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In the case of a hypersonic, inviscid continuum flow past a blunt body, a so-called
bow shock (shown in Figure 1) is formed. The flow is composed of a subsonic and
a hypersonic part (between the shock and the wall), separated by the sonic line.
Details can be found in [2], [1].
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Figur 1: Hypersonic blunt body flow

Here we are particularly interested in

- the stand-off distance and
- the stagnation point.
- the shape of the functions near the stagnation point

In the literature there exist some investigations of the 1960s on this topic. The first
one is by Freeman [11] in 1958. In the following years other reports concerning this
problem were published by various authors. The papers of Conti [6] and Vinokur
[20] give a good overview of the technique used to analyze this kind of flow and
give hints to other authors. We are interested in a mathematical analysis of this
problem and reduce the necessary assumptions to a minimum. Especially, we do
not want to assume incompressibility near the stagnation point, as it was done by
Désidéri [8], because this contradicts our computational evidence. We are lead to
results concerning the shape of the boundary layer which differ from those given by

Vinocur [20].

In Section 2 we describe the physical, geometrical and mathematical assumptions
needed for the analysis along the stagnation streamline. In Section 3 we derive a
one-dimensional free boundary value problem (BVP) from the Euler equations in
the case of an inviscid, steady flow in two space dimensions. Using this represen-
tation of the equations along the stagnation point streamline, we can replace the



tion of the structure of the solution near the stagnation point is presented. The
results obtained in the first part will be used to analyze the numerical solution of

the two-dimensional problem.

2 Assumptions

To analyze the stagnation point we need several assumptions. These can be divided
into three groups:

- physical,

- geometrical and

- mathematical assumptions.

In this paper we restrict ourself to the steady, two-dimensional, inviscid flow. Chem-
ical nonequilibrium is taken into consideration. On the other hand, the flow shall be
in thermal equilibrium. We assume the mixture of gases composed of N components
to be thermally perfect, i.e.

N
p:pRTZYi/VVZ» with (1)
i=1
pi al
a) Yz:? b) p=7_pi (2)
i=1

where p; is the partial density of the ith species. The gas is not assumed to be
calorically perfect, i.e.

v = il # const. with (3)
Co
N . . .
a) ¢ = Yic(T)# const., d) (1) :=c,(T)+ R/W;,
=1 4
b) ¢, :=) Yiel(T) # const., c) c(T):= :
=1 dT

The total energy FE consists of the internal and kinetic energy and the heat of
formation Ah:

a) FE=e+ %(u2 —|—v2) + Ah  with

b) e= ;Yiei(T), (5)
¢) Ah= g:YZh?.



calculations have been carried out with the model of Hansen (see [14]). Thus, the
steady, two-dimensional Euler equations are given by the N species equations

div (piu, piv) = s;, 1=1,..., N, (6)
the two equations of momentum
@) div(pu + p, puv) = O, .
) div(puv, po? +p) = 0,
and the energy equation
div (puH, pvH) = 0. (8)
Herein the total enthalpy is defined as
H=FE+"Z2 9)

P

Because of the conservation of mass we obtain

The s; are the chemical production rates describing the chemical nonequilibrium.
They depend on the partial densities p; and the temperature 7"

si = 8i(p1y.ey pn, T), i=1,...,N. (11)

Summation of the species equations (6) and (2) yields the ordinary continuity equa-
tion

div (pu, pv) = 0. (12)

As boundary conditions at the surface of the body we request that the flow velocity
has no component normal to the body. We assume throughout this article that the
system of equations (6) — (9) has a solution satisfying these boundary conditions. We
assume that the body is symmetric and the free stream flow is parallel to this axis
(the z-axis in this article). Further we assume that the resulting flow is symmetric
with respect to the x-axis. Hence scalar physical quantities , e.g. p, p, T, are even
functions with respect to y. The same applies for the x-component of a vector. The
y-component of a vector is necessarily an odd function and thus vanishes along the
z-axis. A curve K : IR — IR? which is tangent the velocity vector in each point, i.e.

dK(s)  (u(K(s))
ds (U(I((s))) : (13)

is called a streamline. Since v(x,0) = 0 the x-axis is a streamline. Further we

assume that the body surface has a tangent at the intersection (x,,0) with the
x-axis which, due to symmetry, is normal to the x-axis. Since we have assumed



a one-dimensional free BVP along the stagnation point streamline in an easy way.
Besides the physical and geometrical assumptions we need some mathematical ones
for the stagnation point analysis. Essentially, they affect the Euler equations in the
stagnation point. Since this point is a singular one, (6) — (9) need not to be valid
there any more. To which extend this is the case will be analyzed in detail later.
Here we will not assume that the Euler equations can be continued in a continuously
differentiable way to the stagnation point. Thus, gradients are allowed to be infinite.
Instead we only demand that the physical quantities are continuous functions up to
the stagnation point, i.e. that they are bounded. An infinite density corresponds
to an infinite compression which is even in the physical sense not acceptable. To
guarantee a unique solution we have to assume

Assumption 1

’ oY,
e Ox ¢

We will derive a free BVP from the Euler equations along the stagnation line. From

=0 (14)

(z,0)

=0, 2=1,....,.N and lim (%u)

(1,70) rT—Te— 8:1}

the structure of the BVP it is easy to see that assuming monotone and bounded
functions of the state variables in the neighborhood of the stagnation point implies
(14). Clearly the reduction of the two-dimensional problem to the one-dimensional
BVP can only be done by assuming some information concerning the shape of the
body to be known. In this article this is done by assuming that the following function
is known p

% OB CN ! (15)
In Section 7 we shall see how v, () relates to the shape of the body. The numerical
simulation of the steady Euler equations by a shock-capturing method yields an
almost constant value for v, for a Mach 25 flow (see Figure 2). The deviation from
this value behind the shock can be explained by the smearing of the shock because
of the shock-capturing method.

3 The free boundary value problem

We will now analyze in detail the Euler equations (6) — (9) along the symmetry axis
between the shock and the stagnation point, i.e. z € [zg,x;], y = 0. The equations
(12), (6) — (9) can be written as

d(pu) N d(pv)

=0
@) oz dy ’
Y; Y; .
b) J pu+Kaﬂ+a pv—l_K% :Si(plv"'vavT)v Zzlv"'va
oz oz dy dy
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Figure 2: v, along the stagnation streamline
c) 8(apu)u + pug—z + g—i + a(apyu)v + pug—; =0, (16)
9 a(apxU)v + pua_; + a(apyv)v - pvg—; Z_}; -0
€) a(apxU)H + aa—[j + a(apyv)H + pvaa—[y{ = 0.

