Isoperimetric Inequalities in a Boundary Value Problem in an Unbounded Domain

R. Sperb

Isoperimetric Inequalities in a Boundary Value Problem in an Unbounded Domain

R. Sperb

Seminar für Angewandte Mathematik und Institut für Polymere
Eidgenössische Technische Hochschule
CH-8092 Zürich
Switzerland

Research Report No. 93-07 October 1993

Abstract

In this paper a semilinear elliptic boundary value problem in the exterior of a finite domain is considered. An important example in applications is the Poisson-Boltzmann problem. Isoperimetric inequalities for a functional of the solution are proven using optimal sub- or supersolutions.

Keywords: Isoperimetric Inequalities, Poisson-Boltzmann Problem
Subject Classification: 35J60

1. Introduction

Let Ω be a bounded domain in $\mathbb{R}^{N}, N \geq 3$ and Ω^{*} the exterior of Ω. We consider the boundary value problem

$$
\left.\begin{array}{rlrc}
\Delta u & =\gamma^{2} f(u) & \text { in } & \Omega^{*} \tag{1.1}\\
u & =1 & \text { on } & \partial \Omega \\
u & \rightarrow 0 \text { as }|x| \rightarrow \infty & &
\end{array}\right\}
$$

Here x is a generic point of \mathbb{R}^{N}, γ is a given positive parameter and the nonlinearity is assumed to satisfy

$$
\begin{equation*}
f(0)=0, \quad f^{\prime}(0)>0, \quad f^{\prime \prime}(u) \geq 0 \text { for } u \geq 0 \tag{1.2}
\end{equation*}
$$

The assumptions on $f(u)$ guarantee that the solution decays to zero when $|x| \rightarrow \infty$ at least as fast as the solution of the linearised problem. Two possible backgrounds for problem (1.1) are described in the following:
(a) Poisson-Boltzmann problem:

With this application in mind u represents the potential of a charge distribution. Important choices for $f(u)$ are then

$$
f(u)=\sin h u \text { or } f(u)=u \text { (Debye-Hückel approximation). }
$$

The parameter γ then involves a number of physical constants (see e.g. Garrett \& Poladian [2]).
(b) Reaction-Diffusion:

In this interpretation u is the concentration of a reactant. The reactant is fed into Ω and diffuses through $\partial \Omega$ into the reaction region Ω^{*} where a simultaneous diffusion-reaction process takes place. The concentration inside Ω is held constant by a continuous supply of reactant. An important case is again $f(u)=u$ (e.g. for a first order degradation process). Another frequent choice is (Michaelis-Menten kinetics)

$$
f(u)=\frac{u}{a+u}, \text { where } a \text { is a positive constant }
$$

Especially with the second interpretation of problem (1.1) in mind one is mostly not interested in the values $u(x)$, but rather in some functional of the solution. If (1.1) describes a diffusion reaction process then one has the relation

$$
\gamma^{2}=\frac{k}{D}
$$

where k is the reaction rate and D the diffusion coefficient. Very often then (see Aris [1] one is interested in a pure number characterizing the influence of diffusion in the chemical reaction. One such possible number may be defined as

$$
\begin{equation*}
\eta:=\frac{\oint_{\partial \Omega}|\nabla u| d \sigma}{\gamma^{2}|\Omega|} . \tag{1.3}
\end{equation*}
$$

Here $d \sigma$ is the surface element of $\partial \Omega$ and $|\Omega|$ the volume of Ω. We will concentrate mainly on optimal estimates for η in terms of geometrical data of Ω.

Note that for $\gamma=0$ and the condition $u(x)=O\left(|x|^{2-N}\right)$, for $|x| \rightarrow \infty, N \geq 3$, (1.1) is the classical electrostatic problem and $\oint_{\partial \Omega}|\nabla u| d s$ is up to normalization the electrostatic capacity of Ω.

