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Runge-Kutta solutions of stiff differential equations
near stationary points

Ch. Lubich, K. Nipp, D. Stoffer

1. Introduction

In the literature on the long-time behaviour of numerical solutions of differential equations,
there is a remarkable result of Beyn [2] which says that Runge-Kutta methods (and also

other one-step methods and multistep methods) give accurate approximations of phase

portraits near hyperbolic equilibria, such as saddle points. Stated in more detail: In

a sufficiently small neighbourhood of the stationary point, every Runge-Kutta solution

obtained with sufficiently small step size approximates some solution of the differential

equation, and conversely, every solution in this neighbourhood is approximated by some
Runge-Kutta solution, independently of the time interval which may be arbitrarily large.

The approximation order is what one would expect for integration over bounded time

intervals. The starting values of the solution and of its long-time approximant usually

do not coincide. We also refer to the survey articles of Beyn [3] and Sanz-Serna and

Larsson [17] which put this and related results into perspective. The result is meaningful

in nonstiff situations: With increasing norm of the Jacobian, both the diameter of the
neighbourhood and the maximum permitted stepsize shrink to zero in Beyn’s result, and

the approximation properties deteriorate.

In the present paper we study Runge-Kutta solutions near hyperbolic stationary points of

stiff problems in singular perturbation form. We prove a Beyn type result which is valid in

a neighbourhood of the equilibrium and for stepsizes that are not restricted by the small
stiffness parameter ε, and which gives optimal-order error estimates. In Hairer, Lubich,

and Roche [7] precise error bounds were obtained for Runge-Kutta approximations of

“smooth” solutions of singularly perturbed problems over bounded time intervals. We

will show the same approximation order as in [7] for the present problem. In Nipp and

Stoffer [15], techniques of [14] and [7] were combined to study the existence and properties

of an attractive invariant manifold for Runge-Kutta solutions of singularly perturbed
problems. This was used to give an alternative proof of the error bounds of [7]. The

invariant manifold results permit us to handle the initial rapid change of general solutions

and the associated difficulty that in stiff problems the local error is not small in a whole

neighbourhood of the stationary point.

The technique of proof used here aims at reducing the discrete and continuous systems

to their invariant manifolds, on which the dynamics are described by nonstiff equations.

These techniques permit to infer also other long-time properties of numerical solutions of

stiff systems from known results for the nonstiff case. Typical examples are the persistence
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of hyperbolic periodic orbits and the approximation of attracting sets, which were studied
in the nonstiff case by Eirola [5] (among others) and Kloeden and Lorenz [9], respectively.

A related idea was recently used by Stoffer [18], where the results of [5] and [9] were

extended from one-step methods to general linear methods with the aid of attractive

invariant manifolds.

Also related to the present paper are the articles of Alouges and Debussche [1] and Larsson
and Sanz-Serna [11]. They are concerned with the behaviour near a hyperbolic stationary

point of time and space discretizations of semilinear parabolic partial differential equa-

tions, which is another “stiff” problem. Larsson and Sanz-Serna [11] obtained sharp

estimates for piecewise linear finite element space discretizations. Alouges and Debussche

[1] gave a (sub-optimal) extension of Beyn’s result for time discretization by the implicit

Euler method. Their estimates can be improved to first-order error bounds by combining
the techniques of [11] and [10]. However, better than first-order error estimates do not

seem to be attainable for higher-order Runge-Kutta methods by using these arguments.

One might expect that higher-order estimates require a study of existence and properties

of (approximate) inertial manifolds, to be used in a way similar to the attractive invariant

manifolds of the present paper.

The paper is organized as follows: In Section 2 we state our main result (Theorem 1) on the

behaviour of Runge-Kutta solutions of singularly perturbed problems near a hyperbolic

equilibrium point. To prepare for the proof, we review the essentials of Beyn’s result for

the nonstiff case in Section 3. In Section 4 we discuss some aspects of attractive invariant

manifolds for singularly perturbed problems. In Sections 5 and 6 we prove Theorem 1.

To make the proof more transparent, we first derive a slightly weakened bound in Section
5, and we improve it in Section 6.

