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1. Introduction

The present article is concerned with numerical methods for boundary inte-
gral equations for parabolic partial differential equations, and with their anal-
ysis. Similarly to the elliptic case, an efficient numerical solution of boundary
integral equations is of interest in the following situations: For problems for-
mulated on the boundary of the spatial domain (e.g., to compute the heat
flow through the boundary from the given surface temperature), for exte-
rior problems posed on unbounded domains with bounded boundary, and for
problems where the solution, or a derivative thereof, is sought only in a small
portion of the domain.

The spatial discretization by boundary elements can be done for parabolic
problems in much the same way as for the elliptic case, but it has to be
coupled to a time discretization. The latter is the main theme of the present
article. We study a class of quadrature methods whose construction is based
on a linear multistep method and the Laplace transform of the fundamen-
tal solution. The time-dependent fundamental solution need not itself be
known explicitly, even though all computations with the boundary data and
solution are done in time domain. The computational work is almost linear
in the number of time steps, and only one matrix factorization of a bound-
ary element matrix is needed. In the absence of a space discretization, the
semi-discrete solution obtained from the proposed time discretization of the
boundary integral equation is identical to that of a multistep time discretiza-
tion of the partial differential equation. The temporal stability properties
follow from those of the underlying multistep method, also in the fully dis-
crete case.

Sacrificing generality for concreteness, we have chosen to present the meth-
ods and their theory only for the single layer potential equation of the heat
equation. This can be extended without new difficulties to other bound-
ary integral equations for the heat equation (see [8]) and, in fact, for quite
general linear parabolic differential equations. For example, we expect our
techniques to extend rather straightforwardly to boundary integral equations
for the nonstationary Stokes problem. While the presented theory only per-
tains to parabolic problems, the formulation of the method applies equally
well to boundary integral equations for the wave equation and for nonstation-
ary equations in elasticity, which have been used in important engineering
applications [4]. The analysis of such problems will have to be the subject
of further study. A numerical example of the proposed time discretization
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methods for an integral equation for a time-dependent Schrödinger equation
is given in [18].

A solution theory of boundary integral equations for the heat equation has
been developed only very recently. A substantial and surprising result, dis-
covered independently by Arnold & Noon [5] and Costabel [8], states that
the single layer heat potential operator is elliptic in an anisotropic Sobolev
space, with exponents −1

2 w.r.t. space and −1
4 w.r.t. time. The correspond-

ing theory can be viewed as a counterpart of Lions & Magenes’ [16] theory of
parabolic differential equations in related anisotropic spaces. In contrast, the
theory developed here is rather related to the theory of analytic semigroups
(e.g. [15]), in that it is based on a Dunford-Taylor operational calculus over
sectorial regions of the complex plane, combined with the study of the single
layer potential operator for the parameter-dependent equation λu−∆u = 0.
The latter is done with the help of a parameter-dependent pseudodifferential
calculus as developed by Agranovich [2]. This approach allows us to obtain
a-priori estimates pointwise in time, which would not follow with the the-
ory of [5] and [8]. Apart from these analytical subtleties, the two different
approaches to the theory form the basis of two entirely different numerical
methods: Galerkin in both space and time as in [5],[8], vs. convolution
quadrature in time coupled with a Galerkin or collocation boundary element
method in space as considered here. Unlike [5] and [8], our convergence es-
timates are pointwise in time and are given in terms of the boundary data.
This allows us to cover also the case of heat shocks. Estimates in terms of
the solution could also have been obtained here, but they appear to be of
less interest in view of the generally low regularity of the solution near t = 0.
We note that our results are shown only for smooth spatial domains, whereas
general Lipschitz domains are treated in [8].

An outline of the paper is as follows: In Section 2 we study mapping proper-
ties of the single layer heat potential operator. Section 3 deals with the con-
struction of the solution of the heat equation with non-homogeneous Dirich-
let boundary conditions via heat potentials. These two sections develop the
analytical framework for the numerical methods. Section 4 introduces semi-
discretization in time by operational quadrature methods. In Sections 5 and
6 this is coupled with space discretization by Galerkin and collocation bound-
ary element methods, respectively. Section 7 describes the implementation
of the proposed methods and reports on numerical experiments.
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2. The single layer potential operator for the heat equation

Throughout this paper, Γ will denote the boundary of a smooth bounded
domain Ω in Rd, with d = 2 or 3, and I = [0, t] denotes the time interval.
We are interested in solving the equation

Vϕ = g on Γ× Ic2.1)

where V is the single layer heat potential operator, defined for ϕ ∈ C(Γ× I)
by

(2.2) (Vϕ)(x, t) =
∫ t

0

∫

Γ

k(x−y, t−s)ϕ(y, s) dy ds , x ∈ Γ , 0 ≤ t ≤ t ,

with k denoting the fundamental solution of the heat equation. We shall
actually need only the Laplace transform K(x,λ) of k(x, t) which is the
fundamental solution of the stationary differential equation λu−∆u = 0:

(2.3) K(x,λ) =
1
2πK0(|x| ·

√
λ) d = 2

1
4π|x| exp(−|x| ·

√
λ) d = 3

where K0 denotes the modified Bessel function of order 0. The associated
integral operator V (λ) given for ψ ∈ C(Γ) by

(2.4) (V (λ)ψ)(x) =

∫

Γ

K(x− y,λ)ψ(y) dy , x ∈ Γ

is thus the single layer potential operator corresponding to the equation
−∆u + λu = 0 on Ω. Our study of equation (2.1) relies heavily on map-

ping properties of the operators V (λ).

Theorem 2.1. Let the sectorial region Λ = {λ ∈ C : | arg λ| ≤ π − φ, |λ| ≥
R}, with 0 < φ < π

2 , and sufficiently large R. For λ ∈ Λ, the operator V (λ)
defined by (2.4) can be extended to an isomorphism

V (λ) : H−1/2(Γ) → H1/2(Γ)

with

‖V (λ)ψ‖H1/2 ≤ C ‖ψ‖H−1/2

Re 〈V (λ)ψ,ψ〉 ≥
α√
|λ|

‖ψ‖2H−1/2
for all ψ ∈ H−1/2(Γ) .
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The constants C and α > 0 are independent of λ ∈ Λ. Moreover, the mapping
λ +→ V (λ) is analytic. Proof. We consider first the case of a half-space,

Ω = Rd
+ = {(x′, xd) ∈ Rd : xd > 0} . This shows the basic estimates in a

nontechnical setting. The powerful machinery of pseudodifferential calculus
then allows us to extend the result to general smooth bounded domains Ω.

(a) With Ω = Rd
+ we have Γ = Rd−1 × 0, and V (λ) is given for ψ ∈ C∞

0 (Γ)
by the relation

FV (λ)ψ(ξ) = 1
2(λ+ |ξ|2)−1/2 · Fψ(ξ)

where F denotes the (d− 1)-dimensional Fourier transform. Since

(2.5)

∣∣∣∣
1

2

(1 + |ξ|2)1/2

(λ+ |ξ|2)1/2

∣∣∣∣ ≤ C , ξ ∈ Rd−1 , λ ∈ Λ ,

we have with ψ̂ = Fψ

‖V (λ)ψ‖H1/2 = ‖(1+|ξ|2)1/4·12(λ+|ξ|2)−1/2ψ̂‖L2 ≤ C ‖(1+|ξ|2)−1/4ψ̂‖L2 = C ‖ψ‖H−1/2 .