2. Bounds derived from optimal sub- or supersolutions

Suppose we can find a function $\underline{u}(x)$ with the properties (subsolution)

$$
\left.\begin{array}{rl}
\Delta \underline{u} & \geq \gamma^{2} f(\underline{u}) \text { in } \Omega^{*} \tag{2.1}\\
\underline{u} & \leq 1 \text { on } \partial \Omega, \underline{u}(x) \rightarrow 0 \text { for }|x| \rightarrow \infty
\end{array}\right\}
$$

For the limiting case $\gamma=0$ we have to replace the boundary condition at infinity by

$$
\underline{u}(x)=O\left(|x|^{2-N}\right), \quad N \geq 3(N=\text { Number of dimensions } .
$$

Then one has $\underline{u}(x) \leq u(x)$ for any $x \in \Omega^{*}$. For a supersolution $\bar{u}(x)$ one just has to reverse all inequality signs.

In the following we construct an optimal subsolution in two steps. First we define $\varphi(\rho)$ as the solution of problem (1.1) for the exterior of an N-ball of radius R. It is easy to see that we can take $\varphi(\rho)$ as the solution of (prime denotes $\frac{d}{d \rho}$)

$$
\left.\begin{array}{rl}
\frac{1}{\rho^{N-1}}\left(\rho^{N-1} \varphi^{\prime}\right)^{\prime} & =(\gamma R)^{2} f(\varphi) \text { for } \rho \in(1, \infty) \tag{2.2}\\
\varphi(1) & =1, \varphi(\rho) \rightarrow 0 \text { for } \rho \rightarrow \infty
\end{array}\right\}
$$

The second important ingredient is the (exterior) distance function $d(x)=\min _{y \in \partial \Omega}|x-y|$, $x \in \Omega^{*}$. We then set

$$
\begin{equation*}
s(x)=\left(1+H_{0} d(x)\right)^{2-N}, N \geq 3 \tag{2.3}
\end{equation*}
$$

Here

$$
H_{0}=\max _{y \in \partial \Omega}\left\{\frac{1}{N-1} \sum_{j=1}^{N-1} k_{j}(y)\right\}
$$

where $k_{j}(y)$ denote the principal curvatures at a point y of $\partial \Omega$. Thus H_{0} is the maximum of the mean curvature, which is assumed to be finite. Note that for the N-ball $H_{0}=\frac{1}{R}$. The next result will enable us to derive optimal bounds for η as defined in Eq. (1.3).

Lemma 1 Let Ω be a convex domain, i.e. $k_{j} \geq 0$ for $j=1, \ldots, N-1$. Then the function $\underline{u}(x)=\widetilde{\varphi}(s(x)), s(x)$ defined by Eq. (2.3) and where $\widetilde{\varphi}(s)=\varphi(\rho), \varphi(\rho)$ being the solution of (2.2) and $s=\frac{1}{\rho^{N-2}}$, is a subsolution to problem (1.1).

In order to prove Lemma 1 it is convenient to prove first an auxiliary result stated as:

Lemma 2 Let Ω be a convex domain. Then the function $s(x)$ defined in Eq. (2.3) satisfies $\Delta s \geq 0$ in Ω^{*}.

Proof: We have

$$
\Delta s=\frac{(2-N) H_{0}}{\left(1+H_{0} d\right)^{N-1}} \Delta d+\frac{(N-2)(N-1)}{\left(1+H_{0} d\right)^{N}} H_{0}^{2} \cdot|\nabla d|^{2} .
$$

But one has (see e.g. Gibarg-Trudinger [3], p. 355)

$$
\Delta d=\sum_{i=1}^{N-1} \frac{k_{i}}{1+k_{i} d},|\nabla d|=1
$$

so that

$$
\Delta s=\frac{(N-2) H_{0}}{\left(1+H_{0} d\right)^{N}}\left\{(N-1) H_{0}-\left(1+H_{0} d\right) \Delta d\right\}
$$

