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Abstract

The dynamics of circuits in power electronics may often be modelled by means
of systems of linear differential equations with piecewise constant coefficients and
sinusoidal inhomogeneities. The Static Var (Volt-Ampere reactive) Compensator
(SVC, a device for power network control) is a representative example. Initial value
problems of this type may be handled by means of the matrix exponential, whereas
the construction of periodic solutions is in itself a linear problem.

The linear algebra package MATLAB is ideally suited for numerically perform-
ing the above mentioned tasks, including stability analysis and spectral analysis
of periodic solutions. This paper begins with the description of the engineering
background and a brief outline of the well known mathematical theory. Then a
transparent, but efficient program capable of generating, plotting and analyzing
periodic solutions is presented and documented.
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1 Introduction

Over the last few years high power semi-conductor devices with intrinsic turn-off capability
have become available. These devices, called gate turn-off (GTO) thyristors, consist of
several layers of silicon with appropriate dotations; they are able to turn off currents
of 1000 Amperes at thousands of volts within microseconds. In circuits used in power
electronics the usual resistive, inductive and capacitive circuit elements are combined
with thyristors which may simply be considered as switches. This technology is still an
active field of research, and it has many important applications such as AC/DC conversion
(both ways), speed control of locomotives and electric cars, control of power stations and
power networks, etc.

For every fixed state of the thyristor switches Kirchhoff’s laws must be satisfied, and
therefore the dynamical behavior of such a circuit is described by a system of linear
ordinary differential equations with constant coefficients, assuming linearity of the circuit
elements. If the switches change their positions the structure of the circuit changes,
but the final state of the currents in the circuit before switching determines the initial
conditions after the switching.

Therefore the mathematical model of a circuit in power electronics is a system of
linear differential equations with piecewise constant coefficients if the switching times
are neglected. We assume the dynamics of the circuit to be described by n continuous
functions of time t, which are represented by the vector x(t) ∈ lRn of dependent variables.
By using matrix notation the model may be written as

ẋ = A(t)x + p(t) (1)

where dots denote derivatives with respect to time, A(t) is a step function, i.e., a given
piecewise constant n× n matrix, and p(t) ∈ lRn is a given forcing function. In the envi-
ronment of AC (alternating current) circuits A(t) and p(t) are often periodic functions.
With no loss of generality the period will be normalized to 2π, and in view of the Fourier
decomposition of p(t) we will use the first harmonic as a model case. Usually the solution
x(t) is specified by initial conditions x(0) = x0, but other specifications, e.g. periodicity
of x(t), will be considered in Section 3.

The initial value problem of systems of linear differential equations with a constant
matrix A is a topic of elementary calculus (cf. [1]) and may be handled via the eigenvalues
and eigenvectors of A or via the matrix exponential eAt. Even if the matrix A(t) is
piecewise constant the explicit solution of the initial value problem is straight-forward,
although quite laborious if A(t) has many discontinuities.

It turns out that the features of matlab allow a very elegant construction of the
solution x(t) of this initial value problem. Also, periodic solutions may be easily calcu-
lated and plotted. In this article we will use a specific device from the field of electric
power network control, the so-called Static Var Compensator (SVC), to explain the use
of matlab in power electronics. Var stands for Volt-Ampere reactive.

SVCs are used in electric power networks to compensate for the voltage drop due to
the losses in the power lines and due to a variable user load. In the usual three-phase AC
system six switching operations per period are needed, in order to transfer an impulse
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of reactive power from one phase to another during an appropriate time interval in each
period.

fig1-circuits.eps
0 × 0 mm

Figure 1: Simplified SVC circuit

Description of the SVC circuit

Variable Description

UR(t), US(t), UT (t) AC voltages generated by the power station

RM , LM Resistance and inductance of the mains

RC , LC , C Resistance, inductance and capacitance of the SVC

IR(t), IS(t), IT (t) Currents injected in the mains

U(t) Voltage across the DC capacitance of the SVC

In Figure 1 a simplified SVC circuit including the mains is shown, the thyristors being
represented by switches. For simplicity, no loads of the electric network are taken into
consideration (they would branch off between LM and RC). In each circuit corresponding
to a single phase only one switch may be closed at any time. For the circuit of Figure 1
it is sufficient to choose n = 3 independent variables, e.g.

