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Abstract

In this paper a new definition of nonlinear stability for the gen-
eral nonlinear problem F (u) = 0 and the corresponding family of
discretized problems Fh(uh) = 0 is given. The notion of nonlin-
ear stability introduced by Keller [3] and later by Lopéz-Marcos and
Sanz-Serna [4] have the disadvantage that the Lipschitz constant of
the derivative of Fh(uh) has to be known which, in many applica-
tions, is not practicable. The modification proposed here allows us
to use linearized stability in a ball containing the solution uh to get
nonlinear stability. The usual result remains true: nonlinear stability
together with consistency implies convergence.
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1. Introduction and preliminaries. Let us consider the general nonlin-
ear problem

F (u) = 0 (1)

where F : DF ⊂ X → Y is a differentiable mapping between the Banach
spaces X, Y with domain DF . We only consider isolated solutions u∗ of
(1), i.e. the Fréchet derivative du∗F : X → Y shall be boundedly invertible.

A numerical method may be applied in order to solve equation (1). This
leads in general to a family of equations

Fh(uh) = 0 (2)

where the Fh : DFh
⊂ Xh → Y h are mappings between finite dimensional

Banach spaces. Here the domain DFh
is an open set and Fh(·) is continuous

on DFh
. The subscript h indicates the dependence of the discretization on

a small parameter such as the mesh size. Let us assume that h takes values
in a set H of positive parameters with infH = 0 and supH = h0 < ∞ . In
order to define convergence of the approximating solution u∗

h of (2) to u∗ ,
we require that there exist linear mappings

Rh
X : DRh

X
⊂ X → Xh and Rh

Y : DRh
Y
⊂ Y → Y h

obeying the condition

lim
h→0

‖Rh
ν(x)‖ = ‖x‖ , x ∈ DRh

ν
, ν ∈ {X, Y }2 .

Here the DRh
ν
are required to be dense in ν . For example, it may be rea-

sonable to work with a function space X , say L2(Ω) , and with a restriction
represented by a grid function U(i, j) = u(ih, jh) , (i, j) ∈ ∆ ⊂ Z2 . The
domain of this restriction is a set containing all continuous functions C(Ω) .
But it is impossible to define such a restriction for all u ∈ L2(Ω) . Let us use
henceforth the notation

[z]h ≡ Rh
ν(z) , ν ∈ {X, Y } .

Convergence of the approximating solution u∗

h to u∗ is now meant in the
sense that

lim
h→0

‖u∗

h − [u∗]h‖ = 0 .

2We suppress indices of norms: ‖z‖
ν
≡ ‖z‖ , z ∈ ν , ν ∈ {X,Y,Xh, Y h} .
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Also the definition of consistency makes no difficulties. We introduce the
local discretization error at a point u ∈ DRh

X
:

τh(u) ≡ Fh([u]h)− [F (u)]h

Definition 0.1. The family {Fh(·)} is said to be consistent of order p with
F (·) at u iff for some constant M , independent of h ,

‖τh(u)‖ ≤ Mhp . (3)

A further definition will be useful because our original problem (1) as well
as the discretized problems (2) might have more than one isolated solution.
Hence, the original solutions have to be related to the right discretized ones.

Definition 0.2. We call the family {Fh(·)} a proper discretization of F (·)
for the solution u∗ iff there exists a radius ρ > 0 , independent of h , such
that the following two conditions are satisfied for all relevant values of h :

(i) There are solutions u∗

h of (2) such that Bρ(u∗

h) ⊂ DFh
and Fh(·)

restricted on Bρ(u∗

h) is one-to-one.

(ii) [u∗]h ∈ Bρ(u∗

h)

2. Classical definitions of stability. There are several attempts to define
nonlinear stability in the literature, see [8], [3], [4] or [5]. For a summary of
these different notions see [4]. They all require the existence of a stability
constant S , independent of h , such that a stability inequality

‖uh − vh‖ ≤ S‖Fh(uh)− Fh(vh)‖ (4)

holds for uh, vh in some subset Dh ⊂ DFh
. Let us call Dh the domain of

stability. It is exactly this domain of stability which distinguishes all the
notions of nonlinear stability mentioned above. Clearly, if we choose Dh too
large it may be difficult to find a suitable stability constant S satisfying (4).
On the other hand, if we choose Dh too small, e.g. diam(Dh) = O(hq) , it
may occur that we must impose a condition ‖[u∗]h − u∗

h‖ = O(hq) , which
itself guarantees convergence and our stability analysis becomes meaningless.

Let us select H. B. Keller’s definition of stability. He chooses Dh =
Bρ(u∗

h)
2, the open ball of radius ρ about u∗

h . Here the stability threshold

2In fact he chooses Dh = Bρ([u∗]h) , but this difference is only of technical nature.
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ρ must be positive and independent of h . The problem now is how to
determine ρ and S . Let us assume that the linearized problem at u∗

h is
stable with stability constant S0 independent of h , which is equivalent to
the condition

‖[du∗

h
Fh]

−1‖ ≤ S0 .