In a similar way, since

(2.6) Re 1
2

(1 + |ξ|2)1/2

(λ+ |ξ|2)1/2
≥ α|λ|−1/2 , ξ ∈ Rd−1 , λ ∈ Λ ,

holds for some α > 0, we have

Re 〈V (λ)ψ,ψ〉 = Re

∫

Rd−1

1
2(λ+ |ξ|2)−1/2|ψ̂|2dξ =

Re

∫

Rd−1

1
2

(1 + |ξ|2)1/2

(λ+ |ξ|2)1/2
|(1 + |ξ|2)−1/4ψ̂|2 dξ ≥

∫

Rd−1

α|λ|−1/2 |(1 + |ξ|2)−1/4ψ̂|2 dξ = α|λ|−1/2 ‖ψ‖2H−1/2 .

This establishes the required inequalities in the case Ω = Rd
+. (b) When Ω ⊂

Rd is an arbitrary smooth domain with boundary Γ, we use the parameter-
dependent pseudodifferential calculus as developed by Agranovich [2], cf.
also Shubin [28], Section 9. V (λ) can be considered as a pseudodifferential
operator of the class CL−1

2 (Γ,Λ) in the notation of [28], p.76, with principal
symbol locally of the form

v−1(x, ξ,λ) = (λ+ |A(x)ξ|2)−1/2 , x ∈ Γ, ξ ∈ Rd−1 , λ ∈ Λ ,
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where the nonsingular matrix A(x) is the Jacobian of a local coordinate
transform. Hence the symbol still satisfies estimates as in (2.5), (2.6). With
the Gårding inequality Prop. 2.9 of [2] and with the techniques used in the
proofs of its corollaries in [2], one can then conclude the desired estimates
of Theorem 2.1 for sufficiently large |λ|. (c) The Lax-Milgram lemma then

shows that V (λ) : H−1/2(Γ) → H1/2(Γ) is an isomorphism with

(2.7) ‖V (λ)−1‖H−1/2←H1/2 ≤
1

α
|λ|1/2 , λ ∈ Λ .

(d) Finally, to get the analyticity of λ +→ V (λ) we begin with the fact that

〈V (λ)ψ1,ψ2〉 is analytic for every ψ1,ψ2 ∈ C(Γ), which is seen immediately
from (2.4). Since ‖V (λ)‖ is locally bounded, the result is then obtained from
Theorem III.3.12 in Kato [15], p.152, and the remark following it.

With the Laplace inversion formula in mind, we will now express the single
layer heat potential operator V and its inverse in terms of the operators V (λ).
The construction resembles that of analytic semigroups, cf. e.g. Kato [15],
Ch.IX. Our main tool in this construction, and later on in the analysis of the
numerical approximation schemes, will be the representation formula given
in the following lemma, which we formulate in an abstract setting.

Lemma 2.2. Let Λ be a sectorial region as in Theorem 2.1. Suppose that
T (λ), λ ∈ Λ, is an analytic family of linear operators between Banach spaces
E and F , whose operator norms satisfy for some 0 ≤ γ < 1

(2.8) ‖T (λ)‖ ≤ c · |λ|γ , λ ∈ Λ .

(a) For g ∈ Cµ(I, E) with γ < µ ≤ 1, the formula

(2.9) (T })(-) =
∞
∈π〉

∫

L
λ−∞T (λ)

/
/-

∫ &

′
0λ(&−∫)}(∫ ) /∫ /λ ,

with complex contour L ⊂ Λ parallel to the boundary of Λ, defines (T g)(t) ∈
F satisfying

(2.10) ‖(T })(-)‖ ≤ C ·
(
-−γ‖}(′)‖+ |}|Cµ

)
, ′ < - ≤ T ,

with the Hölder seminorm |g|Cµ = sup0≤s<t≤T ‖g(t)− g(s)‖/|t− s|µ .
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(b) For every γ < µ ≤ 1 and α < µ− γ, one has a continuous mapping

(2.11) T : {} ∈ Cµ(I, E); }(′) = ′} → Cα(I,F) .

(The restriction g(0) = 0 can be dropped, if γ = 0.)

(c) If g ∈ Cµ([0,∞), E) with µ > γ is exponentially bounded - in the sense
that ‖g‖Cµ([0,t],E) ≤ MeLt for all t > 0, for some M,L - then so is T g ∈
C((0,∞), F ). Hence Laplace transforms of both g and T g exist, and they
satisfy

(2.12) L(T g)(λ) = T (λ) · (Lg)(λ) .

Proof. (a) We split

g(s) = [g(s)− g(r)] + [g(r)− g(0)] + g(0) ,

and so

d

dt

∫ t

0

eλ(t−s)g(s) ds = λ

∫ t

0

eλ(t−s)[g(s)− g(r)] ds+ eλt[g(r)− g(0)]+ eλtg(0) .

Choosing r = t, it follows that for λ ∈ L

‖
d

dt

∫ t

0

eλ(t−s)g(s) ds‖ ≤ C
(
|λ|−µ + |tµeλt|

)
· |g|Cµ + |eλt| · ‖g(0)‖

In view of the bound on T (λ), this implies that (T g)(t) is defined by abso-
lutely convergent integrals, and is bounded by (2.10).

(c) It is convenient to show (c) before (b). We have

L
(

d

dt

∫ t

0

eλ(t−s)g(s) ds

)
(λ0) =

λ0

λ0 − λ
(Lg)(λ0) ,

for λ0 with sufficiently large real part. Under the given assumptions one may
interchange integrals in L(T g) to obtain

L(T g)(λ0) =
1

2πi

∫

L

λ−1T (λ)
λ0

λ0 − λ
(Lg)(λ0) dλ = T (λ0)Lg(λ0) ,

where the last equality holds by Cauchy’s integral formula.

6



(b) For 0 ≤ α < µ− γ and g ∈ Cµ(I, E), we set

(Tαg)(t) =
1

2πi

∫

L

λ−1+αT (λ)
d

dt

∫ t

0

eλ(t−s)g(s) ds dλ .

Applying the result of (a) to λαT (λ) instead of T (λ), one gets that

Tα : {g ∈ Cµ; g(0) = 0} → C0 is continuous,

and from (c) that
L(Tαg)(λ) = λαT (λ) · (Lg)(λ)

for exponentially bounded g. It follows that

L(T g)(λ) = λ−α · L(Tαg)(λ) ,

and hence T g is the Abel-Liouville fractional integral of order α of Tαg:
T = IαTα with

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s) ds .

Since Iα maps C0 continuously into Cα, see e.g. [11], p.223, we get the
desired result.

We are now ready for the study of the single layer heat potential equation
(2.1).

Theorem 2.3. For arbitrary δ > ε > 0, there are continuous operators

V : Cδ(I,H−∞/∈(−)) → Cε(I,H∞/∈(−))

V(−∞) : {} ∈ C∞/∈+δ(I,H∞/∈(−)); }(′) = ′} → Cε(I,H−∞/∈(−))

with the following properties:

(a) Vϕ is given by (2.2) for ϕ ∈ C∞(Γ× I).
(b) For g ∈ C1/2+δ(I,H1/2(Γ)) with g(0) = 0, the equation Vϕ = } has in

Cε(I,H−1/2(Γ)) the unique solution ϕ = V(−∞)}.
The operators V and V(−∞) are given by formula (2.9) with V (λ) and V (λ)−1

of Theorem 2.1 in the role of T (λ).

