Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich

Concentration-cancellation and Hardy spaces

Italo Vecchi

Research Report No. 91-03 March 1991

Seminar für Angewandte Mathematik Eidgenössische Technische Hochschule CH-8092 Zürich Switzerland Concentration-cancellation and Hardy spaces

Italo Vecchi Seminar für Angewandte Mathematik Eidgenössische Technische Hochschule CH-8092 Zürich Switzerland

Research Report No. 91-03 March 1991

Abstract

Let v^{\in} a sequence of DiPerna-Majda approximate solutions to the 2-D incompressible Euler equations. We prove that if the vorticity sequence is weakly compact in the Hardy space $H^1(R^2)$ then a subsequence of v^{\in} converges strongly in $L^2(R^2)$ to a solution of the Euler equations. This phenomenon is directly related to the cancellation effects exhibited by "phantom vortices".

Keywords: Riesz transform, equibounded, Dunford-Pettis theorem Subject Classification: 35Q10 (76D05) In their fundamental paper [4] DiPerna and Majda study the convergence of approximate solutions v^{ϵ} of the 2-D inviscid Euler equations as the regularization parameter ϵ goes to zero. They give several examples of sequences of compactly supported approximate solutions v^{ϵ} (as defined in Definition 1.1, [4]) whose vorticity ω^{ϵ} is bounded in L^1 which fail to be compact in L^2 so that in the limit concentration phenomena occur. Moreover in Th. 1.3 of [4] a criterion which rules concentrations out is proposed: it is shown that a uniform bound on a logarithmic Morrey norm of ω^{ϵ} yields strong L^2 -convergence of the velocity field. In this note another criterion for compactness is introduced: we show that strong L^2 -compactness of v^{ϵ} follows from weak compactness of ω^{ϵ} in the Hardy space $H^1(R^2)$. Since $H^1(R^2)$ is not rearrangement invariant the fine structure of the vorticity plays a crucial role in getting strong

 L^2 -convergence. We recall that by Dunford-Pettis theorem (see [5], VIII, Th.1.3) a necessary and sufficient condition for a subset Λ of $L^1(\mathbb{R}^2)$ to be weakly pre-compact in $L^1(\mathbb{R}^2)$ is that there exist a positive function $G(s): \mathbb{R}^+ \to \mathbb{R}^+$ such that

(1)
$$\lim_{s \to +\infty} \frac{G(s)}{s} = +\infty$$

and

(2)
$$\sup_{f \in \Lambda} \int_{R^2} G(|f|) \, dx < +\infty$$

Let R_i i = 1, 2, denote the Riesz transforms:

$$R_j f(x) = \int_{R^2} \frac{x_j - y_j}{|x - y|^3} f(y) \, dx$$

We formulate our result as follows. **Theorem 1.** Let v^{ϵ} be a sequence of approximate solutions such that for every $t \geq 0$

(3)
$$\|\omega^{\epsilon}(.,t)\|_{H^1} < C \quad 0 < \epsilon \le \epsilon_0$$

and ω^{ϵ} satisfies weak uniform control at infinity (cfr.[4],(3.5)). Moreover let there be a function $G(s): \mathbb{R}^+ \to \mathbb{R}^+$ such that (1) and (2) hold for $\Lambda = \{\omega^{\epsilon}\}, \{\mathbb{R}_i \omega^{\epsilon}\}, i =$ 1,2.Then there is a subsequence of v^{ϵ} which converges strongly in L^2 to a weak classical solution v of the Euler equations. Moreover $v \in W^{1,1}(\mathbb{R}^2)$. We recall (see [6]) that a function f belongs to the Hardy space $H^1(\mathbb{R}^2)$ iff there is a sequence of numbers λ_j satisfying $\sum_{1}^{\infty} |\lambda_j| < \infty$ and a series of functions (atoms) a_j such that

(4)
$$f = \sum_{1}^{\infty} \lambda_j a_j$$

where the $a'_j s$ have the following properties a) a_j is supported on a ball B_j and $||a_j||_{\infty} < \frac{1}{|B_j|}$ b) $\int_{R^2} a_j(x) dx = 0$ The H^1 -norm of f can be defined as the infimum of the expressions $\sum_{1}^{\infty} |\lambda_j|$ on all possible representations of f as in (4). If condition b) were dropped the resulting space would be $L^1(R^2)$. It is the subtle cancellation

effect due to b) (cfr."phantom vortices" in [4], 1.A) together with (2) which yields strong L^2 -compactness. Proof of Theorem 1. To prove the theorem we introduce the stream

function ψ^{ϵ} such that

$$(5) \qquad \qquad \bigtriangleup \psi^{\epsilon} = \omega^{\epsilon}$$

and we proceed as in the proof of Th. 3.1 in [4]. It is known that for every f in $BMO(R^2)$ there are g_i in $L^{\infty}(R^2)$, i = 0, 1, 2, such that

$$f = g_0 + \sum_{i=1,2} R_i g_i$$

Hence

$$\int_{\mathbb{R}^2} f\omega^\epsilon \, dx = \int_{\mathbb{R}^2} \omega^\epsilon (g_0 + \sum_{i=1,2} R_i g_i) dx = \int_{\mathbb{R}^2} \omega^\epsilon g_0 - \sum_{i=1,2} g_i R_i \omega^\epsilon \, dx$$