We now rewrite the $\operatorname{term}\left\{(N-1) H_{0}-\left(1-H_{0} d\right) \Delta d\right\}$ putting the expression for Δd over a common denominator. Then we may write

$$
\Delta d=\frac{A(d)}{B(d)}
$$

with

$$
A(d)=\sum_{j=0}^{N-1} j \cdot P_{j} d^{j-1}, \quad B(d)=\sum_{j=0}^{N-1} P_{j} \cdot d^{j}
$$

Here we have used the abbreviation P_{j}, where $P_{0} \equiv 1$ and $P_{j}=$ sum of all products with j different factors k_{ℓ} and $1 \leq j, \ell \leq N-1$.

With this notation we can write

$$
\Delta s=\frac{(N-2) H_{0}}{\left(1+H_{0} d\right)^{N} B(d)}\{\underbrace{(N-1) H_{0} B(d)-\left(1+H_{0} d\right) A(d)}_{f(d)}\} .
$$

The expression $f(d)$ can be put into the form

$$
f(d)=\sum_{\ell=0}^{N-1} C_{\ell} \cdot d^{\ell}
$$

where

$$
C_{\ell}=H_{0} P_{\ell}\left(1-\frac{\ell}{N-1}\right)-(\ell+1) P_{\ell+1}
$$

We finally show that $C_{\ell} \geq 0$ for all ℓ. It is clear for $\ell=0$ and $\ell=N-1$, noting that by definition

$$
P_{1}=\sum_{j=1}^{N-1} k_{j} \leq(N-1) H_{0} .
$$

We consider C_{ℓ} as a function of the $N-1$ variables k_{j}. Since C_{ℓ} is symmetric in all variables the minimum is attained for values k_{j} such that

$$
k_{1}=k_{2}=\ldots=k_{N-1}=k^{0} .
$$

But

$$
P_{\ell}\left(k^{0}, \ldots, k^{0}\right)=\binom{N-1}{\ell}\left(k^{0}\right)^{\ell},
$$

and hence

$$
C_{\ell}\left(k, \ldots, k_{N-1}\right) \geq C_{\ell}\left(k^{0}, \ldots, k^{0}\right)=0
$$

which implies that $\Delta s \geq 0$.

Remarks on Lemma 2:

(a) For the special case $\gamma=0$ Lemma 2 shows that

$$
s(x)=\left(1+H_{0} d(x)\right)^{2-N}
$$

is a subsolution in the "capacity problem", i.e.

$$
\begin{equation*}
u(x) \geq\left(1+H_{0} d(x)\right)^{2-N}, \quad N \geq 3 \tag{2.4}
\end{equation*}
$$

and the equality sign holds in (2.4) if Ω is the N-ball of radius $R=\frac{1}{H_{0}}$. Inequality (2.4) was derived by Payne \& Philippin [4] by a different method.
(b) The convexity assumption is needed in order to ensure that Δd is finite for all $x \in \Omega^{*}$. Inequality (2.4) however holds without the convexity assumption, as shown by Payne \& Philippin.

Proof of Lemma 1: We have

$$
\Delta \bar{u}=\frac{d \widetilde{\varphi}}{d s} \cdot \Delta s+\frac{d^{2} \tilde{\varphi}}{d s^{2}} \cdot|\nabla s|^{2}
$$

and

$$
\begin{equation*}
|\nabla s|^{2}=\frac{\left((N-2) H_{0}\right)^{2}}{\left(1+H_{0} d\right)^{2 N-2}}|\nabla s|^{2}=\frac{\left((N-2) H_{0}\right)^{2}}{\rho^{2 N-2}} . \tag{2.5}
\end{equation*}
$$

