
A parallel implementation of a
deflation algorithm for systems

of linear equations

A. Williams1 and K. Burrage1

Research Report No. 94-12
September 1994

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland



A parallel implementation of a deflation algorithm
for systems of linear equations

A. Williams1 and K. Burrage1

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

Research Report No. 94-12 September 1994

Abstract

A general deflation technique for solving arbitrary systems of lin-
ear equations was described in Burrage et al. (1994a). This technique
can be used with any iterative scheme. As the iterations proceed in-
formation is obtained about the eigenvalues of the iteration matrix
which either cause slow convergence or divergence. These eigenvalues
(and associated eigenvectors) are then deflated into a stiff subspace.
This then leads to a coupled iteration process between the underlying
iteration on the nonstiff space and a Newton iteration on the stiff sys-
tem. This process can rapidly accelerate the convergence of even very
ill-conditioned systems. In this paper a parallel implementation of the
algorithm is presented for a distributed memory MIMD environment.
A number of numerical results are given showing the efficacy of this
approach.

1Department of Mathematics, University of Queensland, Brisbane 4072, Australia



A parallel implementation of a deflation algorithm
for systems of linear equations.

Alan Williams and Kevin Burrage

December 5, 2011

1 Introduction

Effective scientific algorithms to exploit parallel computers are still in a considerable state
of flux. This is due to the wide variety of parallel machines each with widely varying
performance characteristics due to processor performance, network topology, communication
characteristics and memory management. Currently, there is little portable applications
software for parallel computers, but this state of affairs is now slowly changing.

Perhaps one of the most important aspects of scientific computing involves the solution of
systems of linear equations. There are essentially two approaches, based on direct methods
such as LU factorisation and iterative methods. Direct methods are in general more robust
but such algorithms are hard to implement especially on distributed memory MIMD ma-
chines. Most iterative methods are relatively simple to implement in parallel because they
are rich in matrix-vector and matrix-matrix products. However, convergence can be very
slow and this necessitates the use of effective preconditioners. However, it is often the case
that the most effective preconditioners (such as those based on incomplete LU factorisation)
are not readily parallelisable.

In this paper we report on an initial attempt at the parallelisation of the deflation tech-
niques (introduced in Burrage et al. (1994a, 1994b)) for solving systems of linear equa-
tions. These techniques were originally applied to the implementation of a Generalised
Cross Validation technique used for fitting surfaces to noisy rainfall data gathered from up
to 16,000 meteorological stations scattered irregularly across Australia. The ensuing systems
are extremely ill-conditioned. An interactive visualisation environment ADVISE (Lau et al.
(1994)) has been developed which allows a number of environmental factors associated with
drought conditions in Australia to be viewed in an interactive manner. At the moment the
surfaces are fitted by running the GCV code and then this data is incorporated into a num-
ber of simulation programs which are run in real time. The hope is that these surfaces can
be calculated in real time and then incorporated into ADVISE. However, in order for this to
happen a number of criteria must be satisfied:

1



• In order to fit rainfall surfaces to 16,000 stations across Australia, approximately 2.6
GBytes of main memory is required. This is not usually available on most vector
machines. However, the Intel Paragon sited at ETH Zürich has approximately 3 GBytes
of main memory distributed across 96 processing nodes.

• In order to do the complete simulations in realtime, one surface would have to be
fitted in 1 to 5 seconds. For most computers this is currently unrealistic for 16,000
data points, but is a realistic proposition for 2000 to 3000 data points (corresponding
to one state within Australia, such as Queensland).

• ADVISE should be ported to a parallel computer. This has been addressed in Rezny
(1994).

The aim of this preliminary paper is to investigate whether some of these aims are realistic
for the Intel Paragon using the deflation techniques of Burrage et al. (1994a, 1994b).