Notice that the partial densities p; in (6) have been replaced by the mass fractions Y;
according to (2a). Putting (16a) in (16b-e) and using v,(x,0) = 0, these equations
reduce to

aY; aY;
b) pu O + pv ay = Si(plv"'vavT)v
Oou  Jdp
c) o + 9 0,
Ov Jdv  Jdp
d) Pua—+Pva—y+ oy~ (17)
) a_H + a_H =0
e pug—+pv o =V

With the symmetry of the flow we get for x € [zg, 2], y =0

dp ou Ov
a)  gutpo— = Py,



c) pug-t+ 5 =0, (18)
dp

d) a_y - 07

€) pua—H =0
T

(18d) gives no new equation because p is an even function in y. We further assume
that the stagnation point (z,,0) is the only point along the stagnation streamline
where the velocity component u vanishes. Hence the last equation can be simplified
to

€) aa—]j = 0. (19)

We now want to derive a system of equations for the quantities Y;, u and p and their
derivatives in a-direction. Therefore, the term dp/dz in (18a) has to be replaced
by the corresponding derivatives of Y;, u and p. Therefore we solve (9) for p and
replace £ by (5) getting

p:p(H—%z—éYi(ei(T)—l-h?)). (20)

Differentiating this equation and taking (19e), (5) and (4c) into account, we obtain

8p dp u N o ou 0T N Y
= (m =S o (ug+ Gar X

K3

(e() + h?)).(zl)

Herein the term 07/0x must also be substituted. By differentiating (1) we obtain

dp T & N gy 1

dp
3 Rpa ZY/W +RTa ZY/W —I-pRTZ i (22)
We solve (22) for T /0x and replace it in (21):
ap u2 N o B
a—x(H—?—;K(ez(T)—l-hi)—l-cuT = (23)
dp L+ Cy i Lo RTe, N Ou
d 4 v : o_ vt u—
o\ R CWRS W | O
J

(3) and (4) yield




Cyl — ————. (£9)
v—1p

Together with (20) we get the equation

v pdp v X oY o RT du
Za ( + h; Wi 1) —|—puax. (26)

y—1pdx —18:1;

We introduce the frozen speed of sound
c?c = 1P (27)

Thus, (26) simplifies to

9 _ 20 p—1) i o_ BTy Ou
ox 8:1; + t Z (GZ(T) +hi - )) Tu

and with (18b) we obtain

Gy _ a0 =1 0 RT , Ou
; h; — ———— — . 28
Yo ucfax ;S ( )+ VVZ'(’y—l))—I_pu Ox (28)
Putting this in equation (18&), we get
u dp u?\ Ju y-1x o RT
A IOV i e S A P Ry (29
st (1005 ) G - B e B gy e
Because of (19¢) we have
H(z,0) = H(x0,0) =: Hy = const., x € [zg,z,), (30)

and with (1), (5) and (9) we obtain an implicit equation for the temperature de-
pending on Y; and u:

2 N

According to (10) the chemical production rates s; are linearly dependent. Assume
the mixture of gases is composed of m < N kinds of atoms. Then there exist m
equations of balance

N
Za”Yi:cl:const., I=1,...,m (32)

=1

in the variables of mass fraction Y;. By (18b) the linear dependence of the production
rates follows immediately because

N
Zalisi:(), 121,...,771. (33)
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With equation (18¢) we can eliminate the pressure gradient in (29) and with (18b)
we get a system of ordinary differential equations for Y;(z,0), ¢ = m 4+ 1,..., N,
p(x,0) and u(x,0), @ € [xg,x5). Ommiting the y-direction, this can be described by

A(y(z))y(x)=b(y(z)), z€ (vo,a5) with (34)
pu Sma1(p1y -y pn, T) Yia1
A= pu ’ b = SN(plv"'vavT) Y= Yy ’
« I¢] u
pu 1 0 P
the variables
u\?
a:=1-— (—) ,

Cy

y-1Z o RT
fi=—v, — —— Si(eiT +h — ———m— 1,
Yo ; 1) Wiy = 1)

and the parameter function v,.

The quantities T', p, Y, Il = 1,...,m and p;, 2+ = 1,..., N are determined by the
algebraic conditions (2a), (1), (32) and (31). We are now looking for a solution y(x),
x € [x0, 2] and the stand-off distance |z, — 2¢|. The boundary conditions are

a)  y(z0) = o, (35)
b) u(z,,0) = 0.

Thus we have to deal with a free BVP with algebraic conditions given by (34), (35),
(2a), (31), (32) and (1) depending on the parameter function v,(z).

We show now that some physically motivated assumptions also implies (14). At first
we assume that the functions of Y, p, u, p and from that all the other state variables
are bounded in the interval [0, z;]. To get any information at the stagnation point
we also have to assume that the bounded functions can be continuously extended to
the stagnation point. This means we have no jump at the stagnation point. From

(18) we know that
u?\ Ou
(1-5) 5=

and since there is no vacuum, so p > 0, and all the quantities are bounded, the
derivative du/dxz is bounded and the limit @ — z; exists. This result and equation
(18¢) leads to a bounded pressure gradient and because of u(xs,0) = 0 we have

dp

a—x(xs) = 0. (36)



Ju dp

P uZl = —pu, .
6:1? 8:1: N——
” bounded
bounded

Thus, the term udp/dz is also bounded and as before continuous extendible to the
stagnation point. Now we can expand u in a Taylor series

u(r) = u(e) + e @~ ). £ (nm)

We will show that the limit of udp/dx for « to x, has to be zero. To do this, assume
that udp/dx # 0 in x5 — &, 2;5]. If we assume that all the functions are monotone
near the stagnation point and since udp/dx is continuous we obtain the estimate

with some positive constants ¢; and ¢y for the whole interval [z, — e, z4], & > 0.
W.l.o.g. we assume udp/dxz > 0. Then we get

IV

The last inequality holds since |Ou/dz| < ¢4 is bounded (see above). Integration
of this inequality leads to an unbounded density which contradicts our assumption.
This means that ¢; has to be zero and especially

lim_ u—p = 0. (37)

Then, from the same equation it follows that

. Ou
i ) = (o).