2. Statement of the result

We consider the singularly perturbed problem

dy

dt
= f(y, z)

ε
dz

dt
= g(y, z) , 0 < ε ! 1 ,

(2.1)

in the neighbourhood of a stationary point, which we may assume to be situated at
the origin. Thus f(0, 0) = 0 and g(0, 0) = 0. The functions f and g are assumed to

be sufficiently differentiable. As usual in singular perturbation theory, we impose the

following condition for Eq.(2.1):

All eigenvalues of gz(0, 0) have negative real part. (2.2)
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Further we assume that for small ε the stationary point is hyperbolic, that is, the Jacobian
of the system (2.1) at the stationary point has no eigenvalues on the imaginary axis. It

is easily verified that this is equivalent to the following condition:

(fy − fzg
−1
z gy)(0, 0) has no eigenvalues on the imaginary axis. (2.3)

We are interested in the behaviour of Runge-Kutta methods applied to (2.1) with step

size h ≥ ε :

yn+1 = yn + h
s∑

j=1

bjY
′

nj , zn+1 = zn + h
s∑

j=1

bjZ
′

nj , (2.4a)

with internal stages (i = 1, . . . , s)

Yni = yn + h
s∑

j=1

aijY
′

nj , Zni = zn + h
s∑

j=1

aijZ
′

nj (2.4b)

satisfying relations of the form of (2.1):

Y ′

ni = f(Yni, Zni)

εZ ′

ni = g(Yni, Zni) .
(2.4c)

We will make the method assumptions of [7]: The Runge-Kutta method is A-stable, i.e.,
the stability function

R(w) = 1 + wbT (I − wOι)−11l , (2.5)

(where bT = (b1, . . . , bs), Oι = (aij)si,j=1, 1l = (1, . . . , 1)T ) satisfies

|R(w)| ≤ 1 for Re w ≤ 0 . (2.6)

We further assume that all eigenvalues of the Runge-Kutta matrix Oι = (aij)si,j=1 have

positive real part, and that R(∞) = 1− bTOι−11l satisfies

|R(∞)| < 1 . (2.7)

If one restricts the attention to ε ! h, then only the invertibility of Oι and condition (2.7)

are needed. The method has stage order q, if
s∑

j=1

aijc
k−1
j =

cki
k

for k = 1, . . . , q and all i . (2.8)

Here ci is defined by (2.8) with k = 1. We assume that the order p of the method when
applied to nonstiff ordinary differential equations satisfies p ≥ q + 1. (If p = q, this is

achieved by reducing q by 1.)

We will show the following result in this article.
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Theorem 1. Under the above assumptions, there are positive constants r and h0 such
that the following holds for 0 < ε ≤ h ≤ h0.

First assertion: For every Runge-Kutta solution (2.4) with ‖(yn, zn)‖ ≤ r for 0 ≤ n ≤ N ,

there exists a solution (y(t), z(t)) of (2.1) for 0 ≤ t ≤ T = Nh, such that for 0 ≤ n ≤ N

‖yn − y(nh)‖ ≤ C · (hp + εhq+1 + ερn)

‖zn − z(nh)‖ ≤
{
C · (hp + εhq + ρn) if asj = bj for j = 1, . . . , s ,
C · (hq+1 + ρn) else .

(2.9)

Here ρ < 1 and C depend only on f , g, r and h0, and in particular are independent of ε,

h, and N . Moreover, for ε ! h we have ρ = |R(∞)|+O(ε/h).
Second assertion: Conversely, for every solution of (2.1) with ‖(y(t), z(t))‖ ≤ r for 0 ≤

t ≤ T = Nh, there exists a Runge-Kutta solution (yn, zn), 0 ≤ n ≤ N , satisfying (2.9)

with ρ = e−κh/ε, with C and κ > 0 independent of ε, h, and N .

