
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Swiss Federal Institute of Technology Zurich

Waveform Relaxation with
Overlapping Splittings

Rolf Jeltsch, Bert Pohl

Research Report No. 91-02
February 1991

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

Waveform Relaxation with
Overlapping Splittings

Rolf Jeltsch, Bert Pohl
Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

Research Report No. 91-02 February 1991

Abstract

In this paper we present an extension of the wra for solving large systems
of odes. The wra is well suited for parallel computation because it decomposes
the solution space into several disjoint subspaces. Allowing the subspaces to
overlap, i.e. dropping the assumption of disjointness, we obtain an extension
of this algorithm. This new algorithm the so called msa is also well suited for
parallel computation. As numerical examples demonstrate this overlapping of
the subsystems heavily reduces the computation time.

Keywords: waveform relaxation, multi-splittings, parallel computation

Subject Classification: 65L05, 65F10, 65W05

1. Introduction

In the area of simulation of large electrical circuits the equations describing the
circuit often yield a m dimensional nonlinear stiff initial value problem

(1.1) x′(t) = f(t, x(t)) x(0) = x0

with t ∈ [0, T], x ∈ C1([0, T]; IRm), f ∈ C([0, T], IRm; IRm), x0 ∈ IRm. If one has to
simulate a Very Large Scale Integrated (VLSI) circuit the dimension of the problem
can reach up to more than 10000 [WhSa87]. Very often the circuit consists of fast
and slow components and the fast components force one to use implicit integration
methods. Therefore one must solve a m dimensional nonlinear system of equations
at each timepoint before advancing to the next timepoint.

In the beginning of the 1980’s a new approach for solving these problems was
developed at the Electronic Research Laboratory at Berkeley that circumvents these
difficulties. In this approach called waveform relaxation algorithm the full system is
decomposed into smaller subsystems which can be solved independently by differ-
ent processors on a parallel computer. The subsystems are integrated over certain
small time intervals so called windows. Inputs from other subsystems are taken
from the previous iteration. The advantages of this method are obviously not only
the possibility to use several processors in parallel and the smaller dimension of the
subsystems but also to use different step sizes for different subsystems. Subsystems
with slow components only can be integrated with larger step sizes than those con-
taining fast components. A major drawback is the slow convergence of the iteration
in case of a strong coupling between the subsystems. Moreover much more mem-
ory is needed to store all values of each component at each timepoint of the last
iteration.

Multi-splitting methods were first introduced by O’Leary andWhite in [OLWh85]
for solving large linear system of equations on a parallel computer. This idea was
extended to nonlinear problems by White in [Whit86]. In this paper we adapt the
ideas of O’Leary and White and study the use of multi-splitting methods for solving
large systems of ordinary differential equations. It turns out that with a special set
of parameters one recovers the waveform relaxation algorithm. We restrict ourselves
to linear problems; this means that we are dealing only with linear m-dimensional
initial value problems

(1.2) x′(t) + Ax(t) = f(t) x(0) = x0

with t ∈ [0, T], A ∈ IRm×m, f ∈ C([0, T]; IRm), x0 ∈ IRm, x ∈ C1([0, T]; IRm).

In the second section of this paper we briefly review the usual formulation of the
waveform relaxation algorithm. The third section contains the presentation of the
multi-splitting algorithm a first analysis of which is given in the fourth section. In
the fifth section we discuss a practical implementation of the multi-splitting algo-
rithm. In the last part we present some numerical examples which demonstrate the
faster convergence of the multi-splitting algorithm when overlapping splittings are
used.

1

Let us introduce some notation. In order to avoid too many indices, we refer to
the element in the i-th row and j-th column of a matrix C by C(i, j). The matrix
Is indicates the s× s identitymatrix.

2. The Waveform Relaxation Algorithm

For linear initial value problems (1.2) the waveform relaxation algorithm is based
on a splitting of the matrix A into A = M −N which yields

(2.1) x′(t) +Mx(t) = Nx(t) + f(t) x(0) = x0.

This is written as an iteration where the right hand side is taken as an input to the
iteration

(2.2) x′
n+1(t) +Mxn+1(t) = Nxn(t) + f(t) xn+1(0) = x0.