Proof. Let V and V(−∞) be constructed as in Lemma 2.2. By part (b) of
that lemma, and by the estimates of Theorem 2.1, they are then continuous
operators between Hölder spaces as stated.
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(a) For ϕ ∈ C2(Γ× I), we have that

ψλ =
d

dt

∫ t

0

eλ(t−s)ϕ(s) ds ∈ C1(Γ) ,

and hence V (λ)ψλ ∈ C1(Γ), with V (λ)ψλ(x) given by (2.4) for x ∈ Γ. More-
over, ∫

L

λ−1V (λ)ψλ dλ ∈ C1(Γ)

exists as a C1(Γ)-valued (improper Riemann) integral, and because of the
continuous inclusion C1(Γ) ⊂ H1/2(Γ) it coincides with the H1/2(Γ)-valued
integral. Hence we have for x ∈ Γ

[(Vϕ)(-)](§) =
∞
∈π〉

∫

L
λ−∞

∫

−
K(§− †,λ)

/
/-

∫ &

′
0λ(&−∫)ϕ(†, ∫ ) /∫ /† /λ .

By the Laplace inversion formula

k(x, t) =
1

2πi

∫

L

K(x,λ)eλt dλ ,

and by an application of Cauchy’s integral theorem:
∫

L

λ−1K(x,λ)dλ = 0 , x 3= 0 ,

we get therefore the weakly singular integral

[(Vϕ)(-)](§) =
∫ &

′

∫

−
‖(§− †,- − ∫ )ϕ(†, ∫ ) /† /∫ ,

which is (2.2).
(b) We extend g to g ∈ C1/2+δ([0,∞), H1/2(Γ)) with compact support,

and let ϕ = V(−∞)}. By Lemma 2.2(c) we then have

Lϕ = V (λ)−1Lg ,

and
L(Vϕ) = V(λ)Lϕ = L} .

It follows that Vϕ = } on [0,∞), and by causality a fortiori on [0, t].
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To prove uniqueness, we have to use a different argument. Suppose ϕ ∈
Cε(I,H−1/2(Γ)), and Vϕ = ′ on I. Then also

I2V(−∞)Vϕ = ′ on [′,-] ,

where I denotes the integration operator: If(t) =
∫ t

0 f(s) ds , and I2 = I ·I.
The premultiplication with I2 makes it possible to interchange integrals as
needed. We get

I2V(−∞)Vϕ(-) =
1

2πi

∫

L

λ−1V (λ)−1 1

2πi

∫

L′

µ−1V (µ)
1

2πi

∫

L′′

1

ν − λ

1

ν − µ

∫ t

0

eν(t−s)ϕ(s) ds dν dµ dλ

(with L′′ to the right of L′ to the right of L). By Cauchy’s integral formula,
this reduces to

I2V(−∞)Vϕ(-) =
∞
∈π〉

∫

L′′

ν−∈
∫ &

′
0ν(&−∫)ϕ(∫ ) /∫ = I∈ϕ(-) .

Hence I2ϕ = 0 on I, and this clearly implies ϕ = 0, proving the uniqueness
of solutions.

Remark. According to Lemma 2.2, V(−∞) can be extended to an operator
V(−∞) : C∞/∈+δ(I,H∞/∈(−)) → C((′,-],H−∞/∈(−)) satisfying for 0 < t ≤ t
(2.13)
‖(V(−∞)})(-)‖H−∞/∈(−) ≤ C· (-−∞/∈‖}(′)‖H∞/∈(−) + |}|C∞/∈+δ(I,H∞/∈(−))) ,

see formula (2.10).

3. Solution of the Dirichlet problem of the heat equation by heat

potentials

In this section we consider the initial-boundary value problem for the heat
equation,

(3.1)

∂u

∂t
= ∆u in Ω× (0, t)

u = g on Γ× (0, t)

u = 0 in Ω, at t = 0 .

9



If there exists ϕ ∈ C(Γ× I) as solution of the single layer potential equation
Vϕ = }, then it is known from classical theory, cf. Pogorzelski [21], that (3.1)
is solved by
(3.2)

u(x, t) = (Uϕ)(§,-) =
∫ &

′

∫

−
‖(§−†,-−∫)ϕ(†, ∫ ) /† /∫ , § ∈ ⊗ , ′ ≤ - ≤ - ,

which is in C∞(Ω × (0, t)) ∩ C(Ω × [0, t]). For the purpose of obtaining a
solution theory in terms of the Dirichlet data g, and later for the numerical
analysis, we consider again the corresponding stationary operators, given for
ψ ∈ C(Γ) by

(3.3) (U(λ)ψ)(x) =

∫

Γ

K(x− y,λ)ψ(y) dy , x ∈ Ω .

We begin by studying the mapping properties of U(λ) in appropriate Sobolev
spaces.

Theorem 3.1. Let Λ denote a sectorial region as in Theorem 2.1, and let
λ ∈ Λ.
(a) U(λ) of (3.3) can be extended to a continuous operator U(λ) : H−1/2(Γ) →
H1(Ω) satisfying

‖U(λ)ψ‖H1(Ω) ≤ C · ‖ψ‖H−1/2(Γ)

‖U(λ)ψ‖H−1(Ω) ≤
C

|λ|
· ‖ψ‖H−1/2(Γ)

for all ψ ∈ H−1/2(Γ) .

The constants are independent of λ ∈ Λ.

(b) Let g ∈ H1/2(Γ), and denote ϕ = V (λ)−1g ∈ H−1/2(Γ), and u = U(λ)ϕ ∈
H1(Ω). Then u is the unique solution of the boundary value problem

(3.4)
−∆u+ λu = 0 in Ω

u = g on Γ .

Here the differential equation holds with equality inH−1(Ω), and the boundary
values are in the sense of traces. Moreover,

‖u‖H1(Ω) ≤ C |λ|1/2 · ‖g‖H1/2(Γ)

‖u‖H−1(Ω) ≤ C |λ|−1/2 · ‖g‖H1/2(Γ)

with constants which do not depend on λ ∈ Λ.
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Proof. (a) We again consider first the case Ω = Rd
+. Let ψ ∈ C∞

0 (Γ), and
set u = U(λ)ψ, for some λ ∈ Λ. Then we have

(Fd−1u)(ξ
′, xd) =

1
2(λ+ |ξ′|2)−1/2 exp(−(λ+ |ξ′|2)1/2xd) · ψ̂(ξ′)

where Fd−1 denotes the (d−1)-dimensional Fourier transform, with transform
variables ξ′ ∈ Rd−1, and ψ̂ = Fd−1ψ. We define h ∈ H1/2(Γ) by setting

ĥ(ξ′) = (1 + |ξ′|2)−1/2ψ̂(ξ′)

and consider h as the trace of w ∈ H1(Ω), which is constructed as in the
usual proof of the trace theorem, see Nečas [19], by

Fd−1w(ξ
′, xd) = exp(−(1 + |ξ′|2)1/2xd) · ĥ(ξ′) .

Then
‖w‖H1(Ω) = c · ‖h‖H1/2(Γ) = c · ‖ψ‖H−1/2(Γ)

where c is some nonzero constant.
When we extend u and w by reflection to all ofRd: u(x′,−xd) = u(x′, xd),

then we obtain for û = Fd u

û(ξ) =
1 + |ξ|2

λ+ |ξ|2
ŵ(ξ) , ξ ∈ Rd .