Furthermore

$$
\begin{equation*}
\frac{d \widetilde{\varphi}}{d s}=\frac{1}{N-2} \rho^{N-1} \frac{d \varphi}{d \rho}, \tag{2.6}
\end{equation*}
$$

and hence

$$
\begin{aligned}
\Delta \underline{u}-\gamma^{2} f(\underline{u}) & \geq \frac{\left((N-2) H_{0}\right)^{2}}{\rho^{2 N-2}} \frac{d^{2} \tilde{\varphi}}{d s^{2}}-\gamma^{2} f(\varphi) \\
& =\frac{H_{0}^{2}}{\rho^{N-1}} \frac{d}{d \rho}\left(\rho^{N-1} \frac{d \varphi}{d \rho}\right)-\gamma^{2} f(\varphi)=0 .
\end{aligned}
$$

On $\partial \Omega$ we have $\rho=1$ and thus
$\underline{u}=\varphi(1)=1$ on $\partial \Omega$
as well as
$u(x) \rightarrow 0$ as $|x| \rightarrow \infty$.
As a consequence of Lemma 1 we have
Theorem 1 Let Ω be a finite convex domain in $\mathbb{R}^{N}, N \geq 3$. Denote by H_{0} the maximum of the mean curvature of $\partial \Omega$ and by η_{0} the effectiveness of a ball of radius H_{0}^{-1} (as defined by Eq. (1.3)). Then the effectiveness η of Ω satisfies

$$
\begin{equation*}
\eta \leq \eta_{0} \frac{|\partial \Omega|}{N H_{0}|\Omega|} \tag{2.7}
\end{equation*}
$$

and the equality sign holds if Ω is a ball.
Proof: Since the subsolution \underline{u} defined in Lemma 1 satisfies the boundary conditions required in problem (1.1) we have

$$
\begin{equation*}
\oint_{\partial \Omega}|\nabla u| d \sigma \leq \oint_{\partial \Omega}|\nabla \underline{u}| d \sigma . \tag{2.8}
\end{equation*}
$$

But from Eq. (2.5) and (2.6) we find

$$
\begin{equation*}
\oint_{\partial \Omega}|\nabla \underline{u}| d \sigma=-\left.H_{0} \cdot \frac{d \varphi}{d \rho}\right|_{\rho=1} \cdot|\partial \Omega| . \tag{2.9}
\end{equation*}
$$

From (2.2) it follows that $\left(R=H_{0}^{-1}\right)$

$$
\begin{equation*}
\eta_{0}=\frac{N H_{0}^{2}}{\gamma^{2}}\left|\varphi^{\prime}(1)\right| . \tag{2.10}
\end{equation*}
$$

Eqs. (2.9) and (2.10) then imply inequality (2.7).

Remarks on Theorem 1

(a) An important case for applications is $N=3$ and $f(u)=u$. Then the subsolution can be written down explicitly and one has at distance d from $\partial \Omega$

$$
\begin{equation*}
u(d) \geq \frac{e^{-\gamma d}}{1+H_{0} d} . \tag{2.11}
\end{equation*}
$$

Inequality (2.7) then takes the form

$$
\begin{equation*}
\eta \leq \frac{\left(H_{0}+\gamma\right)|\partial \Omega|}{\gamma^{2}|\Omega|} \tag{2.12}
\end{equation*}
$$

(b) We can also derive an explicit lower bound for η from Lemma 1 in the case $N=3, f(u)=u$. From the differential equation and the boundary conditions it follows that

$$
\eta=\frac{1}{|\Omega|} \int_{\Omega^{*}} u d x \geq \frac{1}{|\Omega|} \int_{\Omega^{*}} \underline{u} d x
$$

We integrate over Ω^{*} using parallel surfaces to $\partial \Omega$. One has for the surface area $S(\delta)$ of a parallel surface at distance δ from $\partial \Omega$ (see e.g. Polya-Szegö [5], p.66)

$$
\begin{equation*}
S(\delta)=S(0)+2 M \cdot \delta+4 \pi \delta^{2} \tag{2.13}
\end{equation*}
$$