The starting function x0(t) is chosen as constant initial values x0(t) ≡ x0. In the
case of Block-Gauss-Jacobi the matrix M is chosen to be block diagonal and in the
case of Block-Gauss-Seidel M has block lower triangular structure. With a block
diagonal M the algorithm is well suited for parallel computers. Suppose

M =

D1

D2 0
. . .

0 Dr

where we assume that each Dj is a real mj × mj matrix. By this the problem is
naturally decomposed into r subsystems. On a parallel computer each subsystem
is now assigned to a processor and the solution of each subsystem is computed in
parallel. This is done not only for one timepoint but over the whole domain of
integration1 [0, T]. After each subsystem has been solved the index of the iteration
is increased and another iteration is performed until convergence has occurred.

We observe that the sum of the dimensions of the subsystems always equals the
dimension of the underlying problem. In the next section we will show that it
is possible to allow the sum of the dimensions of the subsystems to exceed the
dimension of the original problem.

3. The Multi-splitting Algorithm

In 1985 O’Leary and White presented a method for solving Ax = b on a parallel
computer by splitting the matrix A not just once but several times into A = Ml −

1It has turned out that it is more advantageous to break the domain of integration into time
blocks so called windows [0, T1], [T1, T2], . . . , [Ts, T] and to perform the integration only on one
window. After convergence is reached on that particular window one proceeds to the next window.

2

Nll = 1, . . . , L. Frommer and Mayer demonstrated in [FrMa90] that it can have
computational advantages to split A more than once and to overlap the subsystems.

We need the following definition:

Definition 3.1:
Let L ≥ 1 be a fixed integer which will be called the number of splittings. Let
A,Ml, Nl, El be real m × m matrices. The set of ordered triples (Ml, Nl, El)l =
1, . . . , L is called a multi-splitting of A if

(i)

(3.1) A = Ml −Nl l = 1, . . . , L

(ii) The matrices El are diagonal matrices and satisfy the consistency condition

(3.2)
L
∑

l=1

El = Im.

Using (3.1) we can rewrite (1.2) as

x′(t) +Mlx(t) = Nlx(t) + f(t) x(0) = x0 l = 1, . . . , L

As in the waveform relaxation algorithm we will take the right hand side as input
and the left hand side as unknown. Again this is solved in an iterative way

(3.3) y′l,n(t) +Mlyl,n(t) = Nlxn(t) + fl(t), yl,n(0) = x0l = 1, . . . , L

After having solved each subsystem we compute a new approximation to the solution
of (1.2) by

(3.4) xn+1(t) =
L
∑

l=1

Elyl,n(t)

Definition 3.2:
For any l ∈ {1, . . . , L} we will refer to

y′l(t) +Mlyl(t) = Nlx(t) + f(t) yl(0) = x0

as a subsystem of (1.2).

Remark 3.3:
If we take a closer look at (3.3) we see that there is no interaction between two dif-
ferent subsystems. Therefore we can solve these subsystems on different processors
in parallel.

Remark 3.4:
From (3.4) we see that we do not need to compute those components i of yl,n(t)
where El(i, i) = 0. Therefore in practical implementations we will not compute

3

these components at all. We will return to this aspect in a discussion of a practical
implementation in section 5.

We conclude this section by describing the Multi-splitting Algorithm in an al-
gorithmic way :

initialize
x0(t) ≡ x0 ∀t ∈ [0, T]
n:=0

repeat
solve for l = 1, . . . , L { in parallel }

y′l,n(t) +Mlyl,n(t) = Nlxn(t) + f(t) yl,n(0) = x0

xn+1(t) :=
∑L

l=1Elyl,n(t)
until stopping criterion

4. The Analysis of the Multi-splitting Algorithm

In [Neva89] Nevanlinna analyzed the waveform relaxation algorithm. In this section
we will adapt the means presented in that paper to analyze the multi-splitting
algorithm.
First we introduce the following notation

(4.1) kl(t) = exp(−tMl)Nl for l = 1, . . . , L.

kl(t) is the kernel of the linear integral operator defined by

(4.2) Klu(t) =
∫ t

0
kl(t− s)u(s) ds for l = 1, . . . , L.

