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Abstract

Environmental models, such as the Pasture Model, require large computing re-
sources to give results within reasonable time frames. This report focuses on the de-
sign and implementation of a parallel version of an ADVISE server running the Pasture
Model on the Intel Paragon.

In order to make the most efficient use of this computing resource, it is first neces-
sary to perform a thorough analysis of the message passing, file I/O and computation
performance of this machine. These results are compared to those obtained on a typical
workstation such as a SUN SPARC.

These results are used to design an efficient implementation of a parallel server
version of the Pasture Model. This implementation consists of a single master server
to process client requests and re-distribute these requests to a number of sub-servers.
The Paragon performance results are used to determine what functionality should be
implemented in the sub-servers in order to achieve an efficient use of the Paragon and
at the same time optimise server response times for client requests.

1Department of Mathematics, University of Queensland, Brisbane 4072, Australia



1 Introduction

ADVISE [1] is a software package designed to enable large simulation programs, such as those
used in environmental modelling, to be run in an efficient, interactive, and user-friendly way.
The package is designed using the client-server approach. ADVISE provides the communi-
cation interface between a client, typically a graphics user interface and servers which are
usually high performance computers.

All previous ADVISE servers have been implemented on uni-processor computers such
as SUN SPARC10, ALPHA AXP, SGI workstations and CRAY supercomputers. This paper
focusses on the extension of an ADVISE server to run on a parallel machine, in particular,
the Intel Paragon. The need for such an implementation becomes clear when one considers
the resource requirements of an environmental model, such as the Pasture Model [1]. When
run on a SPARC10, the present Pasture Model takes over 720 s to perform the 365 daily
simulation steps for one year over the state of Queensland, Australia using a grid size of 10
km. This model computes 29,016 distinct simulations per day. Our aim is to provide the
capability to run more complex models over the whole of Australia for 100 years with a grid
resolution of 5 km. This will require computational resources equivalent to more than 3,000
such workstations to execute in a similar time to the present model.

Before an optimal porting strategy can be adopted, it is first necessary to understand the
performance that can be obtained on the Paragon for the resource required by the Pasture
Model. The next three sections discuss these various performance details. It must be assumed
that compute nodes will need to receive messages to obtain the necessary input data and send
messages to output the state of the model. The first section discusses the performance of
the Paragon message passing routines. Environmental models typically access large amounts
of input data describing soil, pasture and weather data. Section 3 details the performance
of various strategies for efficiently reading these input data files. Section 4 looks at the
processor performance with a view to determining some idea of the speed-ups that might
be obtainable with the Paragon. Then follows a description of the porting strategy and the
performance obtained. The last section summarises the lessons learnt from this project and
discusses further areas that could be of interest in future projects.

2 Message Passing Performance

This section analyses the message passing performance of the Paragon. Firstly, the message
passing performance of NX, the native message passing library, is given. Then the imple-
mentation of PVM on the Paragon is discussed as well as the performance results. These
results are compared with the results obtained using a cluster of SUN workstations.

2.1 NX Message Passing

If the times for passing messages between nodes of the Paragon are analysed, the following
well known result may be noticed: When several messages of similar length are sent, perhaps
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in order to calculate an average message passing time, the first message takes significantly
longer to send than the subsequent messages. This initial overhead is associated with the
memory paging mechanism. However, the times can usually be made consistent by using
the -plk option to page-in all the required memory before the program begins execution.
This will not work if the message buffers are dynamically allocated at run time since the
operating system will not be aware of the dynamic memory requirements at program load
time.

It should be noted, however, that it is not usual to send a message with a buffer that
has not first been initialised with useful data. If the buffers are first initialised, then the
subsequent paging will be done before these data assignment statements and not when the
buffer is sent. Hence, the overhead associated in paging on the sending node would not
normally be seen in the message passing times. Unfortunately, there is no similar reasoning
that can be applied to the receiving node and in a usual program, the paging overhead would
normally be incurred in the first message received.

A simple efficient approach that can adopted to remove the paging component from the
message passing timings is to allocate memory dynamically using the calloc routine on both
the sending and receiving nodes. This routine allocates the requested space and then sets
all Bytes to zero. In this way all of the necessary paging in both the send and receive nodes
is incorporated into the calloc routine. In the case of Fortran timing programs, buffers in
both the sending and receiving nodes can be initialised before the timing tests are started.

The message passing times obtained using the NX message passing library are shown in
Tables 1 and 2. Table 1 shows the times when the message buffers are assigned using the
malloc routine and Table 2 shows the times obtained using the calloc routine. The message
passing times shown are round trip times, i.e., the time to send a message of the designated
size from the send node to the receive node and for the receive node to send back a 0 Byte
message as an acknowledgement. The times have been measured using the Paragon dclock
timing call. The loop and timing overhead associated with using the timing routine, 1.97 µs
per call, has been accounted for in these timings. All times are in µs and the average times
have been calculated using the times taken for 1000 messages after the initial message.

As can be seen in these two tables, the paging overhead has been shifted from the message
passing routines to the allocation routine. It is interesting to note that the paging cost of
calling the calloc routine, approximately 48 ms, is less then half the paging cost when sending
the first 1,000,000 Byte message of 100 ms. In the case of the calloc routine, the message
passing times for the first message are similar to the average times. The 8509 µs obtained
in Table 1 for the first 100 Byte message appears to be unusually high. Further tests were
done and the values obtained over a number of runs were all greater than 2600 µs.