Here M is the Minkowski constant of $\partial \Omega$ defined by

$$
\begin{equation*}
M=\int_{\partial \Omega} H d \sigma, \quad H=\text { mean curvature }, \tag{2.14}
\end{equation*}
$$

and of course $S(0)=|\partial \Omega|$.
Hence we have

$$
\begin{equation*}
\eta \geq \frac{1}{|\Omega|} \int_{0}^{\infty} \frac{e^{-\gamma \delta}}{1+H_{0} \delta}\left(|\partial \Omega|+2 M \delta+4 \pi \delta^{2}\right) d \sigma \tag{2.15}
\end{equation*}
$$

The evaluation of the integral gives after some routine calculation

$$
\begin{equation*}
\eta \geq \frac{1}{\nu}\left\{\frac{4 \pi}{\mu}+\lambda+\mu\left(H_{0}^{2}|\partial \Omega|-\lambda\right) e^{\mu} \cdot E_{1}(\mu)\right\} \tag{2.16}
\end{equation*}
$$

where the following abbreviations have been used:

$$
\begin{equation*}
\nu=H_{0}^{2} \gamma|\Omega|, \quad \mu=\frac{\gamma}{H_{0}}, \quad \lambda=2 M H_{0}-4 \pi . \tag{2.17}
\end{equation*}
$$

$E_{1}(\mu)$ denotes the exponential integral defined by

$$
E_{1}(\mu)=\int_{\mu}^{\infty} \frac{e^{-t}}{t} d t
$$

Inequality (2.16) is again isoperimetric since the equality sign holds if Ω is a ball.
(c) One could also derive a version of Theorem 1 valid for plane domains Ω. However then the limiting case $\gamma=0$ does not make any sense. In addition problem (1.1) seems less interesting in the two dimensional case.

Next we derive an estimate for η which is based on the construction of an optimal supersolution \bar{u}. For this purpose we use as an auxiliary problem the "electrostatic problem" $(N \geq 3)$

$$
\left.\begin{array}{rlrl}
\Delta h & =0 & & \text { in } \quad \Omega^{*} \tag{2.18}\\
h & =1 & & \text { on } \\
h(x) & =O\left(|x|^{2-N}\right) & & \text { as }
\end{array}|x| \rightarrow \infty \quad\right\}
$$

In order to get an explicit inequality we restrict our attention to the special case $f(u)=u$.

Theorem 2 Let $f(u)=u$ in problem (1.1) and Ω be a finite domain with boundary of class $C^{2+\epsilon}$, but not necessarily convex. Let $\tau=\max _{\partial \Omega}|\nabla h|$, h being the solution of (2.18), and $C=w_{N}^{-1} \oint_{\partial \Omega}|\nabla h| d \sigma$ the "capacity" of $\partial \Omega\left(w_{N}=(N-1)\right.$ dimensional surface area of the unit N-sphere). Then we have

$$
\begin{equation*}
\eta \geq\left[1+\frac{\kappa}{N-2} \frac{K_{\frac{N-4}{2}}(\kappa)}{K_{\frac{N-2}{2}}(\kappa)}\right] \frac{C \cdot w_{N}}{\gamma^{2}|\Omega|} \tag{2.19}
\end{equation*}
$$

where $\kappa=(N-2) \frac{\gamma}{\tau}$ and $K_{p}(\kappa)$ denote Bessel functions. The equality sign holds if Ω is the N-ball.

Proof: We use the solution of (1.1) with $f(u)=u$ and Ω the unit ball as an auxiliary function:

$$
\left.\begin{array}{rlrl}
\frac{1}{\rho^{N-1}}\left(\rho^{N-1} \varphi^{\prime}(\rho)\right)^{\prime} & =c^{2} \varphi & & \text { in } \tag{2.20}\\
\varphi(1) & =1, \varphi) \\
\varphi(\rho) \rightarrow 0 & & \text { for } & \rho \rightarrow \infty
\end{array}\right\}
$$