If we denote

(4.3) ϕl(t) = exp(−tMl)x0 +
∫ t

0
exp((s− t)Ml)f(s) ds for l = 1, . . . , L

we can write the solution yl(t) of a subsystem (3.3) using (4.1)-(4.3) as

yl,n(t) = Klxn(t) + ϕl(t)

Having computed the solution of each subsystem we have to weight the solutions
by the El matrices. Then we sum the weighted solutions over all subsystems to get
a new approximation to the solution of (1.2). Therefore the following notation will
be used frequently

k̃(t) =
L
∑

l=1

Elkl(t)

K̃ u(t) =
L
∑

l=1

ElKlu(t)

ϕ̃(t) =
L
∑

l=1

Elϕl(t)

.

4

Using this notation the next iteration can be written as

(4.4) xn+1(t) = K̃ xn(t) + ϕ̃(t)

The following lemma is obvious and is given without proof.

Lemma 4.1:
x(t) is the exact solution of (1.2) if and only if x(t) is also a solution of each subsystem

x(t) = Klx(t) + ϕl(t) for l = 1, . . . , L.

We shall make use of Lemma 4.1 in the following

Lemma 4.2:
x(t) is the solution of (1.2) if and only if x(t) is the solution of the fixpoint equation
x(t) = K̃ x(t) + ϕ̃(t).

Proof:
Let x(t) be the solution of (1.2). We get for l = 1, . . . , L:

Elx(t) = ElKlx(t) + Elϕl(t)

⇒
L
∑

l=1

Elx(t) =
L
∑

l=1

ElKlx(t) +
L
∑

l=1

Elϕl(t)

⇒ x(t) = K̃ x(t) + ϕ̃(t).

The other direction of the lemma will be shown later.

Disregarding convergence one can verify by substitution that

(4.5) x(t) =
∞
∑

i=0

K̃
i
ϕ̃(t).

is a formal solution of the fixpoint equation. Using (4.4) inductively yields:

Lemma 4.3:
For n ≥ 1 we obtain

(4.6) xn(t) = K̃
n
x0(t) +

n−1
∑

i=0

K̃
i
ϕ̃(t).

We observe that the convergence of the iteration depends only on the behaviour of
the linear operator K̃

n
.

Before we show that the fixpoint equation has unique solution, we take a closer look
at the operator K̃

n
.

K̃
n
u(t) =

L
∑

l1=1

L
∑

l2=1

. . .
L
∑

ln=1

El1Kl1El2Kl2 . . . ElnKlnu(t).

The next lemma shows that K̃
n
can be regarded as an n-fold convolution.

5

Lemma 4.4:
Let k̃i∗ with i ∈ IN be recursively defined by

k̃(i+1)∗ = k̃ ∗ k̃i∗

k̃ ∗ u(t) =
∫ t

0
k̃(t− s)u(s)ds

Then

(4.7) K̃
n
u(t) =

∫ t

0
k̃n∗(t− s)u(s)ds.

Proof:
The proof is done by induction with respect to n.
For n = 1 we get

K̃ u(t) =
L
∑

l=1

El

∫ t

0
kl(t− s)u(s) ds =

∫ t

0
k̃(t− s)u(s) ds

Assuming that (4.7) holds for some n we get for n + 1

K̃
n+1

u(t) = K̃ (K̃
n
u(t))

= K̃ (
∫ t

0
k̃n∗(t− s) u(s) ds)

=
∫ t

0
k̃(t− s)

∫ s

0
k̃n∗(s− v) u(v) dv ds

=
∫ t

0

∫ t

v
k̃(t− s) k̃n∗(s− v) ds u(v) dv

Substituting now w = s− v yields

K̃
n+1

u(t) =
∫ t

0

∫ t−v

0
k̃((t− v)− w) k̃n∗(w) dwu(v) dv

=
∫ t

0
k̃ ∗ k̃n∗(t− v) u(v) dv

=
∫ t

0
k̃(n+1)∗(t− v)u(v)dv

If we want to show convergence of the series (4.5) we need that the operator K̃ is a
contraction operator.

Let us introduce the following norm:

(4.8) ‖u‖T = max
t∈[0,T]

|u(t)|

where | · | denotes any vector norm. By ‖ · ‖T we also denote the induced matrix or
operator norm.