2.2 PVM Message Passing

The next tests conducted, measure the times using the message passing routines in PVM
[3]. This software package has a master/slave pair of timing programs for this purpose in
the suite of example programs supplied. Tests were conducted using:
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Message First Average Transfer Rate
Bytes µs µs K Bytes/s

allocate memory (send node ) 2905 N/A N/A
allocate memory (receive node) 786 N/A N/A

0 108 92 N/A
100 8509 116 862.1
1000 131 120 8333.3
10000 2520 279 35842.3
100000 30691 1691 59136.6
1000000 115759 15734 63556.6

Table 1: NX message passing times using malloc

Message First Average Transfer Rate
Bytes µs µs K Bytes/s

allocate memory (send node ) 50261 N/A N/A
allocate memory (receive node) 48590 N/A N/A

0 111 90 N/A
100 153 116 862.1
1000 136 121 8264.5
10000 320 269 37174.7
100000 1660 1624 61576.3
1000000 15206 15178 65884.8

Table 2: NX message passing times using calloc
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Routine Machine µs/call
gettimeofday SUN LX 39

SPARC2 28
SPARC10 12
Paragon 497

dclock Paragon 1.97

Table 3: Loop and timing overhead

• a pair of SUN SPARC2 workstations,

• a pair of SUN SPARC10 workstations,

• a SUN LX and a compute node of the Paragon, and

• a service node and a compute node on the Paragon.

Performance times, as implemented in the PVM timing programs, are obtained using
the timing routine gettimeofday which is a standard UNIX routine. The loop and timing
overhead associated with this call was also measured and these times are shown in Table
3. This loop and timing overhead has been accounted for in all of the message passing
timings. What should be noted is the huge overhead (497 µs) associated with using this
routine on the Paragon compared with the times on the SUN workstations and the time
for using the Paragon dclock routine (approx 2 µs). Although not measured, there is also
a large variance associated with calling this routine on the Paragon which may impact on
accurately comparing program performance.

2.2.1 SUN Workstation Timings

Two sets of timings are shown for each of the workstations used for comparisons. Table
4 shows the message packing and message passing performance of a SUN SPARC2 in the
case where both the master and slave tasks are on the same workstation. This version of
PVM uses UNIX domain sockets for communication between the PVM daemon (pvmd) and
tasks as well as between tasks on the same processor when the Direct Routing option
is specified. It is claimed that a performance increase of from 1.5 to 2 can be expected
over previous versions. Table 5 gives the results obtained in the typical situation where the
master and slave tasks are on distinct SPARC2 workstations. In this case, messages are
passed between the tasks over an Ethernet connection. The maximum throughput of this
network is 1.25 M Bytes/s.

Tables 6 and 7 are the results obtained using SUN SPARC10 workstations. These results
are interesting in two ways. Firstly, PVM tasks communicating with the TCP Direct Routing
option, are now able to utilise up to 80% of the Ethernet network bandwidth. Secondly, tasks
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Length Pack Send Transfer Rate
Bytes µs µs K Bytes/s

0 N/A 2266 N/A
100 270 2317 43.2
1000 686 2451 408.0
10000 5299 5836 1713.5
100000 59544 49888 2004.5
1000000 734082 522441 1906.9

Table 4: PVM local message passing on SUN SPARC2

Length Pack Send Transfer Rate
Bytes µs µs K Bytes/s

0 N/A 3534 N/A
100 283 3607 27.7
1000 711 4628 216.1
10000 5394 13100 763.4
100000 55203 105875 944.5
1000000 512396 1013311 986.9

Table 5: PVM remote message passing on SUN SPARC2

Length Pack Send Transfer Rate
Bytes µs µs K Bytes/s

0 N/A 1004 N/A
100 75 1009 99.1
1000 99 1059 944.3
10000 387 2366 4226.5
100000 4386 18018 5550.0
1000000 59159 179489 5571.4

Table 6: PVM local message passing on SUN SPARC10
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Length Pack Send Transfer Rate
Bytes µs µs K Bytes/s

0 N/A 2050 N/A
100 75 2119 47.2
1000 114 3089 323.7
10000 532 10828 923.5
100000 4378 99785 1002.2
1000000 78776 992106 1008.0

Table 7: PVM remote message passing on SUN SPARC10

on the same processor are now able to achieve over 5.5 M Bytes/s. This may be indicative of
the performance that may be achieved by multiple processor SUN workstations using shared
memory. The average times shown were calculated over 20 messages.

2.2.2 Paragon Timings

In the case of sending messages between the SUN LX workstation and the Paragon, two
further situations must be taken into account with respect to messages passed between
ADVISE clients and servers. This is due to the different machine representations for integers
and floating point data. Firstly, image data sent from the Paragon server to the SUN client is
in Byte format and can be transferred without translation. However, floating point data sent
from the Paragon or vice-versa must first be translated into a machine independent format
before being sent to the other machine. This extra overhead appears in the message packing
times. On the Paragon, the paging times associated with the first message are negligible
when compared with the message passing times and have not been reported. Table 8 gives
the times for passing Byte messages from a SUN LX workstation to the Paragon. Table 9
shows the extra overhead in the packing times when the message contains integer data which
must be translated. Table 10 gives the times for the case when the master is a UNIX task
on a service node and the slave is on a compute node.