The value of c will be chosen later. The solution of (2.20) is

$$
\begin{equation*}
\varphi(\rho)=\rho^{\frac{N-2}{2}} \cdot \frac{K_{\frac{N-2}{2}}(c \rho)}{K_{\frac{N-2}{2}}(c)} . \tag{2.21}
\end{equation*}
$$

We then set $\rho=h^{-\frac{1}{N-2}}, h$ being the solution of problem (2.18). It is convenient to write

$$
\begin{align*}
\hat{\varphi}(h) & =\varphi(\rho) \text { and to use the relation } \\
\frac{d}{d h} & =-\frac{1}{N-2} h^{-\frac{N-1}{N-2}} \frac{d}{d \rho}=-\frac{1}{N-2} \rho^{N-1} \frac{d}{d \rho} \tag{2.22}
\end{align*}
$$

We now choose $\bar{u}(x)=\varphi(\rho(x))=\hat{\varphi}(h(x))$ and calculate

$$
\begin{equation*}
\Delta \bar{u}=\frac{d \hat{\varphi}}{d h} \cdot \Delta h+\frac{d^{2} \hat{\varphi}}{d h^{2}} \cdot|\nabla h|^{2}=\frac{d^{2} \varphi}{d h^{2}} \cdot|\nabla h|^{2} . \tag{2.23}
\end{equation*}
$$

At this point we use a result of Payne \& Philippin [4] stating that in N dimensions the solution h of (2.18) satisfies (the smoothness of $\partial \Omega$ is used here!)

$$
\begin{equation*}
|\nabla h|^{2} \leq \tau^{2} \cdot h^{\frac{2(N-1)}{N-2}} . \tag{2.24}
\end{equation*}
$$

Hence

$$
\Delta \bar{u}-\gamma^{2} \bar{u} \leq \tau^{2} \frac{d^{2} \hat{\varphi}}{d h^{2}} \cdot h^{\frac{N-2}{2(N-1)}}-\gamma^{2} \hat{\varphi}
$$

but because of Eq. (2.22) this can be put into the form

$$
\Delta \bar{u}-\gamma^{2} \bar{u} \leq \frac{\tau^{2}}{(N-2)^{2}} \frac{1}{\rho^{2(N-1)}} \rho^{N-1} \frac{d}{d \rho}\left(\rho^{N-1} \frac{d \varphi}{d \rho}\right)-\gamma^{2} \varphi(\rho)=0
$$

if we choose $c=\frac{(N-2) \gamma}{\tau}$ in problem (2.20). It is easy to see that \bar{u} satisfies the boundary conditions. We therefore have

$$
\begin{equation*}
\oint_{\partial \Omega}|\nabla u| d \sigma \geq \oint_{\partial \Omega}|\nabla \bar{u}| d \sigma . \tag{2.25}
\end{equation*}
$$

The relations

$$
\bar{u}=\sqrt{h} \frac{K_{\frac{N-2}{2}}\left(\kappa h^{p}\right)}{K_{\frac{N-2}{2}}(\kappa)}, \quad \kappa=\frac{(N-2) \gamma}{\tau}, \quad p=-\frac{1}{N-2}
$$

together with well known identities for Bessel functions then show after some routine calculations that inequality (2.25) leads to the statement of Theorem 2.

Remarks on Theorem 2

(a) Inequality (2.19) is still not quite explicit. It is not hard to check that the function

$$
s \frac{K_{\frac{N-4}{2}}(s)}{K_{\frac{N-2}{2}}(s)}
$$

is increasing for $s>0$. Hence we need an upper bound for τ and a lower bound for the capacity C. It was shown by Payne \& Philippin [4] that

$$
\begin{equation*}
\tau \leq(N-2) H_{0} . \tag{2.26}
\end{equation*}
$$

For the capacity C one has the classical result of Poincaré-Szegö (see [6]) that

$$
\begin{equation*}
C \geq(N-2)\left(\frac{N|\Omega|}{w_{N}}\right)^{\frac{N-2}{N}} \tag{2.27}
\end{equation*}
$$