It follows that
‖u‖H1(Ω) ≤ C · ‖w‖H1(Ω) ,

and similarly we get

‖u‖H−1(Ω) ≤
C

|λ|
· ‖w‖H1(Ω) .

This gives the result for Ω = Rd
+.

For general smooth bounded Ω ⊂ Rd we still have by local charts a
continuous mapping

ψ ∈ H−1/2(Γ) +→ w ∈ H1(Ω) ,

such that u = U(λ)ψ is obtained from w by means of a pseudodifferential

operator with principal symbol 1+|ξ|2
λ+|ξ|2 . As Ω is assumed to be bounded, it
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follows from the parameter-dependent pseudodifferential calculus, see Shubin
[28], Theorem 9.1, that the mapping w +→ u is bounded uniformly in λ ∈ Λ
(with sufficiently large R in the definition of Λ) as an operator H1(Ω) →
H1(Ω), and bounded by C · |λ|−1 as an operator H1(Ω) → H−1(Ω). This
gives us the first part of the theorem.

(b) Let us first recall that equation (3.4) has for λ ∈ Λ a unique solution
u ∈ H1(Ω) for every g ∈ H1/2(Γ), which moreover depends continuously
on g. Indeed, g ∈ H1/2(Γ) is the trace of a function w ∈ H1(Ω) with
‖w‖H1(Ω) ≤ C · ‖g‖H1/2(Γ), and thus u ∈ H1(Ω) is a solution of (3.4) if and
only if u0 = u− w solves

−∆u0 + λu0 = f , u0 ∈ H1
0 (Ω) ,

where f = −∆w + λw ∈ H−1(Ω) (via 〈−∆w, v〉 = (∇w,∇v)L2 for v ∈
H1

0 (Ω)). It follows from the spectral decomposition of−∆ with homogeneous
Dirichlet boundary conditions (see e.g. [7], Ch. IX.8) that this equation has
a unique solution u0 ∈ H1

0 (Ω), with

‖u0‖H1(Ω) ≤ C · ‖f‖H−1(Ω) ≤ C1(λ) · ‖w‖H1(Ω) ≤ C2(λ) · ‖g‖H1/2(Γ) .

Hence u = u0+w ∈ H1(Ω) is the unique solution of (3.4) in the sense stated,
and depends continuously on g ∈ H1/2(Γ).

Let now g = V (λ)ψ with ψ ∈ C2(Γ). By Theorem 2.1, the set of all such
g’s is dense in H1/2(Γ). Then we have that

u = U(λ)ψ ∈ C∞(Ω) ∩ C2(Ω)

is given by (3.3), and is a classical solution of (3.4). Hence, T (λ) = U(λ)V (λ)−1 :
H1/2(Γ) → H1(Ω) coincides with the solution operator of (3.4) on a dense
subset of H1/2(Γ), and by continuity the two operators are therefore iden-
tical. Finally, the stated bounds for u = T (λ)g follow directly from those

given in Theorem 2.1 (formula (2.7)) and in part (a) of the present theorem.

The solution of the Dirichlet problem of the heat equation can now be con-
structed as follows.
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Theorem 3.2. (a) For arbitrary ε > 0, there is a continuous operator

U : Cε(I,H−1/2(Γ)) → C(I,H1(Ω))

such that Uϕ is given by (3.2) for ϕ ∈ C∞(Γ× I). This operator U is given
by formula (2.9), with U(λ) in the role of T (λ).

(b) For arbitrary δ > ε > 0, let g ∈ C1/2+δ(I,H1/2(Γ)) with g(0) = 0, and
let ϕ ∈ Cε(I,H−1/2(Γ)) be the solution of the single layer potential equation
Vϕ = }. Then

u = Uϕ ∈ C(I,H1(Ω)) ∩ C1(I,H−1(Ω))

is the unique solution of the initial-boundary value problem (3.1), with equal-
ity in H−1(Ω) pointwise in time in the differential equation, and with bound-
ary values taken in the sense of traces.

Proof. Part (a) follows from Theorem 3.1(a) with the arguments used in
the proof of Theorem 2.3(a). To prove (b), let us denote T = UV(−1), and
T (λ) = U(λ)V (λ)−1. By the estimate on T (λ) which follows from Theorems
2.1 and 3.1, and by Lemma 2.2, we thus have for g ∈ C1/2+δ(I,H1/2(Γ)) that

u(t) = (T g)(t) =
1

2πi

∫

L

λ−1T (λ)
d

dt

∫ t

0

eλ(t−s)g(s) ds dλ ∈ H1(Ω)

From Theorem 3.1(b) we know that T (λ)h ∈ H1(Ω) solves the Dirichlet
problem (3.4) for boundary values h ∈ H1/2(Γ). So we get, with equalities
in H−1(Ω), for every t ∈ I:

∫ t

0

∆u(s) ds =

∫ t

0

1

2πi

∫

L

λ−1∆T (λ)
d

ds

∫ s

0

eλ(s−r)g(r) dr dλ ds

=

∫ t

0

1

2πi

∫

L

λ−1λT (λ)
d

ds

∫ s

0

eλ(s−r)g(r) dr dλ ds

=
1

2πi

∫

L

T (λ)

∫ t

0

eλ(t−r)g(r) dr dλ = T g(t) = u(t) ,

and similarly, with equalities in H1/2(Γ),

trace u(t) =
1

2πi

∫

L

λ−1 trace T (λ)
d

dt

∫ t

0

eλ(t−s)g(s) ds dλ

=
1

2πi

∫

L

λ−1 d

dt

∫ t

0

eλ(t−s)g(s) ds dλ = g(t) .

This gives the desired result.
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Remark. The compatibility assumption g(0) = 0 is not necessary for most
of Theorem 3.2. According to Lemma 2.2 and part (b) of Theorem 3.1, the
operator T = UV(−1) can be extended, via (2.9) with T (λ) = U(λ)V (λ)−1,
to a linear operator

T : C1/2+δ(I,H1/2(Γ)) → C((0, t], H1(Ω)) ∩ C(I, L2(Ω)) ∩ C1((0, t], H−1(Ω))

so that u = T g is bounded pointwise in time by

‖u(t)‖H1(Ω) ≤ C ·
(
t−1/2‖g(0)‖+ |g|C1/2+δ(I,H1/2(Γ))

)

‖u(t)‖L2(Ω) ≤ C · ‖g‖C1/2+δ(I,H1/2(Γ))

‖u′(t)‖H−1(Ω) ≤ C ·
(
t−1/2‖g(0)‖+ |g|C1/2+δ(I,H1/2(Γ))

)
.

T is again the solution operator of (3.1).

4. Semidiscretization in time

The time discretization that is proposed here for the numerical treatment
of evolutionary boundary integral equations is based on a linear multistep
method for ordinary differential equations y′ = f(y), see e.g. [14], Ch. III,

k∑

j=0

αjyn−j = τ
k∑

j=0

βjf(yn−j) (τ > 0 step size) .