Thus the outline of the paper is as follows. In section 2 we describe the deflation al-
gorithm from a computational viewpoint. Section 3 discusses a number of issues affecting
the performance of parallelized codes in general, including communication overheads, use
of BLAS, load balancing. In section 4 we describe one way of parallelizing the deflation
algorithm. Section 5 gives some numerical results of a preliminary parallelization running
on the Paragon while section 6 gives conclusions and future work.

2 Deflation techniques

The deflation technique is fully described in Burrage et al (1994a, 1994b) and will only
be briefly described here, from a computational perspective. Consider the system of linear
equations given by

Ax = b, A ∈ Rn×n, x, b ∈ Rn. (1)

Then a splitting of A by A = M −N leads to a general stationary iterative scheme

Mx(k+1) = Nx(k) + b. (2)

Here M is some easily invertible matrix such as the diagonal of A in the case of the Jacobi
method or ωI in the case of Richardson iteration.

The convergence of these fixed point iteration schemes is directly affected by the distribu-
tion of the eigenvalues of the iteration matrix J = M−1N . Convergence is fastest when the
eigenvalues of this matrix are closely clustered around the origin. In particular, convergence
will only take place if ρ(J) < 1.

This deflation technique uses subspace projections to extract or project the ‘problem’
eigenvalues into one space (hopefully of small dimension), and keep the rest of the eigenvalues
in the complement space. Then a coupled iteration is performed where a direct solve (such
as that based on LU factorisation) is applied to the small ‘stiff’ system, in conjunction with

2



the fixed point iteration on the large non-stiff system. As will be seen later, this dramatically
accelerates the convergence of the underlying scheme.

The deflation routine takes as input two parameters freq and eig which determine how
often eigenvalues are extracted, and how many are extracted each time, respectively. Typ-
ically, extracting 2 or 3 eigenvalues every 4 to 8 iterations gives good results, but this is of
course problem dependent.

Thus initially, freq Jacobi iterations are carried out and a matrix δ (of size n × eig) is
kept where, at each iteration, the first column of δ is updated by

δ(:, 1) = x(k)
− x(k−1) (3)

and the differences from previous iterations are shifted across through the other columns of
the matrix δ. This matrix is then orthogonalised using a Gram-Schmidt scheme. The matrix
w = δTJδ is then formed, and a Schur decomposition of w produces the matrices Z and T
which satisfy

w = TZT T , T TT = I. (4)

A matrix (of size n × eig) containing eig eigenvector estimates is given by V = δZ, and
a matrix (of size eig × eig) containing eigenvalue estimates on its diagonal is given by
E = V TJV . This technique is essentially the Power method so the dominant eigenvalues
and associated eigenvectors are obtained.

Denoting the two projection subspaces by Q and P where

Q = I − V V T , P = V V T , V TV = I, QP = 0, (5)

and writing
x = (P +Q)x = Px+ q = V y + q, (6)

(with y a vector of dimension eig), and

(I −E)y = V TM−1b+ V TJq
q = Q(M−1b+ Jq + JV y)

(7)

leads to the coupled Reverse Gauss-Seidel iteration scheme given by

q(k+1) = Q(M−1b+ Jq(k) + JV y(k))
y(k+1) = (I −E)−1(V TM−1b+ V TJq(k+1)).

(8)

From a computational perspective this leads to the scheme

x = J(V y + q) +M−1b
q = x− V (V Tx) = qx
y = (I − E)−1V T (M−1b+ Jq)

xnew = V y + q.
(9)

3



Here y is calculated by a direct solve using the previously stored LU factors of (I − E). It
should be noted here that by changing the super-scripts of y and q on the right hand side of
(8) other iteration schemes can be obtained which are the equivalent of Jacobi iteration, or
Gauss-Seidel iteration. (See Burrage et al. (1994a))

Thus every freq iterations the eigenvalue extraction process is repeated in which a further
eig columns are appended to V , E is updated by the double matrix product E = V TJV ,
and the LU factors of I − E are recalculated.

