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Abstract

The idea of the decomposition of the vector of conserved quantities of the
multidimensional Euler equations into three multidimensional waves is briefly
described. It is implemented in the so-called transport method. Starting from
this idea, the necessary properties of these waves to prove the consistency of a
numerical scheme are collected. These properties are then used to construct a
new and very simple method which preserves all the properties of the transport
method. Numerical results obtained with this simple scheme are shown.
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In multidimensional flow calculations most of the fi-
nite difference or finite volume methods use a one-
dimensional FEuler solver in multiple directions. Here
the main propagation directions are perpendicular to
the cell interfaces of the underlying grid. With this
standard dimensional splitting approach the accuracy
of the solution is in general first order. With some
special modifications the accuracy can be increased to
at most second order [7]. But there are flow prop-
erties which cannot be correctly described by these
splittings, e.g. a shock diagonal to the grid.

There are several new investigations of multidi-
mensional Fuler solvers to circumvent the problem
mentioned above. The basic idea of these methods
is to determine the main propagation direction and
to solve a one-dimensional problem in this direction
[3], or to construct a set of elementary waves which
transport the residuum of one cell to some neighboring
nodes [5]. Then the propagation directions are inde-
pendent of the underlying grid. But these directions
have to be calculated from the data of the flowfield and
especially from some of their gradients. This causes a
loss of robustness of the resulting scheme.

Our method is a synthesis of the previous ones.
The underlying concept is based on a decoupling of
the multidimensional flux into a finite number of mul-
tidimensional elementary waves comparable to the flux
vector splitting in one space dimension. These elemen-
tary waves have most of the properties of the Euler
equations as there is the invariance under a reflection
or a rotation of space. These ideas lead to a numer-
ical scheme which allows infinitely many propagation
directions in contrast to only two for the dimensional
splitting. Moreover, the main part of these waves does
not depend on gradients of the data in contrast to the
approaches in [3] and [5].
higher order terms.

The gradients only affect

In this paper we will briefly describe the idea of
the multidimensional waves which defines the struc-
ture of these waves and the resulting fluxes precisely.
The disadvantage of this scheme is the large amount of
computational work to calculate the numerical fluxes.
Since we can prove the consistency of the scheme un-
der weaker assumptions, we introduce some simpli-
fications. It is possible to set up multidimensional
waves such that for one-dimensional initial condi-
tions the resulting scheme is identical to the Steger-
Warming splitting. Even differentiable fluxes can be
constructed. For these schemes the computational
work decreases drastically so that it is comparable to
that of standard methods.

in the Jjoliowing imvestigations we will restrict oursell
to the case of the Euler equations. Before we start with
the description of the idea we introduce the notation
used in this paper. The one-dimensional homogeneous
Euler equations can be written in the form

The vector of the conserved quantities U and the phys-
ical flux function F(U) are

p pu
U=|m|, FU)=|pu*+p |. (1)
E u(E + p)

In this notation p is the density, m is the momentum,
F is the total energy, u = m/p is the velocity and p is
the pressure. Using the equation of state for an ideal
gas, we obtain

p=(y—1) (E—pu;) (2)

for the pressure. In our case v is a constant with
~v = 1.4, the value for air.

For simplicity, we consider the Euler equations in
two space dimensions, although the ideas carry over
to three dimensions. The differential equations then
have the form

9y + iF(U) + iG(U) = 0.

The conservation equation for n, the y-component of
the momentum, is added to the system. The vectors
have the form

p ,20u pu
U = m CF= pu +p  G= pzuv
n puv pve+p
E u(E + p) v(E + p)

where v = n/p is the velocity in y-direction. Equation
(2) becomes

p=(r-1) (E—p“Q;”z).