With the same analysis as above one obtains from

ay;
pu oxr

S; that si(xs) =0

at the stagnation point and so we have chemical equilibrium. This leads to

: oY;
lim pu =

T—T¢ 8:1} -

0. (38)

9



Assumption 2

a) Y;, p, uw and p are bounded,

b) all the bounded functions can be extended continuously to the stagnation point.
This is obvious for the state variables uw and p but also applies to the functions

Ju/dx, dp/dx, udp/dx and pudY;/Odx.

¢) Y, p and u are monotone in the neighborhood of the stagnation point, e.g. for
each function [ there exists a number ¢ > 0, so that for all x,y € [z, — ¢, 4]

of  af
%(l') %(?J) > 0.

4 Existence of a solution

Now the question arises if a solution of the system of ordinary differential equations
(34) with the algebraic conditions (2a), (32), (1) and (31) exists. This depends on

the invertibility of the matrix A. Before continuing we have to introduce the Mach

number M defined by
JuZ + 02
M= YU (39)
Cr
Using (34) yields
det A = (pu)™=" (1 — M?). (40)

As mentioned in Section 1, the Mach number is strictly less than one (in the neigh-
borhood of the stagnation point streamline). Consequently, the determinant of A
is zero if and only if u(x,0) = 0 or one has a vacuum. So we have

det A (y(z,)) = 0. (41)

This condition is satisfied only at the stagnation point, i.e. the system of differential
equations can be transformed to

y(z) =A™ (y(2))b(y(z)) = g (y(z)), =€ [ro,z,), with (42)
gi:S;Lmv izlv"'vN_mv gN—m-H:%? gN—m+2:—PU1_ﬂM2-
(43)

Because of the differentiability of the physical quantities along the stagnation point
streamline, this is particularly valid for g(y(«)), « € [zo,xs). Thus (42) is solvable.
The uniqueness follows from the initial values (35a) and the Lipschitz-continuity of
g (compare [21], p. 49 ff).

10



To solve the differential-algebraic equations we have to determine the initial values
(35a) behind the bow shock. Therefore we need the Rankine-Hugoniot condition for
a scalar equation of the form

Jw(x,y,t) N OF (w(x,y,t)) n IG(w(w,y,t))
ot oz dy

=0  with (44)

F,G e ¢ (R? x RY,IR).

[t can be derived in analogy to the one-dimensional case (compare [19], p. 246 ff).
Consider the following situation. Assume Q C IR* x IR to be a connected domain

Figure 3: Discontinuity surface I'

in space and time separated into two parts £2; and 25 by the discontinuity I'. The
solution w of (44) is constant in §; and Q, and vanishes in (IR? x RT)\ Q, i.e.

QléwZ = const., 1=1,2, w|(]R2><]R+)\Q = 0. (45)

w

The surface I' can be parameterized by the time ¢ and the space parameter s as
follows:

L(t,s):=] x(t,s (46)

11



1 0
dr dr
Ft :E: ($t), FS :EZ (1’5) (47)
Ye Ys

The normal to I' is defined by the vector product of I'; and T’
N:=T, AT = (215 — x5y1) €1 — ys€a + x5€3 .

Now the question arises how to choose w; and w; so that they form a weak solution
(compare [19], p. 246 ff) of (44). Therefore we integrate over :

/div (w0, F(w), G(w)) ddt = 0
Q
Since = )y U s, this equation is equivalent to

Zzi/div (w, F(w), G(w)) dQdt = 0.

i:lgi
Using Gauss’ theorem, the volume integral can be replaced by the surface integral

5" [ (w, Flw), GGw)) Nt s)dsdt = 0.

=150,

Here N is the outer normal to ;. Because of (45) only the surface integral over I

remains:
2

Z/(wi, F(w;), G(w;)) N(t,s) (=1)"dsdt =0

I' is arbitrary. Thus the Rankine-Hugoniot condition
(w1 — wy, F(w1) — F(ws), Glwy) — Glwy)) N = 0 (48)

holds. This is the jump condition for unsteady, two-dimensional hyperbolic con-
servation laws. The same equation is valid for systems. In this paper we are only
interested in the steady equation. Then the jump condition becomes

0
(U, — Uy, F(Uy) — F(U,), G(U;) — G(Uy)) (y) = 0. (49)

Ls

To determine the initial values (35a) at the point (x,y) = (20,0) we have to solve
the jump condition (49). Due to the symmetry the normal is given by

<)

12
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The fluxes F and G are given by (6) — (8) as

F(U) = (pluv"'vauvpu2—I_p?puv?pUH);v (51)
G(U) = (plvv .-+ PNV, pUV, pv2 + p, va) :

In [1], p. 392 ff it is described how to solve (50), (51) iteratively. Therefore these
equations are transformed into

Cl) 1/2'72:3/2'71, izl,...,N,

b) Uy = ul&,
P2
— 2 _ P
¢)  p2=pi+pru( p2)7 (52)

d) Vg = Vq,

2 2
) ezzel+(&_&ug)(1_&)+ﬁ 1_(&) .
p1 P2 p2 2 P2

The mass fractions Y;» and the normal velocity vy are known because of (52a,d).
Thus, only three equations remain for the four unknowns ps, ug, ps, €5. The equation

of state (1) and (5b) provide the additional condition
) (52)

Now the equations (50b,c,e) can be solved iteratively by introducing ¢ := p1/p2:

)y T=T(eY1,....Yn),

N

Y;

9) p=p(pTY1,....Yy) :p/(RTZW
=1 2

1) Set go :=0.1 and ¢ = 0.

2) Calculate p(;) and p(zi) by (52c,e).

3) First calculate TQ(i), then p(;) with (52f,g).

4) Set ¢iy1 1= pl/p(;) and repeat step 2 — 4 until convergence.
5) Set py = git1p1 and uy = gip1us.

Choosing the free-stream conditions for State 1, we can determine the initial values
Yo.