3 Issues affecting the performance of parallelised code

As a preliminary task to implementing the deflation algorithm in parallel, we first imple-
mented the Jacobi method for solving linear systems of equations. The Jacobi method is very
good for illustrating the level of performance that can be achieved by the iterative schemes
that we are concerned with here.

The Intel Paragon is a distributed memory MIMD machine, with processors located on
a 2-D grid and communcating with each other by message passing which must be explicitly
controlled by the programmer. Peak performance per processor is 75 MFLOPS for 64 bit
floating point computation, and the machine at ETH Zürich has 96 compute nodes, so peak
performance is approximately 7.2 GFLOPS.

The compute nodes on the Paragon are i860 RISC (Reduced Instruction Set Computer)
processors. The attainable performance is heavily dependent on how effectively the cache
can be utilised. Careful attention to array access stride lengths is important, for example.
Performance is also dependent on instruction scheduling, with peak performance figures
assuming that certain floating point operations can be executed concurrently, which is done
quite effectively in assembly coded library routines, such as the BLAS (Basic Linear Algebra
Subprograms).

The work in Jacobi iterations consists almost entirely of calculating matrix-vector prod-
ucts, so we are able to make extensive use of the BLAS library provided on the Paragon.

Each node of the Paragon has 32 Mbytes of memory, of which about 26 are available
to user programs. Some of this is used for message buffering etc. It has been found that
it is best to keep the size of the executable program under about 23 Mbytes, depending
on how much communication is to be done, how many processors are to be used, and thus
how big message queues are likely to get. If too big an executable is run on a large number
of processors then the message buffering requirements can result in paging which severely
degrades performance.

3.1 Communication overheads

In the case of the iterative linear system solvers being discussed here, there is some commu-
nication which needs to take place between processors at each iteration.

As can be seen in Figure 1, we have produced timings for 3 different problem sizes. The
MFLOP rate achieved on a single node of the Paragon by the Jacobi iteration program is

4



jmflops.eps
0 × 0 mm

Figure 1: Observed MFLOPS on the Paragon

about 41 MFLOPS, which is nearly 55% of claimed peak performance. It should be noted
that this algorithm uses only level 2 BLAS routines, not level 3. Higher MFLOP rates can
typically be achieved with level 3 BLAS due to the better cache reuse and sub-blocking
strategies which are possible with these routines. When the number of processing nodes is
increased, the problem size remains unchanged, and so the total amount of work done by the
program is constant. Clearly adding more processors increases communication overheads,
and reduces the per-processor MFLOP rates. The work load is distributed by sharing the
iteration matrix J in blocks of rows across the processors, and then at each iteration, each
node forms a part of the updated iterate by x(k+1) = Jx(k)+M−1b. Thus each node uses the
entire previous iterate to form a section of the next iterate, necessitating a vector collection
and broadcast at each iteration. Timings on a test problem of size n = 1519 are produced for
up to 48 nodes, where it is clear that communication time is beginning to become significant
and performance is no longer scaling up.

If the assumption is made at compile time that the program will be run on no less than
p nodes, then a problem size p times larger can be used, and then the time spent in doing
calculations dominates that spent in communication for a larger number of processors. The
two larger problem sizes n = 6510 and n = 12400 illustrated in the graph show this. This
demonstrates the effectiveness of parallel machines on very large problems.

3.2 Cache efficiency

Cache efficiency is an important factor affecting the performance of RISC processors. Because
of the large difference between the time required to access main memory compared with
accessing the cache, a very significant performance increase can be observed by accessing
array elements column-wise (varying the first index in the inner loop) rather than row-wise.
This is because if the array is accessed row-wise, then elements of memory are addressed
with a stride length of n rather than 1, requiring the cache to be reloaded much more often.