Messages in all three cases are passed as TCP/UDP packets and are routed through the
pvmd on a user node of the Paragon. In all cases the message passing times are extremely
poor and will have a major impact on the performance that can be expected from the AD-
VISE package. These performance figures have been passed to the person who is responsible
for the Paragon MPP port, but so far no feedback has been received.

The final message passing tests consist of timing communication between two compute
nodes on the Paragon. In this case, messages are passed directly between nodes using the
Paragon NX message passing routines. The gettimeofday routine was found to be impractical
to use in this case because the variance of the time take for this routine was much larger
than the message passing times. The test programs had to be rewritten to use the dclock
routine. Table 11 shows the performance figures obtained from these programs.
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Length Pack Send Transfer Rate
Bytes µs µs K Bytes/s

0 N/A 63352 N/A
100 247 61413 1.6
1000 304 57726 17.3
10000 979 160022 62.5
100000 7830 1304522 76.7
1000000 78754 12893763 77.6

Table 8: PVM SUN LX master and Paragon slave, Byte messages

Length Pack Send Transfer Rate
Bytes µs µs K Bytes/s

0 N/A 59125 N/A
100 276 57814 1.7
1000 595 58345 17.1
10000 3737 199532 50.1
100000 35663 1274377 78.5
1000000 354405 13033763 76.7

Table 9: PVM SUN LX master and Paragon slave, integer messages

Length Pack Send Transfer Rate
Bytes µs µs K Bytes/s

0 N/A 110561 N/A
100 443 122850 0.8
1000 486 125525 8.0
10000 1325 256759 38.9
100000 10972 1532505 65.3
1000000 117681 13699936 73.0

Table 10: Paragon master and slave
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Length Pack Send Transfer Rate
Bytes µs µs K Bytes/s

0 N/A 438 N/A
100 761 727 137.2
1000 795 540 1844.4
10000 771 1075 9281.3
100000 4732 6090 16415.3
1000000 32844 50804 19682.5

Table 11: Paragon master and slave using PVM send and recv

Length Pack Send Transfer Rate
Bytes µs µs K Bytes/s

0 N/A 89 N/A
100 N/A 123 801.3
1000 N/A 128 7687.3
10000 N/A 279 35552.4
100000 N/A 1588 62905.9
1000000 N/A 14729 67886.3

Table 12: Paragon master and slave using PVM psend and precv

The results are rather disappointing when compared to those obtained from using the
NX routines directly. The 0 Byte round trip times are 438 and 90 µs respectively, and the
data transfer rates for 1,000,000 Byte messages are 19.7 and 65.9 M Bytes/s, respectively,
for the PVM and NX message passing versions.

The pvm send and pvm recv calls are for general use and incur some overhead in
transferring data to and from message buffers. There are two routines that are optimised
for message passing by utilising the underlying message passing library more efficiently. The
pvm psend and pvm precv routines do not allow the packing of various arrays of data
but immediately send to or receive from the designated user-defined area. Table 12 shows
the timing results obtained by replacing the standard send and receive routines by the more
efficient psend and precv routines. Compared with Table 11, the round trip times for 0 Byte
messages has decreased by more than a factor of 4 and the data transfer rate has increased
by over a factor of three. If these results are compared with those using the NX message
passing routines (Tables 1 and 2), it is seen that the performance of the PVM message
passing routines is similar to the NX message passing routines.
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2.3 Conclusions

The following summarises the important points of interest with regard to using PVM on the
Paragon and, in particular, how these results impact on porting an ADVISE server to the
Paragon:

• It is important to understand the timing routine that is used to gain performance
measurements. The implementation on the Paragon of the gettimeofday routine takes
on average 497 µs in comparison with the Paragon dclock routine which takes only 2 µs.
Completely misleading performance results could be obtained if the timing overhead of
these calls is not taken into account. In particular, the message passing performance
programs supplied in the PVM package use the gettimeofday routine and no attempt
has been made in these programs to account for the timing call overhead.

• The message passing times between a SUN workstation and a compute node on the
Paragon are unsatisfactory. Using Ethernet, the average 0 Byte round trip time be-
tween the Paragon and a SUN LX is about 60 ms compared to about 2ms between
two SPARC10 workstations, a factor of 30 times slower. The data transfer times for
1,000,000 Byte messages using the Paragon are slower by a factor of 13 when compared
to two SPARC10 workstations.

In the ADVISE package there are usually at least two distinct calls between a client
running on a graphics workstation and a server running a model. One to step the
model and at least one other to receive selected data describing the current state. In
the Pasture Model, although each image contains 29016 Bytes of data, compression
reduces the size of the returned message to about 5 K Bytes. If the message passing
times shown in Table 8 are interpolated, the request and subsequent transfer times
are about 100 ms per image. If the Pasture Model is run over 365 days and only
one parameter is displayed at each step, there will be 730 calls between the client
and server. This will take at least (365 x (60 + 100)ms = ) 58.4s to execute. As
will be shown in subsequent discussion, this will be the major limitation in obtaining
satisfactory performance from the Paragon.

