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Abstract

A summation formula is proven for a lattice sum occurring frequently in

molecular dynamics calculations. It has a much faster convergence rate than

the original sum. An important application is in the case of Coulomb forces.
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1. Introduction

In [3] J. Lekner derived an elegant and very useful summation formula for Coulomb

forces. In his derivation he used some powerful identities like the Poisson-Jacobi identity

for example, the application of which was not straightforward at all. In this note it is

shown that Lekner’s result and an extension to more general potentials can be obtained

in a rather simple and straightforward way.

2. A summation formula for forces derived from a power-law potential

We consider the same situation as Lekner: N particles in a central cell interacting with
forces derived from a potential containing only powers of the distance: the force on particle
#i due to particle #j and all periodic repetitions of #j is assumed to be of the form

(1) Fi = qi qj · p
∑

all cells

ri − rj

|ri − rj |p+2
,

where ri−rj are position vectors, qi, qj may be charges, and p ≥ 1. The “cells” are periodic

repetitions of a central cell. We proceed as in [3] and compute only one component of the

force since the other components have completely analogous expressions. We set

(2) xi − xj = ξ · L, yi − yj = η · L, zi − zj = ζ · L ,

where L is the length of the side of the central cell parallel to the x-direction. Note
that the cell may be any rectangular parallelepiped (not necessarily a cube). Then the

x-component of the force is p qi qj/Lp+1 times X(ξ, η, ζ) where

(3) X(ξ, η, ζ) =
∞
∑

!,m,n=−∞

ξ + $

[(ξ + $)2 + α2(η +m)2 + β2(ζ + n)2]
p

2
+1

.

Here 0 ≤ ξ ≤ 1 and 0 ≤ η ≤ η1, 0 ≤ ζ ≤ ζ1, and η1, ζ1 are arbitrary positive numbers,
and α = Ly

L , β = Lz

L , where Ly, Lz are the corresponding lengths. In order to derive a

summation formula with fast convergence for X(ξ, η, ζ) we consider the function

(4) gp(r, ξ) :=
∞
∑

!=−∞

ξ + $

[(ξ + $)2 + r2]
p

2
+1

.

The function gp(r, ξ) has the properties

(a) gp(r, ξ + n) = gp(r, ξ), n ∈ ZZ ,

(b) gp(r,−ξ) = −gp(r, ξ),

which follows immediately by replacing the summation index $ in (4) by $ + n or −$

respectively. As a consequence it follows that
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(c) gp(r, 0) = 0 ,

and from (a), (b) combined:

(d) gp(r,
1
2
) = −gp(r,

1
2
− 1) = 0 .

Since gp(r, ξ) is defined for any r > 0 and vanishes for ξ = 0 and ξ = 1
2
we can expand

gp(r, ξ) in a Fourier series:

(5) gp(r, ξ) = 2
∞
∑

k=1

Cp
k(r) sin(2 π k ξ) ,

and

(6) Cp
k(r) = 2

∫ 1
2

0

∞
∑

!=−∞

ξ + $

[(ξ + $)2 + r2]
p

2
+1

sin(2 π k ξ) dξ .

We may interchange integration and summation. An integration by parts then gives

(7) Cp
k(r) =

2

p

∞
∑

!=−∞

2 π k
∫ 1

2

0

cos(2 π k ξ)

[(ξ + $)2 + r2]
p

2

dξ .

We choose a new integration variable s = ξ + $. This leads to

(8) Cp
k(r) =

4 π k

p

∞
∑

!=−∞

∫ !+ 1

2

!

cos(2 π k s)

[s2 + r2]
p

2

ds .

Since cos(2 π k s) is symmetric in s with period 1 we arrive at

(9)

Cp
k(r) =

4 π k

p

∫

∞

0

cos(2 π k s)

[s2 + r2]
p

2

ds

=
4 π k

p
·
(π k

r

)

p−1

2 π
1

2

Γ(p
2
)
K p−1

2

(2 π k r), K = modified Bessel function ,

where the last integral can be looked up in any table on Fourier-transforms (see e.g. [1],

p. 376). Inserting the last expression into (5) leads to

(10) gp(r, ξ) =
8 π

p

2
+1

p · Γ(p
2
)

∞
∑

k=1

k
(k

r

)

p−1

2 ·K p−1

2

(2 π k r) sin(2 π k ξ) .

Hence the extension of Lekner’s formula (17) to arbitrary powers p ≥ 1 reads

(11) X(ξ, η, ζ) =
8 π

p

2
+1

p · Γ(p
2
)

∞
∑

!=1

$ · sin(2 π $ ξ) ·
∞
∑

n,m=−∞

( $

rmn

)

p−1

2 K p−1

2

(2 π $ · rmn) ,

where rmn = [α2(η +m)2 + β2(ξ + n)2]
1
2 .
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For the case of Coulomb forces (p = 1) (11) simplifies to Lekner’s formula which is

(12) X(ξ, η, ζ) = 8π
∞
∑

!=1

$ · sin(2π$ξ) ·
∞
∑

n,m=−∞

K0(2π$ rmn) .

For K0(s) approximation formulas can be found e.g. in [1], p. 379.

