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Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Swiss Federal Institute of Technology Zurich

Concentration-cancellation
and Hardy spaces

Italo Vecchi

Research Report No. 91-03
March 1991

Seminar für Angewandte Mathematik
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Abstract

Let υ∈ a sequence of DiPerna-Majda approximate solutions to the 2-D
incompressible Euler equations. We prove that if the vorticity sequence is
weakly compact in the Hardy space H1(R2) then a subsequence of υ∈ con-
verges strongly in L2(R2) to a solution of the Euler equations. This phe-
nomenon is directly related to the cancellation effects exhibited by “phantom
vortices”.
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In their fundamental paper [4] DiPerna and Majda study the convergence of
approximate solutions vε of the 2-D inviscid Euler equations as the regularization
parameter ε goes to zero. They give several examples of sequences of compactly
supported approximate solutions vε (as defined in Definition 1.1, [4]) whose vorticity
ωε is bounded in L1 which fail to be compact in L2 so that in the limit concentration
phenomena occur. Moreover in Th. 1.3 of [4] a criterion which rules concentrations
out is proposed: it is shown that a uniform bound on a logarithmic Morrey norm
of ωε yields strong L2-convergence of the velocity field.In this note another criterion

for compactness is introduced: we show that strong L2-compactness of vε follows
from weak compactness of ωε in the Hardy space H1(R2). Since H1(R2) is not
rearrangement invariant the fine structure of the vorticity plays a crucial role in
getting strong
L2-convergence. We recall that by Dunford-Pettis theorem (see [5], VIII, Th.1.3) a
necessary and sufficient condition for a subset Λ of L1(R2) to be weakly pre-compact
in L1(R2) is that there exist a positive function G(s) : R+ → R+ such that

(1) lim
s→+∞

G(s)

s
= +∞

and

(2) sup
f∈Λ

∫

R2

G(|f |) dx < +∞

Let Ri i = 1, 2, denote the Riesz transforms:

Rjf(x) =
∫

R2

xj − yj
|x− y|3

f(y) dx

We formulate our result as follows.Theorem 1. Let vε be a sequence of approximate

solutions such that for every t ≥ 0

(3) ‖ωε(., t)‖H1 < C 0 < ε ≤ ε0

and ωε satisfies weak uniform control at infinity (cfr.[4],(3.5)). Moreover let there
be a function G(s) : R+ → R+ such that (1) and (2) hold for Λ = {ωε}, {Riω

ε}, i =
1, 2.Then there is a subsequence of vε which converges strongly in L2 to a weak

classical solution v of the Euler equations. Moreover v ∈ W 1,1(R2). We recall (see

[6]) that a function f belongs to the Hardy space H1(R2) iff there is a sequence of
numbers λj satisfying

∑∞
1 |λj| < ∞ and a series of functions (atoms) aj such that

(4) f =
∞
∑

1

λjaj

where the a′js have the following properties a) aj is supported on a ball Bj and

‖aj‖∞ < 1
|Bj |

b)
∫

R2 aj(x) dx = 0The H1-norm of f can be defined as the infimum

of the expressions
∑∞

1 |λj| on all possible representations of f as in (4).If condition

b) were dropped the resulting space would be L1(R2). It is the subtle cancellation

1



effect due to b) (cfr.”phantom vortices”in [4], 1.A) together with (2) which yields
strong L2-compactness. Proof of Theorem 1. To prove the theorem we introduce

the stream
function ψε such that

(5) (ψε = ωε

and we proceed as in the proof of Th. 3.1 in [4]. It is known that for every f in
BMO(R2) there are gi in L∞(R2) , i = 0, 1, 2, such that

f = g0 +
∑

i=1,2

Rigi

Hence
∫

R2

fωε dx =
∫

R2

ωε(g0 +
∑

i=1,2

Rigi)dx =
∫

R2

ωεg0 −
∑

i=1,2

giRiω
ε dx

By our assumption (2) the sequence {ωε} and its Riesz transforms admit a weakly
convergent subsequence in L1(R2) . Therefore there is a subsequence such that

(6) ωε ⇀ ω weakly in H1(R2)

The statement of Th.1 is guaranteed by showing that for all ρ ∈ C∞
o (R2)

(7) lim
ε→0

∫

R2

ρ|vε|2 dx =
∫

R2

ρ|v|2dx

Indeed after integrating by parts (7) is seen to hold iff (see [4], (3.7)-(3.10))

(8) lim
ε→0

∫

R2

ρψεωε dx =
∫

R2

ρψdω

where ψ is the stream function corresponding to ω in (5). We recall that

∂2

∂xj∂xk

f = −RjRk(f

Hence
∂2

∂xj∂xk

ψε = −RjRkω
ε

Since the Riesz transform maps H1(R2) continuously into itself we get that

(9)
∥

∥

∥

∥

∂2

∂xj∂xk

ψε

∥

∥

∥

∥

L1

≤
∥

∥

∥

∥

∂2

∂xj∂xk

ψε

∥

∥

∥

∥

H1

≤ C‖ωε‖H1

and ψε stays bounded in W 2,1(R2). We recall that for any bounded domain Ω in R2

by the Gagliardo-Sobolev imbedding theorem W 2,1(R2) is continuously imbedded in
C(Ω) .Therefore