The implementation of PVM on the Paragon needs further investigation to determine
what is causing this poor performance and to make the necessary changes to obtain
performance at least equal to that obtained between workstations. It is possible that
the problem is not with the PVM implementation. The times obtained using the
UNIX ping command are also quite poor in comparison to ping times between SUN
workstations. The ping times between two SPARC10 workstations is less than 2 ms
compared with 8 and 22 ms to ping the Paragon from a SUN workstation.

• Using PVM, the message passing performance between compute nodes on the Paragon
is extremely good. It was not possible to measure any overhead associated with passing
messages using the PVM psend and precv routines compared with the Paragon native
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NX message passing routines. Thus, it is possible to write portable MPP applications
using the PVM routines without incurring a message passing performance penalty.

3 File I/O Performance

The File I/O performance of the Paragon is detailed in this section. More specifically, the
file reading performance is measured using the input datafiles used by the ADVISE Pasture
Model server.

Firstly, the datafiles and data storage formats used by the Pasture Model are presented.
Next, the file reading performance obtained with a SUN SPARC10 is discussed. The next
section gives the file reading performance obtained with the Paragon. Finally, these results
are analysed in order to determine the best method to use with regard to a MPP implemen-
tation of the ADVISE Pasture Model server.

3.1 ADVISE Data File Formats

There are ten data files used as input to the Pasture Model. Three of these files store the
constant parameters associated with the pasture and soil and are read in during the model
initialisation. One file stores the initial state of the model and is read in when the model is
restarted. Another file stores the rainfall data and is accessed for each daily step of the model.
To reduce the size of this file, data is stored as 2 Byte integers and converted by the Pasture
Model to 4 Byte floating point values. The last five files hold other weather parameters.
However, because the Pasture Model is not as sensitive to this data, these parameters are
read in only on a weekly basis to reduce the I/O and data storage requirements. The data
in these files is stored as Byte values and converted by the Pasture Model to 4 Byte floating
point values. This further reduces the size of these data files by a factor of 4.

File compression techniques have also been applied to the data in these files to further
reduce the amount of storage needed and to increase the file I/O reading performance. The
need for these techniques will become more important when the Pasture Model is run over
finer grids and longer time periods. Running this model over Australia using a 5 km grid for
100 years will require a 3,200 fold increase in data storage requirements.

Table 13 shows the sizes of the input datafiles in both uncompressed and compressed
format. The compressed versions of the data files require only 25% of the storage required
for the uncompressed versions. This lower storage requirement will be of more importance
when data storage for the larger models must be considered. There are two factors that
influence the file reading performance of the compressed versions of the files in comparison
to the uncompressed versions. Firstly, the smaller file sizes will require less file I/O resources
due to their smaller size. In this case, the file read time should be only 25% of the time
taken to read in the uncompressed versions. Secondly, there is a computation overhead
in decompressing the data to its original format. There will be an improvement in the
compressed version only if the decompression overhead is less than the improvement in the
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File Name Read Frequency Uncompressed Size Compressed Size
Bytes Bytes

pgrass Initialisation 3,748 642
psoil Initialisation 88,144 18,752
range Initialisation 232,128 52,343
input Restart 1,392,768 726,258
rain Daily 21,181,680 3,952,370
evaporation Weekly 1,508,832 593,041
radiation Weekly 1,508,832 400,699
vapour Weekly 1,508,832 600,520
mintemp Weekly 1,508,832 597,294
maxtemp Weekly 1,508,832 586,815
Total Size 30,442,628 7,528,734

Table 13: Pasture Model Input Files

file reading times. The compression method will thus be more successful when used on a
computer with a fast processor and relatively slow disk I/O performance.

3.2 SPARC10 File I/O Performance

This section discusses the file read performance results obtained using a SUN SPARC10 to
read the ADVISE data files. Programs were written to read in both the uncompressed and
compressed files containing the input data for the Pasture Model. These programs read the
data in a similar way to the way in which the ADVISE server would also access these data
files. i.e. the rain file containing daily data is read using 365 read calls. In this way, it is
possible to determine when the file I/O performance will become a bottleneck in obtaining
better overall performance from the ADVISE server.

It should also be possible to extrapolate from these performance results to obtain some
idea of the performance that might be obtained in running larger models. When determining
file I/O performance, it is important to consider what effect disk buffering has on the read
times. The SPARC10 workstation used in these tests reads data from files stored on a remote
SUN file-server. This workstation mounts a remote file system using NFS (Network File
System). The SPARC10 has 64 M Bytes of main memory and is able to cache all of the
data files in either uncompressed or compressed format. Thus, it is expected that the first
timing tests will show the cost of accessing the data files remotely and transferring the data
across the network into memory. Subsequent reading of these files will be serviced locally.
One extra overhead is that the local NFS must first check with the remote file system that
the locally cached data is still valid. If this is not the case, then the data must be transferred
from the remote server.
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File Name Remote access Local access
pgrass 12 6
psoil 107 15
range 430 20
input 3,149 92
rain 34,082 1,281
evaporation 2,274 96
radiation 2,108 94
vapour 2,095 94
mintemp 2,273 94
maxtemp 2,205 99
Total Time 48,615 1,891
Transfer Rate 0.63 M Bytes/s 16.1 M Bytes/s

Table 14: SPARC10 Uncompressed file reading performance (ms)

In performing these tests it is necessary that the local NFS cache mechanism be disabled.
The reason for doing this is so that the read performance for data files much too large to be
cached in local memory can also be determined.