If, in addition, the Fréchet derivative du∗

h
Fh has a Lipschitz constant Kρ0

independent of h in some open ball Bρ0(u
∗

h) , i.e.

‖duh
Fh − dvhFh‖ ≤ Kρ0‖uh − vh‖ , uh, vh ∈ Bρ0(u

∗

h) , (5)

then it can be shown (see [5]) that we may choose an S > S0 arbitrarily to
get the condition

ρ = min{ρ0, (S
−1
0 − S−1)/Kρ0} .

We have transformed the problem of finding ρ and S into another problem,
namely finding S0 and Kρ0 . It may be easy to handle the linearized problem,
but to determine Kρ0 means in practice that we must estimate the norm of
the second derivative d2uh

Fh , which for a wide series of applications does not
even exist.

Nevertheless, this definition of stability might be useful. An important
lemma of Stetter gives us the connection to convergence.

Lemma 0.3 ([8]). Let Xh , Y h be finite dimensional Banach spaces and let
Fh : Bρ(u∗

h) ⊂ Xh → Y h be a continuous mapping with Fh(u∗

h) = 0 . If the
bound (4) holds on Dh = Bρ(u∗

h) for some constant S , independent of h ,
then the inverse F−1

h : Fh(Bρ(u∗

h)) → Bρ(u∗

h) is Lipschitz continuous with
Lipschitz constant S and

Bρ/S(0) ⊂ Fh(Bρ(u
∗

h)) .

Now we may state a convergence result.

Theorem 0.4. Let the family {Fh(·)} be consistent of order p > 0 with
F (·) at u∗ and stable on the stability domain Bρ(u∗

h) with stability constant
S . If, in addition, it is a proper discretization for F (·) at u∗ (i.e. [u∗]h ∈
Bρ(u∗

h) ), then

‖u∗

h − [u∗]h‖ ≤ MShp , h ≤
( ρ

MS

)1/p
.

The order of convergence is not smaller than the order of consistency.
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Proof. Since by (3)

‖τh(u
∗)‖ = ‖Fh([u

∗]h)− [F (u∗)]h‖ = ‖Fh([u
∗]h)‖ ≤ Mhp ,

we see that h ≤ ( ρ
MS )

1/p implies Fh([u∗]h) ∈ Bρ/S(0) . Thus, Lemma 0.3
applies and the result follows by the stability inequality (4) .

From the proof of Theorem 0.4 we learn the following: the inverse F−1
h

is not required to be Lipschitz continuous on the whole range Fh(Bρ(u∗

h))
to imply convergence for the numerical method. It would suffice for F−1

h to
be Lipschitz continuous on Bρ/S(0) only. This is exactly the point where we
want to modify the definition of nonlinear stability.

3. Stability by range. Since we only consider isolated solutions u∗ of
(1), the Fréchet derivative du∗F : X → Y is boundedly invertible. If F (·)
is continuously differentiable2, then, by the inverse mapping theorem (see
e.g. [7]), there exists a ball Bρ(u∗) such that F : Bρ(u∗) → F (Bρ(u∗))
is an isomorphism. This allows us to define an inverse mapping F−1 on
F (Bρ(u∗)) . It is the inverse mapping we want to compute, therefore we
think stability in some sense has to be defined for this inverse mapping.

Definition 0.5. Let Fh(u∗

h) = 0 and let Rh ⊂ Y h be an open set with
0 ∈ Rh . The family {Fh(·)} is said to be stable on the stability range Rh

with stability constant S , independent of h , iff for all relevant h > 0

(i) F−1
h : Rh → Xh can be uniquely defined with u∗

h ∈ F−1
h (Rh) ,

(ii) F−1
h (·) is Lipschitz continuous on Rh with Lipschitz constant S .

Again, we get the convergence result.

Theorem 0.6. Let the family {Fh(·)} be consistent of order p > 0 with
F (·) at u∗ and stable on the stability range Br(0) with stability constant
S . If, in addition, it is a proper discretization for F (·) at u∗ with ρ ≥ Sr ,
then

‖u∗

h − [u∗]h‖ ≤ MShp , h ≤
( r

M

)1/p

.

2Recall that in general F (·) need not be continuously differentiable since it is only
defined on a subset DF , but we will see that this requirement (at least the continuity) is
essential for the family {Fh(·)} .
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Proof. As in the proof of Theorem 0.4 inequality (3) yields

‖τh(u
∗)‖ = ‖Fh([u

∗]h)‖ ≤ Mhp .

