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Abstract

We analyze deep Neural Network emulation rates of smooth functions with point singu-
larities in bounded, polytopal domains D ⊂ R

d, d = 2, 3. We prove exponential emulation
rates in Sobolev spaces in terms of the number of neurons and in terms of the number of
nonzero coefficients for Gevrey-regular solution classes defined in terms of weighted Sobolev
scales in D, comprising the countably-normed spaces of I.M. Babuška and B.Q. Guo.

As intermediate result, we prove that continuous, piecewise polynomial high order (“p-
version”) finite elements with elementwise polynomial degree p ∈ N on arbitrary, regular,
simplicial partitions of polyhedral domains D ⊂ R

d, d ≥ 2 can be exactly emulated by
neural networks combining ReLU and ReLU2 activations. On shape-regular, simplicial
partitions of polytopal domains D, both the number of neurons and the number of nonzero
parameters are proportional to the number of degrees of freedom of the finite element
space, in particular for the hp-Finite Element Method of I.M. Babuška and B.Q. Guo.

Key words: Neural Networks, hp-Finite Element Methods, Singularities, Gevrey Regularity,
Exponential Convergence
Subject Classification: 65N30, 41A25

1 Introduction

Recent years have seen the emergence of machine learning in scientific computing. One key com-
ponent are Deep Neural Network (DNN for short) based numerical approximations of functions
and operators. DNNs appear to impinge on nearly all applications of computation in science
and engineering, including the numerical solution of Partial Differential Equations (PDEs). It
is therefore of interest to explore, mathematically, the consequences of this development for
established methodologies in numerical analysis and scientific computing. The present paper
addresses DNNs in the context of the hp-version of the Finite Element Method, as initiated
by I.M. Babuška and B.A. Szabo [44] and coworkers. It will, in particular, develop exact DNN
emulations of hp-finite element (FE for short) spaces in polygonal and polyhedral domains D.
As a natural consequence, existing exponential convergence rate results for hp-FE approxima-
tion of elliptic boundary value problems (e.g. [5, 2, 43, 34, 44, 35] and the references there) will
imply corresponding DNN approximation error bounds.

1.1 Previous Work

In a precursor to this manuscript, [37], we constructed, in particular, deep ReLU neural network
(NN for short) emulations of univariate hp-FE spaces (referred to also as “variable degree, vari-
able knot splines”). In [38], an improved NN architecture to express high-order polynomials by
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ReLU NNs based on the emulation of Chebyšev polynomials was developed, implying improved
stability and expression rate bounds in some of the results in [37].

In [23], ReLU DNN emulations of first order, Lagrangean FE spaces (“Courant Finite Ele-
ments”) on particular, regular triangulations of polytopal domains where constructed, and first
bounds on size and depth of the NNs were proved. Admissible simplicial partitions in [23] were
subject to certain patch conditions which were essential in the DNN architecture.

The first ReLU NN emulation of first order, Lagrangean FE spaces on general regular
simplicial partitions in any space dimension were constructed in [30, Sec. 4]. The present
results build, in part, on the constructions in [30].

Accordingly, the recent [24] is closely related to the present work. There, using the con-
struction in [30, Sec. 4], DNN emulations of arbitrary order, Lagrangean FE spaces on general,
regular simplicial partitions are developed, via DNNs which are ReLU and ReLU2 activated.
The constructions in [24] furnish exact DNN representations of Lagrangean FE spaces on reg-
ular, simplicial triangulations of D, by emulating in the feature space of the DNNs the nodal,
Lagrangian basis of arbitrary, fixed polynomial degree p ≥ 1.

1.1.1 Finite Elements

Founded in the mid 20th century, Finite Element discretizations are nowadays well-established
discretization methodologies, in particular for elliptic and parabolic PDEs. Their mathematical
underpinning (see, e.g., the text [15] and the references there) has, to some extent, an accepted
set of terminology and notation, which we recapitulate here.

On a polytopal domain D of dimension d ≥ 2, we consider regular, simplicial partitions T .
We start from the ReLU neural network emulation of continuous, piecewise linear functions,
forming the classical “Courant Finite Elements”, whose space is denoted by S1(T ,D), and
consider the exact emulation of high-order, Lagrangean Finite Element spaces, for polynomial
degree p ∈ N = {1, 2, 3, ...} defined as

Sp(T ,D) = {v ∈ C0(D) : v|K ∈ Pp(K) for all K ∈ T }.

We recall from [30, Sec. 1.4.1] notation for the used partitions. For k ∈ {0, . . . , d} we define a
k-simplex K by K = conv({a0, . . . , ak}) ⊂ R

d, for some a0, . . . , ak ∈ R
d which do not all lie in

one affine subspace of dimension k − 1, and where

conv(Y ) :=



x =

∑

y∈Y

λyy : λy ≥ 0 and
∑

y∈Y

λy = 1





denotes the closed convex hull.1 By |K| we denote the k-dimensional Lebesgue measure of the
k-simplex K. We consider a simplicial partition T of a polytopal, bounded domain D ⊂ R

d

into d-simplices, i.e. D =
⋃

K∈T K and intK ∩ intK ′ = ∅, for all K ̸= K ′. We assume that T
is a regular partition, i.e. for all distinct K,K ′ ∈ T it holds that K ∩K ′ is a k-subsimplex of K
for some k ∈ {0, . . . , d − 1}. I.e., there exist a0, . . . , ad ∈ D such that K = conv({a0, . . . , ad})
and K ∩K ′ = conv({a0, . . . , ak}).

Recall that the shape-regularity constant κsh(T ) of a simplicial partition T of D is κsh :=
maxK∈T

hK

rK
> 0. Here hK := diam(K) and rK is the radius of the largest ball contained in K.

Let V be the set of vertices of T . For all i ∈ V we denote by s(i) := |{K ∈ T : i ∈ K}| the
number of elements of T sharing the vertex i, and define s(V) := maxi∈V s(i). Throughout, we
will use the notation |S| for the cardinality of a finite set S.