This extends Theorem 3.1 of Beyn [2] to the stiff case. Apart from the rapidly changing
initial phase, the approximation order is the same as that established by Hairer, Lubich,

and Roche [7] for Runge-Kutta approximations of “smooth” solutions of (2.1) on bounded

time intervals. An essential aspect of Theorem 1 is the fact that the estimates remain

uniform as the integration interval becomes large. It is again possible to infer the existence

of stable and unstable manifolds of the Runge-Kutta scheme which are close to those of

the differential equation, similarly as in Beyn [2] for the nonstiff case, cf. also Nipp and
Stoffer [14].

3. A review of the nonstiff case

Consider the (nonstiff) differential equation

dx

dt
= f(x) , (3.1)

with x = 0 being a hyperbolic equilibrium. Beyn [2], Thm. 3.1, has shown the follow-

ing for numerical solutions obtained by applying a Runge-Kutta method of order p to

Eq. (3.1): For every RK-solution (xn), 0 ≤ n ≤ N , which stays in a sufficiently small

neighbourhood U of the stationary point, there is a solution x(t) of Eq. (3.1) satisfying

‖xn − x(nh)‖ ≤ Chp. Conversely, for every solution x(t) in U, 0 ≤ t ≤ T = Nh, there is
a RK-solution (xn) with ‖xn − x(nh)‖ ≤ Chp. The constant C is independent of h and

N .

This result of Beyn can be viewed as a consequence of the stability lemma stated below.

Lemma 2 will also be used in the proof of Theorem 1.
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Let A be a square matrix which has no eigenvalues on the imaginary axis. We blockdiag-
onalize

A = V

(
A+ 0
0 A−

)

V −1 (3.2)

where all eigenvalues of A+ (A−) have positive (negative) real part. We use the corre-

sponding spectral projections

P+ = V Π+V −1 , P− = VΠ−V −1 , (3.3)

where

Π+v =

(
v+

0

)

, Π−v =

(
0
v−

)

for v =

(
v+

v−

)

.

A Runge-Kutta method applied to the differential equation dx/dt = Ax + ϕ(x) gives a

recursion

xn+1 = R(hA)xn + hφ(xn) , (3.4)

where R(w) is the stability function (2.5), and φ is some h-dependent function related
to ϕ, with Lipschitz constant Lφ = (

∑s
i=1 |bi| + O(h))Lϕ. We also consider a perturbed

variant

x̃n+1 = R(hA)x̃n + hφ(x̃n) + hδn . (3.5)

Note that if we take x̃n = x(nh), where x(t) is a solution of dx/dt = Ax+ϕ(x), then hδn is

the local error, which is O(hp+1) uniformly in bounded neighbourhoods of the stationary

point.

Lemma 2. Assume φ(0) = 0 and ‖φ′(x)‖ ≤ ( for ‖x‖ ≤ 2r. Let (x̃n) with ‖x̃n‖ ≤ r for

0 ≤ n ≤ N satisfy (3.5). Let δ and β denote bounds

‖δn‖ ≤ δ for 0 ≤ n ≤ N

‖P−(x0 − x̃0)‖+ ‖P+(xN − x̃N)‖ ≤ β .

If (, δ, β, and h are sufficiently small, then equation (3.4) has a unique solution (xn) with

prescribed boundary values P−x0 and P+xN , which satisfies

‖xn − x̃n‖ ≤ C · (β + δ) for 0 ≤ n ≤ N .

The constant C is independent of h and N .

Proof. Since R(w) is an approximation of the exponential function, we have the bounds

‖R(hA−)n‖ ≤ C · e−αhn , ‖R(hA+)−n‖ ≤ C · e−αhn , n ≥ 0 ,

5



with some α > 0 which depends on A and the maximum permitted step size h0. Using
the discrete variation of constants formula forwards and backwards, we have with xn =

V

(
x+
n

x−

n

)

and φ = V

(
φ+

φ−

)

x−

n = R(hA−)nx−

0 + h
n−1∑

j=0

R(hA−)n−j−1φ−(xj) ,

x+
n = R(hA+)n−Nx+

N − h
N−1∑

j=n

R(hA+)n−j−1φ+(xj) ,

and similarly for x̃n. As the Lipschitz constant of φ can be kept as small as we please,

the result follows from the Banach contraction principle (cf. also [11]).