Disabling the cache mechanism is easily achieved by using the UNIX touch command
from a different workstation. This ensures that subsequent file reading will be done remotely.

Table 14 shows the file reading performance obtained using the uncompressed version of
the data files with both local and remote NFS access. The loop and timing overhead of using
the gettimeofday routine (11 µs) has been accounted for in these results. The overall data
transfer rates have also been included for reference.

Table 15 shows the file reading times for the compressed data files in the situation where
the files have been cached locally. The time to read the data files has decreased from 1,891
ms for the uncompressed files down to only 409 ms for the compressed files. The file reading
times have decreased to only 22% of the time taken to read the uncompressed data. This is
consistent, since the compressed files are only 25% of the size of the uncompressed files.

However, the time required to decompress this data is 3,677 ms. The total time to read
and decompress the data, 4,086 ms, is much greater than the time taken for the uncompressed
data. On the basis of these results, one could conclude that the decompression technique
takes 216% longer and is thus not time-efficient.

Table 16 gives the results in the case where the compressed files are accessed remotely.
Once again, the file read time, 5,866 ms is much lower then the total time, 48,615 ms to
remotely read the uncompressed files. The decrease in the file read time is much more than
can be accounted for by the decrease in the file sizes. This result is, at present, unexplained.

In this case, the total time taken by the compressed version, 9,543 ms is much lower than
that taken by the uncompressed version, 48,615 ms. It can be seen that the decompression
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File Name Read Time Decompress Time Total
pgrass 4 1 5
psoil 6 17 23
range 3 28 31
input 44 200 244
rain 210 2,402 2,612
evaporation 29 209 238
radiation 22 187 209
vapour 31 209 240
mintemp 31 209 240
maxtemp 29 215 244
Total Time 409 3,677 4,086
Transfer Rate 7.5 M Bytes/s

Table 15: SPARC10 Local compressed file reading performance (ms)

technique is time-efficient in the case where the data files are not cached locally. This method
will therefore also be suitable in the case where the data files are so large that the data cannot
be cached locally.

3.3 Paragon File I/O Performance

In this section, the file reading performance obtained on the Paragon is given and the results
are discussed. Firstly, the times obtained on a single compute node are detailed. The next
section discusses the performance obtained on multiple nodes using three different methods.
Lastly, these results are used to determine an optimal file reading method for use in the
ADVISE server.

3.3.1 Single Node Performance

The Paragon computers at ETH and KFA Jülich, on which the tests were conducted, have
four different file systems for data storage.

1. a standard UNIX File System (UFS),

2. a Parallel File System (PFS) with a 8 K Byte block size striped over 4 I/O nodes,

3. a PFS with a 64 K Byte block size striped over 3 I/O nodes, and

4. a PFS with a 64 K Byte block size striped over 6 I/O nodes.

The performance of these file systems for various read requests is discussed in [2, Section
3]. However, the results are only listed for read requests that are multiples 8 K Bytes.
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File Name Read Time Decompress Time Total
pgrass 7 1 8
psoil 28 17 45
range 42 28 70
input 726 200 926
rain 2,722 2,402 5,124
evaporation 490 209 699
radiation 318 187 505
vapour 521 209 730
mintemp 504 209 713
maxtemp 508 215 723
Total Time 5,866 3,677 9,543
Transfer Rate 3.2 M Bytes/s

Table 16: SPARC10 Remote compressed file reading performance (ms)

The size of the read requests for the input file are 116,064 Bytes. The rain data is read in
using 58,032 Bytes requests and the other five weather data files are read using 29,016 Bytes
requests. It is necessary to measure the performance of these file systems in the case where
the read requests are not in multiples of the stripe size.

Table 17 shows the file reading performance for the UNIX file system. Tables 18, 19,
and 20 show the file reading times for the uncompressed data files using all three parallel
file systems. These tables show the normal results as well as the results where disk buffering
was disabled by touching all the data files.

The following points can be deduced from these tables:

• The read transfer rate of approx 1 M Byte/s for the UFS is consistent with those shown
in [2].

• No significant differences were obtained on any of the file systems by disabling the disk
caching.

• No single file system gives the best read performance for all data files. From these
results, the best performance can be obtained by placing the input and weather files
on the 4 stripe 8 K Byte block size PFS and the other files on the UFS.

The poor performance of the 64 K Byte block size PFS on the rain data file is due to
the fact that the read requests are for only 58,032 Bytes. This is less than the stripe size of
64 K Bytes. The read requests for the other weather files are only for 29,016 Bytes and the
read performance for these files is also poor.