Remark 1.1 The constant s(V) can be bounded in terms of the shape regularity constant κsh(T )
(see [15, Rem. 11.5 and Prop. 11.6], which generalize verbatim to dimension d > 3).

1In [30], conv denotes the open convex hull. As a result, in [30] simplices are open by definition. Here,
simplices are closed by definition.
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1.1.2 Exact NN Emulation of Lagrangean, Nodal Finite Elements

For a polytopal domain D and a regular, simplicial partition T , an exact emulation of S1(T ,D)
by ReLU NNs is provided in [1], but without efficient bounds on the NN depth and size. Such
bounds were first obtained in [23, Sec. 3], under the assumption that the mesh has “convex
patches”, i.e., it was assumed that for all i ∈ V the set {K ∈ T : i ∈ K} is convex. It was shown
that functions in S1(T ,D) can be emulated exactly by a ReLU NN of depth independent of
N = dim(S1(T ,D)) and size growing at most linearly in N , with constants depending on d and
the shape regularity of the mesh. By a geometrical construction in which possibly nonconvex
patches are re-written as the finite union of convex patches, the results from [23, Sec. 3] were
extended to general regular, simplicial meshes, without assuming convexity of patches, in [30].
There, it was shown that also without assuming convexity of patches the depth is independent
of N = dim(S1(T ,D)) and the size grows at most linearly in N , with constants depending on
d and the shape regularity.

For the exact emulation of high order finite elements Sp(T ,D) for p ∈ N, a first result using
ReLU, ReLU2 and binary step unit (BiSU ) activations was given in [30, Sec. 7.1]. The ReLU,
ReLU2 and BiSU activation functions R → R are defined by x 7→ max{0, x}, x 7→ max{0, x}2

and x 7→ 1 for x > 0 and x 7→ 0 for x ≤ 0, respectively. The networks constructed in [30,
Sec. 7.1] have depth bounded by Cd log2(p + 1) and size bounded by C|T |(p + 1)d, which is
proportional to the number of degrees of freedom (i.e. the dimension) of the FE space. Although
this emulation result is efficient, it is not completely satisfactory as the use of discontinuous BiSU
activations for the emulation of continuous FE basis functions could be considered somewhat
unnatural. The use of ReLU2 activations for the exact emulation of high order finite elements
is natural, as it allows the exact emulation of products (cf. Prop. 3.10).

The exact emulation of Sp(T ,D) by NNs with only ReLU and ReLU2 activations was first
given in [24]. The main insight is that on an element K ∈ T , the “hat” basis functions of
S1(T ,D), which equal 1 in one vertex i ∈ V and vanish in all other vertices in V, coincide with
the barycentric coordinates on K. Elements of Sp(T ,D) can therefore be written as sums of
products of “hat” basis functions. In [24], the NNs from [30] which exactly emulate S1(T ,D)
are combined with product subnetworks to obtain an exact emulation of elements in Sp(T ,D).
The size of the networks constructed in [24] is larger than the number of degrees of freedom
dim(Sp(T ,D)), which is suboptimal, as we will show (see Rem. 4.5). A detailed discussion of
the results in [24] and the complexity of the NNs constructed there is the topic of Sect. 4.1.

1.1.3 NN Emulation of hp-Finite Elements

The literature on exponential convergence of NN approximations of functions with point sin-
gularities based on the NN approximation of hp-Finite Elements goes back to [37], where it
is shown that there exist exponentially convergent ReLU NN approximations of univariate
weighted Gevrey regular functions (see Sect. 2.1 for a definition of weighted Gevrey regular
functions). These functions, which are defined on a bounded interval, are smooth everywhere
except in a finite set of singular points. In that work, only ReLU activations were used, i.e.
multiplications could not be realized exactly (as ReLU NNs realize continuous, piecewise linear
functions) and were approximated using networks introduced in [45] whose size depends loga-
rithmically on their accuracy. Approximating in this way all products which are needed for the
approximation of high order finite elements results in a NN whose size grows more quickly with
the polynomial degree than the number of degrees of freedom of the hp-Finite Elements which
it approximates.

For d = 2, 3, for weighted analytic functions on polygons with point singularities and on
polyhedra with point- and edge singularities, the existence of exponentially convergent ReLU
NN approximations was shown in [32]. Again, multiplications were approximated by ReLU
subnetworks, leading to an inexact approximation of hp-Finite Elements and a network size
that is larger than the number of degrees of freedom. For the approximation of weighted
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analytic functions on (0, 1)d, the networks constructed in [32] are based on tensor product hp-
Finite Elements on tensor product meshes with rectangular elements. To approximate weighted
analytic functions on domains which do not have a tensor product structure, multiple such
approximations are combined using a partition of unity.

While in [32], exponentially convergent networks are shown to exist, it is not clear how
network parameters (weights and biases) that realize this exponential convergence can be com-
puted based on a finite number of function evaluations. This is the topic of [36]. Exponentially
convergent ReLU NNs are constructed which approximate weighted analytic functions on poly-
gons that have point singularities in the vertices of the domain. The NN construction in [36]
is similar to, but different from that in [32]. The main difference is that local polynomial ap-
proximations on rectangular elements in tensor product partitions of (0, 1)d, which make up
the hp-Finite Elements on (0, 1)d, are computed by nodal interpolation, rather than the tensor
product H1 projection used in [32]. This means that the network parameters can be computed
explicitly based on a finite number of queries of the approximated function, whose number
grows at most polylogarithmically with the accuracy. Also, it means that we can use existing
bounds on the Lebesgue constants for polynomial interpolation to show stability of the NN
approximations.