13



In Section 4 we proved that there exists a unique solution y4 of the initial value
problem (34), respectively (42) and (35a). If there exists a point satisfying the
condition (35b), y 4 is also the solution to the free BVP. y 4 is not known explicitly
and therefore the existence of a finite point z, satisfying (35b) cannot be proved
mathematically. However we have shown that one has chemical equilibrium if u is

0.

We assume now, motivated by the physical boundary conditions for the 20D Fuler
equations (6) - (8), that there is a finite x5 which satisfies

u(xs,0) = 0. (53)

At the stagnation point x4 the rank of A is reduced to 2. Hence, the solution of (34)
only exists in the half-open interval [xq, z5). In the limit as @ goes to x; we shall need
N —m algebraic equations. The resulting system is a so-called differential-algebraic
equation where the index is zero for < z; and positive for + = x;. To show this, we
apply the local technique of Kunkel and Mehrmann (compare [15], [16]) to analyze
the stagnation point. Therefore, the problem (34) is linearized:

F(y(2),3(2)) = As¥(a) + Egy(x) = 0 with

Ob(y(x)) E11 E12
Ag = Ay(xy)), Eg := ————= :—< )7
s (¥(s)), Bs Ay =, Eo1 Ez2
Ism41 Ism41 Ism1 Ism1
8Ym+1 e 8YN du ap
Eq1 := : : , E12 := : : ) (54)
Isn sy sy 9sN
Vg1 Yy du dp
B o8 98 9B
| 3V St BY — {3u  Bp
o ( 0 ON)’ Eaz (0 0)‘

This can be derived from (34) as follows. First, the problem is written as

f(y,y):=A(y)y —b(y) =0.

Then the total derivative of f is given by

df = a—Ay'——a—b dy + Ady = 0.
dy dy

Assuming A and db/dy to be locally constant — e.g. at the stagnation point — we
get _
df — A—S d}.’_Es dy.

This is the total derivative of f (compare (54)) and therefore zero, too. Now we
determine the singular value decomposition of Aj:

UTA, V=X with

14
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Here I is the identity matrix in IR***. Then the product

| DD EZl)

UTE V:(
® Ei2 E1n1

is formed. Applying Theorem 4.13 of [15], the following characterization of the linear
problem (54) can be shown:

Index 1 < detEq; #0

Because of this relation we get an index larger than one once we have shown that
E1; is singular. To show this observe that we have seen that the chemical reactions
are in equilibrium at the stagnation point. We also know that the total entropy S
is constant for an equilibrium flow. Hence we have an additional equation which
relates the mass fractions in the same manner as the equations of balance did before.
Consequently, at least one eigenvalue has to approache zero. This means that the
matrix Eqq is singular. If we would use the perturbation index of a DAE introduced
in [13] again we would observe an increase of the index at x5 to a number larger than
one. With this definition the regularity of the matrix E11 leads to an estimation of
the error of the solution for small disturbances. Nevertheless, for given u and p we
can solve the equations

$i(Yig1y .oy Y u,p) = 0, l=m+1,....N

for Y;, and from this we are able to solve the system, as we will see later. To sum

up, this kind of equations do not fit into the standard definitions of the index of a
DAE.

We now consider the system (34) in the limiting case for x to x5. Most of the work
is done in Section 3 and we will summarize the results. We know that du/dx and
Jdp/0x are bounded and for the limit x —

holds so that the pressure and velocity functions are smooth up to x,. This is the
reason why we have chosen these variables for the BVP in (34). On the other hand
the equations (37) and (38)

dp Y,

;Lrg ua—x(x) =0 and ;Lrg g

(x)=0

allow infinite gradients for the mass fractions Y; and the density p at the stagnation
point. The last of these equation forces the chemical reactions to some equilibrium
state at this point.

15



and (29) can be used to obtain a solution for u(x,0) and p(x,0) in a numerically
stable way. We still need N — m additional equations for the mass fractions Y;
t =m+1,...,N. Due to the chemical equilibrium we get these equations from
the chemical production rates s;. For given u and p, obtained from the differential
equations, we can solve the N — m equations of chemical equilibrium for the un-
known mass fractions Y;, ¢« = m + 1,..., N. At the stagnation point this implies
that the regular problem (34) becomes a so-called higher index problem as men-
tioned above (compare [12], [4]). Higher index problems can be treated numerically,
e.g. by backward-differencing methods, but we are not aware of any results con-
cerning differential-algebraic equations with changing index. As will be described
in more detail in Section 7, we have solved the initial value problems (34), (35a)
with the DASSL-code [4] until u(a) becomes zero, see Table 1. For large bodies,
i.e. vy(x,0) is constant and small, the results at the stagnation point are almost
equivalent to the correct ones obtained from equilibrium chemistry using v = 0 and
ps = lim p, see Table 2.

Let us now describe how one obtains these correct results using analytical properties.
Since by (36) dp/dx = 0 at the stagnation point, we set p, to the last value of p
computed before reaching the point where A becomes singular. The m equations of
balance in (32) have a very simple form so that one can choose N —m parameters Y;
and express the remaining Yj in terms Y. For simplicity we change the enumeration
so that the first m mass fractions are functions of the last N — m as we did before.
From the fact that the temperature can be expressed as a function of the mass
fractions Y; only, since u = 0, we can express the density

MY
p:p(ym-l-lv7YN7p):p/(RT(Ym+177YN)Z W) (55)

=1

as a function of the last N — m mass fractions Y; and the pressure p. We now
take N — m linearly independent reaction rates s; and calculate the root for the
given pressure by some iterative method (e.g. Newton’s). With the independent
mass fractions we then compute the remaining thermodynamical quantities at the
stagnation point.

Finally we would like to show that the stagnation point values do depend on the
shape and size of the body. To do this, we observe that given the pressure ps; one
can compute Y;,p and T using v = 0 and equations which do not involve v,. In
principle one can write T' = T'(p;) and the functional relation T'(.) is independent
of v,. From experiments we see that p, does depend on v, and hence T" depends on
v, since obviously 07 /dp # 0. The same is of course true for the other variables Y;
and p. We have given the values for some v, in Table 2.