Inequality (2.19) therefore implies the weaker but still isoperimetric inequality

$$
\begin{equation*}
\eta \geq\left(1+\frac{\gamma}{H_{0}} \cdot \frac{K_{\frac{N-4}{2}}\left(\frac{\gamma}{H_{0}}\right)}{K_{\frac{N-2}{2}}\left(\frac{\gamma}{H_{0}}\right)}\right) \frac{(N-2)}{\gamma^{2}\left(\frac{N|\Omega|}{w_{N}}\right)^{2 / N}} \tag{2.28}
\end{equation*}
$$

which for $N=3$ reduces to

$$
\begin{equation*}
\eta \geq 3\left(\frac{1}{\gamma^{2}}+\frac{1}{\gamma H_{0}}\right)\left(\frac{4 \pi}{3|\Omega|}\right)^{2 / 3} . \tag{2.29}
\end{equation*}
$$

(b) For $N=3$ the supersolution \bar{u} can be written as

$$
\begin{equation*}
\bar{u}(x)=h(x) \exp \left\{-\frac{\gamma}{\tau}\left(\frac{1}{h(x)}-1\right)\right\} . \tag{2.30}
\end{equation*}
$$

An explicit upper solution $\bar{h}(x)$ for $h(x)$ would then lead to an explicit upper bound for $\bar{u}(x)$. However for general domains it seems difficult to give an optimal choice of $\bar{h}(x)$.

3. Concluding Remarks

(a) The method of integration over level surfaces (see Sperb [7]) could also be used in order to derive an optimal inequality for the "effectiveness" η. One can show then that for given N-volume of $\Omega \eta$ is a minimum for the N-ball. In order to keep this note at a reasonable length we mention this result without proof.
(b) A number of additional bounds could be proven by exploiting the fact that the function

$$
P:=|\nabla u|^{2}-2 \gamma^{2} F(u)+\beta u,
$$

where $F(u)=\int_{0}^{u} f(v) d v$ and β is chosen appropriately, is non positive in Ω^{*}. Here techniques described in Sperb [7] can be used.
(c) The case $N=2$ has been excluded here since it is of less interest in applications. It is however not hard to extend Theorem 1 (but not Theorem 2) to this case. Also for the remarks (a),(b) above the two-dimensional case is no exception.

References

[1] R. Aris: The mathematical theory of diffusion and reaction in permeable catalysts, Clarendon Press, Oxford 1975.
[2] A.J.M. Garett \& L. Poladian: Refined derivation, exact solutions and singular limits of the Poisson-Boltzmann equation, Annals of Phys. 188, (1988), 386-435.
[3] D. Gibarg \& N.S. Trudinger: Elliptic partial differential equations of second order, Springer, Berlin (1983).
[4] L.E. Payne \& G.A. Philippin: Some isoperimetric inequalities for capacity, polarization and virtual mass, Applicable Analysis 23, (1986), 43-61.
[5] G. Polya \& G. Szegö: Isoperimetric inequalities in mathematical physics, Princeton University Press, Princeton (1952).
[6] G. Szegö: Über einige Extremaleigenschaften der Potentialtheorie, Math. Zeitschrift 31, (1930), 583-593.
[7] R.P. Sperb: Maximum principles and their applications, Academic Press, New York (1981).

Research Reports

No. Authors Title

$93-07$	R. Sperb	Isoperimetric Inequalities in a Boundary Value Problem in an Unbounded Domain Extension and simple Proof of Lekner's Sum- mation Formula for Coulomb Forces
$93-06$	R. Sperb	A Comparison Result for Multisplittings Based on Overlapping Blocks and its Appli- cation to Waveform Relaxation Methods
93-05	A. Frommer, B. Pohl	
		The Inverse Sturm-Liouville Problem and Fi- nite Differences
$93-04$	M. Pirovino	Uniqueness of Piecewise Lipschitz Continuous
Solutions of the Cauchy-Problem for 2×2		
Conservation Laws		