x1(t) = U(t), x2(t) = IR(t), x3(t) =
1√
3
(IS(t)− IT (t)) . (2)

Then the dynamics of the circuit is described by Equation (1) with

p(t) =
1

L
(0, cos t, sin t)T , L = LM + LC , R = RM +RC (3)

and
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The switching angle ϕ(t) is a given piecewise constant function that controls the
operation of the thyristors. In the 6-pulse SVC it is chosen as

ϕ(t) =
π

3
round

(3

π
(t− τ)

)

, (5)

where the shift τ is a parameter of the SVC to be chosen in |τ | ≤ R. Typical values of the
parameters C,L,R, expressed in normalized units such that the period of the AC (often
0.02 sec) becomes 2π are

C = 0.2, L = 0.15, R = 0.005. (6)

The practical orders of magnitude of C, L and R are 150 nF, 2Hy and 20Ω respectively.
For more technical details the reader is referred to the textbooks [2], [3].
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2 Linear Differential Equations with Piecewise Con-

stant Coefficients

We consider the differential equation (1),

ẋ = A(t)x+ p(t),

for the unknown function x(t) ∈ lRn. For simplicity the given 2π-periodic forcing function
p(t) is assumed to contain the first harmonic only,

p(t) = beit + b̄e−it, b ∈ lCn. (7)

The use of complex notation turns out to be advantageous since it greatly simplifies the
equations, and it is fully supported by matlab. The piecewise constant real matrix
A(t) is assumed to be 2π-periodic as well. Therefore the m+ 1 (possible) discontinuities
(jumps) tk of A(t) will be introduced as

0 = t0 < t1 < t2 < ... < tm−1 < tm = 2π,

and the discrete values of the matrix are denoted by

A(t) = Ak in tk ≤ t < tk+1, k = 0, . . . , m− 1. (8)

Given initial conditions x(0) = x0, Equation (1) has a unique solution x(t); its values
at the jumps are denoted by

xk := x(tk), k = 0, . . . , m.

First, we construct the explicit solution x(t) of (1) in the k-th subinterval t ∈ [tk, tk+1]
satisfying the appropriate differential equation and initial condition:

ẋ(t) = Akx(t) + p(t), t ∈ [tk, tk+1]
x(tk) = xk

}

k = 0, . . . , m− 1. (9)

As usual we use the decomposition

x(t) = y(t) + z(t) (10)

into a conveniently chosen particular solution z(t) and the solution y(t) of the homoge-
neous problem satisfying

ẏ(t) = Aky(t), y(tk) = xk − z(tk). (11)

Using the well-known matrix exponential we obtain

y(t) = eAktck (12)

with ck determined from the second equation of (11).
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The computation of the matrix exponential is a non–trivial problem with a long history,
as is seen from the title of the survey paper [4], “Nineteen Dubious Ways to Compute
the Exponential of a Matrix”. In the matlab command expm the “least dubious” way,
the method of Padé approximation, is implemented and works reliably, accurately and
quickly in almost all cases. It is an expensive operation, however, requiring up to 30n3

flops for an n× n matrix.
If the matrix B is diagonalizable eB may easily be computed via the eigenvalue fac-

torization B = TDT−1, D = diag(λ1, . . . ,λn) as

eB = T eDT−1, eD = diag(eλ1 , . . . , eλn), (13)

where λj is the j–th eigenvalue of B.
In the case of the matrix A(t) = B(ϕ(t)) defined in (4) the eigenvalues turn out to be

independent of ϕ and may be written explicitly as

λ1 = −r, λ2,3 = −r/2± iω (14)

where

r = −R/L, ω =

√

2/3

LC
−

R2

4L2
.

Therefore, λ1,λ2,λ3 are also the eigenvalues of all the matrices Ak for any choice of the
switching times tk. This is seen by means of the similarity relation

B(ϕ) = S(ϕ)B(0)S(ϕ)−1

with the orthogonal matrix

S(ϕ) =







1 0 0
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) cos(ϕ)






.

We then have
eB(ϕ) = S(ϕ)eB(0)S(ϕ)−1,

with the great advantage that eB(0) has a simple explicit representation due to the block
diagonal structure of B(0):

eB(0) = er/2
[

cos(ω)I + sin(ω)/ωB0 0
0 er/2

]

.