In the case of a matrix that is shared row-wise across processors, it is clear that sig-
nificantly more stride n memory accesses than stride 1 accesses in the course of doing the
matrix-splitting, for instance will occur. A noticeable performance increase can be obtained
by storing the rows as columns and then performing operations on the transpose of the
matrix.

3.3 Proportion of serial work

Almost all algorithms have at least a small amount of work which cannot be done in parallel.
The proportion of total execution time that must be spent in serial calculations has an obvi-
ous but surprisingly large effect on the potential speedup that can be achieved by increasing

5



the number of processors. As a trivial example, an algorithm that spends just half of one
percent of execution time doing work that cannot be parallelised, would achieve a speedup
of slightly less than 167 if it were run on 1000 processors. That figure is an upper bound on
the speedup possible, and assumes that there are no communication overheads due to the
parallelisation.

jacspeedup1519.eps
0 × 0 mm

Figure 2: Jacobi speedup for a small problem size

4 Parallelisation of the deflation technique

The biggest component of execution time for this deflation technique is spent in the matrix-
vector and matrix-matrix products, so these tasks are the main candidates for parallel execu-
tion. There are also other components, such as the initial splitting of the matrix, numerous
vector adds and updates, etc.

The size of the problem to be solved, and the number of processors that will be used, both
affect the way data will be distributed and the way work will be shared. As was illustrated
with the Jacobi iterations, there are two significant classes of problem size, namely one that
is small enough to reside in the memory of one processor, and one that is bigger than that.
If the problem can be contained on one processor, then the program can be written in a
general way so that at runtime the user can specify any number of processors. In this case,
since the memory on the Paragon is distributed and not shared, the coefficient matrix will
be of size n× n on each processor, but not necessarily fully initialised on all processors, and
each processor would only access a certain portion of the matrix. If, however, assumptions
are made at compile time as to how many processors will be used, then just n/p rows (or
columns, depending on how the work is to be organised) of it need to be declared on each
node, with p being the minimum number of processors to be used. Then of course matrices
p times larger can be stored, enabling us to make better use of the very large amounts of
memory available on MPP machines. However, a different indexing strategy is required for
accessing the matrix.

4.1 Issues affecting the parallelisation

When a program is adapted for parallel execution, a useful measure of how well it performs
can be obtained by plotting a speedup graph, which shows the execution time of the serial
program divided by the execution time of the parallel one. If no overheads are introduced by
parallel execution, and there are no significant regions of necessarily serial execution, then
speedup should be linear. In practice this is of course rarely the case.

The matrix-vector and matrix-matrix products executed in the deflation routine consist
of two broad types, as far as work-sharing is concerned:

6



• products involving the n× n matrix J ,
(both matrix-vector and matrix-matrix products)

• and products involving only matrices of smaller dimension
(V (n× r) and E (r× r), r the number of eigenvalues extracted so far) which increase
in size as more eigenvalues are extracted.

In addition, the matrix-vector products involving V have different implications to those
involving V T since, for example, d = V y is an n−vector while c = V Tx is only of dimension
r. Clearly it isn’t practical to parallelise the calculation of a result vector which has dimension
smaller than the number of processors we would typically expect to be using on an MPP
machine.

One of the most significant operations performed in the routine is a matrix double product
(w = V TJV , w of size r × r). This is coded as two matrix-matrix products, where the first
call involves J and results in a temporary matrix which is then used in the second call to
produce the result w (tmp = JV, w = V T tmp). Clearly it is not practical to parallelise
the calculation of the second matrix-matrix product (which results in w), since the value of
r is typically at most 10% of the dimension of the problem. It is worthwhile, however, to
parallelise the first product. But then the node which does the second one must collect the
‘pieces’ of the intermediate result from the slave nodes. Depending on whether we distribute
the large matrix J column-wise or row-wise across the processors, the triple product can be
done in a couple of different ways:

tmp = JV , w = V T tmp
tmp = V TJ , w = tmpV

(10)

We can of course use the fact that JTV = (V TJ)T to change the order in which the matrix
arguments appear, and also to cater for row-wise or column-wise distribution of J but in any
case the intermediate result must be collected onto a single node before the second product
is formed. Also, the data distribution should be arranged so that the matrix-matrix product
can be done by each node simply calling a BLAS routine for its block of the matrix, which
implies that if C = AB is to be calculated, for instance, then A should be shared row-wise
or B should be shared column-wise across the nodes.