1.2 Contributions

In our main result, Thm. 5.1, we establish, for functions from weighted analytic and weighted
Gevrey regular spaces with point singularities in bounded, polytopal domains D in Euclidean
space of dimension d = 2 or d = 3, exponential expressivity bounds of certain deep neural
networks. The NNs under consideration are deep feedforward NNs which encode so-called
hp Finite Element approximations on shape-regular, simplicial partitions of D with geometric
refinement(s) towards the singular support of the function to be emulated.

Compared to [32, 36], our construction combines both ReLU and ReLU2 activations, rather
than only ReLU activations. This means that products of real numbers can be emulated exactly
and allows us to obtain a NN size which is proportional to the number of degrees of freedom in
the Finite-Element space. The use of two different activation functions throughout our networks
means that the used architectures are slightly more complex than pure ReLU networks, as for
every node in the network, the choice of activation function has to be specified.

Our construction works with arbitrary regular, simplicial partitions, which makes it simpler
than the partition of unity-hp-constructions in [32, 36]. We do not provide exponential rate
bounds to approximate edge singularities in three space dimensions, but extend previous con-
vergence rate bounds which only hold for weighted analytic functions to weighted Gevrey classes
with isolated point singularities. Isolated point singularities arise in space dimension d = 2 as
corner singularities in solutions to elliptic BVPs with analytic data in polygons [3, 22, 21], and
in space dimension d = 3 in a number of applications [8, 31, 17, 42].

Our networks are constructed by emulating continuous, piecewise polynomial nodal La-
grangean basis functions (see Rem. 4.8). Therefore, as in [26, 36], nodal interpolation could
be used to construct NN approximations and explicitly compute their parameters (weights and
biases), provided that the function to be approximated can be queried. We could compute the
parameters based on only a finite number of function evaluations, whose number equals the
number of degrees of freedom of the underlying hp Finite Elements and grows polylogarithmi-
cally with the accuracy.

The NNs constructed in Sect. 4.2, which exactly emulate high order finite elements, are
of independent interest, also beyond the current context of hp-Finite Elements. We exactly
emulate any continuous, piecewise polynomial function of degree p ∈ N on a regular, simplicial
partition of a polytopal domain D ⊂ R

d for d ≥ 2. We show that on shape regular meshes, the
network size is proportional to the number of degrees of freedom, see Prop. 4.6 and its discussion
in Rem. 4.7. Hereby, we improve upon [30] in the sense that we obtain exact emulations with
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the same order of computational complexity, but without using discontinuous BiSU activations.
As compared to [24], the present NN architectures achieve this with smaller network sizes.

1.3 Layout

The structure of this paper is as follows. In Sect. 2.1, we recall weighted function classes
for characterizing the smoothness of functions with point singularities and introduce classes of
weighted Gevrey regular functions, which include as a special case (δ = 1) weighted analytic
functions. In Sect. 2.2, we recall hp-approximations of such functions and their exponential
convergence. In Sect. 3, we fix notation and recall basic terminology and results from deep
neural networks, as needed subsequently. The topic of Sect. 4 is the exact emulation of high
order finite elements by neural networks. In Sect. 4.1, we discuss previous results from [24].
Based on an observation from [24], a new and more efficient NN emulation is constructed in
Sect. 4.2. This is used in Sect. 5 to obtain exponentially convergent NN approximations of
Gevrey regular functions in polygonal or polyhedral domains with point singularities. Sect. 6
concludes the paper.

2 Regularity and hp-Approximation of Point Singularities

We review definitions and results from weighted, countably-normed function classes, as used
in hp-FE approximation theory, and in the corresponding elliptic regularity. These corner-
weighted, analytic classes were introduced in the late 80ies by I.M. Babuška and B.Q. Guo and
by P. Bolley, J. Camus and M. Dauge in their pioneering works [18, 7, 3, 4, 22, 5] and the
references there in space dimension d = 2, and in space dimension d = 3 in [19, 20, 12].

Throughout, D ⊂ R
d denotes an open, bounded, polytopal domain in euclidean space of

dimension d = 2, 3. We denote by S ⊂ D the set of singular points; we consider solutions
u ∈ H1(D) which are smooth in D\S so that the singular support of u coincides with S. We
consider functions u which are smooth in D, with point singularities at a finite set S of singular
points c ∈ S ⊂ ∂D. This allows to determine in D a collection of |S| many disjoint open sets
ωc ⊂ D containing exactly one singularity c ∈ S in their closure. We denote D0 := D\

⋃
c∈S ωc.

2.1 Weighted Sobolev Spaces. Gevrey Classes

We characterize analytic regularity of singular solutions by weighted Sobolev spaces. To define
these, we follow [16, Sect. 2.1] and introduce distance functions to a corner point c ∈ S:

rc(x) = dist(x, c) , x ∈ D , c ∈ S . (2.1)

For the conical points c ∈ S we collect all singular exponents βc ∈ R in the “multi-weight-
exponent”

β = {βc : c ∈ S} ∈ R
|S| . (2.2)

We assume for d = 3 (β > s and β ± s being understood componentwise for s ∈ R)

b := −1− β ∈ (0, 1/2) , ie. − 3/2 < β < −1 . (2.3)

For d = 2, we assume for some ε > 0 that

b := −1− β ∈ (0, ε) , ie. − 1− ε < β < −1 . (2.4)

We consider the inhomogeneous, corner-weighted semi-norms |u|Nk
β
(D) given by (cp. [12, Def. 6.2

and Eq. (6.9)], [22] and [19]),

|u|2Nk
β
(D) = |u|2Hk(D0)

+
∑

c∈S

∑

α∈Nd0
|α|=k

∥∥rmax{βc+|α|,0}
c Dαu

∥∥2
L2(ωc)

, k ∈ N0 . (2.5)
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We define the inhomogeneous weighted norm ∥u∥Nm
β

(D) by ∥u∥2Nm
β

(D) =
∑m

k=0 ∥u∥
2
Nk

β
(D). Here,

|u|Hm(D0) signifies the Hilbertian Sobolev semi-norm of integer order m on D0, and Dα denotes

the weak partial derivative of order α ∈ N
d
0. The space Nm

β (D) is the weighted Sobolev space

obtained as the closure of C∞
0 (D) with respect to the norm ∥·∥Nm

β
(D).