4. Attractive invariant manifolds

One difficulty in extending Beyn’s result to the stiff problem (2.1), is that the local
error is not small for arbitrary starting values near the stationary point. The reason

is that general solutions of (2.1) undergo rapid initial changes as is shown in the so-

called Tikhonov-Levinson theory of singularly perturbed systems. A description of this

theory may be found e.g. in the text-books [19], [16] and also [8]. As is known from [4],

[6], [12], [13], there is a smooth attractive invariant manifold Mε = {(y, z)| z = sε(y)}

(locally near the stationary point, which itself is on Mε). Solutions of (2.1) starting on
Mε remain on Mε and are “smooth” in the sense that arbitrarily many derivatives are

bounded independently of ε. An arbitrary solution (y(t), z(t)) of (2.1) near (0, 0) quickly

approaches a solution on Mε: There is a solution (ỹ(t), z̃(t)) on Mε such that

‖y(t)− ỹ(t)‖+ ε · ‖z(t)− z̃(t)‖ ≤ C · εe−κt/ε , 0 ≤ t ≤ T , (4.1)

with some constants C and κ > 0 which do not depend on ε and T (“property of asymp-

totic phase”). If (y(t), z(t)) = (y(t), sε(y(t))) is a solution of Eq. (2.1) on Mε then y(t) is

a solution of the (nonstiff) differential equation

dy

dt
= f(y, sε(y)) , (4.2)

which has y = 0 as an equilibrium. The function sε depends smoothly on ε ≥ 0. For ε = 0
we denote by s0(y) = z the locally unique solution of the “reduced system” 0 = g(y, z).

In particular, we have s′ε(0) = s′0(0) +O(ε) = −(g−1
z gy)(0, 0) +O(ε). Hence, the Jacobian

of Eq. (4.2) at y = 0 is

(fy − fzg
−1
z gy)(0, 0) +O(ε) .

By condition (2.3), this matrix has no eigenvalues on the imaginary axis for small ε.
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Not only the continuous system (2.1), but also its RK-discretisation admits an invariant
manifold. As studied by Nipp and Stoffer [15], Thm. 3, for 0 < ε ≤ h ≤ h0 there is a local

attractive invariant manifold Mε,h = {(y, z)| z = sε,h(y)} for the Runge-Kutta solutions

(2.4). Mε,h is close to Mε:

‖sε,h(y)− sε(y)‖ ≤

{
C εhq if bi = asi for all i ,
C hq+1 else .

(4.3)

Again, the property of asymptotic phase states that for every (y0, z0) in an h- and ε-

independent neighbourhood of Mε,h, there exists (ỹ0, z̃0) ∈ Mε,h such that the correspond-

ing Runge-Kutta solutions satisfy

‖yn − ỹn‖+ ε · ‖zn − z̃n‖ ≤ C · ερn , 0 ≤ n ≤ N , (4.4)

where ρ < 1 and C do not depend on ε, h, and N . For ε ! h we have ρ = |R(∞)|+O(ε/h).

Remark. The above assertions are a slightly generalized and sharpened version of Theorem

3 of [15]. There, the factor ε in the estimate of the y-component in (4.4) is not stated

explicitly. The result in [15] is formulated for ε ! h, but it extends to ε ≤ h under

the stronger method assumptions that we have imposed. This can be shown using the

estimates in Section 5 of [7].

5. Proof of Theorem 1 (slightly weakened estimate)

The basic idea is to reduce the stiff case to the nonstiff case by means of the invariant mani-

folds Mε,h and Mε. Reducing the discrete and continuous systems to the corresponding

invariant manifolds, the dynamics only depend on the nonstiff y-equation. More precisely,

we proceed as follows to prove the first assertion of Theorem 1: Let (yn, zn), 0 ≤ n ≤ N ,

be a given RK-solution of Eq.(2.1) staying in an r-neighbourhood of (0, 0), r sufficiently
small. We first take the RK-solution (ỹn, z̃n) on Mε,h with the same “asymptotic phase”

(see (4.4)). Then, using Mε we construct a RK-solution (ηn) of the nonstiff system

(4.2) “shadowing” (ỹn). In a third step, we apply Beyn’s result to Eq.(4.2) in order to

establish the claimed solution (y(t), z(t)) = (y(t), sε(y(t)), 0 ≤ t ≤ T = Nh, of Eq.(2.1).