(10) ‖ψε‖C(Ω) ≤ C‖ωε‖H1

2



Moreover (see [1], Lemma 5.8) if u ∈ W 2,1(R2) for any Po ∈ R2 we have that for
δ > 0 if |(P | < δ

2

(11) |u(Po +(P )− u(Po)| ≤ C
(

1

δ2
‖u(P +(P )− u(P )‖L1(Bδ(Po))

+
1

δ

∑

i

∥

∥

∥

∂

∂xi

u(P +(P )−
∂

∂xi

u(P )
∥

∥

∥

L1(Bδ(Po))

+
∑

i,j

∥

∥

∥

∂2

∂xj∂xi

u(P +(P )−
∂2

∂xj∂xi

u(P )
∥

∥

∥

L1(Bδ(Po))

)

By (weak) continuity of the Riesz transforms from H1(R2) into itself there is a
subsequence of ∂2

∂xj∂xk
ψε, that converges weakly in H1(R2) to a φi,j ∈ H1(R2). On

the other hand weak convergence in H1(R2) implies weak convergence in L1(R2)
(indeed L∞ ⊂ BMO) so that we have

∂2

∂xj∂xk

ψε ⇀ φi,j weakly in L1(R2)

By the full version of Dunford-Pettis theorem for every κ > 0 there is a δ > 0 such
that for any P ∈ Ω

∥

∥

∥

∥

∂2

∂xj∂xk

ψε

∥

∥

∥

∥

L1(Bδ(P ))
< κ

uniformly in ε.We observe that if |(P | < δ

∥

∥

∥

∥

∂2

∂xj∂xk

[ψε(P +(P )− ψε(P )]
∥

∥

∥

∥

L1(Bδ(Po))
< C

∥

∥

∥

∥

∂2

∂xj∂xk

ψε

∥

∥

∥

∥

L1(B2δ(Po))

Therefore for every Po given κo > 0 we can find a δo > 0 such that if |(P | < δo
2

∑

i,j

∥

∥

∥

∥

∂2

∂xj∂xk

[ψε(P +(P )− ψε(P )]
∥

∥

∥

∥

L1(Bδo (Po))
<

κo

3

uniformly in ε. Moreover since W 1,1(Ω) is compactly imbedded in Lp for any p < 2
both {ψε} and { ∂

∂xi
ψε} are compact in L1. Hence by Kondratchev compactness

criterion (see [1]) there is a δ1 > 0 such that if |(P | < δ1

1

δo
2‖u(P +(P )− u(P )‖L1(Bδo (Po)) <

κo

3

1

δo

∑

i

∥

∥

∥

∂

∂xi

u(P +(P )−
∂

∂xi

u(P )
∥

∥

∥

L1(Bδ(Po))
<

κo

3

and by (11)

(12) |ψε(Po +(P )− u(Po)| < κo

3



uniformly in ε. The sequence ψε is equibounded by (10) and equicontinuous by (12)
and by Ascoli theorem we can extract a subsequence such that

(13) ψε → ψ strongly in C(Ω)

By (6) we have that ωε ⇀ ω weakly inM(Ω) so that (8) holds and the same argument

as in Th. 1.3 of [4] yields the statement of the theorem.Remark. The first example in

(1, §A) in [4] (phantom vortices) shows a sequence of vorticities which stays bounded
in H1(R2) whose velocity field fails to converge strongly in L2; in the second example
one has strong L1(R2) convergence of the vorticity but the sequence does not lie in
H1(R2) and again concentrations occur. By looking at the proof of Delort’s recent
deep result ([3]), weak convergence of ωε in L1(R2) is sufficient to pass to the limit
in the quadratic terms of the Euler equations, due to their special structure. It is
interesting that every bounded sequence in H1(R2) admits a weakly(*) convergent
subsequence whose limit stays in H1(R2) (see [2], Lemma (4.2)). However, since
(VMO)∗=H1(R2) and L∞ *⊂ VMO, this does not yield weak L1-convergence.It is

worth observing that condition (2) for ωε is rearrangement invariant and so in the
time dependent case it is conserved by the particle trajectory map. On the other
hand, as for the bounds (3.4) of Th. 3.1 in [4], it is not clear what happens to the
H1-norm as time goes by, since H1(R2) is not rearrangement invariant.
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[4] R.J DiPerna, A. Majda ”Concentrations in regularizations for

2-D incompressible flow”, Comm. in Pure and Appl. Math. 40 (1987), pp. 302-
345. [5] I. Ekeland, R. Temam ”Convex Analysis and variational problems”, North

Holland (1982).[6] A. Torchinsky ”Real variable methods in harmonic analysis”,

Academic Press. (1986)

4



Research Reports

Report No. Authors Title

91-03 I. Vecchi Concentration-cancellation and Hardy
spaces

91-02 R. Jeltsch, B. Pohl Waveform Relaxation with Overlap-
ping Splittings