Remark 2.1 The weighted spaces are related, for particular ranges of the weight parameters, to
various other corner- and vertex-weighted scales of Sobolev spaces. We refer to [3, 20, 19, 11, 12]
and references there and the discussion in [16] for details.

With Nk
β (D) as defined in (2.5), for δ > 0 we define the β-weighted δ-Gevrey regular class of

solutions with point singularities at S by

Gδ
β(S; D) =

{
u ∈

⋂

k≥0

Nk
β (D) : ∃Cu > 0 s.t. |u|Nk

β
(D) ≤ Ck+1

u (k!)δ ∀ k ∈ N0

}
. (2.6)

A wide range of partial differential equations is known to admit singular solutions in weighted
Gevrey classes. For example, nonlinear Schrödinger equations in electron structure calculations
[6, 8, 17], nonlinear parabolic PDEs with critical growth [28, 42], incompressible Euler equations
[9], linear elasticity [22], stationary Stokes [21] and stationary, incompressible Navier Stokes
[33, 25], see also the references of the cited papers. We refer to [16, Sect. 2.2] for more
examples and a more detailed exposition, which includes the standard example of a linear,
elliptic, second order PDE with weighted analytic solutions, in a polygon.

2.2 hp-Approximation

It is well-known (e.g. [16] and the references there) that functions u ∈ Gδ
β(S; D) admit approx-

imations from systems of continuous, piecewise polynomial functions at exponential rates in
terms of the number N of degrees of freedom defining the approximations. In these “hp-” resp.
variable mesh and degree approximations, geometric subdivisions toward the singular support
of u are coupled to an increase in polynomial degree. We recapitulate from [16, Sect. 3] the
construction of these approximations, and the corresponding exponential approximation rate
bounds. These comprise corresponding results first obtained by I.M. Babuška and his cowork-
ers in the analytic case (where δ = 1 in (2.6)), see e.g. [18, 5, 2], and will form the basis for
corresponding DNN emulation rate bounds.

2.2.1 Geometric Meshes

We recall from [16, Sect. 3.1] the notion of geometric mesh sequences Mκ,σ = {M(ℓ)}ℓ≥1 in
D. Such mesh families in D constitute an essential ingredient in the exponential convergence
analysis of hp-approximations [18, 5, 2, 43, 16]. Specifically, geometric mesh sequences are
sequences of regular, simplicial partitions of D for which there exist two parameters σ ∈ (0, 1)
and κ > 0 with the following properties:

(i) All elements K ∈ M(ℓ), ℓ = 1, 2, . . . are uniformly κ-shape regular, i.e. there exists a
constant κ > 1 such that supℓ∈N κsh(M

(ℓ)) ≤ κ.

(ii) The partitions M(ℓ) ∈ Mκ,σ are σ-geometric, i.e. for every K ∈ M(ℓ) : K ∩ S = ∅,
ℓ = 1, 2, . . . holds

0 < σ <
diam(K)

dist(K,S)
<

1

σ
. (2.7)
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It was shown in [16, Prop. 1] that (κ, σ)-geometric mesh sequences Mκ,σ in D have the following
geometric properties: for every ℓ > d all elements K ∈ M(ℓ) can be grouped in mesh layers:
there exists a partition

M(ℓ) =O
(ℓ) .

∪ T
(ℓ) , where |T(ℓ)| ≤ CT(κ, σ), (2.8)

and, for k ≃ ℓ log(2)/| log(σ)|, there are partitions

O
(ℓ) = L

(ℓ)
1

.
∪ L

(ℓ)
2

.
∪ . . .

.
∪ L

(ℓ)
k , (2.9)

such that there exists cT > 0 such that for all ℓ holds

S ⊂
⋃

K∈T(ℓ)

K , dist(S,O(ℓ)) ≥ cTσ
k . (2.10)

There exists a constant c(Mκ,σ) ≥ 1 with

∀j = 1, . . . , k : |L
(ℓ)
j | ≤ c(Mκ,σ) (2.11)

and such that, for every K ∈ L
(ℓ)
j and for every j = 1, . . . , k,

0 <
1

c(Mκ,σ)
≤

diam(K)

σj
≤ c(Mκ,σ) . (2.12)

We will frequently use that (2.8), (2.9) and (2.11) imply

|M(ℓ)| ≃ k ≃ ℓ. (2.13)

As shown in [16, Prop. 1], for a given polytopal domain D, singular set S and regular, simplicial
initial triangulation M(0), [16, Alg. 1] provides an explicit construction of a κ-shape-regular
and σ-geometrically refined mesh sequence Mκ,σ.

2.2.2 Exponential Convergence

Based on the geometric mesh sequences Mκ,σ in D, for u ∈ Gδ
β(S; D), there exist sequences

of continuous, piecewise polynomial (on M(ℓ) ∈ Mκ,σ) functions in D approximating u at an
exponential rate.

Proposition 2.2 ([16, Thm. 1]) In a bounded polytope D ⊂ R
d, d = 2, 3, with plane sides

resp. plane faces, suppose given a weight vector β as in (2.3) if d = 3 or (2.4) if d = 2.
Then, for every sequence Mκ,σ(S) of nested, regular simplicial meshes in D which are σ-

geometrically refined towards S and which are κ-shape regular, there exist continuous projectors
Πp

κ,σ : N2
β(D) → Sp(M(ℓ)) with ℓ ≃ p1/δ and, for every u ∈ Gδ

β(S; D)) there exist constants

b, C > 0 (depending on κ, Cu, du in (2.6) and on σ) such that there holds the error bound

∥∥u−Πp
κ,σu

∥∥
H1(D)

≤ C





exp(−bN
1

1+δd ) δ ≥ 1,
(
Γ
(
N

1
1+δd

))−b(1−δ)

0 < δ < 1.
(2.14)

Here,
N = dim(Sp(M(ℓ))) ≃ |M(ℓ)|pd ≃ ℓpd ≃ pd+1/δ.