To complete this collection of formulas we add the
eigenvalues and eigenvectors of the Jacobian matrix of
F(U) in (1). The eigenvalues are \y = u — ¢, Ay = u
and A\s = u + ¢ and

1 1 1
R=| uv—c u u+c (3)
H —uc u?/2 H + uc



defined by 2 = vp/p- The vector R~1U appearing
in the one-dimensional flux vector splitting has the
simple form

I y—1 1\7
R_1U2p<_77 7_) .
2y v 2y
I denotes the unit matrix and 0 the corresponding

vector of zeros. x is the coordinate vector and u the
velocity vector in several space dimensions.

Method of transport

The main idea of this numerical scheme is to use the
characteristic propagation directions in each point of
the flowfield and to propagate special quantities along
these directions. We will briefly describe this idea now.
The main problem of extending the one-dimensional
scheme is that the finite three propagation directions
become infinitely many. The convection with velocity
u is simple to adapt to more space dimensions since we
have only one propagation direction u. In this case the
quantities are only advected with this velocity. The
results in [2] obtained for a scalar equation can be
used for this wave.

The extension is more difficult for the sonic waves
propagating with speed u £+ ¢. These two directions
change into the complete Mach cone with infinitely
many directions. Let us use the behavior of waves in
water as an example. Small disturbances move in all
directions relative to the motion. For the scheme we
will only allow one wave front and we will distribute
the whole information, not only the difference between
some steady states.

With these considerations we can define how the
information is distributed by such a wave. We find
that the physical quantities propagated by this wave
are a general form of the linear combination of the two
eigenvalues corresponding to the eigenvalues u + ¢ of
the Jacobian matrix of F(U) in (1).

A new feature of our approach is a kind of mo-
mentum wave. This wave also propagates along the
Mach cone and describes the interaction of pressure
and momentum. In several space dimensions this wave
distributes vectors, but in the one-dimensional case it
is only the difference of the two eigenvectors corre-
sponding to the eigenvalues u + ¢ times a constant.

We now use a finite volume discretization of the
space on a Cartesian grid. As in most first order
schemes we use the mean value of the conserved quan-
Then the
Mach cones within the same cell are all the same. To

tities as the function values in this cell.

1. We calculate the wave front of each point x in
the cell according to the Mach cone of this point.
Since all values are the same, all the cones are
the same. Then we sum over the wave fronts of
all points x in a cell. The resulting distribution
of the entire cell is called wave. This wave must
be known analytically as a function of the ve-
locity and the speed of sound because it cannot
be computed numerically. To get an efficient nu-
merical scheme we will simplify the construction
of this wave.

2. We integrate this wave over the domain of each
neighboring cell. We get the mass of information
moving out from the central cell to its neighbors
during the time At.

3. We repeat step 1 for all the neighboring cells.
Then we integrate over the center cell and get
the mass of information moving in from the
neighbors during time At.

4. We update the mean value of the center cell by
adding and subtracting the mass of information
moving in and out.

This algorithm must be applied to all three waves men-
tioned above. The special form of the waves, their in-
fluence on the fluxes and the final form of this method
of transport is described more in detail in [1]. There
are also given some numerical results obtained with
this scheme.

Definition of the waves

The waves of our method of transport derived from the
ideas mentioned above are determined so that simpli-
fying modifications are not possible. However, to show
the consistency of the transport method we do not
need all of the structure. In the algorithm explained
above we used the behavior of each point within the
cell to update the mean values of the cell. For the
numerical method and to proof consistency it is only
necessary to know the global behavior of a complete
cell. We will put this behavior of the cell in a more
general context and collect all the necessary require-
ments of these waves in four definitions.

Definition 1 (Waves)

For each rectangular domain Qo C IRN and for
the vector of conserved quantities U we define a



Ug, (x,at) =
Ca,(x,at) =
Co,(x,a1) =

R, (U) fg,(x, at)
R1(U)fg, (x, at)
Ls(U) - fg, (x,at)

with the functions

-1 P
RQ(U)::7— pu |,
v pll2/2
17
RI(U) =—\|pPuj,
7\
OT
LU= 1
T\ T

The functions f*, f¢: IRN x IRt — IR and f°~ :
IRN x IRt — IRYN have the property that there
exists a point X so that

T(x — 2ei(x — X)e;, At)

[ (x,at) = = fi7(x — 2ei(x — X)e;, At)

(x,at) = f
fo(x,at) = fo(x — 2e;(x — X)e;, At)
T(x,at)=f i # ],

(x, at) i=j
holds, where e; is the unit vector in direction x;,
i=1,...,N and x € IRN. The support of the
functions f is bounded for any fived at and for
At =0 it s

1 Zf X € QO
0 otherwise

F,(%,0) = £, (%,0) = {

fo; (x,0)=0.