It was pointed out in the 1960s by Conti [5] and other authors and became a new
topic during the Antibes workshops in 1990 and 1991 that the nonequilibrium flow
past a blunt body may generate a chemical boundary layer for small bodies (see
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stay bounded. We now want to get a rough idea of this boundary layer. We use the
dependence on the smooth functions u and p. Hence (18b) becomes
, 1
Y'=— S(Y,u,p)
up

where Y = (Y41, ..., Ya)T. At the stagnation point we have equilibrium chemistry.
Then we can assume an expansion of the form

S up) = J(YV,u,p)(Y = Y7) + O(||Y = Y[ (56)

Let us further assume that there exists a regular matrix T independent of Y, u,
p such that TJT~! = A is a real diagonal matrix with distinct eigenvalues. From
some examples we know that the eigenvalues of .J are real distinct. From this we
have at least a smooth dependence of the eigenvectors on the variables Y. If we
omit the higher order terms in (56), we obtain for the new variable 7 = T(Y — Y™)
a system of N — m independent ordinary differential equations
, 1
Z'=—AN(u,p)Z, Z(xs)=0. (57)
up
Expanding the solution around x; and using v = v, (x5 —x) gives for each component
z;

Ay

zi(x) = es(ws — x)_”yslps (58)

where A; is the ¢-th eigenvalue of J, ps is the density at the stagnation point and
vys 18 vy(xs). Observe that the eigenvalues A; are negative. One sees that there is
a boundary layer if there is an eigenvalue A\; with —); < v,,p;. Moreover, the layer
becomes thinner if v, is increasing.

If the reactions become infinitely fast, i. e. —A; tends to infinity, then one does not
have a boundary layer and in fact one has a flow with equilibrium chemistry. One
knows from the results in both Antibes workshops that todays schemes have no
problem computing equilibrium Euler flow, i. e. one obtains the correct stagnation
point temperature. In order to set (58) in the proper perspective let us briefly dis-
cuss a particular example. In Figure 12 we plot \;/p along the stagnation streamline
in the case of a circular body with the five species chemistry model described later.
Since one has conservation of the total number of the N and O atoms, two eigenval-
ues are identically zero. Directly behind the shock two eigenvalues are complex and
we have indicated only |);|/p. Further downstream this pair of conjugate complex
eigenvalues becomes two real eigenvalues and );/p is approximately —1.03 ysec™!
and —0.33 usec™ at the stagnation point. Since v, ~ 0.0327 ysec™, these two
eigenvalues do not give rise to a boundary layer. However, the third eigenvalue A3
does. If we use the value of A3/p ~ 0.01 usec™" which occurs just before the stag-
nation point, we obtain an exponent of 0.3 in (58). Note that in 2D calculations we
get estimates of approximately 0.4 for this exponent.
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analysis. There are indications that the singularity is stronger than of the type
(xs — ). In this case we will use the ansatz

a

As = In(b(zs — x))

for the eigenvalues approaching zero. The choice of (z; — 2)* leads to no solution.
Then we obtain for the corresponding variables z5 from (57)

, 1 a
zZ3 = Z3.

vy(xs — ) In(b(xs — x))

This equation can be integrated, and we obtain a solution for z as

)= ()

with the integration constants ¢, d and e. Differentiating with respect to x, we can

calculate the constants from

and get that
a=ev, and b=d.

It was surprising how good this simple ansatz corresponds to the function calculated
in the examples. To show this, we assumed e = 2 and plotted in Figure 13 the
function

exp(2vy [ Ai(z))
which is the inverse function to 1/In(z). This function is nearly a straight line in the
neighborhood of the stagnation point, and from this we know that in this special

example the exponent of the first term in an expension of the solution near the
stagnation point is two and b = 62.3.

Let us briefly relate the present analysis to earlier investigations. Conti [6] and
Vinokur [20] give good surveys over earlier work on analyzing chemical boundary
layers. Conti uses in [5] and in more detail in [6] the method of successive trunca-
tions. The idea is that one expands unknown functions with respect to powers of
stnf and cosf, where 6 is the angle in polar coordinates. This leads to a sequence of
systems of ordinary differential equations. However, each system requires knowledge
of at least one unknown which originates from the next system. This is similar to our
v, function. While in our analysis v, is taken from a 2D computation and incorpo-
rates the geometry of the body as the needed additional function, Conti [6] uses the
bow shock radius r; as a geometrical parameter and truncates the expansion of the
pressure after one term. To get more accurate results one solves successively several
of these systems of ordinary differential equations. In Vinokur [20] the chemical
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for existence of a boundary layer. The basic behavior of the boundary layer given
by Vinokur is (z, — 2)*log”(z, — z), 3 € {0,...,N —m}. We have shown above
that this cannot be correct if an eigenvalue goes to zero. Moreover it seems that
our method to compute the standoff distance z, using v, is new. Finally we want to
mention that in [8] the existence of a possible chemical boundary is pointed out, but
the assumption of incompressibility at the stagnation point contradicts our results,
see Figure 1.

7 Parameter study

As mentioned in Section 2 we are loosing all information of the geometry by passing
from the 2D Euler equations to the one-dimensional BVP on the stagnation point
streamline. The information is made available by the function v,(x). The shape
of this function is not known a priori. Because of the information from Figure 2
we now assume v, = const. We want to examine the influence of this quantity on
the solution of the BVP. Therefore we use the 5-component model of air by Park
(compare [17]), consisting of N, Ny, O, Oy and NO. The free-stream conditions are

Poo = 2.53 Pa,
Poo = 4.15 x 107" kg/m?,
T, =211 K,
M., = 25,
YN, 00 = 0.79,
Yo, = 0.21,

Yoo = YNoo = YN0, = 0.
With that we calculate the initial values by the jump condition (50) getting

o = 1935 Pa,

po = 3.27 x 107 kg/m?,
Ty = 20485 K,

My = 0.34,
Yio =Y.

To solve the system of differential equations (34) we use the DASSL-solver [4]. The
parameter v, varies over the values 100, 1000, 10000 and 100000. In Figures 4 — 8
several quantities are plotted along the stagnation point streamline which is scaled
by the stand-off distance. Table 1 shows the quantities at the stagnation point
obtained with this solver. The results in Table 2 are the roots of the reaction rates
for Ny, Oy and NO using the chemical equilibrium and the procedure described at
the end of Section 6. The value v, = 32714 sec™! is added because of the comparison
with the 2D calculation. Two points are especially noticeable:
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constant pressure (36).