We assume that the multistep method is A(α)-stable with positive angle
α, stable in a neighbourhood of infinity, strongly zero-stable and consistent
of order p. In terms of the quotient of the generating polynomials of the
method,

(4.1) δ(ζ) =
∞∑

j=0

δjζ
j =

k∑

j=0

αjζ
j/

k∑

j=0

βjζ
j ,

these conditions can be stated as follows:

(4.2a)
δ(ζ) has neither zeros nor poles on the closed unit disk |ζ | ≤ 1,
with the exception of a simple zero at ζ = 1 ,

(4.2b) | arg δ(ζ)| ≤ π − α , |ζ | ≤ 1 , for some α > 0 ,
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(4.2c) τ−1δ(e−τ ) = 1 +O(τ p) , τ → 0 , for some p ≥ 1 .

Well-known examples are the backward differentiation formulas of order p ≤
6, given by δ(ζ) =

∑p
j=1(1− ζ)j/j .

We turn now to the definition of operational quadrature methods [17], which
we phrase in the abstract framework of Lemma 2.2. Let again Λ = {λ ∈ C :
| arg λ| ≤ π − φ, |λ| ≥ R} be a sectorial region, with the angle φ < α, and
suppose:

(4.3)

T (λ), λ ∈ Λ, is an analytic family of linear operators between

Banach spaces E and F , whose operator norms satisfy

‖T (λ)‖ ≤ c · |λ|γ , λ ∈ Λ , for some γ < 1 .

For a (sufficiently small) positive step size τ and for n ≥ 0, we define the
“quadrature weights” ωn(τ, T ) : E → F as the coefficients in the expansion

(4.4 T

(
δ(ζ)

τ

)
=

∞∑

n=0

ωn(τ, T ) ζ
n , |ζ | sufficiently small .

By Theorem 5.1 of [17], the discrete convolution of these weights with the
function values of g ∈ Cp+1(I, E) on the grid of width τ defines an approxi-
mation of (T g)(t) of (2.9), whose error at t = nτ is bounded by
(4.5)

‖
n∑

j=0

ωn−j(τ, T ) g(jτ)− (T })(-)‖ ≤ C · -−γ−∞ ·
(
τ‖}(′)‖+ τ∈‖}′(′)‖+ . . .

+ τ p
(
‖g(p−1)(0)‖+ t · ‖g(p)(0)‖+ t2 max

0≤s≤t
‖g(p+1)(s)‖

))
.

The constant C is independent of τ ∈ (0, τ ], t = nτ ∈ I, and g ∈ Cp+1(I, E),
and is proportional to c of (4.3).

We remark that the proof of (4.5) in [17] is based on the following represen-
tation, which is a temporally discrete analogue of formula (2.9):

(4.6
n∑

j=0

ωn−j(τ, T ) g(jτ) =
1

2πi

∫

L

λ−1T (λ)Dτ(Dτ − λ)−1g(t) dλ ,
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with complex contour L ⊂ Λ parallel to the boundary of Λ, and where, with
Rλ(s) = (s− λ)−1,

(Dτ − λ)−1g(t) =
n∑

j=0

ωn−j(τ, Rλ) g(jτ)

is a multistep approximation of y′ = λy+g , y(0) = 0 , i.e., of
∫ t
0 e

λ(t−s)g(s) ds,
and

Dτf(t) =
1

τ

n∑

j=0

δn−j f(jτ)

is a backward difference quotient.

By adding a suitable linear combination of a few of the first values of g(jτ) to
the above approximation, such that the quadrature formula becomes exact
for polynomials up to degree p− 2 or p− 1, the order of convergence can be
improved to O(t−γ−1τ p) or O(t−γτ p), respectively, for all g ∈ Cp+1(I, E). Cf.
Corollary 3.2 in [17].

On intervals bounded away from 0, the full order of convergence, p, is restored
by a very simple correction: One replaces the values g(jτ) by cj g(jτ), where
cj are the weights of the p-th order Newton-Gregory quadrature formula (i.e.,
end-point correction of the trapezoidal rule). The weights in question are:

(4.7a cj = 1 for j ≥ p− 1 ,

and

(4.7b

c0 =
1
2 for p = 2 ,

c0 =
5
12 , c1 =

13
12 for p = 3 ,

c0 =
3
8 , c1 =

7
6 , c2 =

23
24 for p = 4 .

Theorem 4.1. (Convergence of operational quadrature methods) Under the
assumptions (4.2) and (4.3), we have for g ∈ Cp+1(I, E) the following error
bound at t = nτ :

(4.8a ‖
n∑

j=0

ωn−j(τ, T ) cj g(jτ)− (T })(-)‖ ≤ C ·M(-, }) · τ
√
,
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with

(4.8b M(t, g) = t−γ−p ·

(
p∑

k=0

tk

k!
· ‖g(k)(0)‖+

tp+1

(p+ 1)!
· max
0≤s≤t

‖g(p+1)(s)‖

)

.

The constant C is independent of τ ∈ (0, τ ], t = nτ ∈ I, and g ∈ Cp+1(I, E),
and is proportional to c of (4.3).

This result is obtained as a generalization of Corollary 4.2 of [17] to the case
µ = −γ < 0, following the remark after Theorem 5.1 in [17].

We now consider the application of convolution quadrature methods to the
semidiscretization in time of the single layer heat potential equation (2.1).
Consider V (λ) : H−1/2(Γ) → H1/2(Γ) of Theorem 2.1 in the role of T (λ)
in Theorem 4.1. For g ∈ Cp+1(I,H1/2(Γ)), let ϕ = V(−∞)} of Theorem 2.3
denote the solution of the single layer heat potential equation Vϕ = }. For
a step size τ > 0, let further {ϕn} ⊂ H−1/2(Γ) denote the solution of the
discrete Volterra convolution equation

(4.9
n∑

j=0

ωn−j(τ, V )ϕj = cng(nτ) , nτ ∈ I ,

which is well-defined because ω0(τ, V ) = V (δ(0)/τ) : H−1/2(Γ) → H1/2(Γ) is
an isomorphism by Theorem 2.1. As a corollary of Theorem 4.1 we get the
following convergence result.

Theorem 4.2. (Convergence of semi-discrete convolution quadrature ap-
proximations of the single layer heat potential equation) Let δ(ζ) satisfy
(4.2). For g ∈ Cp+1(I,H1/2(Γ)), the error ϕn − ϕ(nτ) of the semi-discrete
approximation (4.9) of (2.1) is bounded in H−1/2(Γ) by the right-hand side
of (4.8) with H1/2(Γ) norms and γ = 1

2 .

Proof. It follows from (4.9) and (4.4) that

(4.10 ϕn =
n∑

j=0

ωn−j(τ, V
−1) cjg(jτ) .

The result is now obtained from Theorem 4.1 with V −1(λ) in the role of T (λ),
with γ = 1

2 in (4.3) by (2.7).
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A semi-discrete approximation to the solution of the Dirichlet problem (3.1)
of the heat equation is then given by

(4.11 un =
n∑

j=0

ωn−j(τ, U)ϕj

as an element in H1(Ω) by Theorem 3.1(a). In view of (4.10) and (4.4), this
equals

(4.12 un =
n∑

j=0

ωn−j(τ, UV −1) cjg(jτ) .

This approximate solution is now related to the semidiscretization in time of
the initial-boundary value problem (3.1) by the linear multistep method:

(4.13

k∑

j=0

αjun−j = τ
k∑

j=0

βj∆un−j in Ω , for n ≥ 0 ,

un = cng(nτ) on Γ , for n ≥ 0 ,

un = 0 for n < 0 ,

which we consider with equality in H−1(Ω) in the differential equation and
with boundary values taken in the sense of traces.