Here I is the 2×2 unit matrix, B0 is the upper left 2×2 block of B(0), and r, ω are defined
above. The reader is invited to derive or verify these relations by means of Maple. An
implementation of eB(ϕ) is possible with about 30 elementary operations and 6 functions
calls (such as exp or sin).

To complete the construction of the solution in the k–th time interval a particular
solution z(t) of (9) has to be chosen. The simplest choice is a harmonic oscillation of the
same frequency as p(t), i.e.

z(t) = −uke
it − ūke

−it (15)
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where the complex vector uk ∈ lCn must be determined such that (9) is satisfied. Insert-
ing (15) into (9) yields the condition

(Ak − iI)uk = b, (16)

a system of linear equations in C for uk, where I is the n × n unit matrix. Therefore,
the necessary and sufficient condition for the existence of a solution of the form (15) is
det(Ak − iI) '= 0, i.e. ±i must not be an eigenvalue of Ak. From (14) there follows that
this is satisfied as long as

R '= 0 or
2

3

L

C
−

R2

4
'= L2, (17)

which is true for the specific data given in (6). The resonant case (Condition (17) violated)
may be handled by augmenting (15) with terms such as vkteit, but this case will not be
pursued further.

Finally, combining (10), (12) and (15) yields the explicit solution

x(t) = eAktck − 2Re (uke
it), t ∈ [tk, tk+1] (18)

with
uk = (Ak − iI)−1b (19)

and
ck = e−Aktk(xk + 2Re (uke

itk)), (20)

as follows from (18) with t = tk. Putting t = tk+1 in (18) yields the value of x(t) at the
next jump,

xk+1 = eAktk+1ck − 2Re (uke
itk+1). (21)

For evaluating x(t) at many points it is best to pre-compute and store uk, ck, xk+1

according to Equations (19), (20) and (21) in a loop running over k = 0, . . . , m − 1.
Then (18) yields x(t) involving at most one matrix exponential.

3 Periodic Solutions

In technical applications such as SVCs one is often interested in periodic solutions of
the corresponding differential equations. However, periodic solutions are of practical
significance only if they are attractive; then they arise naturally after a long time from
an arbitrary initial state in their basin of attraction.

In linear problems such as (1) the principle of superimposition holds; therefore the
stability of periodic solutions is determined by the corresponding homogeneous problem
defined by p(t) = 0 or b = 0 (see Equation (7)). From Equations (19), (20), (21) with
b = 0 and xk replaced by yk we obtain

yk+1 = eAk(tk+1−tk)yk (22)

since the matrices Aktk+1 and Aktk commute. Here yk denotes the value of a solution of
the homogeneous equation at the jump tk(k = 0, . . . , m). Therefore, after a full period
tm = 2π, the value of ym is given by the linear map

ym = My0, (23)
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where

M =
m−1
∏

k=0

eAk(tk+1−tk) (24)

(the product taken from right to left) is the so-called monodromy matrix. There follows
that a periodic solution of (1) is globally attractive if |µj| < 1 holds for all eigenvalues µj

of M .
It turns out that for the 6-pulse SVC given by the matrix (4) and the switching

function (5) the eigenvalues µj are independent of the shift τ . In the example (6) the
values

µ1 = 0.84311362558494 (25)

µ2,3 = −0.77497080502505± 0.42379742896324i (26)

are obtained; hence if a periodic solution exists it is globally attractive.
To construct such a solution x(t) = xP (t), an initial value vector x0 ∈ lRn has to be

found such that
xm = x0 or f(x0) := xm − x0 = 0 (27)

in the notation of (21). Due to the linearity of the problem, the vector valued function
f defined in (27) is itself linear. Hence it suffices to compute n + 1 values of f in order
to define the system of linear equations (27). This is necessary because f is defined only
indirectly by means of the rather complicated algorithm described at the end of Section 2.

The n + 1 points of evaluation are conveniently chosen as the origin and the n unit
points ej = (0, . . . , 0, 1, 0, . . . , 0)T, where the non-vanishing component is in position j,
(j = 1, . . . , n). If we denote

f0 := f(0), fj := f(ej), (j = 1, . . . , n) (28)

the linear function f(x) is explicitly given by

f(x) = f0 +
n
∑

j=1

(fj − f0) xj (29)

where x = (x1, . . . , xn)
T. The initial value x0 satisfying f(x0) = 0 is therefore obtained

from the linear system
Fx0 = f0 (30)

where F is the matrix
F = [f0 − f1, . . . , f0 − fn] . (31)

A unique periodic solution exists if the matrix F is regular. In the numerical example (6)
we obtain for all τ ∈ [−R,R] cond(F ) .= 11.74, hence in this case F is far away from a
singular matrix.