Conversely, for the second assertion of Theorem 1: Given a solution (y(t), z(t)) of Eq.(2.1),

we first take the solution (ỹ(t), z̃(t)) on Mε with the same “asymptotic phase” (see (4.1)).
Then, by means of Beyn’s result there is a RK-solution (ηn) of Eq.(4.2) staying close to

(ỹ(nh)). Finally, we construct a RK-solution (yn, zn) = (yn, sε,h(yn)) of Eq.(2.1) on Mε,h

“shadowing” (ηn, sε(ηn)).

Proof of the first assertion: We estimate

‖yn − y(nh)‖ ≤ ‖yn − ỹn‖+ ‖ỹn − ηn‖+ ‖ηn − y(nh)‖ (5.1)

in three steps.
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1) By the bound (4.4) we have ‖yn − ỹn‖ ≤ Cερn for 0 ≤ n ≤ N .

2) To simplify this step we show first that ỹn − ηn = O(εhq). The stronger estimate

O(εhq+1) will be obtained in the following section.

In order to apply Lemma 2 we need the estimate given in the following lemma.

Lemma 3. Let y0 be in an r-neighbourhood of 0. Apply one step of the RK-method to

Eq. (4.2) taking η0 = y0 to η1. Let (y1, z1) denote the result of one step of the RK-method

applied to Eq. (2.1) with starting value (y0, z0) = (y0, sε,h(y0)) ∈ Mε,h. Then

y1 − η1 = O(εhq+1)

holds for 0 < ε ≤ h ≤ h0, uniformly for ‖y0‖ ≤ r.

Proof. (a) Let Ŷi (i = 1, . . . , s) denote the internal stages of the RK-method applied to

Eq. (4.2). Putting

Ẑi = sε(Ŷi) ,

we then have

η1 = η0 + h
s∑

j=1

bjf(Ŷj, Ẑj) , Ŷi = η0 + h
s∑

j=1

aijf(Ŷj, Ẑj) .

We will show in part (b) of the proof that we have, with ζ0 = sε(η0),

ε(Ẑi − ζ0) = h
s∑

j=1

aijg(Ŷj, Ẑj) +O(εhq+1) . (5.2)

On the other hand, the internal stages Yi, Zi of the RK-method applied to Eq. (2.1) satisfy

(2.4). The starting values are η0 = y0, and ζ0 = z0 + O(hq+1) by (4.3). We now apply

Lemma 6 of [7] (with defects δi = 0 and hθi = O(εhq+1) by (5.2)). This perturbation

lemma gives us the bounds

Ŷi − Yi = O(εhq+1) , Ẑi − Zi = O(εhq) .

Using η0 = y0 and the Lipschitz boundedness of f in the equation defining η1, we thus
get the estimate stated in Lemma 3.

(b) The key to proving (5.2) is the identity

εs′ε(y)f(y, sε(y)) = g(y, sε(y)) for all y (near 0),

which is obtained from the second equation in (2.1) restricted to the invariant manifold

Mε : z = sε(y).
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Let y(t) be the solution of Eq. (4.2) with starting value y(0) = η0, and let z(t) = sε(y(t)).
Since the stage order is q, we have

Ŷi − y(cih) = O(hq+1) , Ẑi − z(cih) = O(hq+1) .
Hence,

h
∑s

j=1 aij g(Ŷj, Ẑj) = εh
∑s

j=1 aij s
′

ε(Ŷj)f(Ŷj, sε(Ŷj))

= ε
(∫ cih

0 s′ε(y(t)) f(y(t), sε(y(t))) dt+O(hq+1)
)
= ε

(∫ cih
0

dz
dt (t) dt+O(hq+1)

)

= ε
(
z(cih)− z(0) +O(hq+1)

)
= ε

(
Ẑi − ζ0 +O(hq+1)

)
,

which gives the desired relation (5.2).