Theorem 4.3. (Equivalence of convolution quadrature and multistep method
in the semi-discretization)

Let δ(ζ) satisfy (4.2), and suppose that g ∈ Cp+1(I,H1/2(Γ)). Then, the
convolution quadrature approximation un ∈ H1(Ω) given by (4.11) and (4.9)
is identical to the multistep approximation (4.13) of the initial-boundary value
problem. The error un − u(nτ) is bounded in H±1(Ω) by the right-hand side
of (4.8) with H1/2(Γ) norms, and with γ = ±1

2 , respectively.

Proof. First we note that the difference-differential equation in (4.13) is
equivalent to

1

τ

n∑

j=0

δn−juj = ∆un , n ≥ 0 .

Using the representation (4.6) with T (λ) = U(λ)V (λ)−1, and with cjg(jτ)
instead of g(jτ), it follows in an exactly analogous way as in the proof of
Theorem 3.2 that un of (4.12) solves (4.13) in the sense stated. The error
estimate follows from Theorem 3.1(b) and Theorem 4.1.
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5. Full discretization: Galerkin BEM in space, operational quadra-

ture in time

In this section we combine the operational quadrature discretization in time
with a standard Galerkin method in space to approximate the single layer
heat potential equation (2.1). To keep to the essentials, we will not consider
variational crimes such as the approximation of the boundary, which would
be present in any practical computation. These could equally be treated
by combining the techniques developed here with the corresponding known
techniques for elliptic problems.

For a spatial discretization parameter h > 0, we let Xh ⊂ H−1/2(Γ) denote
a finite dimensional approximation space of which we assume that for some
m ≥ 0

(5.1 inf
ψh∈Xh

‖ψh − ψ‖H−1/2(Γ) ≤ C · hm+ 1
2 · ‖ψ‖Hm(Γ) , for all ψ ∈ Hm(Γ) .

For example, approximation by piecewise constant or piecewise linear func-
tions over a non-degenerate triangulation would give (5.1) with m = 1 or
m = 2, respectively, and by interpolation also for all smaller values of m.
See, e.g., Nédélec [20], §1.1.

The Galerkin approximation of the stationary equation V (λ)ϕ = g, with the
single layer potential operator V (λ) : H−1/2(Γ) → H1/2(Γ) of Theorem 2.1,
is then given as the solution ϕh ∈ Xh of the problem

(5.2 〈V (λ)ϕh,ψh〉 = 〈g,ψh〉 for all ψh ∈ Xh .

Lemma 5.1. For λ ∈ Λ (the sectorial region of Theorem 2.1), g ∈ H1/2(Γ),
and h > 0, the Galerkin scheme (5.2) has a unique solution ϕh ∈ Xh, which
is bounded by

(5.3 ‖ϕh‖H−1/2 ≤ C · |λ|1/2 · ‖g‖H1/2 .

For g ∈ Hm+1(Γ), the error is bounded by

(5.4 ‖ϕh − ϕ‖H−1/2 ≤ C · hm+ 1
2 · |λ| · ‖g‖Hm+1 .

The constants C are independent of h, λ, and g.
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Proof. The bound (5.3) is a direct consequence of Theorem 2.1 and the
Lax-Milgram lemma. Céa’s lemma gives

‖ϕh − ϕ‖H−1/2 ≤ C · |λ|1/2 · inf
ψh∈Xh

‖ψh − ϕ‖H−1/2

which can be further estimated using (5.1). The error bound (5.4) then
follows from the regularity estimate

(5.5 ‖ϕ‖Hm ≤ C · |λ|1/2 · ‖g‖Hm+1

which is obtained with the help of the parameter-dependent pseudodifferen-
tial calculus as in the proof of Theorem 2.1.

In all reasonable situations, one has actually Xh ⊂ L2(Γ), which we assume
henceforth. The duality pairing between H1/2(Γ) and H−1/2(Γ) in (5.2) is
then in fact the L2 scalar product. We let Ph : L2(Γ) → Xh be the L2(Γ)-
orthogonal projection defined by (Phϕ,ψh) = (ϕ,ψh) for all ψh ∈ Xh, and we
denote

(5.6 Vh(λ) = PhV (λ)P ∗
h ,

so that (5.2) can be rewritten as the equation Vh(λ)ϕh = Phg, i.e.,

(5.7 ϕh = Vh(λ)
−1Phg .

We now turn to the time-dependent problem (2.1). In view of Theorem 2.3,
a Galerkin semidiscretization in space of ϕ(t) = (V(−∞)})(-) is given by

(5.8 ϕh(t) = (V(−∞)
〈 P〈})(-)

where the operator V(−∞)
〈 : {}〈 ∈ C

∞

∈
+δ(I,X〈); }〈(′) = ′} → Cε(I,X〈) is

defined by formula (2.9) with Vh(λ)−1 in the role of T (λ). Discretizing (5.8)
in time by an operational quadrature method with step size τ > 0, we get
the full discretization

(5.9 ϕh,τ(nτ) =
n∑

j=0

ωn−j(τ, V
−1
h )Phcjg(jτ) .

This can be rewritten equivalently, and in a way which is more amenable to
computation, as the discrete convolution equation

(5.10
n∑

j=0

ωn−j(τ, Vh)ϕh,τ (jτ) = Phcng(nτ) , nτ ∈ I ,
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or again equivalently, in a variational setting:

(5.11 〈
n∑

j=0

ωn−j(τ, V )ϕh,τ(jτ),ψh〉 = 〈cng(nτ) ,ψh〉 for all ψh ∈ Xh .

This equation can be solved recursively for n = 0, 1, 2, . . . , N , requiring in
every step the solution of a linear system with the positive definite stiffness
matrix corresponding to the operator ω0(τ, Vh) = Vh(δ(0)/τ).

Theorem 5.2. (Convergence of fully discrete approximations of the single
layer heat potential equation (2.1)) Suppose that the spatial approximation is
of order m as specified by (5.1), and that the temporal discretization method
of order p satisfies (4.2). For g ∈ Cp+1(I,H1/2(Γ)) ∩ C2(I,Hm+1(Γ)), the
error of the fully discrete approximation ϕh,τ defined by either of (5.9) –
(5.11), is bounded for t = nτ ∈ I by

(5.12 ‖ϕh,τ(t)−ϕ(t)‖H−1/2(Γ) ≤ C ·‖g‖C2(I,Hm+1(Γ)) ·hm+ 1
2 +C ·M(t, g) · τ p ,

where M(t, g) is defined by (4.8b), with γ = 1
2 and H1/2(Γ) norms. The

constants C are independent of h > 0, τ ∈ (0, τ ], t = nτ ∈ I, and g.

We remark that by a modification of the proof below, one could relax the
assumption of C2(I,Hm+1) to C1+ε for any ε > 0. The Cp+1(I,H1/2) as-
sumption can possibly be weakened to Cp+ 1

2
+ε.

Proof of Theorem 5.2. We split

(5.13 ϕh,τ(t)− ϕ(t) = [ϕh,τ(t)− ϕh(t)] + [ϕh(t)− ϕ(t)] .