Thus, τh(u∗) is in Br(0) if only h ≤ (r/M)1/p . F−1
h (·) is Lipschitz con-

tinuous on Br(0) with Lipschitz constant S . This implies F−1
h (Br(0)) ⊂

BSr(u∗

h) ⊂ Bρ(u∗

h) . Since the discretization is proper we conclude [u∗]h ∈
F−1
h (Br(0)) and [u∗]h = F−1

h (τh(u∗)) . The result follows now by the Lips-
chitz continuity of F−1

h (·) .

4. Nonlinear stability by linearized stability. We want to have a
practicable tool that allows us to verify the assumptions of Theorem 0.6. It
would be helpful if we could work with the linearized problems

Lh(un) ≡ Fh(vh) + dvhFh(uh − vh) = 0 (6)

for suitable vh ∈ Xh . Clearly, the linear family {Lh(·)} is stable in all above
senses iff there is a constant S , independent of h , such that

‖[dvhFh]
−1‖ ≤ S . (7)

We will now state our main theorem.

Theorem 0.7. Let the family {Fh(·)} satisfy the following conditions for
all relevant values of h :

(a) {Fh(·)} is a proper discretization for F (·) at u∗ on Bρ(u∗

h) .

(b) Fh(·) is continuously differentiable on Bρ(u∗

h) .

(c) The linearized families {Lh(·)} of (6) are stable with stability constant
S uniformly for vh ∈ Bρ(u∗) .

(d) The constants ρ and S are independent of h .

Then the family {Fh(·)} is stable on the stability range Bρ/S(0) with stability
constant S .

Corrolary 0.8. Let the assumptions of Theorem 0.7 hold. If, in addition,
{Fh(·)} is consistent of order p with F (·) at u∗ then

‖u∗

h − [u∗]h‖ = O(hp) .

The order of convergence is not smaller than the order of consistency.
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To proof our main theorem, it suffices to proof the following, more general
lemma.

Lemma 0.9. Let X , Y be arbitrary Banach spaces and let the mapping
f : Bρ(u∗) ⊂ X → Y satisfy the conditions

(a) f(u∗) = 0

(b) f(·) is continuously differentiable and one-to-one on Bρ(u∗) .

(c) duf : X → Y is a linear isomorphism and ‖[duf ]−1‖ ≤ S , uniformly
for u ∈ Bρ(u∗) .

Then the following holds.

(i) f : Bρ(u∗) → V ≡ f(Bρ(u∗)) is a diffeomorphism. In particular
f−1(·) can be uniquely defined on V .

(ii) Bρ/S(0) ⊂ V

(iii) f−1 is Lipschitz continuous with Lipschitz constant S on Bρ/S(0) .

Proof. Because f(·) on Bρ(u∗) is one-to-one, we get (i) from the inverse
mapping theorem. For the rest we may assume that Y \V is nonempty, for
otherwise (ii) is always satisfied and (iii) follows from Taylor’s formula

f−1(y)− f−1(y′) =

∫ 1

0

dty+(1−t)y′f
−1(y − y′)dt (8)

(see e.g. [2, Theorem 8.14.3]) together with hypothesis (c) . Thus, let y ∈
Y \V and r1 = ‖y‖+1 , i.e. Br1(0)\V *= ∅ . By the inverse mapping theorem
we know that there is a 0 < r0 < r1 with Br0(0) ⊂ V . We define

r = sup{s ∈ [r0, r1] : Bs(0) ⊂ V } . (9)

Thus, Br(0) is the biggest ball around zero, which lies entirely in V .
We may now choose ε > 0 arbitrarily. Br+ε(0) is no more a subset of V .
We may therefore choose y ∈ (Y \V ) ∩Br+ε(0) . Let

Ty = {ty : 0 ≤ t < 1} and t∗ = sup{τ : Tτy ⊂ V } .
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If we could walk on Ty beginning at zero, we would leave V for the first
time at the point y∗ = t∗y . Clearly, y∗ /∈ V by the definition of t∗ , but
y∗ ∈ V. = V \V and by (9) we have

r ≤ ‖y∗‖ ≤ r + ε . (10)

If we choose a sequence {yk} ⊂ Ty∗ ⊂ V with limit y∗ , then the sequence
{vk = f−1(yk)} is well defined in Bρ(u∗) . Since Ty∗ is convex, we may apply
Taylor’s formula to get

vk − vm =

∫ 1

0

dtyk+(1−t)ymf
−1(yk − ym)dt , k,m ≥ 1 .

and together with hypothesis (c)

‖vk − vm‖ ≤ S‖yk − ym‖ , k,m ≥ 1 . (11)

By this, both {yk} and {vk} are Cauchy sequences. Let v∗ = limk vk . It
is impossible for v∗ to be an element of Bρ(u∗) , for else, by the continuity
of f(·) , y∗ = f(x∗) /∈ V , which is a contradiction. Hence, v∗ ∈ B. ρ(u

∗) , i.e.
‖v∗ − u∗‖ = ρ . We may choose ym = 0 in (11) and pass to the limit; then
we have , recalling (10),

ρ = ‖v∗ − u∗‖ ≤ S‖y∗‖ ≤ S(r + ε) .