Remark. The result of Lemma 3 may also be obtained directly by using the estimate

Zi − sε(Yi) = O(εhq) given in Remark 6 of Nipp and Stoffer [15]. On the other hand, this

estimate is also a consequence of the estimates derived in the above proof.

As shown in Section 4, Eq.(4.2) may be written as

dy

dt
= Ay + ϕ(y)

where A = (fy − fzg−1
z gy)(0, 0) is hyperbolic and ϕ has Lipschitz constant O(r) +O(ε) =

O(r) (assuming ε < r). Hence, applying the RK-method to Eq.(4.2) yields a recursion of

the form
ηn+1 = R(hA)ηn + hφ(ηn) , (5.3)

where the Lipschitz constant of φ is again O(r). Lemma 3 shows that the RK-solution

(ỹn, z̃n) = (ỹn, sε,h(ỹn)) ∈ Mε,h of the singularly perturbed system (2.1) satisfies

ỹn+1 = R(hA)ỹn + hφ(ỹn) +O(εhq+1) .

We may thus apply Lemma 2 with ηn in the role of xn, with ỹn in the role of x̃n and with

hδn = O(εhq+1). With boundary values chosen as

P−η0 = P−ỹ0 , P+ηN = P+ỹN ,

Lemma 2 gives us a RK-solution (ηn) of Eq.(4.2) which satisfies

‖ỹn − ηn‖ ≤ C εhq for 0 ≤ n ≤ N . (5.4)

3) Beyn’s result applied to Eq. (4.2) now yields: There is a solution y(t) satisfying

‖ηn − y(nh)‖ ≤ C hp for 0 ≤ n ≤ N .

The constant C is again independent of ε, because the right-hand side of Eq. (4.2) depends

smoothly on ε ≥ 0.
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From the steps 1), 2) and 3) it follows with (5.1) that

‖yn − y(nh)‖ ≤ C(ε ρn + εhq + hp) .

It remains to estimate the z-components. We have

‖zn − z(nh)‖ ≤ ‖zn − z̃n‖+ ‖z̃n − z(nh)‖ , 0 ≤ n ≤ N ,

where (ỹn, z̃n) ∈ Mε,h , (y(t), z(t)) ∈ Mε . We thus get

‖zn − z(nh)‖ ≤ ‖zn − z̃n‖+ ‖sε,h(ỹn)− sε,h(y(nh))‖+ ‖sε,h(y(nh))− sε(y(nh))‖ .

The property of asymptotic phase (4.4) yields ‖zn − z̃n‖ ≤ C ρn; steps 2), 3) imply

‖sε,h(ỹn)− sε,h(y(nh))‖ ≤ C(εhq +hp), and the last term is bounded by (4.3). Combining

these estimates we obtain

‖zn − z(nh)‖ ≤

{
C (ρn + εhq + hp) if bi = asi ,
C (ρn + hq+1) else .

This completes the proof of the first assertion of Theorem 1, except that the O(εhq) term
in the error estimate of the y-component is not yet optimal. This term will be improved

to O(εhq+1) in the following section.

Proof of the second assertion: The three steps to construct a RK-solution (yn, zn) on

Mε,h are sketched in the beginning of Section 5. We do not give the details, since they
are almost the same as in the proof of the first assertion.

6. Proof of Theorem 1 (refined estimate)

To complete the proof of Theorem 1, we show that the difference between the sequences

(ỹn) and (ηn) constructed in Section 5 is O(εhq+1). From (5.4) we know already that

the difference is O(εhq). To improve this estimate, we need a refined version of Lemma

3. In the situation of Lemma 3, we would of course have y1 = η1 if the function f were

independent of z, i.e., if fz ≡ 0. For fz(y0, sε(y0)) = O(h), tracing the proof of Lemma 3
shows that we still have y1 − η1 = O(εhq+2) which improves the estimate of Lemma 3 by

the missing factor h. The idea for improving the estimate in the general case now consists

in transforming variables

u = y − εBz , v = z

where the constant matrix B is chosen such that Eq. (2.1) written in the variables (u, v),

du

dt
= f(u+ εBv, v)− Bg(u+ εBv, v) =: F (u, v)

ε
dv

dt
= g(u+ εBv, v) =: G(u, v)

(6.1)
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has a small derivative Fv. Since Fv = fz −Bgz +O(ε), we choose B close to (fzg−1
z )(y, z).