Since Vh(λ)−1Ph : H1/2(Γ) → H−1/2(Γ) is bounded uniformly in h by C ·
|λ|1/2 for λ ∈ Λ because of (5.3) (and (5.7)), we get from Theorem 4.1 with
Vh(λ)−1Ph in the role of T (λ) that the first term on the right-hand side of
(5.13) is bounded by the last term in (5.12). It remains to bound the last
term in (5.13), which represents the error introduced by semidiscretization in
space. Denoting the stationary error operator Eh(λ) = Vh(λ)−1Ph − V (λ)−1,
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we have by (5.8) and Theorem 2.3 (recall (2.9))

ϕh(t)− ϕ(t) =
1

2πi

∫

L

λ−1Eh(λ)
d

dt

∫ t

0

eλ(t−s)g(s) ds dλ

=
1

2πi

∫

L

λ−2

∫ t

0

eλ(t−s) Eh(λ)g
′′(t− s) ds dλ

+
1

2πi

∫

L

λ−1eλtEh(λ)
(
λ−1g′(0) + g(0)

)
dλ

The desired estimate now follows with the bound for Eh(λ) as given by (5.4).

6. Full discretization: Collocation BEM in space, operational

quadrature in time

For the collocation method applied to the single layer heat equation the
theory is not as complete as for the Galerkin method. We consider here the
case where Γ is a smooth closed curve, the boundary of the simply connected
domain Ω ⊂ R2.

Let s +→ x(s) be a 1-periodic parametrization of Γ. For a mesh width
h = 1/N , we denote the grid points by xk = x(kh) for integer k. We consider
approximation spaces Xh of piecewise constant or piecewise linear functions:
Xh consists of all functions ψh on Γ such that s +→ ψh(x(s)) is either constant
on the intervals [(k− 1

2)h, (k+
1
2)h), or linear on [kh, (k+1)h] and continuous.

The grid points are thus midpoints in the piecewise constant case, and nodal
points in the piecewise linear case.

Collocation of the stationary equation V (λ)ϕ = g then requires to determine
ϕh ∈ Xh such that

(6.1 (V (λ)ϕh)(xk) = g(xk) for all k .

In order that the pointwise evaluation of g makes sense, one needs g ∈ C(Γ),
which is satisfied if g ∈ Hr(Γ) with r > 1

2 .
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In the same way as in Section 5, a full discretization of the single layer heat
potential equation Vϕ = } is defined by

(6.2
( n∑

j=0

ωn−j(τ, V )ϕh,τ (·, jτ)
)
(xk) = cng(xk, nτ) for n ≥ 0 and all k ,

where ϕh,τ(·, nτ) ∈ Xh. Here cn denote again the correction weights of (4.7).

For (6.1) we have the following stability and convergence result. Here Λ
denotes once more the sector of Theorem 2.1, and Πh denotes the interpola-
tion projection which maps a continuous function on Γ to its piecewise linear
interpolant on the grid {xk}.

Theorem 6.1. For λ ∈ Λ with sufficiently large absolute value, and for
sufficiently small mesh width h one has the stability bound

(6.3 ‖ΠhV (λ)ψh‖H1/2 ≥ c · |λ|−1/2 · ‖ψh‖H−1/2 for all ψh ∈ Xh .

For g ∈ Hm+1(Γ), the error of the collocation scheme (6.1) is bounded by

(6.4 ‖ϕh − ϕ‖H−1/2 ≤ C · hm+
1
2 · |λ| · ‖g‖Hm+1 .

Here m ≤ 1 or 2 for piecewise constant or piecewise linear collocation, re-
spectively. The constants c > 0 and C are independent of h, λ, and g.

It is clear that with Theorem 6.1, one gets the convergence estimate of Theo-
rem 5.2 also for the collocation/operational quadrature approximation (6.2)
of the single layer heat potential equation.

To prove Theorem 6.1, we have to use a parameter-dependent version of the
theory of collocation of elliptic pseudodifferential equations. This will be
outlined in the remainder of this section.

The fact that the underlying operator V (λ) is a parameter-dependent pseu-
dodifferential operator, allows us to apply the local principle presented in
[22],[24] with some minor modifications. The lower order perturbation terms
decrease faster than the principal symbol for large |λ| and can be handled as
in the proof of Theorem 2.1. Moreover, it is possible to adapt Agranovich’s
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theorem [3], [25] to the parameter dependent situation. From these observa-
tions it turns out that it is sufficient to study the operator, again denoted by
V (λ), which for 1-periodic smooth functions ψ is given via the formula (cf.
the proof of Theorem 2.1)

(6.5 (FV (λ)ψ) (ξ) =
(
λ+ |ξ|2

)−1/2 Fψ(ξ) , ξ ∈ Z ,

where F denotes the Fourier transform:

Fψ(ξ) =

∫ 1

0

e−2πiξxψ(x) dx , ξ ∈ Z .

The collocation scheme for this operator gives rise to circulant matrices.
These are diagonalized by the discrete Fourier transform, so that their eigen-
values can be calculated explicitly.

Lemma 6.2. The eigenvalues αk(λ) (0 ≤ kh < 1 , h = 1/N) of the
matrices arising from the collocation scheme are α0(λ) = λ−1/2 and

(6.6 αk(λ) =
∑

ξ=k++N :+∈Z

(
λ+ |ξ|2

)−1/2 ·
(
sin πhξ

πhξ

)m

,

with m = 1 or 2 for piecewise constant or piecewise linear collocation, re-
spectively.

Proof. The eigenvalues are given by the formula (cf. e.g. [23])

αk(λ) =
N−1∑

n=0

e−2πiknh
∑

ξ∈Z

e2πiξnh
(
λ+ |ξ|2

)−1/2 · φ̂(ξ)

where φ̂(ξ) = h ·
(

sinπhξ
πhξ

)m
are the Fourier coefficients of the basis function

φ(x), which for m = 1 is the box function (the 1-periodic extension of the
characterisic function of the interval (−h

2 ,
h
2 )), and form = 2 the hat function

(piecewise linear, continuous, taking the value 1 at the integers, and 0 at all
gridpoints kh in between). Interchanging the order of summation and using
the discrete orthogonality of the exponentials gives the result.

As in [27],[23], the key to the local stability estimate is a comparison of the
collocation eigenvalues αk(λ) with those of a Galerkin approximation, whose
stability is known a priori.
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Lemma 6.3. Let αk(λ) denote the collocation eigenvalues of Lemma 6.2, and
let βk denote the eigenvalues of the circulant matrix coming from the Galerkin
scheme on the same approximation space for the equation with λ = 1. Then
there is a c > 0 such that

Re αk(λ) ≥ c · |λ|−1/2 · βk uniformly for 0 ≤ kh < 1 , λ ∈ Λ .

Proof. A calculation as in the proof of Lemma 6.2 gives

(6.7 βk =
∑

ξ=k++N :+∈Z

(
1 + |ξ|2

)−1/2 ·
(
sin πhξ

πhξ

)2m

.

For m = 2 (piecewise linear approximation) the result follows by a compar-
ison of each term in the sums (6.6) and (6.7), using once more the symbol
estimate (2.6). The proof for m = 1 (piecewise constant approximation) is a
bit more subtle and can be obtained similarly to [26],[9].