Table 21 gives the results obtained from reading the compressed files from the UFS with
caching disabled. Table 22 shows the corresponding results with caching enabled. Although
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File Name Cache disabled Cache enabled
pgrass 79 89
psoil 123 126
range 249 258
input 1,357 1,246
rain 18,356 18,137
evaporation 1,382 1,360
radiation 1,380 1,359
vapour 1,390 1,362
mintemp 1,401 1,482
maxtemp 1,410 1,388
Total Time 27,127 26,806
Transfer Rate 1.12 M Bytes/s 1.14M Bytes/s

Table 17: Paragon UFS uncompressed file reading performance (ms)

File Name Cache disabled Cache enabled
pgrass 211 204
psoil 155 181
range 191 242
input 494 507
rain 8,912 8,574
evaporation 1,202 1,128
radiation 1,448 1,109
vapour 1,255 1,143
mintemp 3,020 1,203
maxtemp 1,274 1,131
Total Time 18,161 15,421
Transfer Rate 1.68 M Bytes/s 1.97 M Bytes/s

Table 18: Paragon 4 stripe 8 K PFS uncompressed file reading performance (ms)
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File Name Cache disabled Cache enabled
pgrass 298 221
psoil 208 291
range 271 359
input 538 534
rain 11,122 11,107
evaporation 1,475 1,445
radiation 1,465 1,504
vapour 1,503 1,425
mintemp 1,487 1,410
maxtemp 1,433 1,436
Total Time 19,801 19,731
Transfer Rate 1.54 M Bytes/s 1.54 M Bytes/s

Table 19: Paragon 3 stripe 64 K PFS uncompressed file reading performance (ms)

File Name Cache disabled Cache enabled
pgrass 343 297
psoil 251 278
range 326 337
input 696 1,204
rain 16,927 15,778
evaporation 1,842 1,854
radiation 1,883 3,805
vapour 1,859 1,829
mintemp 1,875 3,038
maxtemp 2,960 1,949
Total Time 28,962 30,369
Transfer Rate 1.05 M Bytes/s 1.00 M Bytes/s

Table 20: Paragon 6 stripe 64 K PFS uncompressed file reading performance (ms)
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File Name Read Time Decompress Time Total
pgrass 92 12 104
psoil 57 71 128
range 80 51 131
input 687 367 1,054
rain 2,706 4,517 7,223
evaporation 489 394 883
radiation 311 350 661
vapour 478 397 875
mintemp 477 396 873
maxtemp 474 395 869
Total Time 5,850 6,951 12,801
Transfer Rate 2.38 M Bytes/s

Table 21: Paragon UFS compressed file reading performance without cache (ms)

File Name Read Time Decompress Time Total
pgrass 58 13 71
psoil 21 75 96
range 18 51 69
input 92 372 464
rain 361 4,539 4,900
evaporation 62 399 461
radiation 46 354 400
vapour 60 394 454
mintemp 60 397 457
maxtemp 57 389 446
Total Time 835 6,983 7,818
Transfer Rate 3.89 M Bytes/s

Table 22: Paragon UFS compressed file reading performance with cache (ms)
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not included in this report, the read performance using the compressed files mounted on the
three parallel file systems was also tested. The results obtained were very poor. This is to
be expected because the read requests sizes are approx 25% smaller for the compressed files
and thus too small to be efficient on these file systems. Clearly, these tables demonstrate
that the fastest read times are obtained using the compressed files mounted on a UFS.

3.3.2 Multiple Node Performance

This section discusses methods used to perform parallel file access. For all of these methods
it is required that all of the the data in the input files must be available on all nodes. The
following three methods were implemented:

1. data is requested on each node using standard UNIX file access routines,

2. data is requested on each node using the Paragon parallel file access routines using the
M GLOBAL option, and

3. one node is designated as the file read node. This node requests data using standard
UNIX file access routines and then broadcasts this data to all other nodes.

Table 23 contains the results obtained from these three methods. The total time taken
to access the data from all ten input files on each node was measured and the times shown
are the maximum of the times taken by each node. The results for the UNIX method were
so poor in comparison to the other methods that the tests were stopped after using only 4
nodes. From these results it is clear that this method cannot be used as a means of spreading
data across multiple nodes.

The performance of the parallel file access routines is also disappointing when compared
with the third method. Parallel file access takes over 30 s longer for 96 nodes than for 1
node. The hand-coded third method using broadcast messages takes only 3 s more.

3.4 Conclusions

The following conclusions can be made with regard to choosing an optimal file access method
for reading in the data files for the ADVISE server:

• The compressed data file format gives the fastest read performance.

• The UFS gives better read performance than the three Parallel File Systems. This
is because the read request sizes are too small to enable the PFS routines to execute
efficiently. When larger models are run, the suitability of using the PFS will have to
be re-evaluated.

• The most efficient method to spread the input data across multiple nodes is to assign
a master node to do all file reading and then broadcast the necessary data to other
nodes.
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Number Nodes UNIX file I/O Parallel file I/O Broadcast
1 26.34 25.85 26.10
2 73.73 27.77 26.38
4 143.75 30.19 26.50
8 34.93 27.28
16 37.06 29.76
24 42.98 28.50
32 42.27 30.52
40 46.39 28.78
48 45.51 28.60
56 48.09 28.47
64 51.34 29.05
72 52.54 29.00
80 53.33 30.46
88 54.93 29.17
96 56.59 29.14

Table 23: Paragon UFS parallel file read performance (s)

Although not tested, there are further areas where potential speed-ups may be possible.

• Spreading the datafiles across several I/O nodes and assigning more than one node to
perform file reading.

• Use asynchronous file access so that file reading and decompression can be overlapped.

4 Paragon Processor Performance

This section discusses the performance that might be expected from the I860 processors used
on each node of the Paragon. These results will give an insight into the performance that
could be expected from the parallel version of the Pasture Model.