Since ε can be chosen arbitrarily , (ii) is proven. Br(0) is convex; thus
again, we can apply Taylor’s formula and verify (iii) by hypothesis (c) .
This completes our proof.

5. Numerical examples. Let us look at the nonlinear problem

−uxx + g(u)− f = 0 , x ∈ [0, π]
u(0) = u(π) = 0 ,

(12)

where g : R → R is a contraction (i.e. g(·) is Lipschitz continuous with
Lipschitz constant L < 1 ) and f ∈ L2(0, π) . Here F (u) = Au + g(u)− f ,
where A is an unbounded self-adjoint linear operator with dense domain DF

in L2(0, π) and spectrum σ(A) = {k2 : k ≥ 1} . Problem (12) has a unique
solution u∗ ∈ L2(0, π) (see [1]). If f is continuous, i.e. f ∈ C0(0, π) , then
u∗ ∈ C2(0, π) . In the following we will always assume that f is continuous.
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Let us discretize (12) with central differences on the grid {ih : i =
0, . . . , n+ 1, h = π/(n+ 1)} . We get a system

Fh(uh) = Ahuh + g(uh)− fh = 0 (13)

with uh, fh ∈ Rn and

Ah =
1

h2















2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2















∈ R
n×n .

Let us use the notation U ≡ uh . Then by g(U) we denote the vector
[g(U1), · · · , g(Un)]T ∈ Rn . The boundary conditions U0 = Un+1 = 0 imply
that we can work with the reduced grid {ih : i = 1, . . . , n} . The restriction
from L2(0, π) on this reduced grid is surely defined on the dense set C0(0, π) .
We write fh = [f ]h ≡ [f(h), f(2h), · · · , f(nh)]T . Let us use the discrete L2-
norm on grid functions

‖U‖ = (
n

∑

i=1

U2
i h)

1/2 .

We first show that the family {Fh(·)} is a proper discretization for the
solution u∗ of (12) with ρ = ∞ . As one can easily check, this can be done
by showing that the system (13) has a unique solution U∗ ∈ Rn . It is well-
known that Ah has eigenvalues λk = 4 sin2(kh/2)/h2 , k = 1, . . . , n . This
implies

‖A−1
h ‖ =

h2

4 sin2(h/2)
.

From now on we only admit values of h so small that a condition

L
h2

4 sin2(h/2)
≤ L′ < 1

can be satisfied. System (13) has a unique solution iff the function Gh :
Rn → Rn defined by

Gh(U) = −A−1
h (g(U)− fh)

9



has a single fixed-point. Since g(·) is a contraction, we have

‖Gh(U)−Gh(V )‖ ≤ ‖A−1
h ‖‖g(U)− g(V )‖ ≤ L‖A−1

h ‖‖U −V ‖ ≤ L′‖U −V ‖ ,

hence Gh(·) is a contraction, too. Now the result follows by the contraction
theorem.

Next we verify that the linearizations of (13) are uniformly stable with
stability constant

S =
L′

L(1− L′)

provided that g(· ) is continuously differentiable. From (13) we derive

dUFh = Ah + diag(g′(U)) = Ah[Id+ A−1
h diag(g′(U))] .

Thus, by the Banach lemma [6, p. 333]

‖dUF
−1
h ‖ ≤

‖A−1
h ‖

1− ‖g′(U)‖
∞
‖A−1

h ‖
≤

L′

L(1− L′)
.

Now all assumptions of Theorem 0.7 hold for ρ = ∞ . We conclude that the
family {Fh(·)} is stable on the stability range Rn with stability constant
S = L′/(L(1− L′)) .

It is a well-known property of the central difference discretization that it
is consistent of order p = 1 provided the solutions u∗ lie in C3(0, π) , which
is true if both f(·) and g(·) are continuously differentiable2. The solutions
U∗ of (13) therefore converge to u∗ with order not smaller than p = 1 .

We mention that we have never imposed a condition on the Lipschitz
continuity of the derivative dUFh as in (5). This is the main advantage of
our analysis.

We conclude this paper with a remark on partial differential equations.
Exactly the same kind of analysis as we have made for equation (12) can be
done on related two-dimensional problems such as

utt − uxx + g(u)− f = 0
u(0, t) = u(π, t) = 0
u 2π-periodic .

For more details on these problems see [1].

2If f(·) and g(·) are twice continuously differentiable then u∗ ∈ C4(0,π) which
implies consistency of order p = 2 .
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earer partieller Differentialgleichungen. PhD thesis, ETH Zürich, 1991.
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