2) The stand-off distance is increasing with decreasing v,.

The chemical layer is too thin to give a physical explanation for it. The thickness
is approximately 1072 m and hence it is several orders of magnitudes smaller than
the diameter of the molecules. Nevertheless, a numerical scheme should give the
correct solution to show that the physical model is wrong. The question arises
whether the layer can be realized by a two-dimensional numerical scheme. Then
the cell diameter near the body has to be much smaller than the thickness of the
layer. Let us assume that we would only need 10 cells to resolve the boundary layer.
Hence the smallest cell would have to be of size 1071% m. The finest cell used in our
calculations is 107* m. Hence we are still off by a factor of 10°. In Section 8 we
present a method how to get a better approximation of the information in the layer
by a two-dimensional scheme using coarse grids.

Let us now explain the relation of the stand-off distance and the parameter v,. To
do this, we integrate the equation of continuity (18a) along the stagnation point
streamline. This yields

JoOx
Using (53) and the mean value theorem of integral calculus we obtain

—pul(zo.0) + 04 (§)P(E, 0) (s — 20) = 0.

Herein £ is an intermediate point of the interval (x¢, ;). The stand-off distance is

(x,O)

dx + /vy(:zj)p(x,())dx = 0.

then given by

- b pouo
Y GR(0) (59)

This is the explanation to Point 2 of the numerical interpretation.

There still remains the question how to choose v,. One possibility is given by the
jump condition (49). We assume that the bow shock at the intersection point of the
symmetry axis can locally be described by a circle of radius Ry. The jump condition
for an oblique shock (see (48) and [2]) gives the following relation between v, and

Rol 5
Uso
V= —————— 60
Y (v )R, (60)
A similar consideration can be made at the body. This has been carried out in [2], p.
250 ff. Incompressibility and a pressure distribution according to Newton’s theory

has been assumed. This gives

vy A ey | e T Pec) (61)



[3] fits a curve by experimental data and Probstein/Hayes [18] derive an asymptotic
expansion with respect to the term p.,/p. The formulas (60) and (61) imply the
linearity between the radius of the body at the stagnation point and the stand-off

distance. Thus we have

v,—0 & R,—00 & z,— 29— 00,
vy, —00 & R, —0 & z,—20—0.

(62)

For the problem under consideration we calculated

. = 2061 Pa,
ps = 6.5 x 107 kg/m?>.

With (61) and Rs; = 0.1 this yields
v, = 25161 sec™'.
Using the estimation of the shock radius
Ry = 1.386 R, exp (1.8/(M,, — 1)*7)
according to Billig [3] in (60) we obtain alternatively
v, = 37200 sec™'.

Figure 2 shows the quantity v, calculated by a two-dimensional Euler computation.
The value of v, is about 32500sec™. Using this value for the solution of (34) we
calculated the same stand-off distance

|zo — 25| = 0.02075 m

as for the 2D Euler equations. According to (60) this corresponds to a bow shock
radius of 0.196 m. Thus the formula (61) cannot be used for an a-priori estimate of
vy. Moreover, the radius Ry depends nonlinearly on the radius R,. The assumptions
made for existing formulas to estimate the stand-off distance and the curvature of the
bow shock are not satisfied in a hypersonic flow with chemical nonequilibrium. Here
the estimated values differ by more than 30%. Because v, is not known a priori, the
stand-off distance can only be determined by a two-dimensional calculation. Vice
versa the numerical 2D solution can be verified quantitatively at critical points. In
contrast to shock-capturing schemes, there exist an error analysis and quantitative
statements for the solution of ordinary differential equations. Thus we developed
an alternative validation method besides experimental data, especially when some
physical phenomena are absent, as it is the case with Euler flow.
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The previous investigations provided a good approximation of the solution along the
stagnation point streamline. For values v, > 1000 the figures in the appendix show
a thin chemical boundary layer near the body surface. We use this information in
our 2D calculations to obtain better results. The question arises how a finite volume
method can describe such a behavior. Obviously, a boundary layer which is less than
107'% m thick cannot be resolved by volumes with a diameter which is eight orders
of magnitude larger.

We want to investigate if there is any layer and what happens in the limit when the
grid size goes to zero. Therefore we extrapolate the values on the stagnation point
streamline in the flow field to the body surface. We use the same ansatz

y(e) = ys + ez, — 2)° (63)

as in (58). The parameters ys, ¢ and « can be either fitted using the three nearest
points or calculated from a nonlinear least square problem to reduce the influence of
the errors due to boundary conditions. Both methods give almost the same results.
In the tables the results of the least square method are shown.

The most interesting and sensitive variable is the temperature. There are three
possibilities to calculate this temperature. First, we extrapolate the temperature
directly. This value is given in line eight of the tables in the appendix and called
T. Secondly, we extrapolate the conserved quantities pq,...,pn and pE and set
v =v =0. With (5) we then calculate the temperature (called T,z). The gradient
of the energy may also be infinite. From (36) we know that the pressure gradient
is zero in xg. Thirdly, we take the pressure in front of the wall, the extrapolated
partial densities and use (1) to calculate the temperature Tj,.

For this investigation we have done six test calculations for a flow past a cylinder
of radius 0.1 m. The grid size varies from 0.5 mm to 0.1 mm in steps of 0.1 mm.
The numerical method used is a modified van Leer flux-vector-splitting completely
described in [9]. The Tables 3 — 7 show the results of the extrapolation. The quantity
Yy, is the value at the wall. The exponent « reflects the behavior of the function. If «
is greater than one, the function is smooth with a bounded gradient at the stagnation
point. If « is less than one, we have a root function with an infinite gradient at
x,. From the value of @ we can also estimate the thickness of the boundary layer.
The smaller a gets, the thinner the boundary layer becomes. In Tables 3 — 7 all the
quantities change monotonously when refining the mesh. The exponents of energy,
temperature and partial density of nitrogen atoms decrease whereas the exponent of
nitrogen molecules increases and is greater than one. We find that with decreasing
mesh size the boundary layer is more and more resolved. Even in the case of the
coarse mesh we can reduce the temperature by 350 K to 8159 K. On the finest
mesh we get 7780 K. The temperature T, is always higher than 7,5. Moving to
the finer grid, the value of the pressure increases to 2100 Pa, but p,r using the
temperature T,5 and (1) decreases to 2074 Pa. The corresponding value obtained
from the BVP is 2061 Pa.
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are greater than one even for density and temperature. So the solution of this 2D
calculation suggests a smooth continuation to the stagnation point. The extrapola-
tion (63) is not useful here. The extrapolated values in Table 3 of the coarse grid
are better than in Table 8 for the fine grid.

