertion holds. If the initial values x0 = x(0), x1, ..., xk−1, y0 = y(0), y1, ..., yk−1 satisfy

|y% − s(x%, ε)| ≤ d, 0 ≤ + <k , then for ih ≤ T

|xi − x(ih)| ≤ K
[
max
0≤%<k

{|x% − x(+h)|}+ ε
(
max
0≤%<k

{|y% − y(+h)|}+ |y0 − s(x0, ε)|
)
+ hp

]

|yi − y(ih)| ≤ K
[
max
0≤%<k

{|x% − x(+h)|}

+ (ε+ χ(h, ε)[i/k])
(
max
0≤%<k

{|y% − y(+h)|}+ |y0 − s(x0, ε)|
)
+ hp

]

where χ(h, ε) = K ε/h < 1.
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Remarks:

3) If the LMM is started by a stiff RK-method of order p and stage order q then it

follows from Part I [12] that

|xi − x(ih)| ≤ const [hp + εhq+1 + ε |y0 − s(x0, ε)|]
|yi − y(ih)| ≤ const[hp + (ε+ χ(h, ε)[i/k])(hq+1 + |y0 − s(x0, ε)|)] .

4) For arbitrary starting values x0, ..., xk−1, y0, ..., yk−1 the LMM approximates a certain

solution (ξ(t), η(t)) of Eq.(1) with a global error O(hp): Let (x̂i, ŷi) be the “asymp-

totic phase orbit” in Sh,ε of the LMM-orbit (xi, yi) and let ξ(0) = x̂0, η(0) = s(x̂0, ε).

Then by Theorem 2 iii), iv), v) we find

|xi − ξ(ih)| ≤ |xi − x̂i|+ |x̂i − ξ(ih)|
≤ const κ(h)i

(
∆x(x0, ..., xk−1, h, ε) + ε∆y(x0, ..., yk−1, h, ε)

)
+ consthp

|yi − η(ih)| ≤ |yi − ŷi|+ |σ(x̂i)− s(x̂i)|+ |s(x̂i)− s(ξ(ih))|
≤ constκ(h)i (∆x + ε∆y) + (1 + const ε)χ(h, ε)[i/k]∆y + consthp .

5) The global error estimates of Theorem 4 generalize the results given in Lubich

[7]. In [7] results are derived only for solutions of Eq.(1) starting on the invariant

manifold Mε. The additional term |y0 − s(x0, ε)| in our estimates is the initial

distance of the solution to the manifoldMε. Moreover, our estimates slightly improve

the ones in [7] in two respects. In [7] there is a number ρ < 1 independent of ε

and h instead of the small damping factor χ(h, ε)1/k ≤ (Kε/h)1/k in Theorem 4.

Second, the x- and the y-estimates in [7] are the same, as in our result the term

χ(h, ε)[i/k](max{|y% − y(+h)|}+ |y0 − s(x0, ε)|) does not appear in the x-estimate. )

Proof of Theorem 4: We first estimate xi − x(ih), ih ≤ T . Let u(t) be the solution of the

reduced differential equation

u̇ = f(u, s(u))(22)

with u(0) = x0 and let (ui) be its LMM-approximation with starting values ui = xi,

i = 0, ..., k−1. According to the property of asymptotic phase ofMε for Eq.(1) (cf. Part I

[12]) there is a solution (x̃(t), s(x̃(t)) of Eq.(1) in Mε with

|x̃(t)− x(t)| ≤ const ε e−βt/ε |y0 − s(x0)| .(23)

Note that x̃(t) satisfies Eq.(22). We estimate

|xi − x(ih)| ≤ |xi − ui|+ |ui − u(ih)|+ |u(ih)− x̃(ih)|+ |x̃(ih)− x(ih)| .(24)
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By the continuous dependence on initial conditions we have |u(ih)−x̃(ih)| ≤ const |x(0)−
x̃(0)| for ih ≤ T and by Eq.(23)

|u(ih)− x̃(ih)| ≤ const ε |y0 − s(x0)| .(25)

Since Eq.(22) is nonstiff the global error bound

|ui − u(ih)| ≤ const (hp +∆x(x0, ..., xk−1))(26)

holds for ih ≤ T where ∆x is as in Theorem 2. It remains to estimate |xi−ui|. We choose

a norm ‖ · ‖ ∈ lRkm for which the induced matrix norm satisfies ‖(R − Lα) ⊗ Im‖ = 1.