6

Since [0, T] is a finite interval we can suppose that for the kernel kl the following
bound holds:

(4.9) ‖kl‖T ≤ Cl for l = 1, . . . , L

We define

(4.10) C =
L
∑

l=1

Cl and assume ‖El‖T ≤ E for l = 1, . . . , L.

Using (4.9) and (4.10) we get the following bound:

(4.11) |k̃(t)| ≤ ‖k̃‖T ≤ CE =: C̄.

Before estimating K̃
n
we derive a bound for its kernel k̃n∗:

Lemma 4.5:
For the kernel of the iteration operator K̃

n∗
we have

|k̃n∗(t)| ≤ C̄
∫ t

0
|k̃(n−1)∗(s)| ds

and

(4.12) |k̃n∗(t)| ≤ C̄
(C̄t)n−1

(n− 1)!
.

Proof:

|k̃n∗(t)| = |k̃ ∗ k̃(n−1)∗(t)| = |
∫ t

0
k̃(t− s)k̃(n−1)∗(s) ds|

≤
∫ t

0
|k̃(t− s)| |k̃(n−1)∗(s)| ds

≤
∫ t

0
‖k̃‖T |k̃(n−1)∗(s)| ds ≤ C̄

∫ t

0
|k̃(n−1)∗(s)| ds

¿From this (4.12) follows by induction.

Now we derive a bound for the iteration operator K̃
n
itself. Using Lemma 4.4 and

Lemma 4.5 we get:

(4.13) ‖K̃
n
‖T ≤

(C̄T)n

n!

since

‖K̃
n
‖T = sup

‖u‖T=1
‖K̃

n
u‖T = sup

‖u‖T=1
sup

t∈[0,T]
|K̃

n
u(t)|

= sup
‖u‖T=1

sup
t∈[0,T]

|
∫ t

0
k̃n∗(t− s)u(s)ds|

7

≤ sup
‖u‖T=1

sup
t∈[0,T]

|
∫ t

0
k̃n∗(t− s)‖u‖Tds|

= sup
t∈[0,T]

∫ t

0
|k̃n∗(t− s)|ds

= sup
t∈[0,T]

∫ t

0
|k̃n∗(v)|dv

≤
∫ T

0
C̄n vn−1

(n− 1)!
dv

≤
(C̄T)n

n!

We return to the fixpoint equation and we will show that it has a unique solution.

Since ‖K̃ ‖T ≤ C̄T we can find an interval [0, T0] with T0 < 1/C̄. Therefore the
operator K̃ is a contraction operator on that particular interval. It is easily seen
that with (4.13) we also have convergence of the series (4.5). We now complete the
proof of Lemma 4.2.

Proof: (Continuation of Lemma 4.2)
We have that

x(t) =
∞
∑

i=0

K̃
i
ϕ̃(t)

is a solution of the fixpoint equation. Since K̃ is a contraction operator on sufficiently
small intervals the solution of the fixpoint equation is unique. Moreover we already
know that if x(t) is a solution of (1.2) then it is also a solution of the fixpoint
equation. Combining this results completes the proof.

Remark 4.6:
This approach of splitting the domain of integration [0, T] into subintervals [0, T0], [T0, T1], . . . , [Ts, T]
so called windows is used in implementations to accelerate the rate of convergence.
The iteration is performed only on one particular window [Ti−1, Ti] and one proceeds
to the next interval [Ti, Ti+1] after convergence has occurred on [Ti−1, Ti].

If we now subtract (4.6) from (4.5) we have a first form of the error of the n-th
approximation:

x(t)− xn(t) =
∞
∑

i=n

K̃
i
ϕ̃(t)− K̃

n
x0(t).

Using this result we can prove the following lemma:

Lemma 4.7:
The error of the n-th approximation is bounded by

(4.14) ‖x− xn‖T ≤
(C̄T)n

n!