As Figures 3 and 4 illustrate, it is possible to to arrange it so that each node forms either
rows or columns of a result matrix.

rowabc.eps
0 × 0 mm

Figure 3: Matrix A shared row-wise

Since Fortran arrays are stored in column-major format, such that the first index varies
fastest, then the collection of the tmp matrix onto one node is simplified if each slave node
has columns. This way the starting address of the first column to be sent can be specified,

7



colabc.eps
0 × 0 mm

Figure 4: Matrix B shared column-wise

and a single message of an appropriate length can be sent containing the p columns. If rows
of the matrix are to be sent, they must first be packed into a vector one after each other, and
then unpacked into the receiving matrix on the target node. However, this consideration
is countered by the fact that another significant operation performed at each iteration is
the matrix-vector product Jq. For this to be shared among a pool of slave processors, J
really needs to be distributed row-wise. For this reason it has been decided to distribute J
row-wise.

The strategy that is used for this implementation, is to share all operations involving J ,
and non-transpose products involving V , among a pool of slave nodes. Products involving
V T , and the LU factorisations and solutions of the small system, will be done by a single
‘master’ node. Thus it is intended that the master node can perform certain serial tasks
concurrently with the large products that the slave nodes are doing, and also act as a
collector and distributor of distributed vectors and stopping test norms. So the coupled
reverse Gauss-Seidel iteration (9) could be parallelised as follows.

Parallel iteration
node 0 slave nodes
tmp = V Tx → tmp2 = V ∗ tmp

←

q = x− tmp2 → Jq +M−1b
y = (I − E)−1V T (Jq +M−1b) →

(JV y) = JV ∗ y x = V y + q

The arrows in the above figure indicate the communication that must happen between
the master and slave nodes. It is clear that for this tightly coupled iteration there are
considerable serial regions where the slave nodes must wait for results to come from the
master, and conversely for the master node. So the speedup is limited to the reduced time
required for the products calculated by the slaves, together with the concurrency provided
by smaller tasks such as the shuffling of the δ matrix and some vector updates being able to
be done in the background. These effects have been confirmed by using the software package
known as Paragraph, which can be used to analyse the performance of a parallel program.

It is important to consider though, that the operations involving the matrix V (containing
the eigenvector estimates) will take longer as more eigenvalues are extracted. For example,
if a problem is solved in 150 iterations with 3 eigenvalues being extracted every 5 iterations,
then the time taken to do operations on the matrix V and on E increases by at least an
order of magnitude during the execution of the program. This means that load balancing
and parallelism considerations change during program execution if these operations (done
by a single node) are done concurrently with a product involving the matrix J (size n× n)
which is shared among the pool of slave nodes.

8



5 Results

In this section we present results comparing the convergence properties of the deflation
technique with those of the Jacobi iteration, and also timing results showing the performance
of the deflation technique. The program was written in Fortran77 with Intel NX native
message passing routines.

5.1 Comparison of deflation with Jacobi iterations

A simple symmetric test matrix was generated with the off-diagonal elements filled by sine
values and an arbitrary larger value put on the diagonal. In this way the condition number
can be varied easily. The matrix used for the following comparison is of size n = 1116,
and has a condition number of 83.78. For this problem Jacobi iterations give approximately
linear convergence to an error tolerance of 10−6 in the residual (difference between successive
iterates) in 1012 iterations.