If, additionally, u|∂D = 0, then (Πp
κ,σu)|∂D = 0 and (2.14) holds.
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3 Neural Networks

The continuous, piecewise polynomial approximations in Sp(M(ℓ)) of u ∈ Gδ
β(S; D)) imply the

existence of deep neural networks with corresponding exponential approximation rates. In Sect.
3–4, we develop a rigorous statement of this fact.

Sect. 3.1 introduces basic notation and NN terminology, from [30] and the references there.
Sect. 3.2 recalls, from [30], a result on the exact representation of CPwL functions on the
geometric partitions M(ℓ) in Prop. 2.2, by means of a ReLU-activated NN in D.

The main results on NN approximation of u ∈ Gδ
β(S; D)) are then developed in Sect. 4.2

ahead.

3.1 Neural Network Definitions

Definition 3.1 (Neural Network [30, Sect. 2.1] ) For d, L ∈ N, a neural network Φ with
input dimension d ≥ 1 and number of layers L ≥ 1, comprises a finite collection of activation
functions2 ϱ = {ϱℓ}

L
ℓ=1 and a finite sequence of matrix-vector tuples, i.e.

Φ = ((A1, b1, ϱ1), (A2, b2, ϱ2), . . . , (AL, bL, ϱL)).

For N0 := d and numbers of neurons N1, . . . , NL ∈ N per layer, for all ℓ = 1, . . . , L it holds
that Aℓ ∈ R

Nℓ×Nℓ−1 and bℓ ∈ R
Nℓ , and that ϱℓ is a list of length Nℓ of activation functions

(ϱℓ)i : R → R, i = 1, . . . , Nℓ, acting on node i in layer ℓ.
The realization of Φ as a map is the function

R(Φ) : Rd → R
NL : x → xL,

where

x0 := x,

xℓ := ϱℓ(Aℓxℓ−1 + bℓ), for ℓ = 1, . . . , L.

Here, for ℓ = 1, . . . , L, the list of activation functions ϱℓ of length Nℓ is effected componentwise:
for y = (y1, . . . , yNℓ

) ∈ R
Nℓ we denote ϱℓ(y) = ((ϱℓ)1(y1), . . . , (ϱℓ)Nℓ

(yNℓ
)). I.e., (ϱℓ)i is the

activation function applied in position i of layer ℓ.
We call the layers indexed by ℓ = 1, . . . , L − 1 hidden layers, in those layers activation

functions are applied. We fix the activation function in the last layer of the NN to be the
identity, i.e., ϱL := IdRNL .

We refer to L(Φ) := L as the depth of Φ. For ℓ = 1, . . . , L we denote by Mℓ(Φ) :=
∥Aℓ∥0 + ∥bℓ∥0 the size of layer ℓ, which is the number of nonzero components in the weight

matrix Aℓ and the bias vector bℓ, and call M(Φ) :=
∑L

ℓ=1 Mℓ(Φ) the size of Φ. Furthermore, we
call d and NL the input dimension and the output dimension, and denote by Min(Φ) := M1(Φ)
and Mout(Φ) := ML(Φ) the size of the first and the last layer, respectively.

Our networks will use two different activation functions. Firstly, we use the Rectified Linear
Unit (ReLU ) activation

ρ(x) = max{0, x}. (3.1)

Networks which only contain ReLU activations realize continuous, piecewise linear functions.
By ReLU NNs we refer to NNs which only have ReLU activations, including networks of depth 1,
which do not have hidden layers and realize affine transformations. Secondly, for the emulation
of high-order finite element methods, we use the ReLU2 activation

ρ2(x) = max{0, x}2. (3.2)
2No activation is applied in the output layer L. We introduce ϱL only for consistency of notation, and define

it to be equal to the identity function.
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Remark 3.2 Upper bounds on the network size also provide upper bounds on the number of
neurons. Without loss of generality, the network size is bounded from below by

∑L
j=1 Nj, see

[41, Lem. G.1]. There, it was proved formally that each neuron to which no nonzero weights
are associated can be omitted.

In the following sections, we will construct NNs from smaller networks using a calculus of
NNs, which we now recall from [41]. The results cited from [41] were derived for NNs which
only use the ReLU activation function, but they also hold for networks with multiple activation
functions without modification.

Proposition 3.3 (Parallelization of NNs [41, Def. 2.7]) For d, L ∈ N let Φ1 =(
(A

(1)
1 , b

(1)
1 , ϱ

(1)
1 ), . . . , (A

(1)
L , b

(1)
L , ϱ

(1)
L )
)
and Φ2 =

(
(A

(2)
1 , b

(2)
1 , ϱ

(2)
1 ), . . . , (A

(2)
L , b

(2)
L , ϱ

(2)
L )
)
be two

NNs with input dimension d and depth L. Let the parallelization P(Φ1,Φ2) of Φ1 and Φ2 be
defined by

P(Φ1,Φ2) := ((A1, b1, ϱ1), . . . , (AL, bL, ϱL)),

A1 =

(
A

(1)
1

A
(2)
1

)
, Aℓ =

(
A

(1)
ℓ 0

0 A
(2)
ℓ

)
, for ℓ = 2, . . . L,

bℓ =

(
b
(1)
ℓ

b
(2)
ℓ

)
, ϱℓ =

(
ϱ
(1)
ℓ

ϱ
(2)
ℓ

)
, for ℓ = 1, . . . L.

Then,

R(P(Φ1,Φ2))(x) = (R(Φ1)(x),R(Φ2)(x)), for all x ∈ R
d,

L(P(Φ1,Φ2)) = L, M(P(Φ1,Φ2)) = M(Φ1) +M(Φ2).