From the first equation of Eqs.(5) and (18) we get for some constant c

‖Xi+1 − Ui+1‖ ≤ (1 + ch) ‖Xi − Ui‖+ ch |zi+k| .

Since U0 = X0, a simple induction argument leads to

‖Xi − Ui‖ ≤ ch [|zi−1+k|+ (1 + ch)|zi−2+k|+ ... + (1 + ch)i−1|zk|] .

Using Theorem 2 iv) we estimate

|zj | = |yj − s(xj)| ≤ |yj − σ(xj)|+ |σ(xj)− s(xj)| ≤ |yj − σ(xj)|+ const εhp .

This yields

‖Xi − Ui‖ ≤ ch [|yi−1+k − σ(xi−1+k)|+ ... + (1 + ch)i−1|yk − σ(xk)|]
+ ch const εhp[1 + (1 + ch) + ... + (1 + ch)i−1] .

Since by Theorem 2 ii)

|yj − σ(xj)| ≤ const [κj(∆x + ε∆y) + χ[j/k]∆y]

holds we get

‖Xi − Ui‖ ≤ const [h∆x + ε∆y + εhp] , ih ≤ T .(27)

Using the estimates (27), (26), (25) and (23) in Eq.(24) yields

|xi − x(ih)| ≤ const [∆x + ε∆y + ε |y0 − s(x0)|+ hp] .(28)

In order to estimate yi − y(ih) we use the attractivity of the manifolds Mh,ε and Mε,

their closeness and the above estimate of the x-component:

|yi − y(ih)| ≤ |yi − σ(xi)|+ |σ(xi)− s(xi)|
+|s(xi)− s(x(ih))|+ |s(x(ih))− y(ih)|

≤ const
(
∆x + (ε+ χ[i/k])∆y + (ε+ e−βih/ε)|y0 − s(x0)|+ hp

)
.

(29)
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We express the functions ∆x and ∆y in terms of max
0≤%<k

|x% − x(+h)| and max
0≤%<k

|y% − y(+h)|.
Using the estimates (23) and (25) and the fact that Φ is a method of order p we find

∆x(x0, ..., xk−1) = max
0≤%<k

{|x% − Φ%(x0)|}

≤ max
0≤%<k

{|x% − x(+h)|
+ |x(+h)− x̃(+h)|+ |x̃(+h)− u(+h)|+ |u(+h)− Φ%(u0)|}

≤ max
0≤%<k

{|x% − x(+h)|}+ const (ε |y0 − s(x0)|+ hp+1) .

Using the attractivity of Mε and the distance of Mε and Mh,ε (cf. Corollary 3 iv)) and

Eq.(28) we get

∆y(x0, ..., yk−1) = max
0≤%<k

{y% − σ(x%)|}

≤ max
0≤%<k

{|y% − y(+h)|+ |y(+h)− s(x(+h))|+ |s(x(+h))− σ(x(+h))|

+ |σ(x(+h))− σ(x%)|}
≤ max

0≤%<k
{|y% − y(+h)|}+ const (|y0 − s(x0)|+ εhp +∆x + ε∆y + hp) .

We conclude

∆y(x0, ..., yk−1) ≤ (1 + const ε) max
0≤%<k

{|y% − y(+h)|}+ const max
0≤%<k

{|x% − x(+h)|}
+ const (|y0 − s(x0)|+ hp) .

Inserting the estimates for ∆x and ∆y into Eqs.(28), (29) completes the proof of

Theorem 4. ⊥

4 General stiff LMMs

In this section we investigate LMMs satisfying HypothesisHLMM without requiring β = 0.

In this general case the invariant manifold Nh,ε established in Proposition 1 for β = 0

typically does not exist since the attractivity in Y -direction might no be stronger than

the attractivity in X-direction. The existence of the invariant manifold Sh,ε (cf. Theorem

2), however, can still be shown in the general case. This result as well as the global error

estimate are derived by the same methods as in the case β = 0. We therefore do not go

into all details.

For β (= 0 we assume that the starting values xi, 0 < i < k, satisfy |xi − x0| ≤ d for

d small enough. In the (X,Z)-coordinates the LMM-map P̃ is given by Eq.(4). Since

the LMM is ρ1-strictly stable the matrix R − Lα has 1 as a simple eigenvalue and all
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other eigenvalues have modulus smaller than ρ1 < 1. We introduce the new coordinates

(x∗, X∗
a) by

X = (Tx ⊗ Im)
(

x∗

X∗
a

)

where Tx is a k × k-matrix such that

T−1
x (R− Lα) Tx =

(
1 0
0 Qa

)
with |Qa|∞ ≤ ρ1 .