(

exp(C̄T)‖ϕ̃‖T + ‖x0‖T
)

8

Proof: Using (4.5), (4.6) and (4.13) we have

‖x− xn‖T ≤ max
t∈[0,T]

∞
∑

i=n

|K̃
i
ϕ̃(t)− K̃

n
x0(t)|

≤
∞
∑

i=n

‖K̃
i
‖T ‖ϕ̃‖T + ‖K̃

n
‖T ‖x0‖T

≤
∞
∑

i=n

(C̄T)i

i!
‖ϕ̃‖T +

(C̄T)n

n!
‖x0‖T

≤
(C̄T)n

n!

(

∞
∑

i=0

(C̄T)ii!

(i+ n)!
‖ϕ̃‖T + ‖x0‖T

)

Using the inequality
a!

(a+ b)!
≤

1

b!

completes the proof.

¿From Lemma 4.7 we see that we can achieve convergence of the multi-splitting
algorithm on a fixed interval [0, T]. If T is large however, the convergence can get
very slow. It is possible to circumvent this difficulty by introducing an exponentially
weighted norm, in which convergence can be achieved on [0,∞). We will discuss
this different approach in future work.

5. A Multi-Splitting based on Overlapping Block
Decomposition

In this section we discuss a practical implementation of the multi-splitting algorithm
which is based on an overlapping block decomposition of the matrix A. In section 2
we have seen that we do not need to compute the i-th component of yl,n whenever
El(i, i) = 0. We give a formalism to eliminate all these unused components. This
results in a reduction of the dimensions of the subsystems.

We need the following definition:

Definition 5.1:
Let S = {1, . . . , m} which will be referred to as the set of the components of
problem (1.2).

First we choose L subsets S1, S2, . . . , SL of S satisfying the condition

L
⋃

l=1

Sl = S

We get immediately that if ml denotes the number of elements of Sl for l = 1, . . . , L
then

L
∑

l=1

ml ≥ m

9

Furthermore we have equality if the S1, . . . , SL are disjoint.

Definition 5.2:
If there exists at least one pair of indices i ,= j with i, j ∈ {1, . . . , L} so that
Si ∩ Sj ,= ∅ then we will call a multi-splitting an overlapping multi-splitting
otherwise it will be named a disjoint multi-splitting.

Remark 5.3:
We use a block decomposition which means if i ∈ Sl and i + r ∈ Sl then j ∈ Sl

with i ≤ j ≤ i + r. We overlap only adjoining subsystems where moreover we only
encounter the case that one component is in at most two subsystems.

For simplicity we assume that the number of overlapping components between two
adjoining subsystems is constant.

Definition 5.4:
By overlap k we mean that

k = |Sl ∩ Sl+1| for l = 1, . . . , L− 1.

Next we define the elements of the El matrices by setting those diagonal elements
El(i, i) nonzero, where the according index i is an element of Sl. Furthermore we
require that the consistency condition (3.2) is satisfied:

El(i, j) =

0 if i ,= j
0 if i = j and i /∈ Sl

,= 0 if i = j and i ∈ Sl

Now we know which components i of the l-th subsystem will be weighted by a
factor El(i, i) ,= 0 and which will be dropped by multiplying it with El(i, i) = 0.
By computing values for components that will be thrown away afterwards not only
computing time is wasted but also more memory is used. Therefore we will compute
a component i of subsystem l only if El(i, i) ,= 0 or equivalently if i ∈ Sl. Using
the subsets S1, S2, . . . , SL we can define L projection matrices P1, P2, . . . , PL in the
following way

Pl(i, j) =

0 if i ,= j
0 if i = j and i /∈ Sl

1 if i = j and i ∈ Sl

where i, j ∈ {1, . . . , m} and l ∈ {1, . . . , L} i.e. only those diagonal elements of Pl

are nonzero where the according index is an element of Sl.

By using these projection matrices we project problem (1.2) into L different sub-
spaces. We solve now the projected problems in each subspace but we use compo-
nents from outside the particular subspace as an input.

Remark 5.5:
In a disjoint multi-splitting the matrices Pl and El coincide.

Lemma 5.6:
The following relations hold:

10

• (i) PlEl = ElPl = El for l = 1, . . . , L

• (ii) If a disjoint multi-splitting is used then EiEj = EjEi = 0

for i ,= j.