This defines the basic structure of the waves. The
functions Ry, Ry and L3 contain the physical quan-
tities propagating with time. Omne can easily see the
connection between the eigenvectors in (3) and these
functions. In the one-dimensional case Ry, Ry and
L3 are only a linear combination of the columns of
R. The last equations of f* and f¢in Def. 1 represent
the deformation of the shape of the cell with increasing
time At. In contrast to this, the function f¢~ acts as a
source term of momentum influenced by the pressure.

The next three definitions describe additional
properties. First we have to require that the sum of
two waves corresponding to two disjoint domains are
equal to the wave of the union of these two domains.

Definition 2 (Compatibility condition)

fa,(x,At) + fo,(x,At) = fo,ue,(x, At)
holds.

We will also assume a kind of conservation property.
The numerical scheme is written in conservation form
and therefore we obtain conservation after each step,
independent of the behavior of the waves. At time
t, i.e. for at = 0, Def. 1 implies U(x,0) + C(x,0) +
C~(x,0) = U. We will require this condition for a
constant function U for all at > 0.

Definition 3 (Completeness)

A wave [ from Definition 1 is called complete if
for all x € IRN and a constant vector U

S Gean) = 1
S ean) = 1
S i (k)

l
=

holds, summing over all ; of the grid.

Finally we demand that the waves have something to
do with the problem, i. e., the Euler equations.

Definition 4 (Consistency)

A set of waves from Definition 1 is called con-
sistent if

(a) the point X moves with velocity u, that is
X(at) =X(0) + atu and

(b) 7[ o (X + hey, At)]j dh = ates;

0
holds fori,5 =1,...,N. Here 6; ; denotes
the Kronecker symbol.

The fluxes from a domain g to another domain
)y are given by

_ c c—
FQOQ1 - FQOQ1 + FQOQ1 + FQOQ1

with

4o, = Ry(U) / Fi (3. at)dy
91

o = Rl(U)/féo(y,At)dy
91

Fiia, = Li(U)- [ 1 (v a0dy



Figure 1: Partition of the support G of the functions
f¢and f° at time t = At in sub-domains.

and the values at time ¢ + At are obtained by

Ugjl = ZFQOQZ Fo,q,
Q0 \1z0

where U?Zo denotes the numerical values at the cell Qg
and Vg, is the volume of the domain Qy. The sum runs
over all cells except Qy. In practice one will restrict
the step size At such that Fo,q, = Fg,q, = 0 for all
O with Qo N Q; = 0, i. e., the sum runs only over the
3N — 1 neighboring cells of Q.

Numerical method

With Definitions 1 — 4 we will construct a simple nu-
merical method in two space dimensions. For the inte-
gration part (step 2) of the calculation it is preferable
that the support of the waves can be divided in rectan-
gular sub-domains where the functions are constant.
This is the disadvantage of the method of transport.
There the boundaries of some sub-domains are circles
and so the integration procedure was difficult because
of the complex geometry.