Since the LMM is assumed to be σ1-stiffly stable the matrix R − 1
βk
Lβ has eigenvalues

with modulus smaller than σ1 < 1. We need a form of the map P̃ which is also contractive

in the Z-variables. We therefore transform

Z = (Tz ⊗ In) Z
∗

where Tz is a k × k-matrix such that

T−1
z (R−

1

βk
Lβ) Tz = H with |H|∞ ≤ σ1 .

In the new coordinates the map P̃ has the form (we suppress the dependence on h and ε)

P ∗ :






x∗
0

X∗
0a

Z∗
0




 ,−→






x∗
1

X∗
1a

Z∗
1




 =

(
x∗
0 + f̂ ∗(x∗

0, X
∗
0a, Z

∗
0)

g∗(x∗
0, X

∗
0a, Z

∗
0)

)

=





x∗
0 + f̂ ∗(x∗

0, X
∗
0a, Z

∗
0)

(Qa ⊗ Im) X∗
0a + F̂ ∗

a (x
∗
0, X

∗
0a, Z

∗
0)

D
∗
(x∗

0, X
∗
0a, Z

∗
0)Z

∗
0 + Ĝ∗(x∗

0, X
∗
0a, Z

∗
0 )





where f̂ ∗ = O(h), F̂ ∗
a = O(h), D

∗
= H + |β|O(max0<i<k |x∗

i − x∗
0| + h + d + ε/h),

Ĝ∗ = O(ε/h) (cf. Eq.(4)). We choose ε/h and |β|(h + d) so small that |D∗|∞ is smaller

than or equal to some d∗ ∈ (max{ρ1, σ1}, 1). It then follows that for h and ε/h small

enough the cylinder {x∗ ∈ lRm} × {|X∗
a |∞ ≤ d∗} × {|Z∗|∞ ≤ d∗} is invariant under the

map P ∗. Thus, since the functions f̂ ∗ and g∗ have the Lipschitz constants

L11 = O(h), L12 = O(h)

L21 = O(h) +O(ε/h) + |β|O(d2), L22 = max{ρ1, σ1}+O(h) +O(ε/h) + |β|O(d)

with respect to x∗
0 and (X∗

0a, Z
∗
0) we are able to apply the invariant manifold result of

Nipp, Stoffer [11] (the conditions (7) are satisfied). It implies the existence of a smooth

attractive invariant manifold

S∗
h,ε = {(x∗, X∗

a , Z
∗) | x∗ ∈ lRm, X∗

a = ξ∗(x∗, h, ε), Z∗ = ζ∗(x∗, h, ε)}
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of the map P ∗. The manifold S∗
h,ε is λ-Lipschitz with λ = O(L21) = O(h+ε/h+ |β|d2) and

it is attractive with attractivity constant γ(h, ε) := L22 + L12 λ = max{ρ1, σ1} + O(h +

ε/h+ |β|d) < 1:

|(X∗
1a, Z

∗
1)− (ξ∗(x∗

1, h, ε), ζ
∗(x∗

1, h, ε)| ≤ γ(h, ε)|(X∗
0a, Z

∗
0)− (ξ∗(x∗

0, h, ε), ζ
∗(x∗

0, h, ε))| .

Moreover, S∗
h,ε has the “property of asymptotic phase” and the functions ξ∗ and ζ∗ are of

the size of the functions F̂ ∗
a and Ĝ∗, respectively.

We express the invariant manifold in the (X,Z)-coordinates:

S̃h,ε =
{
(X,Z) | X = (Tx ⊗ Im)

( x∗

X∗
a

)
where X∗

a = ξ∗(x∗, h, ε) ;

Z = (Tz ⊗ In) Z
∗ where Z∗ = ζ∗(x∗, h, ε) ; x∗ ∈ lRm

}
.

As in Kirchgraber [5], Stoffer [15] for the X-part and in the proof of Theorem 2 i) for the

Z-part it can be shown that the manifold S̃h,ε may be described as

S̃h,ε = {(X,Z) | x ∈ lRm, [X ]i = Φi(x, h, ε), [Z]i = σ̃([X ]i, h, ε), i = 0, ..., k − 1}

where the function Φ is a one-step method for ẋ = f(x, s(x, ε)). S̃h,ε inherits the properties

of attractivity and of asymptotic phase from S∗
h,ε and similarly as in the proof of Theorem

2 it can be shown that σ̃ = O(εhp). The precise statements in the (X, Y )-coordinates are

given in

Theorem 5 Let the differential equation (1) satisfy Hypothesis HDE. Apply a LMM

satisfying Hypothesis HLMM to Eq.(1) and assume p < r.