Recalling the algorithm we see that the iterate xn+1 is computed by

xn+1(t) =
L
∑

l=1

Elyl,n(t) =
L
∑

l=1

ElPlyl,n(t)

where Lemma 5.6 (i) is used. This means that in the l-th subsystem we only have
to compute Plyl,n. In order to have only the components i with i ∈ Sl as unknowns
in the l-th subsystem in a practical implementation of the algorithm not the matrix
A but the projected matrix PlA is split. This saves computing time and much less
memory is needed. Therefore we use from now on

PlA = Ml −Nl l = 1, . . . , L

Remark 5.7:
It is easy to see that the case L = 1 yields exactly the waveform relaxation algorithm
as presented in section 2. Moreover the Block Gauss Jacobi iteration in Example
2.1 can be expressed as a disjoint multi-splitting with L = r and Ml = PlAPl.

Example 5.8:
We consider the 5-dimensional problem:

x′(t) +

2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

x(t) =

−1
1
1
1
−1

, x(0) =

1
0
0
0
0

where x(t) = (x1(t), x2(t), x3(t), x4(t), x5(t))′.

The splitting is given by the subsets of S:

Block Gauss Jacobi, S1 = {1, 2} , S2 = {3, 4, 5}:

M =

2 −1 0 0 0
−1 2 0 0 0
0 0 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

N =

0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

Multi-Splitting, S1 = {1, 2, 3, 4} , S2 = {3, 4, 5}:

M1 =

2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 0
0 0 0 0 0

N1 =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

11

M2 =

0 0 0 0 0
0 0 0 0 0
0 0 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

N2 =

0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

E1 =

1 0 0 0 0
0 1 0 0 0
0 0 s1 0 0
0 0 0 s2 0
, 0 0 0 0 0

E2 =

0 0 0 0 0
0 0 0 0 0
0 0 1− s1 0 0
0 0 0 1− s2 0
0 0 0 0 1

with 0 ≤ s1, s2 ≤ 1.

6. Numerical Results

In this section we present some numerical experiments that have the same charac-
teristics. The number of iterations necessary to satisfy a given accuracy is for the
multi-splitting algorithm always lower than for the waveform relaxation algorithm.
Throughout this section we will refer to the waveform relaxation algorithm as a
disjoint multi-splitting or as a multi-splitting with overlap 0.

The problem:
We always use the same dimension of the test problem, the same number of time-
points and the same interval of integration. The dimension m is always 150, the
number of timepoints is 150 and the interval of integration is [0, T] = [0, 2]. As the
right hand side function f(t) we have chosen: f(t) = 1− sin(4t).
We vary the number of subsystems and the number of overlapping components.
The matrix A is defined as follows:

A =

2 −1
2 −1

4 −1
8 − 1

16 − 1
32 0 . . . 0 − 1

64

−1
2 2 −1

2 −1
4 −1

8 − 1
16

. . . 0 . . . 0

−1
4 −1

2 2 −1
2 −1

4 −1
8

. . .

−1
8 −1

4 −1
2 2 −1

2 −1
4

. . .
...

− 1
16 −1

8 −1
4 −1

2 2 −1
2

. . .

− 1
32 − 1

16 −1
8 −1

4 −1
2 2

. 0

0
. − 1

32

0
. . . − 1

16
...

. . . −1
8

...
. . . −1

4

0
. −1

2
− 1

64 0 . . . 0 − 1
32 − 1

16 −1
8 −1

4 −1
2 2

12

As a stopping criterion we require that all components i of the solution satisfy

(6.1)
∑

t

|xn+1,i(t)− xn,i(t)| ≤ 10−3.

where t is a timepoint. The subsystems were solved with the semi-implicit mid-point
rule [BaDe81] and as already mentioned constant stepsize h = 1

75 .