The deflation algorithm gives convergence to the same accuracy in just 16 iterations. The
points at which the eigenspace approximation was updated can be clearly seen in Figure 5
where the convergence accelerates. This matrix provides an almost ideal case for the deflation
algorithm, having only a few widely scattered eigenvalues. This also effectively illustrates
the fact that the deflation routine is useful for solving a class of problem that cannot be
solved by the Jacobi method.

defrgs.eps
0 × 0 mm

Figure 5: Convergence of the deflation algorithm

5.2 Deflation performance

In this section we present preliminary performance results for the deflation algorithm. Com-

defs1519.eps
0 × 0 mm

Figure 6: Speedup on a small problem size

paring the two Figures 6 and 7 shows that the deflation algorithm exhibits the same behaviour
as the Jacobi algorithm described in Figure 2. In particular, as the problem size is increased,
greater speedups are obtained for a larger number of processors. Thus in the case of a problem
of dimension 1519 performance does not seem to improve with more than 15 processors.
However, for a problem of size 6200, performance continues to improve for up to 45 processors.
This phenomenon would be expected to continue as the dimension of the problem increases

9



further. Since we are ultimately concerned with solving very large problems (dimension
16000 and more) we would expect to be able to use all 96 processors in an effective manner.

It should be noted that there are some difficulties when attempting to evaluate the
performance of parallel algorithms on very large problems, in that performance comparisons
cannot be made with a single processor (or indeed a small number of processors). This is
because there is insufficient memory to store such problems.

def6200.eps
0 × 0 mm

Figure 7: Deflation algorithm

10



6 Conclusions and future work

It has been demonstrated that the aims stated in the introduction are realistic, and in par-
ticular that very large matrix systems can be efficiently solved on the Paragon. However,
in order to obtain ‘real-time’ behaviour within ADVISE greater performance is needed from
the deflation implementation. A number of further approaches would lead to improvements.

• Different iteration schemes:
As has been mentioned, the reverse Gauss-Seidel iteration scheme which underlies this
implementation of the deflation method results in significant amounts of communi-
cation and large regions of serial execution. A less tightly coupled iteration would
offer better parallelism and less communication (by using fewer but larger messages to
send more than one vector at a time). The convergence properties would, however, be
changed somewhat. It may be possible to use some preconditioners at this stage.

• Communication: Collection of a distributed vector onto a single node.
There are a number of considerations to be made when deciding how to arrange the
communication involved in collecting the pieces of a vector. Depending on the workload
of the node that will do the collecting, there are at least three possible ways of doing
it ’optimally’, the goal of course being to minimise the time that any node spends idle
or waiting to receive a message.
As the slave nodes finish calculating their sections of the vector, the collecting node
can be in one of three states:

– standing idle waiting at the receive statement. In this case the best strategy is
simply to have each slave node send its piece of the result vector to the master
node, which places all of the pieces into the appropriate places.

– not yet waiting at the receive statement. The best strategy here would be to
collect the result vector on one of the slave nodes and then send it to the master
in a single message.

– arriving at the receive statement essentially ’on time’. If all nodes arrive at
essentially the same time, then the most effective way of minimising the collection
time is to form a tree structure where each node first passes its piece of the vector
to a neighbouring node and so on, so that the master node receives in the order
of log2(P ) messages.

As has already been mentioned, in this algorithm the workload of the master node
varies as execution progresses. So all of the above can be expected to occur at some
time in the execution of the routine. Ideally the structure of the communication would
be varied adaptively as the load balancing changes.

• Asynchronous iteration:
One of the things hampering the speedup of the deflation algorithm is the large serial

11



region which occurs where the eigenspace approximation is done. While the master
node is doing the LAPACK routine calls to form the schur decomposition and LU
factorisation etc., the slave nodes are idle. If they would continue iterating with the ’old’
eigenspace approximations while they wait for the updated one to be calculated then
some extra convergence could be achieved while greatly reducing processor idle time.
It is known that asynchronous iteration can, in general, improve parallel performance
by removing sychronization points.