9 Final remarks

In the Sections 2 and 3 we transformed the compressible Euler equation into a free
BVP. A symmetric flow is only assumed for simplicity. This transformation is also
possible for an arbitrary geometry. In this case we first transform the Cartesian
coordinate system into one consisting of streamlines and their normals. Then the
equations get the same structure used in the Sections 2 and 3.

The mathematical assumptions (14) are implied by the more obvious ones in As-
sumption 2 and they are valid for nearly all interesting initial conditions. In the case
of the Euler equations and for the special chemical model we are able to compute all
the values up to the stagnation point. So we have the possibility to investigate this
point in detail without any assumption of incompressibility as in [1] or [8]. From
Figure 9 it is clear that especially this assumption is violated.

In Section 6 we showed that a unique solution on the stagnation streamline exists,
even when the matrix A becomes singular. Nevertheless it is still complicated to
calculate this solution numerically. The authors are not aware of any papers which
deal with the numerical solution of DAE’s with index jump. So we moved the
problem from one class to another. The theory of DAE’s gives us more powerful
tools to analyze this problem than the theory of hyperbolic conservation laws does.
Only the knowledge of all the analytical properties and the special problem enables
us to obtain satisfactory results at the stagnation point (see Table 1 and 2). As
mentioned in Section 8, we now can estimate the accuracy of a 2D Euler calculation.
We can compare different Euler solvers and decide which one is more suitable for
the problem. Such a comparison of two schemes in [9] shows that the standard van
Leer scheme is not a good choice (see Fig. 11). The numerical diffusion is too high
to resolve the structure generated by the chemical reactions. In contrast to this, the
modified scheme gives good results. Using the extrapolation (63), the stagnation
point temperature can be reduced.

A new interesting result is the behavior of the pressure. We noticed a difference
between the solution of the BVP and the 2D calculation over the whole interval
whereas the temperature only differs near the stagnation point. It would be inter-
esting to know how the 3% pressure difference influences the stand-off distance. For
example the pressure between an ideal gas flow and a chemical reacting one differs
by only 15 — 20% but the stand-off distance is reduced to less than half. So the
question of good boundary conditions arises and a more general extrapolation than
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Let us add some remarks concerning the physical relevance of these results. From the
solution of (34) we obtain the size of the boundary layer to be less than 1072 m. So
it is smaller than the diameter of the atoms involved. Such a thin layer contradicts
the fundamental continuum assumption. In every volume element (the physical, not
the numerical ones), including those in the layer, there have to be enough particles
so that this element can be regarded as a continuum; otherwise one has to use the
Boltzmann equation. This assumption is strongly violated by the solution. Thus it
is not reasonable to use analytical results such as chemical equilibrium as boundary
conditions. Perhaps the numerical solution may be closer to the physical one than

S e

the analytical solution.

Notation

M Mach number

u  velocity component in x-direction

v velocity component in y-direction

p  pressure

p  density

p;  partial density of species ¢

Y, mass fraction of species ¢

e; internal energy of species ¢

e internal energy

¢y specific heat capacity at constant volume of species ¢
¢, specific heat capacity at constant volume
¢yi specific heat capacity at constant pressure of species 2
¢, specific heat capacity at constant pressure
~  ratio of heat capacities

W, molar weight of species :

R universal gas constant

T  temperature

¢y Tfrozen speed of sound

s;  chemical reaction rate of species ¢

E  total energy per mass

H  total enthalpy per mass

N number of species

hY  heat of formation of species ¢
Ah  heat of formation

R, local radius of the body

Ry local radius of the shock front

N outer normal

I'  shock surface
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A Tables
Table 1: Solution at the stagnation point with DAE
vy = 100 1000 10000 32437 100000
Yy | 4.61868E-01 | 4.59821E-01 | 4.32618E-01 | 4.10828E-01 | 3.82207E-01
Yn, | 3.27694E-01 | 3.29713E-01 | 3.56375E-01 | 3.77456E-01 | 4.04637E-01
Yo 2.09494E-01 | 2.09461E-01 | 2.08830E-01 | 2.07999E-01 | 2.06296E-01
Yo 5.74012E-06 | 6.27808E-06 | 1.89155E-05 | 4.07266E-05 | 9.76211E-05
Yvo | 9.37376E-04 | 9.98744E-04 | 2.15798E-03 | 3.67593E-03 | 6.76148E-03
p 7.74119E-04 | 7.64814E-04 | 6.97339E-04 | 6.52807E-04 | 6.04505E-04
p 2.10363E+03 | 2.09248E4-03 | 2.07439E403 | 2.06144E403 | 2.04877E4-03
T 5.77388E+03 | 5.82062E403 | 6.43918E403 | 6.93374E403 | 7.58760E4-03
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vy = 100 1000 10000 32437 100000
Yy | 4.62112E-01 | 4.62173E-01 | 4.62272E-01 | 4.62344E-01 | 4.62414E-01
Yy, | 3.27454E-01 | 3.27394E-01 | 3.27296E-01 | 3.27225E-01 | 3.27156E-01
Yo 2.09498E-01 | 2.09499E-01 | 2.09501E-01 | 2.09502E-01 | 2.09503E-01
Yo, | 5.67648E-06 | 5.66061E-06 | 5.63479E-06 | 5.61623E-06 | 5.59804E—-06
Yno | 9.30253E-04 | 9.28473E-04 | 9.25572E-04 | 9.23485E-04 | 9.21436E-04
p 7.58529E-04 | 7.54662E-04 | 7.48387E-04 | 7.43892E-04 | 7.39496E-04
p 2.10363E+03 | 2.09248E4-03 | 2.07439E403 | 2.06144E403 | 2.04877E4-03
T 5.76834E+03 | 5.76695E403 | 5.76468E+03 | 5.76305E403 | 5.76144E4-03
Table 3: grid size A = 0.5 mm