By our assumption (2) the sequence $\{\omega^{\epsilon}\}$ and its Riesz transforms admit a weakly convergent subsequence in $L^1(\mathbb{R}^2)$. Therefore there is a subsequence such that

(6)
$$\omega^{\epsilon} \rightharpoonup \omega \quad weakly \ in \ H^1(R^2)$$

The statement of Th.1 is guaranteed by showing that for all $\rho \in C_o^{\infty}(\mathbb{R}^2)$

(7)
$$\lim_{\epsilon \to 0} \int_{R^2} \rho |v^{\epsilon}|^2 dx = \int_{R^2} \rho |v|^2 dx$$

Indeed after integrating by parts (7) is seen to hold iff (see [4], (3.7)-(3.10))

(8)
$$\lim_{\epsilon \to 0} \int_{R^2} \rho \psi^{\epsilon} \omega^{\epsilon} \, dx = \int_{R^2} \rho \psi d\omega$$

where ψ is the stream function corresponding to ω in (5). We recall that

$$\frac{\partial^2}{\partial x_j \partial x_k} f = -R_j R_k \triangle f$$

Hence

$$\frac{\partial^2}{\partial x_j \partial x_k} \psi^\epsilon = -R_j R_k \omega^\epsilon$$

Since the Riesz transform maps $H^1(\mathbb{R}^2)$ continuously into itself we get that

(9)
$$\left\|\frac{\partial^2}{\partial x_j \partial x_k}\psi^\epsilon\right\|_{L^1} \le \left\|\frac{\partial^2}{\partial x_j \partial x_k}\psi^\epsilon\right\|_{H^1} \le C\|\omega^\epsilon\|_{H^1}$$

and ψ^{ϵ} stays bounded in $W^{2,1}(\mathbb{R}^2)$. We recall that for any bounded domain Ω in \mathbb{R}^2 by the Gagliardo-Sobolev imbedding theorem $W^{2,1}(\mathbb{R}^2)$ is continuously imbedded in $C(\overline{\Omega})$. Therefore

(10)
$$\|\psi^{\epsilon}\|_{C(\overline{\Omega})} \le C \|\omega^{\epsilon}\|_{H^1}$$

Moreover (see [1], Lemma 5.8) if $u \in W^{2,1}(\mathbb{R}^2)$ for any $P_o \in \mathbb{R}^2$ we have that for $\delta > 0$ if $|\Delta P| < \frac{\delta}{2}$

(11)
$$|u(P_o + \Delta P) - u(P_o)| \leq C \left(\frac{1}{\delta^2} ||u(P + \Delta P) - u(P)||_{L^1(B_{\delta}(P_o))} + \frac{1}{\delta} \sum_i \left\| \frac{\partial}{\partial x_i} u(P + \Delta P) - \frac{\partial}{\partial x_i} u(P) \right\|_{L^1(B_{\delta}(P_o))} + \sum_{i,j} \left\| \frac{\partial^2}{\partial x_j \partial x_i} u(P + \Delta P) - \frac{\partial^2}{\partial x_j \partial x_i} u(P) \right\|_{L^1(B_{\delta}(P_o))} \right)$$

By (weak) continuity of the Riesz transforms from $H^1(R^2)$ into itself there is a subsequence of $\frac{\partial^2}{\partial x_j \partial x_k} \psi^{\epsilon}$, that converges weakly in $H^1(R^2)$ to a $\phi_{i,j} \in H^1(R^2)$. On the other hand weak convergence in $H^1(R^2)$ implies weak convergence in $L^1(R^2)$ (indeed $L^{\infty} \subset BMO$) so that we have

$$\frac{\partial^2}{\partial x_j \partial x_k} \psi^{\epsilon} \rightharpoonup \phi_{i,j} \quad weakly \ in \ L^1(\mathbb{R}^2)$$