The parallelization of more than two NNs is handled by repeated application of Prop. 3.3.
We will also use the parallelization of networks which do not have the same inputs.

Proposition 3.4 (Full Parallelization of NNs [14, Setting 5.2]) For L ∈ N let

Φ1 =
(
(A

(1)
1 , b

(1)
1 ), . . . , (A

(1)
L , b

(1)
L )
)

and Φ2 =
(
(A

(2)
1 , b

(2)
1 ), . . . , (A

(2)
L , b

(2)
L )
)

be two NNs with

the same depth L, with input dimensions N1
0 = d1 and N2

0 = d2, respectively. Let the full
parallelization of Φ1 and Φ2 be defined by

FP(Φ1,Φ2) := ((A1, b1, ϱ1), . . . , (AL, bL, ϱL)),

Aℓ =

(
A

(1)
ℓ 0

0 A
(2)
ℓ

)
, bℓ =

(
b
(1)
ℓ

b
(2)
ℓ

)
, ϱℓ =

(
ϱ
(1)
ℓ

ϱ
(2)
ℓ

)
, for ℓ = 1, . . . L.

Then, it has d = d1 + d2-dimensional input, depth L and size M(FP(Φ1,Φ2)) = M(Φ1) +
M(Φ2). It satisfies for all x = (x1, x2) ∈ R

d with xi ∈ R
di , i = 1, 2

R(FP(Φ1,Φ2))(x1, x2) =
(
R(Φ1)(x1),R(Φ

2)(x2)
)
.

Next, we define the concatenation of two NNs.

Definition 3.5 (Concatenation of NNs [41, Def. 2.2]) For L(1), L(2) ∈ N, let Φ1 =(
(A

(1)
1 , b

(1)
1 , ϱ

(1)
1 ), . . . , (A

(1)

L(1) , b
(1)

L(1) , ϱ
(1)

L(1))
)
and Φ2 =

(
(A

(2)
1 , b

(2)
1 , ϱ

(2)
1 ), . . . , (A

(2)

L(2) , b
(2)

L(2) , ϱ
(2)

L(2))
)

be two NNs such that the input dimension of Φ1, which we will denote by k, equals the output
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dimension of Φ2. Then, the concatenation of Φ1 and Φ2 is the NN of depth L := L(1)+L(2)−1
defined as

Φ1 • Φ2 := ((A1, b1, ϱ1), . . . , (AL, bL, ϱL)),

(Aℓ, bℓ, ϱℓ) = (A
(2)
ℓ , b

(2)
ℓ , ϱ

(2)
ℓ ), for ℓ = 1, . . . , L(2) − 1,

AL(2) =A
(1)
1 A

(2)

L(2) , bL(2) = A
(1)
1 b

(2)

L(2) + b
(1)
1 , ϱL(2) = ϱ

(1)
1 ,

(Aℓ, bℓ, ϱℓ) = (A
(1)

ℓ−L(2)+1
, b

(1)

ℓ−L(2)+1
, ϱ

(1)

ℓ−L(2)+1
), for ℓ = L(2) + 1, . . . , L(1) + L(2) − 1.

It follows immediately from this definition that R(Φ1 • Φ2) = R(Φ1) ◦ R(Φ2).
In addition, we define the sparse concatenation of two NNs, which also exactly realizes the

composition of the realizations of the two networks. We define it first using ReLU and then
using the ReLU2 activation. The sparse concatenation is a construction which allows to bound
the size of the concatenation as a constant times the sum of the sizes of the individual networks.
This bound does not hold if we combine the affine transformation of the output layer of Φ2

with the affine transformation of the input layer of Φ1, as we did in Def. 3.5.

Proposition 3.6 (Sparse Concatenation of NNs based on ReLU [41, Rem. 2.6])

For L(1), L(2) ∈ N, let Φ1 =
(
(A

(1)
1 , b

(1)
1 , ϱ

(1)
1 ), . . . , (A

(1)

L(1) , b
(1)

L(1) , ϱ
(1)

L(1))
)
and Φ2 =

(
(A

(2)
1 , b

(2)
1 , ϱ

(2)
1 ),

. . . , (A
(2)

L(2) , b
(2)

L(2) , ϱ
(2)

L(2))
)
be two NNs with depths L(1) and L(2), respectively, such that N

(2)

L(2) =

N
(1)
0 , i.e. the output dimension of Φ2 equals the input dimension of Φ1. Let the ReLU-based

sparse concatenation Φ1 ⊙ρ Φ
2 of Φ1 and Φ2 be a NN of depth L := L(1) + L(2) defined by

Φ1 ⊙ρ Φ
2 := ((A1, b1, ϱ1), . . . , (AL, bL, ϱL)),

(Aℓ, bℓ, ϱℓ) = (A
(2)
ℓ , b

(2)
ℓ , ϱ

(2)
ℓ ), for ℓ = 1, . . . , L(2) − 1,

AL(2) =

(
A

(2)

L(2)

−A
(2)

L(2)

)
, bL(2) =

(
b
(2)

L(2)

−b
(2)

L(2)

)
, ϱL(2) =



ρ
...
ρ


 ,

AL(2)+1 =
(
A

(1)
1 −A

(1)
1

)
, bL(2)+1 = b

(1)
1 , ϱL(2)+1 = ϱ

(1)
1 ,

(Aℓ, bℓ, ϱℓ) = (A
(1)

ℓ−L(2) , b
(1)

ℓ−L(2) , ϱ
(1)

ℓ−L(2)), for ℓ = L(2) + 2, . . . , L(1) + L(2).

Then, it holds that

R(Φ1 ⊙ρ Φ
2) =R(Φ1) ◦ R(Φ2), L(Φ1 ⊙ρ Φ

2) = L(1) + L(2),

M(Φ1 ⊙ρ Φ
2) ≤M(Φ1) +Min(Φ

1) +Mout(Φ
2) +M(Φ2) ≤ 2M(Φ1) + 2M(Φ2).