4 A matlab Implementation

In this section we will present a complete matlab program capable of carrying out the
tasks listed below for the example of the 6-pulse SVC. It is based on the explicit solution
of n = 3 linear differential equations with piecewise constant coefficients as described in
the previous sections.
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(a) The periodic solution xP discussed in Section 3 is generated, and its values at the
m + 1 jumps of A(t) are stored. Possible near-degeneracies may be detected by
means of cond(F ).

(b) Computation of the monodromy matrix M associated with xP together with its
eigenvalues for discussing the stability of xP .

(c) Efficient tabulation and plotting of xP (dense output).

(d) Fourier analysis of the periodic solution xP .

The program is kept general as much as possible although some particular features of
the specific example necessarily appear. This will enable the reader to adapt the program
to any other problem involving linear ODEs with piecewise constant coefficients. The
main objectives of the code are efficiency and simplicity, not luxury of the input and
output. However, compared to the shortness of the program a fair amount of luxury and
a high degree of reliability is achieved.

The core of the program is the function f = solution(x0) given in Algorithm 1. It
solves (1) with the initial vector x0 = x0 and returns the value f = f(x0) of the function
defined in (27). According to the number nargout of output arguments in the actual
call (a permanent variable of matlab) the matrices xx, uu, M are also computed. The
matrices Ak specific to this example (see Equations (4), (5)) are generated by the function
A = matrix(k) in Algorithm 2. Table 1 describes the variables which are passed as global
parameters for convenience.

ALGORITHM 1. Function solution

function [f, xx, uu, M] = solution(x0)
SOLUTION Solves the SVC problem over a period.

f == 0 <=> periodic solution
global m n tt b
if (nargout > 1), uu = []; xx = x0; end;
if (nargout > 3), M = eye(n); end;
x = x0;
for k = 1:m,

A = matrix(k-1);
E = expm(A*(tt(k+1)-tt(k)));
u = (A-i*eye(n))\b;
x = E*(x+2*real(u*exp(i*tt(k))))-2*real(u*exp(i*tt(k+1)));
if (nargout > 1), uu = [uu,u]; xx = [xx,x]; end;
if (nargout > 3), M = E*M; end;

end;
f = x - x0;

end solution

ALGORITHM 2. Function matrix
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Table 1: Description of Global Variables
Variable Description

m, n Dimensional parameters
C, L, R System parameters

b Inhomogeneity b from Equations (7),(3)
tt(1:m+1) Array of jumps, tt(1+k)= tk, (k = 0 . . .m)

function [A] = matrix(k)
generates the matrix A[k], k=0,...,m-1
global m C L R
phi = k*2*pi/(m-1);
A = [

0, cos(phi)/C, sin(phi)/C
-cos(phi)/1.5/L, -R/L, 0
-sin(phi)/1.5/L, 0, -R/L

];
end matrix
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On exit from solution, xx will contain the values xk, uu the intermediate results uk

and M the monodromy matrix. These variables are initialized in the first lines of solution.
In the subsequent loop over k we first generate the matrix Ak−1 by calling the function
matrix. Then Equations (19), (20) and (21) are evaluated as described at the end of
Section 2. The only modification is that ck in (21) has been substituted by the expression
in (20). This halves the number of matrix exponentials to be computed. Furthermore, it
turns out that storing the vectors ck can be avoided at almost no cost.

ALGORITHM 3. Script per

global m n C L R tt b

m = 7; n = 3;
C = 0.2; L = 0.15; R = 0.005;
b = [0;1;-i]/2/L;
N = 512;

tau = input(’tau = ’);
tt = [0, 2*pi/(m-1)*[1/2:(m-3/2)]+tau, 2*pi];

f0 = solution(zeros(n,1));
F = []; for x = eye(n),
F = [F, - solution(x) + f0];

end;
x0 = F f0;
[ff, xx, uu, M] = solution(x0);

delta = 2*pi/N;
k = 0; xtab = [];
for j = 0:N-1,
t = j*delta;
if (tt(k+1) <= t),

k = k+1;
A = matrix(k-1);
aux = expm(A*(t-tt(k)))*(xx(:,k)+2*real(uu(:,k)*exp(i*tt(k))));
E = expm(A*delta);