By the full version of Dunford-Pettis theorem for every $\kappa > 0$ there is a $\delta > 0$ such that for any $P \in \Omega$

$$\left\|\frac{\partial^2}{\partial x_j\partial x_k}\psi^\epsilon\right\|_{L^1(B_\delta(P))} \!\!< \kappa$$

uniformly in ϵ . We observe that if $|\Delta P| < \delta$

$$\left\|\frac{\partial^2}{\partial x_j \partial x_k} [\psi^{\epsilon}(P+\Delta P) - \psi^{\epsilon}(P)]\right\|_{L^1(B_{\delta}(P_o))} < C \left\|\frac{\partial^2}{\partial x_j \partial x_k}\psi^{\epsilon}\right\|_{L^1(B_{2\delta}(P_o))}$$

Therefore for every P_o given $\kappa_o > 0$ we can find a $\delta_o > 0$ such that if $|\Delta P| < \frac{\delta_o}{2}$

$$\sum_{i,j} \left\| \frac{\partial^2}{\partial x_j \partial x_k} [\psi^\epsilon(P + \triangle P) - \psi^\epsilon(P)] \right\|_{L^1(B_{\delta_o}(P_o))} < \frac{\kappa_o}{3}$$

uniformly in ϵ . Moreover since $W^{1,1}(\Omega)$ is compactly imbedded in L^p for any p < 2both $\{\psi^{\epsilon}\}$ and $\{\frac{\partial}{\partial x_i}\psi^{\epsilon}\}$ are compact in L^1 . Hence by Kondratchev compactness criterion (see [1]) there is a $\delta_1 > 0$ such that if $|\Delta P| < \delta_1$

$$\frac{1}{\delta_o^2} \|u(P + \Delta P) - u(P)\|_{L^1(B_{\delta_o}(P_o))} < \frac{\kappa_o}{3}$$
$$\frac{1}{\delta_o} \sum_i \left\|\frac{\partial}{\partial x_i} u(P + \Delta P) - \frac{\partial}{\partial x_i} u(P)\right\|_{L^1(B_{\delta}(P_o))} < \frac{\kappa_o}{3}$$

and by (11)

(12)
$$|\psi^{\epsilon}(P_o + \Delta P) - u(P_o)| < \kappa_o$$

uniformly in ϵ . The sequence ψ^{ϵ} is equibounded by (10) and equicontinuous by (12) and by Ascoli theorem we can extract a subsequence such that

(13)
$$\psi^{\epsilon} \to \psi \quad strongly \ in \ C(\Omega)$$

By (6) we have that $\omega^{\epsilon} \rightarrow \omega$ weakly in $M(\Omega)$ so that (8) holds and the same argument as in Th. 1.3 of [4] yields the statement of the theorem.*Remark*. The first example in $(1, \S A)$ in [4] (phantom vortices) shows a sequence of vorticities which stays bounded in $H^1(R^2)$ whose velocity field fails to converge strongly in L^2 ; in the second example one has strong $L^1(R^2)$ convergence of the vorticity but the sequence does not lie in $H^1(R^2)$ and again concentrations occur. By looking at the proof of Delort's recent deep result ([3]), weak convergence of ω^{ϵ} in $L^1(R^2)$ is sufficient to pass to the limit in the quadratic terms of the Euler equations, due to their special structure. It is interesting that every bounded sequence in $H^1(R^2)$ admits a weakly(*) convergent subsequence whose limit stays in $H^1(R^2)$ (see [2], Lemma (4.2)). However, since $(VMO)^*=H^1(R^2)$ and $L^{\infty} \not\subset VMO$, this does not yield weak L^1 -convergence. It is worth observing that condition (2) for ω^{ϵ} is rearrangement invariant and so in the time dependent case it is conserved by the particle trajectory map. On the other hand, as for the bounds (3.4) of Th. 3.1 in [4], it is not clear what happens to the H^1 -norm as time goes by, since $H^1(R^2)$ is not rearrangement invariant.

Bibliography

[1] R. Adams "Sobolev Spaces", Academic Press. (1975) [2] R.R. Coifman, G. Weiss "Extensions of Hardy spaces", Bull.

A.M.S. 83 (1977), pp. 569-645. [3] J. Delort "Existence de nappes de tourbillon en dimension deux", Prepublications 90-51; Université de Paris Sud, Mathématiques.
[4] R.J DiPerna, A. Majda "Concentrations in regularizations for

2-D incompressible flow", Comm. in Pure and Appl. Math. 40 (1987), pp. 302-345. [5] I. Ekeland, R. Temam "Convex Analysis and variational problems", North Holland (1982).[6] A. Torchinsky "Real variable methods in harmonic analysis", Academic Press. (1986)

Research Reports

Report No.	Authors	Title
91-03	I. Vecchi	Concentration-cancellation and Hardy
91-02	R. Jeltsch, B. Pohl	spaces Waveform Relaxation with Overlap-
01 0-	10. 0 0100 011, 20. 1 0111	ping Splittings