Proposition 3.7 (Sparse Concatenation of NNs based on ReLU2 [40, Prop. 2.4]) For
L(1), L(2) ∈ N, let Φ1 and Φ2 be two NNs with depths L(1) and L(2), respectively, such that

N
(2)

L(2) = N
(1)
0 , i.e. the output dimension of Φ2 equals the input dimension of Φ1. Then, there

exists a NN Φ1 ⊙ρ2 Φ2 of depth L := L(1) +L(2) to which we shall refer as sparse ReLU2-based
concatenation of Φ1 and Φ2 which has ReLU2 activations, as well as those from Φ1 and Φ2. It
satisfies

R(Φ1 ⊙ρ2 Φ2) =R(Φ1) ◦ R(Φ2), L(Φ1 ⊙ρ2 Φ2) = L(1) + L(2),

M(Φ1 ⊙ρ2 Φ2) ≤M(Φ1) + 4Min(Φ
1) + 7Mout(Φ

2) +M(Φ2) ≤ 5M(Φ1) + 8M(Φ2).

Prop. 3.3 and 3.4 only apply to networks of equal depth. To parallelize two networks of
unequal depth, the shallower of the two can be concatenated with a network that emulates the
identity using Prop. 3.6 or 3.7.
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One example of ReLU NNs that emulate the identity are provided by the following propo-
sition.

Proposition 3.8 (ReLU NN emulation of IdRd [41, Rem. 2.4]) For all d, L ∈ N, there

exists a ReLU NN ΦId,ρ
d,L with input dimension d, output dimension d and depth L which satisfies

R(ΦId,ρ
d,L ) = IdRd , L(ΦId,ρ

d,L ) = L and M(ΦId,ρ
d,L ) ≤ 2dL.

Next, we recall the exact emulation of the identity and of products by ReLU2 NNs.

Proposition 3.9 (ReLU2 NN emulation of IdRd [40, Prop. 2.3]) For all d ∈ N and L ∈

N, there exists a ReLU2 NN ΦId,ρ2

d,L such that R(ΦId,ρ2

d,L )(x) = x for all x ∈ R
d. Its NN depth

and size satisfy L(ΦId,ρ2

d,L ) = L and M(ΦId,ρ2

d,L ) ≤ CdL, for C > 0 independent of d and L.

Proposition 3.10 (ReLU2 NN emulation of products) For all d ∈ N, d ≥ 2, there exists

a ReLU2 NN Φprod
d such that R(Φprod

d )(x1, . . . , xd) =
∏d

j=1 xj for all x1, . . . , xd ∈ R. Its NN

depth and size satisfy L(Φprod
d ) ≤ C⌈log2(d)⌉ and M(Φprod

d ) ≤ Cd, for C > 0 independent of d.

Proof. This proof is given in three steps. In Step 1, we construct Φprod
8 and analyze its depth

and size. In Step 2, we construct and analyze Φprod
d for d > 8 satisfying d ∈ 8N as an octal tree

of Φprod
8 NNs. The reason for considering an octal tree of Φprod

8 NNs, is that we need 8 to be
bigger than the number 5 from the estimate M(Φ1 ⊙ρ2 Φ2) ≤ 5M(Φ1) + 8M(Φ2) from Prop.
3.7. Finally, Step 3 considers d ≥ 2 satisfying d /∈ 8N.

Step 1. For the product of two numbers, Φprod
2 is given in [29, Lem. 2.1]. It satisfies

R(Φprod
2 )(x, y) = xy for all x, y ∈ R, L(Φprod

2 ) = 2, N0 = 2, N1 = 4, N2 = 1 and M(Φprod
2 ) = 12.

For d = 8, we define

Φprod
8 := Φprod

2 ⊙ρ2 FP(Φprod
2 ,Φprod

2 )⊙ρ2 FP(Φprod
2 ,Φprod

2 ,Φprod
2 ,Φprod

2 ).

By Prop. 3.7 it satisfies L(Φprod
8 ) = 2 + 2 + 2 = 6, and we denote its size by M8 := M(Φprod

8 ).

The network Φprod
2 exactly emulates the product of two numbers, and no errors are incurred in

the sparse concatenation ⊙ρ2 , thus R(Φprod
8 ) : R8 → R : (x1, . . . , x8) 7→

∏8
i=1 xi.

Step 2. For d > 8 satisfying d ∈ 8N, we define

Φprod
d := Φprod

d/8 ⊙ρ2 FP(Φprod
8 , . . . ,Φprod

8 ),

where the full parallelization contains d/8 product networks. Based on Prop. 3.7 and the depth
and size bounds for the d = 8 product network, we inductively obtain that for all d ∈ 8N

satisfying d > 8 holds L(Φprod
d ) = 2⌈log2(d)⌉ and M(Φprod

d ) ≤ 8dM8:

L(Φprod
d ) =L(Φprod

d/8 ) + L(Φprod
8 ) = 2⌈log2(d/8)⌉+ 6 = 2⌈log2(d)⌉,

M(Φprod
d ) ≤ 5M(Φprod

d/8 ) + 8(d/8)M(Φprod
8 )

≤ 5 · 8(d/8)M8 + 8(d/8)M8 = (5 · 8 + 8)(d/8)M8 ≤ (8 · 8)(d/8)M8 = 8dM8.

The fact that R(Φprod
d ) : Rd → R : (x1, . . . , xd) 7→

∏d
i=1 xi follows from exactness of R(Φprod

d/8 )

and R(Φprod
8 ) and the fact that no error is incurred in the sparse concatenation ⊙ρ2 .