This procedure leads to the following.

Lemma 4. Let the situation of Lemma 3 be given, except that the initial condition y0 = η0
is replaced by

y0 − εBsε,h(y0) = η0 − εBsε(η0) ,

with B = (fzg−1
z )(y0, z0) +O(h). Then,

y1 − εBsε,h(y1) = η1 − εBsε(η1) +O(εhq+2) +O(hp+1) .

Proof. Since the RK-method is invariant under linear transformations of variables, we

have that (u1, v1) := (y1− εBz1, z1) is the result of one step of the RK-method applied to

Eq. (6.1) with starting value (u0, v0) := (y0 − εBz0, z0).

The invariant manifold of the singularly perturbed system (6.1) is parametrized by v =
Sε(u) with Sε defined by Sε(u) = sε(y) for u = y − εBsε(y). Let µ1 denote the result of

the RK-method applied to the differential equation (which is the u-version of Eq. (4.2))

du

dt
= F (u, Sε(u)) (6.2)

with starting value µ0 = η0 − εBsε(η0). By our assumptions, we have u0 = µ0 and

Fv(u0, v0) = O(h). By the arguments in the beginning of this section we thus have

u1 − µ1 = O(εhq+2) .

Both µ1 and η1 − εBsε(η1) approximate the solution u(t) = y(t)− εBsε(y(t)) of Eq. (6.2)

with initial value u(0) = µ0 at t = h with an error of size O(hp+1). Hence we have

µ1 = η1 − εBsε(η1) +O(hp+1) .

Since u1 = y1 − εBsε,h(y1), the result follows.

Remark. A more detailed study (using trees and elementary differentials) reveals that the

difference between µ1 and η1 − εBsε(η1) is actually O(εhp+1). Hence the O(hp+1) term
in Lemma 4 can be omitted. We have not carried this out, because Lemma 4 as stated

above is sufficient for our needs.

Let (ỹn) and (ηn) be the sequences constructed in Section 5. We put

Bn = (fzg
−1
z )(ηn, sε(ηn))

and introduce

ũn = ỹn − εBnsε,h(ỹn) , µn = ηn − εBnsε(ηn) . (6.3)
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We recall that by (5.4) and (4.3)

sε,h(ỹn)− sε(ηn) = O(hq+1) . (6.4)

Inserting the recursion (5.3) for ηn into (6.3), we get a similar recursion for µn:

µn+1 = R(hA)µn + hφn(µn) + cn ,

where φn(µn) = φ(ηn) + h−1{R(hA) · εBnsε(ηn) − εBnsε(ηn+1)} (with ηn defined as a

function of µn via (6.3) and ηn+1 considered as a function of ηn) has Lipschitz constant

of size O(r) + O(ε) uniformly for all n, and cn = −ε(Bn+1 − Bn)sε(ηn+1). Lemma 4 now
gives

ỹn+1 − εBnsε,h(ỹn+1) = R(hA)ũn + hφn(ũn) +O(εhq+2) +O(hp+1) .

Together with the estimate ε(Bn+1−Bn)(sε,h(ỹn+1)−sε(ηn+1)) = O(εhq+2), see (6.4), this

yields

ũn+1 = R(hA)ũn + hφn(ũn) + cn +O(εhq+2) +O(hp+1) .

Moreover, the boundary values satisfy

P−ũ0 − P−µ0 = −P− εB0

(
sε,h(ỹ0)− sε(η0)

)
= O(εhq+1)

where we used again (6.4), and similarly also

P+ũN − P+µN = O(εhq+1) .

Lemma 2 (or rather a trivial generalization which allows the nonlinearity to depend on

n) now implies

ũn − µn = O(εhq+1) +O(hp) , 0 ≤ n ≤ N .

Together with (6.3) and (6.4) this gives

ỹn − ηn = O(εhq+1) +O(hp) , 0 ≤ n ≤ N .

Using this improved estimate in (5.1) completes the proof of Theorem 1.
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