Then there are constants h0, δ0, d,K and functions Φ : Dh0,δ0 → lRm, σ : Dh0,δ0 → lRn,

Dh0,δ0 := {(x, h, ε) | x ∈ lRm, h ∈ (0, h0), ε ∈ (0, hδ0)}, σ of class Cr
b with respect to x,

such that with

∆x(x0, ..., xk−1, h, ε) := max
0≤i<k

{|xi − Φi(x0, h, ε)|}
∆y(x0, ..., xk−1, y0, ..., yk−1, h, ε) := max

0≤i<k
{|yi − σ(xi, h, ε)|}

the following assertions hold for all h ≤ h0, ε/h ≤ δ0.

i) The set Sh,ε := {(x0, ..., xk−1, y0, ..., yk−1)| x0 ∈ lRm, xi = Φi(x0, h, ε), yi = σ(xi, h, ε),

i = 0, ..., k − 1} is invariant under the LMM-map.
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ii) The manifold Sh,ε is attractive, i.e., for all starting values (xi, yi), i = 0, ..., k − 1,

with |xi − x0| ≤ d and |yi − s(xi, ε)| ≤ d the estimate

|xi+1 − Φ(xi, h, ε)|+ |yi − σ(xi, h, ε| ≤ K γ(h, ε)i
(
∆x(x0, ..., xk−1, h, ε)

+ ∆y(x0, ..., yk−1, h, ε)
)

holds for all i ≥ 0 with γ(h, ε) = max{ρ1, σ1}+K(h + ε/h+ |β|d) < 1.

iii) The “property of asymptotic phase holds”, i.e., for all starting values (xi, yi),

i = 0, ..., k − 1, with |xi − x0| ≤ d and |yi − s(xi, ε)| ≤ d there is x̂0 such that

for x̂i := Φi(x̂0, h, ε), ŷi := σ(x̂i, h, ε), i ≥ 0, the estimate

|x̂i − xi |+ |ŷi − yi| ≤ K γ(h, ε)i
(
∆x(x0, ..., xk−1, h, ε) +∆y(x0, ..., yk−1, h, ε)

)

holds for i ≥ 0.

iv) The function σ satisfies the estimate

|σ(x, h, ε)− s(x, ε)| ≤ Kεhp .

v) The function Φ is a one-step method of order p for the differential equation

ẋ = f(x, s(x, ε)).

Remark:

6) As a consequence of Theorem 2 we stated Corollary 3 establishing the manifold

Mh,ε := {(x, y)| x ∈ lRm, y = σ(x, h, ε)}. For general stiff LMMs the manifold Mh,ε

also exists and inherits the properties i), ii), iii) and iv) of Theorem 5 (see Fig. 2 at

the end of Section 2). )

As in Section 3 for BDF-like methods the geometric results of Theorem 5 allow to

derive bounds of the global error for general stiff LMMs. The derivation is identical to

the one in the proof of Theorem 4. Remark 5) above relating our results to the ones in

Lubich [7] again holds for the general case in Theorem 6 except that our damping factor

γ(h, ε) is now not smaller than the ρ in [7].

Theorem 6 Let the differential equation (1) satisfy Hypothesis HDE and let (x(t), y(t))

be a solution of Eq.(1). Let (xi, yi) be a LMM-approximation by a method satisfying

Hypothesis HLMM . Let T > 0 and assume p < r.
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Then there are constants h0, δ0, d,K such that for all h ≤ h0, ε/h ≤ δ0 the following

assertion holds. If the initial values x0 = x(0), x1, ..., xk−1, y0 = y(0), y1, ..., yk−1 satisfy

|x% − x0| ≤ d and |y% − s(x%, ε)| ≤ d, 0 ≤ + < k, then for ih ≤ T

|xi − x(ih)| ≤ K
[
max
0≤%<k

{|x% − x(+h)|}+ h
(
max
0≤%<k

{|y% − y(+h)|}+ |y0 − s(x0, ε)|
)
+ hp

]

|yi − y(ih)| ≤ K
[
max
0≤%<k

{|x% − x(+h)|}

+ (h+ γ(h, ε)i)
(
max
0≤%<k

{|y% − y(+h)|}+ |y0 − s(x0, ε)|
)
+ hp

]

where γ(h, ε) = max{ρ1, σ1}+K(h+ ε/h + |β|d) < 1.
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