Ys c a y(xl)
pn | 0.19991273E-03 | —0.80781548E-03 | 0.50471578E400 | 0.18750639E-03
pn, | 0.24793950E-03 | —0.95975896E-03 | 0.10735826E401 | 0.24776935E-03
po | 0.11603159E-03 | —0.33930816E-03 | 0.54705998E4-00 | 0.11235681E-03
po, | 0.12330134E-06 0.91404103E-05 | 0.68942801E4-00 | 0.15358958E-06
pno | 0.65710286E-05 0.18052196E-03 | 0.60183032E4-00 | 0.78083213E-05
pl | 0.13105287E405 | -0.30289441E4-05 | 0.53345421E400 | 0.12737924E+05
P 0.20906855E404 | —0.18559110E410 | 0.33461180E4-01 | 0.20983123E+04
T 0.81988008E404 | 0.26001293E405 | 0.53462722E4-00 | 0.85099693E+04

Ty = 8159.0117047686 T, = 8215.1801714935

por = 2076.3911117977

Table 4: grid size h = 0.4 mm

Ys c a y(xl)
pn | 0.20305077E-03 | -0.72739684E-03 | 0.48030513E4-00 | 0.19079166E-03
pn, | 0.24856616E-03 | —0.25536107E-02 | 0.12226854E4-01 | 0.24844406E-03
po | 0.11710755E-03 | —0.30859172E-03 | 0.52550932E4-00 | 0.11356194E-03
po, | 0.11441500E-06 0.70641980E-05 | 0.64536941E4-00 | 0.14354900E-06
pno | 0.62547971E-05 0.14824280E-03 | 0.56566623E+00 | 0.74603221E-05
pl | 0.13208794E405 | -0.28025611E4-05 | 0.51392267E400 | 0.12853226+05
P 0.20933196E404 | —0.61516578E+13 | 0.46129648E401 | 0.20915281E+04
T 0.811670461.4-04 | 0.21856474E+05 | 0.5002406314-00 | 0.84270561E4-04

T,r = 8077.2888176093
por = 2075.9385901421

T, = 8144.9167960238
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Ys

c

[a%

y(1)

0.20670728E-03
0.24931441E-03
0.11835569E-03
0.10479264E-06
0.59006480E-05
0.13330360E4-05
0.20942141E404
0.80234747E404

—0.65460752E-03
—-0.10356894E-01
—0.28166107E-03
0.52793397E-05
0.11795962E-03
—0.26185338E4-05
0.0
0.18086707E+05

0.45455047E4-00
0.14140019E4-01
0.50305888E4-00
0.5966186814-00
0.52453868E4-00
0.49414120E4-00
0.0

0.46289140E4-00

0.194673651E-03
0.24922025E-03
0.11497124E-03
0.13252049E-06
0.70693184E-05
0.12989828E+05
0.20942141E4-04
0.83318977E4-04

T, = 7984.8015522491
por = 2075.6566020433

T, = 8040.9779384132

Table 6: grid size A = 0.2 mm

Ys

c

[a%

y(1)

0.20985258E-03
0.24995967E-03
0.11941402E-03
0.96633206E-07
0.55898729E-05
0.13432646154-05
0.209628811E4-04
0.79406171 1404

—0.58542245E-03
—0.62566174E-01
—0.25665548E-03
0.38336304E-05
0.90948968E-04
~0.24585223E+05
0.0
0.14697074E+05

0.42479201E4-00
0.16222580E4-01
0.47629982E4-00
0.53939283E4-00
0.47507639E4-00
0.47111598E4-00
0.0

0.4197840614-00

0.19808780E-03
0.24987678E-03
0.11619809E-03
0.12339933E-06
0.67378999E-05
0.13109328E+05
0.209628811E4-04
0.82493746154-04

T,r = T7903.7673074697
por = 2074.5185248101

T, = 7971.0347446921

Table 7: grid size A = 0.1 mm

Ys

c

[a%

y(1)

0.21507150E-03
0.25070684E-03
0.12109627E-03
0.84567824E-07
0.51118945E-05
0.13604307E4-05
0.20991617E404
0.78111787E+404

—0.51780233E-03
—-0.17829806 401
—0.23471594E-03
0.24651723E-05
0.63458194FE-04
—0.23551882E4-05
0.0
0.11163308E+05

0.38734202E4-00
0.19560081E4-01
0.44302758E4-00
0.46512069E4-00
0.41009834E4-00
0.4425992514-00
0.0

0.36365140E4-00

0.20384577E-03
0.25062490E-03
0.11815857E-03
0.10926742E-06
0.62079810E-05
0.13308085E4-05
0.20991617E404
0.81166359E4-04

T,r = T7780.1129582163
por = 2073.6480970424

T, = 7860.4579352647
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c

[a%

y(1)

—0.67378885E4-00
0.0

—0.89543947E-01
0.14488872E-01
0.52574927E+00

-0.49253741E4-07
0.0
0.88344790E+08

0.17723435E4-01
0.0

0.16425622FE4-01
0.20010622E4-01
0.20168725FE401
0.1564758614-01
0.0

0.19920473E401

0.17984100E-03
0.25008600E-03
0.11043800E-03
0.18676900E-06
0.89403600E-05
0.12537000E4-05
0.21027907E4-04
0.8726224514-04

T,r = 8725.1529634401
por = 2102.7258393496

T, = 8728.3024435533

yS
pn | 0.17984419E-03
pn, | 0.25015325E-03
po | 0.11043832E-03
po, | 0.18671217E-06
pro | 0.89382853E-05
pE | 0.12537008E+05
p | 0.21027970E+04
T | 0.87257659E+04
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Figure 5: Velocity along the stagnation point steamline
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Figure 6: Pressure along the stagnation point steamline
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Figure 7: Temperature along the stagnation point steamline
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Figure 8: Mass fraction of nitrogen atoms along the stagnation point steamline
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Figure 9: Comparison of solutions of BVP and 2D calculation
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Figure 10: Comparison of solutions of BVP and 2D calculation
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Figure 11: Comparison of solutions of BVP and 2D calculation with standard van
Leer scheme
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Figure 12: Real part of the eigenvalues along the stagnation point steamline
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Figure 13: The function exp(2v,/A(x)) for the real part of the eigenvalues along the
stagnation point steamline
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