For the function f* we simply use the same func-
tion as in the method of transport. We get

u 1 x— Atu € QO
Jao (%, a8) = {0 elsewhere
For the functions f¢ and f¢~
ing of the support as shown in Figures 1. The dashed
lines denote the Cartesian grid and separate the do-
mains §2;. The dotted line forms the boundary of the
center cell advected with velocity u and the solid line

we choose a partition-

domains Gy ;. It can easily be seen that this kind of
wave satisfies most of the assumptions in Defs. 1 and 4.
We obtain the desired symmetry from the symmetric
partitioning and the shift with Atu guarantees the part
(a) of the consistency. The conditions of completeness
and compatibility force the following definition for the
piecewise constant functions f¢ and f°:

1 xe Gy
1 x € Gy
5.(x — Atu, At) = 2 4
i =1 e W
0 elsewhere
T
(%, 0) x € Gag
T
(07 —%) x € Goo
T
(—%, 0) x € Gas
T
(0, %) x € Gag
c— _ T
fa, (x — atu, at) = (iv i) x€Gsq (O
T
(%7 —i) x € Gz
T
(—ia —i x € Gas
T
(—ia i) x € Gaa
(0, O)T elsewhere

The corresponding fluxes are obtained by integration
of the waves. This can be done easily and the result
is the sum of the areas of some rectangles times some
factors depending on the sub-domain. With the aux-
iliary functions

hi(z) = max(0,z + 1)

hao(z) = max(0,z — 1)

ha() = min(2, hn(2))

ha(z,y) = y — 1 + min(0,1 — [z|)
hs(xz) = min(1, max(—1, —x))

we obtain

u Ay
Qo = RQ(U)(AtC)z maX(O,Mv)h4 (Mu, E)
Qo = RQ(U)(Atc)2 max(0, M,) max(0, M,)

for the flux of wave U. The integration of the function

f¢ yields
u _ AY
Qoth — RI(U) 2 h4 ( Atc)

(hi(My) + ho(M,))

A
\_/




_ L aslx)(nay) + haly))
z1($,3/,2’) - 2 ( h4 ($7Z)h3(y) )
zale,y) = 1 (hB(thl(y) +h2(y)))

’ 4\ ha(y)(ha(z) + ha(e))

the fluxes F¢~ have the form

c— .
Fﬁoﬁl = L3(U)(At€)2Z1 (Mu,Mv, E)

Fo o, = L3(U)(ate)zy (M, M,)

where M, = u/c and M, = v/c denote the Mach
number in z- and y-direction.

The fluxes into the remaining domains can be ob-
tained by changing the Mach numbers (e.g. M, —
—M, in Fg,q, to get Fo q, etc.). Now all the neces-
sary fluxes are known to update the quantities in the

flowfield.

Numerical results

Figures 2 and 3 show the solution of a two-dimensional
Riemann problem. The four quadrants are connected
by a simple wave. These kind of problems are dis-
cussed in detail in [6] and they are good tests because
of the simple boundary conditions. Figure 2 shows
density contours obtained with the unsplit method.
For comparison, Figure 3 shows the same quantities
obtained by a van Leer flux vector splitting method
and dimensional splitting [4]. In this case the results
are nearly the same. The van Leer scheme is 20%
faster because it only computes four fluxes per cell
instead of eight in our unsplit method.

As a second test case we took a Mach 25 flow. The
free stream conditions are those in 75 km altitude. Be-
cause of the loss of a boundary condition for a solid
wall we inserted a source into the flowfield which is
strong enough to build a strong moving shock wave.
Figures 4 — 9 show the numerical results on different
meshes and at different times. In this case the dimen-
sional splitting is not suitable for large time steps. In
contrast to this, the unsplit method runs also in this
case with the maximum time step. There are also
small differences in the position and the shape of the
shocks, and these differences become larger for coarser
meshes.
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Figure 3: Solution of a Riemann problem with van
Leer flux vector splitting.
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Figure 4: Solution of a Mach 25 flow on the fine mesh
with our unsplit method.
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Figure 5: Solution of a Mach 25 flow on the fine mesh
with van Leer flux vector splitting.
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Figure 6: Mach number distribution at the symmetry
line of Figures 4 and 5.
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Figure 7: Solution of a Mach 25 flow on the coarse

mesh with our unsplit method.
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Figure 8: Solution of a Mach 25 flow with on the coarse

mesh van Leer flux vector splitting.
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Figure 9: Mach number distribution at the symmetry
line of Figures 7 and 8.
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