else
aux = E*aux;

end;
xtab = [xtab, aux-2*real(uu(:,k)*exp(i*t))];

end;

figure(1); plot(xtab(1,:)’);
figure(2); plot(xtab(2:3,:)’);
cc = fft(1/N*xtab’); cc(1:32,:)
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Since the matlab indices are ≥ 1 the loop index k has been shifted by 1. The newly
computed vectors u = uk, x = xk+1 are stored by appending them to the matrices uu
and xx, respectively. In the same loop the partial product M is updated according to (24).
The final statement defines the function value (27).

In Algorithm 3 the main program per.m performing the tasks (a) through (d) by
means of calls to the function solution is given. After initializing some global variables,
the input of the shift τ is done via a program request. In this way the sensitive dependence
of the circuit’s behavior on τ may easily be studied. In the next statement the array of
the jumps tt(1:m+1) (with the index shifted by 1) is defined:

tt(1) = 0

tt(1 + k) = tk = τ + (k − 1
2)
π

3
, (k = 1, . . . , 6)

tt(8) = 2π

(see (5)). Then the periodic solution xP together with its initial value x0= x0 is computed.
The program closely follows Equations (28) through (31) and is self-explanatory.

In the next section of the program xP (t) is tabulated with step ∆ = 2π/N :

xtab(:, j) = xP ((j − 1)∆), j = 1, . . . , N.

In view of the subsequent Fourier analysis N must be a power of 2. The algorithm is
organized to work efficiently if N ) m as follows. Given a value of t, the index k is such
that t ∈ [tk, tk+1). If t ∈ [tk, tk+1) is the first evaluation point in this interval, xP (t) must
be calculated according to Equation (18). Hence we begin by computing the first term
of (18) as

aux := eAktck = eAk(t−tk)(xk + 2Re (uke
itk)),

where the vectors xk and uk are taken from the arrays xx and uu, respectively. Fur-
thermore, the matrix E := eAk∆ is computed and stored at this point, thus avoiding its
frequent re-computation at later points in the same interval. Otherwise, it suffices to
update aux as aux := E*aux.

In the final section of the program the first component of xP (t), i.e. U(t) (the voltage
across the capacitance C) is plotted versus j = 1+ t/∆ as matlab Figure 1. The second
and third components, which are both variable currents, are simultaneously plotted as
matlab Figure 2. Finally, the 3 components of xP are separately Fourier-analyzed by
means of the matlab command fft that requires a column vector as its argument.
The matrix cc serves for printing the first 32 complex Fourier coefficients of the three
components of x(t).

The data (6) in the three cases τ = −R, τ = −0.375R and τ = R produce the plots
presented in Figure 2. The sensitivity to small changes in τ is obvious. Ideally, the
currents x2(t), x3(t) should be sinusoidal. One goal of research in this field is to reduce
the disturbances due to the higher harmonics present in the periodic solution xP .

circpowe-fig-2.eps
0 × 0 mm

Figure 2: Voltage and currents in an SVC
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Parameters: C = 0.2, L = 0.15, R = 0.005 according to Equation (6). The three
cases of the shifts τ = −R, −0.375R, R are shown. In the left-hand figures the voltage
x1(t) = U(t) is plotted versus time t, whereas the currents x2(t) = IS(t) (solid line) and
x3(t) = (IS(t)− IT (t))/

√
3 (dashed line) are plotted in the right-hand figures.

5 Conclusions

A computer simulation of a technical process is a research tool useful in designing and
optimizing the process. The above specialized circuit simulator is more than ten times
faster than a general-purpose simulator on the same problem, and it produces highly
accurate approximations (14 decimals) to the exact solutions of the mathematical model.
This enables the user to obtain reliable spectra of periodic solutions to high order, which,
in turn, enable the designer to eliminate some of the unwanted harmonics.

Clearly, the success of this simulation is largely due to the high standards of the
matlab software. Best results are obtained, however, if good software is combined with
a careful mathematical analysis.

The author is indebted to Gerald Scheuer of the Institute of Power Electronics (ETH
Zürich) for providing the differential equations of the SVC. Helpful comments by Rolf
Strebel of the Institute of Scientific Computation (ETH Zürich) are gratefully acknowl-
edged.
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