• Adaptive eigenspace approximation:
Currently the frequency with which the eigenspace approximation is updated is set at
the beginning of the program. Performance gains could be obtained by monitoring
convergence and updating the eigenspace at different intervals as necessary. Also, the
number of eigenvalues to be extracted could be varied.

It is hoped to further continue this work on the parallel implementation of deflation
algorithms. We expect considerable improvements if some of the above factors are taken
into account.

7 Acknowledgement

The authors would like to thank Professor Dr. Rolf Jeltsch of the Seminar for Applied Math-
ematics, ETH Zürich, for all his help in establishing this project, and to Intel Corporation
for financial support. Thanks also to Dr. Bert Pohl at SAM, ETH and Michael Vollmer at
Intel for much appreciated help with various aspects of using the Paragon.

12



References

Burrage, K., Erhel, J. and Pohl, B. (1994a). A deflation technique for linear systems of
equations. Res. Rep. 94-02, Seminar für Angewandte Mathematik, ETH Zürich.

Burrage, K., Williams, A., Erhel, J. and Pohl, B. (1994b). The implementation of a Gen-
eralised Cross Validation technique using deflation techniques for linear systems. Res. Rep.
94-05, Seminar für Angewandte Mathematik, ETH Zürich.

Lau, L., Rezny, M., Belward, J., Burrage, K., Pohl, B. (1994) ADVISE - Agricultural De-
velopmental Visualisation Interactive Software Environment Res. Rep. 94-03, Seminar für
Angewandte Mathematik, ETH Zürich.

Rezny, M. (Parallel Implementation of ADVISE on the Intel Paragon) Res. Rep. 94-10
Seminar für Angewandte Mathematik, ETH Zürich.

13



Research Reports

No. Authors Title

94-12 A. Williams, K. Burrage A parallel implementation of a deflation algo-
rithm for systems of linear equations

94-11 N. Botta, R. Jeltsch A numerical method for unsteady flows
94-10 M. Rezny Parallel Implementation of ADVISE on the

Intel Paragon
94-09 M.D. Buhmann,

A. Le Méhauté
Knot removal with radial function
interpolation

94-08 M.D. Buhmann Pre-wavelets on scattered knots and from ra-
dial function spaces: A review

94-07 P. Klingenstein Hyperbolic conservation laws with source
terms: Errors of the shock location

94-06 M.D. Buhmann Multiquadric Pre-Wavelets on Non-Equally
Spaced Centres

94-05 K. Burrage, A. Williams,
J. Erhel, B. Pohl

The implementation of a Generalized Cross
Validation algorithm using deflation tech-
niques for linear systems

94-04 J. Erhel, K. Burrage,
B. Pohl

Restarted GMRES preconditioned by de-
flation

94-03 L. Lau, M. Rezny,
J. Belward, K. Burrage,
B. Pohl

ADVISE - Agricultural Developmental Visu-
alisation Interactive Software Environment

94-02 K. Burrage, J. Erhel,
B. Pohl

A deflation technique for linear systems of
equations

94-01 R. Sperb An alternative to Ewald sums
93-07 R. Sperb Isoperimetric Inequalities in a Boundary

Value Problem in an Unbounded Domain
93-06 R. Sperb Extension and simple Proof of Lekner’s Sum-

mation Formula for Coulomb Forces
93-05 A. Frommer, B. Pohl A Comparison Result for Multisplittings

Based on Overlapping Blocks and its Appli-
cation to Waveform Relaxation Methods

93-04 M. Pirovino The Inverse Sturm-Liouville Problem and Fi-
nite Differences

93-03 R. Jeltsch, X. Wang Uniqueness of Piecewise Lipschitz Continuous
Solutions of the Cauchy-Problem for 2 × 2
Conservation Laws

93-02 W.-A. Yong Difference approximations to the globalW 1,∞

solutions of the isentropic gas equations