The uni-processor version of the ADVISE Pasture Model server was ported to run on one
node of the Paragon. Tests were conducted using various optimiser compilation flags. The
best performance was obtained using the following set of flags:

-O4 -Mvect -Knoieee -Mstreamall

Table 24 gives the time taken to run the Pasture Model over 365 days. As can be seen,
the performance of the I860 is somewhere between the SPARC2 and SPARC10. It must be
pointed out that these results should not be used as a benchmark. No attempt was made to
optimise the code to suit the I860 with regard to instruction pipelines, data caches, etc.
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Processor Run Time (s)
SPARC2 878.4
SPARC10 414.9
Paragon I860 660.8

Table 24: Pasture Model run times for 365 days

From these results it can be deduced that if the Pasture Model were to be run on 64 or
96 processors then the minimum computation time would be 6.5 or 4.3 s respectively. This
is an upper bound on the performance that can be expected on the Paragon when executing
the Pasture Model. Of course, the overhead of passing messages and unequal load sharing
between processors may add considerably to these times.

5 The Parallel Pasture Model

This section details the strategy used to implement a parallel version of the Pasture Model
on the Paragon. The performance obtained from this implementation is then shown and
improvements and limitations to this implementation are discussed.

The major computation part of the Pasture Model consists of a simulation routine that is
applied to a large number of grid cells. There is no communication between grid cells. This
type of code is often referred to as being embarrassingly parallel. The parallelisation of such
programs usually involves partitioning the set of grid cells into distinct subsets and then
assigning each subset to a processing node. However, there are some extra complications
with the Pasture Model and the ADVISE server that must also be taken into account.

Firstly, there is the problem of getting the input data to each node. If the data were
stored in uncompressed form, it may be possible to make each node responsible for reading
the necessary data with the parallel file I/O routines and using the M SYNC option.
However, as discussed in a previous section, the most efficient method for reading this input
data is to use compressed versions of the files. This compressed format will not be suitable
for use with this file reading method. The most promising method seems to be to assign
an extra node to handle all of the file I/O operations and then to farm the data out to the
respective compute nodes. This has further advantages in that it may then be possible to
overlap the file reading and decompression tasks with the computation tasks. Furthermore,
if the file access operations become a bottleneck to obtaining better performance, it may be
possible to assign two or more processors to the file I/O tasks. For example, one processor
would read only the rain data file and another processor would read all the other data files.
The reading times shown in Table 21 indicate that this would result in a reasonable sharing
of the file reading and decompressing operations.

Secondly, the parallel version of the ADVISE server must provide exactly the same ser-
vices and use the same interface protocol as the uni-processor versions. One solution is to
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adopt a master-slave approach in which one node would appear to ADVISE clients as a nor-
mal sequential ADVISE server. However, this node would farm out the computation load
among a number of other nodes.

One complication, with this simple approach, is that at the end of each computation
step all of the exportable data that may be requested from a client is only available on
these computation nodes. A solution would be for each computation node to send back all
exportable data at the end of each computation step. However, one of the original goals for
ADVISE was to implement an efficient environment. Sending back the complete data set
back to the master node may be a significant overhead, especially in the cases where the
client only makes subsequent data requests for a small number of parameters. In the case of
the Pasture model, there are 18 exportable parameters. Passing all of this data back would
involve over 2 M bytes of message passing per step, that is, 730 M Bytes per year.

Another solution is to implement a two level server structure to the ADVISE server.
The master server, in this case is responsible for handling all client requests. Each compute
node is also a Pasture Model server. However, each of these servers is only responsible for
a small subset of the overall model. The master server then has the task of reformulating
each client request into a set of requests to be sent to the pasture Model sub-servers and,
as well, concatenating the replies from these servers into a single reply to the client. The
disadvantage with this is that each client request will result in further messages to one or
more sub-servers. As well, formulating all of the sub-requests may be a non-trivial task.

The approach adopted was to implement a solution somewhere between the simple
master-slave and the complete sub-server approach. There is a master node that is re-
sponsible for handling all client requests. Each compute node acts as a sub-server. However,
these sub-servers provide only a subset of the services that the master server must provide.
These services are: Initialise, Restart, Step, Terminate and a modified GetData service.

The master server handles all of the data requests from a client in the following way:
There is storage allocated on the server for all exportable parameters as well as a flag to
indicate the validity of each parameter. After an Initialisation, Restart or a Step request
all parameters are marked as invalid. When a data access request is made for a parameter
marked as invalid, the master server must first request this parameter from all of the sub-
servers. Once this is done, the parameter is marked as valid and all further data requests
for this parameter can then be serviced entirely within the master server.

This solution minimises the message traffic between the master and sub-servers by only
requesting data from the sub-servers in response to client requests. The disadvantage is that
the master server has a computation component in the case where image data is requested.
The conversion, which is parallelisable, is done only by the master server.

The master server is also responsible for handling all of the file I/O and decompression
tasks.

The first step is to determine the compute performance of the parallel server for different
numbers of sub-servers. A test client was written to test the performance of the different
remote procedure calls (rpc). The times taken to execute the step routine for a step size of
365 days for different numbers of sub-servers was measured. The results are shown in Table
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25. The best speed-up of 22.1 was obtained using 60 sub-server nodes.
The file reading and decompression tasks done by the master server are a bottleneck to

providing better speed-ups. Table 22 shows that the time taken to perform these tasks on
the weather data files is 7.1 s in the case where disk caching is enabled. If this sequential
component is subtracted from the 1 and 60 processor times a speed-up of (538.8 / 17.6 = )
30.6 is obtained.