3. Discussion

(a) An important point is to realize that in fact the derivation of the summation formula
given here can be extended to general potentials. Suppose that instead of a power

law we have a potential P (|ri− rj|), where the function P (s) satisfies lim
s→∞

P (s) = 0

and dP
ds = −F (s), where F (s) is such that the infinite sum corresponding to (4),

namely

(13) g(r, ξ) :=
∞
∑

!=−∞

(ξ + $)

((ξ + $)2 + r2)1/2
F ([(ξ + $)2 + r2]1/2)

still converges.

One can check that all steps leading to the formulas (10) and (11) can be repeated

similarly. One just has to replace the Fourier-coefficient in (9) by

(14) Ck(r) = 4πk
∫

∞

0
P ([s2 + r2]1/2) · cos(2πks)ds .

In a number of examples the expression Ck(r) can be given explicitly. As an example

let us take

P (s) = e−βs for some β > 0 .

Then one has (see [2])

(15) Ck(r) = 4πkrβ(4π2k2 + β2)−1/2 K1[r(4π
2k2 + β2)1/2]

and formula (11) has to be changed in an obvious way.

(b) The convergence in formula (10) is slow if r is less than 0.1. It suffices therefore to

give an alternative to (11) only for n = m = 0. We go back to (4) which can be

written as

(16) gp(r, ξ) =
ξ

(r2 + ξ2)
p+2

2

+
∞
∑

!=1

$+ ξ

(r2 + ($+ ξ)2)
p+2

2

−
∞
∑

!=1

$− ξ

(r2 + ($− ξ)2)
p+2

2

3



Furthermore we have

$+ ξ

(r2 + ($+ ξ)2)
p+2

2

=
1

($+ ξ)p+1

1

(1 + ( r
!+ξ )

2)
p+2

2

=
1

($+ ξ)p+1
·

∞
∑

k=0

( −p+2
2

k

)

r2k
1

($+ ξ)2k

=
∞
∑

k=0

( −p+2
2

k

)

r2k
1

($+ ξ)2k+p+1

We now use the Hurwitz Zeta function ζ(m, ξ) (see e.g. [1] Eq. 6.4.10, p.220), which
is just a multiple of the Polygamma function ψm−1 in our case:

(17) ζ(m, ξ) =
∞
∑

!=0

1

($+ ξ)m
= (−1)m

1

(m− 1)!
· ψm−1(ξ)

It is easy to check that the expression for gp(r, ξ) becomes

(18) gp(r, ξ) =
ξ

(r2 + ξ2)
p+2

2

+
∞
∑

k=0

( −p+2
2

k

)

r2k {ζ(2k+1+p, ξ)−ζ(2k+p+1,−ξ)}

Numerical tests show that the sum in formula (18) converges very fast if r < 0.2.

(c) The function g1(r, ξ) is a radially symmetric (with respect to r) solution of

∆u = 0 for r > 0, ξ ∈ lR ,

u(r, 0) = u(r, 1
2
) = 0 ,

lim
r→∞

u(r, ξ) = 0 .

Separation of variables then shows that any solution u(r, ξ) can be written in the

form

u(r, ξ) =
∞
∑

!=1

C!K0(2 π $ r) sin(2 π $ ξ) ,

for any C! for which series converges.

For C! = 8 π · $ one is led to Lekner’s summation formula.

(d) For p = 2, 4, 6, ... the Bessel functions appearing in (11) can be written in terms of

elementary expressions. One has (see e.g. [1])

Kn+ 1
2
(s) =

√

π

2s
e−s fn(s) ,

4



with f0 ≡ 1, f1 = 1 + 1
s and

fn+1(s) =
2n+ 1

s
fn(s) + fn−1(s) .

For example for p = 6 and p = 12 as is the case for the Lennard-Jones potential one

would need in (11)

K 5
2
(s) =

√

π

2s
e−s(1 +

3

s
+

3

s2
)

and

K 11
2
(s) =

√

π

2s
e−s ·

(

1 +
15

s
+

105

s2
+

1120

s3
+

945

s4
+

945

s5

)

.

(e) As a simple approximation for gp(r, ξ) one could replace the sum in (10) by an

integral

(19) gp(r, ξ) ∼=
8 π

p

2
+1

p · Γ(p
2
)

∫

∞

0
k(

k

r
)
p−1

2 ·K p−1

2

(2 π k r) sin(2π k ξ) dk .

After some simplification one gets (see [2])

gp(r, ξ) ∼=
ξ

(ξ2 + r2)
p

2
+1

,

that is, the approximation of the sum in (10) by an integral leads back to the term

for $ = 0 in (4)!

(f) In order to illustrate the speed-up of convergence given by formulas (10), (11) con-
sider unit charges at points 0,± 1,± 2, ... on the ξ-axis. Then in order to calculate

the Coulomb force, say at ξ = 0.2 and distance 1 from the ξ-axis, directly, one needs

3600 terms to get seven digits accuracy. Using formula (10) in this case we get the

same accuracy with only two terms!

(g) It will be shown in a forthcoming paper how the energy can be calculated as well

by our method (N charges in the central cell, assuming charge neutrality).
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