We are now ready for the final stages in the proof of Theorem 6.1: With the
aid of the local principle [22],[24] one concludes from Lemma 6.3 the desired
stability estimate (6.3). The stability implies the error bound

‖ϕh − ϕ‖H−1/2 ≤
‖ϕ− Phϕ‖H−1/2 + C · |λ|1/2 (‖ΠhV (λ)Phϕ− V (λ)ϕ‖H1/2 + ‖Πhg − g‖H1/2)

where Ph : H−1/2(Γ) → Xh denotes the orthogonal projection in H−1/2(Γ).
Using well-known approximation and inverse properties, the uniform bound-
edness of V (λ) and the regularity estimate (5.5), we obtain the desired esti-
mate (6.4). Cf. [24],[23].

Remark. A result analogous to Theorem 6.1 holds for more general trial
functions: higher-order splines, and prewavelets [10]. The result can also be
extended to the case where Γ is diffeomorphic to an n-dimensional torus [23].
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7. Implementation and numerical experiments

In this section we describe in some detail how to implement a full discretiza-
tion of the single layer heat potential equation based on operational quadra-
ture in time, and on piecewise linear collocation in space. We illustrate the
procedure by a numerical example in which heat flow through the boundary
is computed from the surface temperature.

Consider again first the stationary, parameter-dependent single layer poten-
tial equation over a boundary curve Γ:

V (λ)ϕ = g on Γ ,

viz.,

(7.1

∫

Γ

1

2π
K0(

√
λ · |x− y|)ϕ(y) dy = g(x) , x ∈ Γ ,

whereK0 is the modified Bessel function of order 0. For grid points x1, . . . , xM

on Γ, let φj denote the piecewise linear basis function which assumes the value
1 at xj , and 0 at all other grid points. The collocation matrix for (7.1) is
then

VC(λ) = ((V (λ)φj)(xi))
M
i,j=1 .

For the actual computation it is convenient to approximate this matrix by
VA(λ), whose entries are defined by
(7.2

(VA(λ))ij = dj−1,j

∫ 1

0

1

2π
K0

(√
λ · (di,j−1 + θ(di,j − di,j−1))

)
· θ · dθ

+ dj,j+1

∫ 1

0

1

2π
K0

(√
λ · (di,j + θ(di,j+1 − di,j))

)
· (1− θ) · dθ

where dk,l = |xk − xl| . Since
∫
zK0(z) dz = −zK1(z) +C, this only requires

the evaluation of K1(z) and integrals of K0(z), which can be computed effi-
ciently (cf. e.g. formulas (11.1.9) and (11.1.18) in [1]).
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The single layer heat potential equation (2.1),

Vϕ = } on −× [′,-] ,

is then discretized by

(7.3
n∑

j=0

Vn−jϕj = (cng(xk, nτ))
M
k=1 , n = 0, 1, . . . , N .

Here τ = t/N is the temporal step size, ϕn is to approximate (ϕ(xk, nτ))Mk=1,
and Vn = ωn(τ, VA) are the coefficients of the generating function

∞∑

n=0

Vnζ
n = VA

(
δ(ζ)

τ

)
, |ζ | < 1 ,

where, e.g., δ(ζ) =
∑p

+=1(1 − ζ)+/2 is a BDF method of order p ≤ 6. The
correction weights cn are defined in (4.7).

By Cauchy’s integral formula,

Vn =
1

2πi

∫

|ζ|=ρ

VA

(
δ(ζ)

τ

)
ζ−n−1 dζ .

This integral is approximated with high accuracy by the trapezoidal rule,

(7.4 Vn ≈
ρ−n

L

L−1∑

+=0

VA

(
δ(ζ+)

τ

)
e−2πin+/L , n = 0, 1, . . . , N ,

where ζ+ = ρe2πi+/L. Suppose now that VA(λ) is computed with precision ε
(in some norm). Choosing L = 2N and ρN =

√
ε, one gets that the error in

Vn is O(
√
ε), cf. [17], Section 7. Using fast Fourier transforms, the evaluation

of (7.4) requires O(N logN) operations.

The solution of the discrete convolution equation (7.3) requires a matrix
factorization only of V0. The recursion (7.3) can be solved in O(N(logN)2)
M×M-matrix multiplications by using a technique of [13]: One computes
the first r = 32 values ϕ0, . . . ,ϕr−1 by direct recursion. For n = r, . . . , 2r− 1
the convolution sums

∑r−1
j=0 Vn−jϕj , which use only the previously computed

solution values, are computed simultaneously using FFT. These sums are
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then used in the recursive computation of ϕr, . . . ,ϕ2r−1. Then the sums∑2r−1
j=0 Vn−jϕj are computed by FFT for n = 2r, . . . , 4r − 1 and are later

used in the computation of the corresponding solution values ϕn. For the
computation of ϕn for n = 3r, . . . , 4r− 1 one uses also the convolution sums∑3r−1

j=2r Vn−jϕj, again computed by FFT. Continuing this procedure up to N
requires O(N(logN)2) operations, so that the computational complexity is
almost linear in time. We remark that recent techniques have made it possible
to achieve almost linear complexity also in space, using panel clustering [12]
or wavelet basis functions [6],[10].

As a numerical example, we consider the problem of computing the Neumann
data ϕ = ∂u

∂n from given Dirichlet data u = g on the boundary, for the heat
equation over the unit disk. This is done by solving the equation (see e.g. [8])

Vϕ =
1

2
g +Kg on Γ× (0, t]

where V and K denote the single and double layer heat potential operators,
respectively. We note that K is the integral operator whose kernel has the
Laplace transform (∂/∂ny)

1
2πK0(

√
λ · |x − y|). The integral operator K has

been discretized in a way analogous to that of V described above. We give
numerical results for two examples, with the following data: M = 32 equidis-
tant grid points xk on the unit circle, time step τ = 1/32, over a time interval
of length t = 1.

As a first example we chose Dirichlet data g(x, t) = 25·exp(−|x−x∗|2/4t)/(4πt)
with x∗ = (3, 0). The exact solution is here ϕ(x, t) = ∂

∂ng(x, t), which is plot-
ted in Fig. 1 as the function (θ, t) +→ ϕ((cos θ, sin θ), t). Figure 2 shows the
error obtained with the second order BDF method in the above discretiza-
tion. The numerically observed pointwise order of convergence was 2 in both
space and time.

In our second example we took g(x, t) = cos(θ−πt) for x = (cos θ, sin θ). This
is an example with a heat shock, where the exact heat flow ϕ(x, t) is singular
at t = 0, bounded by O(t−1/2) (cf. (2.13)). The numerical solution obtained
with the second order BDF method is shown in Figure 3. Here we have
plotted the solution curves t +→ ϕ(xk, t) for all k. The height of the “numerical
singularity” at t = 0 was observed to be proportional to τ−1/2. In accordance
with Theorem 5.2 (or rather its collocation analogue), the numerical method
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gives accurate approximations away from the origin. Since the exact solution
is not available for this example, we have plotted in Figure 4 the difference of
the second and third order BDF discretizations, as a numerically accessible
estimate of the temporal error. One notices that a reasonable approximation
is obtained after ca. 5 time steps. This phenomenon (which is in agreement
with Theorem 5.2) has been observed to be almost independent of the time
step size: For τ = 1/320 and τ = 1/3200 we obtained plots which were
very similar to Figure 4, where τ = 1/32. If desired, the singular solution
behaviour on an interval near 0 can thus be resolved to high accuracy with
small computational effort, by solving the equation with a fixed number of
time steps (e.g., 16) on shorter and shorter time intervals.

Acknowledgement. The first author thanks N. Ortner, the expert for
fundamental solutions, for helpful conversations.
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