All of the arrays in the sub-server were dimensioned to the full length of 29016. This was
so the server could be tested with different numbers of sub-servers. However, it is possible
that this will cause more cache-misses in the processor data cache. The effect of array
dimension was also measured. All data arrays in the program were re-dimensioned to (29016
/ 63 = ) 461. The execution time then decreased from 25.0 to 22.5 s. If allowance is made
for the file I/O and decompression times, the speed-up becomes (538.8 / 15.4 = ) 35.4.

One significant problem encountered is the long times associated with loading programs
onto nodes. If the Paragon is rebooted the initialisation times range from 2.35 s for 1 sub-
server to 9.8 s for 63 sub-servers. However, after the Paragon has been running for an
extended period of time executing several other users programs, the initialisation time goes
up to over 30 s.

The poor message passing performance between a workstation and the Paragon has
already been discussed in a previous section. The impact that this performance has on the
interactive response was also measured. The average time taken to perform the 100 Getinfo
requests was 65.8 ms compared to 5.8 ms for a server running on a SPAR10 workstation.
The time taken to execute the model using 63 sub-servers over 365 days using 365 Step calls
with a step size of 1 day was 59.7 s compared to 22.5 s for a single Step request with a step
size of 365 days. The difference in these times is the overhead in performing the extra 364
rpc’s. This gives an average of 102 ms per call.

There are still several areas where performance may be improved.

1. The file I/O and decompression tasks for the weather data could be moved out of
the master server and performed on two other nodes. These nodes could read and
decompress data ahead of the sub-servers.

2. The dataset used in these tests is for the area of Queensland, Australia. The rectan-
gular grid contains about 50% ocean grids. There is no computation done on ocean
grid points. However, the allocation routine assigns grid points to sub-servers without
taking ocean grid points into account. This results in an uneven distribution of com-
putation amongst the sub-servers. A better method is to give each sub-server the same
number of non-ocean grid points. This would result in better load-balancing between
sub-servers.

3. A major modification to the compressed file format should make much faster file I/O
possible. In the present format 2 read operations are required to read each compressed
vector. The first, to obtain the length of the vector and the second to read in the
compressed data. A possible improvement is to store a large table at the head of the
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Processor Run Time (s) Speed-up
1 545.9 1.00
2 369.0 1.48
3 253.3 2.16
4 189.3 2.88
6 143.9 3.79
8 111.0 4.92
12 78.2 6.98
16 62.1 8.79
20 52.1 10.48
24 45.3 12.05
28 39.4 13.86
32 36.9 14.79
36 32.5 16.80
40 31.4 17.39
44 29.3 18.63
48 28.2 19.36
52 26.2 20.84
56 25.8 21.16
60 24.7 22.10
63 25.0 21.84

Table 25: Parallel Pasture Model, Step rpc times for step size = 365 days
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file containing the number as well as the lengths of all the compressed vectors in the
file. This table could be read in with a single read request and the each compressed
vector could be read using only a single read. It would also then be possible to read in
several vectors at once, reducing even further the number of read requests. This would
have a major impact when using the Parallel File System, since read requests could be
made large enough to ensure efficient use of this file system.

6 Summary

One lesson learnt in this report is to pay careful attention to the timing routines used to
measure performance and to take the overhead in using these calls into account. The PVM
0 Byte Round Trip Time was originally reported as over 1,000 µs. However, about 600 µs
of this time was due to the cost of calling the gettimeofday routine.

One must also be careful in using performance measuring programs written for general
use. The above message passing times were reduced from 438 µs to only 89 µs by using
more efficient routines. Thus, the times eventually obtained were better by over a factor of
10 over those reported by the original program!

The node-node PVM message passing performance is excellent. It was not possible to
measure any overhead in using the PVM routines over the native NX routines.

On the other hand, messages through a pvmd on the Paragon suffer a large performance
penalty when compared with passing messages between workstations. Further work should
be done to investigate and, if possible, remedy the problem. This performance is the major
bottleneck to achieving adequate performance with the ADVISE software.

This report has shown that speed-ups of over 22 have been obtained with a parallel
version of the Pasture Model. Speed-ups of over 35 could be achieved by allocating the file
I/O and decompression tasks to separate nodes. Further speed-ups might be achieved by
using a better load-balancing method.

The main obstacle to getting further performance increases is that the size of the problem
is too small. The file I/O performance will improve if the size of the data sets is such that
compressed vectors contain more than 64 K Bytes. This will allow the use of the Parallel
File System where a peak performance of over 9 M Bytes/s is possible compared to about 1
M Byte/s for the standard UNIX File System.

The weather data sent to sub-servers contains either 1 or 2 Bytes per grid point. If
63 sub-servers are allocated, each rain message is only 922 Bytes. From the results in the
message passing section, the time taken to send this message will be 45 µs for the latency
+ 13 µs to transfer the data, a total of 58 µs per message. Other weather data, containing
only 1 Byte per grid point will take 52 µs to send. However, if a model containing four times
more grid points is executed, the message passing times should only increase to 97 µs and
73 µs respectively. This is an increase of less than 2 in the message passing overhead.

It is possible then that much greater speed-ups will be possible when the number of grid
points is increased.
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