How do we split?
Since the structure of the matrixA is simple we have chosen the subsets S1, S2, . . . , SL

that each subset contains at least m
L

elements. If L is not a factor of m, i.e.
m = αL + β with β ,= 0 we add to the last β subsets SL−β+1, . . . , SL one ele-
ment. If we use overlap j we add to all but the last subsystem j elements. By this
we achieve that the workload is distributed evenly among the different processors if
a parallel computer is used.
This strategy is illustrated in Example 5.9 with m = 5, L = 2 and overlap 0 and
overlap 2 respectively.
How do we choose the elements of the El matrices?
It seems natural to use as a first approach El(i, i) =

1
2 whenever component i of the

l-th subsystem is in two subsystems.
The number of iterations necessary to satisfy a given stopping criterion is as expected
a monotone decreasing function of the number of overlapping components. If we
increase the overlap however the number of necessary iterations suddenly increases.
We can explain this by considering a component i for which either i− 1 or i+ 1 is
not an element of the same subset. Lets suppose that i ∈ Sl, i+1 /∈ Sl, i+1 ∈ Sl+1.
We have two approximate solutions of component i, one solution computed from
subsystem l and one solution computed from subsystem l+1. Since the phenomenon
only occurs if we use a large number of overlapping components we can assume that
i − 2, i − 1, i, i + 1 and i + 2 are elements of Sl+1. Therefore we expect that the
computation of component i from the subsystem l + 1 is more accurate than the
other computation. But with the above mentioned weighting scheme we use the
same weight for both solutions and we introduce an error that causes an increased
number of iteration steps required.
Instead of the above choice of El we now give a different setting of the weight
matrices wherefore we need the following definition:

Definition 6.1:
We call a component i of Sl a border component if (i−1) /∈ Sl or (i+1) /∈ Sl. The
lower border component of Sl is denoted by lmin and the upper border component is
denoted by lmax. For the first and last subsystem we define 1min = 1 and Lmax = m.
The distance dl(i) from the border of component i is defined as dl(i) = lmax − i.

Suppose we use overlap k. We propose the following choice of weights for the
overlapping components i = lmax − k + 1, . . . , lmax

El(i, i) =
dl(i) + 1

overlap + 1
for l = 1, . . . L− 1.

By this we define the last k diagonal elements of E1, E2, . . . , EL−1. Since the El ma-
trices satisfy the consistency condition the first k diagonal elements of E2, E3, . . . , EL

13

are also uniquely defined. Using this weight scheme we get for the matrices E1 and
E2 of Example 5.9 with overlap k = 2:

E1 =

1 0 0 0 0
0 1 0 0 0
0 0 2

3 0 0
0 0 0 1

3 0
0 0 0 0 0

E2 =

0 0 0 0 0
0 0 0 0 0
0 0 1

3 0 0
0 0 0 2

3 0
0 0 0 0 1

We will vary the number of splittings L and the number of overlapping components.
The quantity that is given in the tables is the necessary number of iterations that
(6.1) is satisfied.

Table 1: number of subsystems L = 2
overlap 0 1 2 3 4 5 6 7 8 9
iterations 8 7 6 5 5 4 4 4 4 4
time[%] 100 90 79 68 70 58 59 61 63 64

Table 2: number of subsystems L = 3
overlap 0 1 2 3 4 5 6 7 8 9
iterations 8 7 6 5 5 4 4 4 4 4
time[%] 100 93 82 71 73 60 61 62 64 66

Table 3: number of subsystems L = 6
overlap 0 1 2 3 4 5 6 7 8 9
iterations 8 7 6 5 5 4 4 4 4 4
time[%] 100 93 82 71 73 60 61 62 64 66

References:

[FrMa90] A. Frommer, G. Mayer, ”Theoretische und praktische Ergebnisse zu
Multisplitting-Verfahren auf Parallelrechnern”, ZAMM Vol.70 (1990) No.6, T
600 - T 602

[Neva89] O. Nevanlinna, ”Remarks on Picard-Lindelöf Iterations”, Part I, Bit 29
(1989), pp. 328-346, Part II, Bit 29 (1989), pp. 535-562,

[OLWh85] D.P. O’Leary, R.E. White, ”Multi-Splittings of Matrices and Parallel
Solution of Linear Systems”, SIAM J.Alg. Disc. Meth. Vol.6, No.4, (1986),
pp. 630-640

[Whit86] R.E. White, ”Parallel Algorithms for nonlinear Problems”, SIAM J. Alg.
Disc. Meth. Vol.7, No.1, (1986), pp. 137-149

[WhSa87] J. White, A.L. Sangiovanni-Vincentelli, ”Relaxation Techniques for the
Simulation on VLSI Circuits”, Kluwer Academic Publishers, Boston, (1987)

14