Step 3. Finally, for d ≥ 2 satisfying d /∈ 8N, let d̃ = min{8k : k ∈ N, 8k ≥ d} ∈ 8N. By

definition, it holds that d̃ ≤ 8d. We obtain Φprod
d from Φprod

d̃
by setting the last d̃ − d inputs
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of the NN to 1, through the biases in the first layer. This gives the desired realization and
increases the network size by at most d̃− d. We thus obtain that

L(Φprod
d ) =L(Φprod

d̃
) = 2⌈log2(d̃)⌉ ≤ 2⌈log2(d)⌉+ 6 ≤ C⌈log2(d)⌉,

M(Φprod
d ) ≤M(Φprod

d̃
) + (d̃− d) ≤ 8d̃M8 + d̃ ≤ Cd.

✷

Finally, we recall the exact emulation of polynomials by ReLU2 networks. We need the
result from [40], which holds for multivariate polynomials, only for the special case of univariate
polynomials.

Proposition 3.11 (ReLU2 emulation of univariate polynomials [40, Prop. 2.14]) For
all p ∈ N and w ∈ Pp, there exists a ReLU2 NN Φw such that R(Φw) = w, L(Φw) ≤ C log2(p+1)
and M(Φw) ≤ Cp, for C > 0 independent of p and w.

3.2 NN Emulations of Continuous, Piecewise Linear Functions on

Simplicial Meshes

We recall from [30] exact NN emulations of CPwL functions on regular, simplicial partitions T
of polytopal domains D ⊂ R

d.
We have by [30, Sect. 5] a vector space of NNs NN (CPwL; T ,D) = {ΦCPwL,v : v ∈

S1(T ,D)} such that the realization of each NN ΦCPwL,v equals v everywhere in D.

Proposition 3.12 ( [30, Prop. 5.7] ) Let D ⊂ R
d, d ≥ 2, be a bounded, polytopal domain.

For every regular, simplicial triangulation T of D, there exists a NN ΦCPwL := ΦCPwL(T ,D)

with only ReLU activations, which in parallel emulates the shape functions {θS1
i }i∈V , which are

defined by θS1
i (i) = 1 and θS1

i (j) = 0 for all other j ∈ V. That is, R(ΦCPwL) : D → R
|V| satisfies

R(ΦCPwL)i(x) = θS1
i (x) for all x ∈ D and all i ∈ V.

There exists C > 0 independent of d and T such that

L(ΦCPwL) ≤ 8 + log2(s(V)) + log2(d+ 1),

M(ΦCPwL) ≤C|V| log2(s(V)) + Cd2
∑

i∈V

s(i) ≤ Cd2s(V) dim(S1(T ,D)).

For all v =
∑

i∈V viθ
S1
i ∈ S1(T ,D), there exists a NN ΦCPwL,v := ΦCPwL(T ,D),v with only

ReLU activations, such that for a constant C > 0 independent of d and T

R(ΦCPwL,v)(x) = v(x) for all x ∈ D,

L(ΦCPwL,v) ≤ 8 + log2(s(V)) + log2(d+ 1),

M(ΦCPwL,v) ≤C|V| log2(s(V)) + Cd2
∑

i∈V

s(i) ≤ Cd2s(V) dim(S1(T ,D)).

The layer dimensions and the lists of activation functions of ΦCPwL and ΦCPwL,v are in-
dependent of v and only depend on T through {s(i)}i∈V and |V| = dim(S1(T ,D)).

The set NN (CPwL; T ,D) := {ΦCPwL,v : v ∈ S1(T ,D)} together with the linear operation
ΦCPwL,v+̂λΦCPwL,w := ΦCPwL,v+λw for all v, w ∈ S1(T ,D) and all λ ∈ R is a vector space.
The realization map R(·) : NN (CPwL; T ,D) → S1(T ,D) is a linear isomorphism.

For a proof, we refer to [30, Sect. 5].
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Remark 3.13 ( [30, Rem. 5.2] ) It was shown in [30, Rem. 5.2] that |V| ≤
∑

i∈V s(i) ≤
c(V, d)|T |, where c(V, d) = d + 1 is the number of vertices of a d-simplex. We obtain this
inequality by observing that s(i) ≥ 1 and that each element K ∈ T contributes +1 to c(V, d)
terms s(i). Therefore, we also have the bound M(ΦCPwL) ≤ C|V| log2(s(V))+Cd2c(V, d)|T | ≤
Cd2c(V, d) log2(s(V))|T |. The same bound holds for M(ΦCPwL,v).

4 NN Emulation of High-Order, Lagrangean Finite Ele-

ment Spaces

We state and prove the main result of this paper: a mathematically exact emulation of La-
grangean FE spaces of any order p ≥ 1 on general regular, simplicial triangulations in a poly-
topal domain D ⊂ R

d, in space dimension d ≥ 2, with ReLU and ReLU2 activations, and with
both the number of neurons and the DNN size (i.e., the number of nonzero NN parameters,
called weights and biases) in the NN required to realize the emulation being bounded by a
constant (which depends on the domain D and on the mesh connectivity) times the dimen-
sion of the corresponding FE space. This result comprises in particular the hp-Finite Element
spaces Sp(M(ℓ)) on families Mκ,σ(S) of nested, regular simplicial partitions M(ℓ) in D which
are σ-geometrically refined towards the set S of singular support points and which are κ-shape
regular. For these DNNs, the exponential approximation rate result (2.14) in Prop. 2.2 holds.
This implies exponential rates for the DNN approximation error for various DNN-based PDE
approximation methods.

4.1 Existing Results

The exact ReLU NN emulation of continuous, piecewise linear functions on general regular,
simplicial partitions of polytopal domains D ⊂ R

d, d ∈ N, was achieved in [30, Prop. 5.7], as
stated above in Prop. 3.12. In [24], it was observed that on each simplex K ∈ T , each of the
barycentric coordinates equals one of the “hat” basis functions θS1

q ∈ S1(T ,D) for a vertex q

of K. For q ∈ V, these are defined by θS1
q (q) = 1 and θS1

q (q′) = 0 for all other vertices q′ ∈ V.
Based on an expression of the local polynomial space Pp(K) for p ∈ N in terms barycentric
coordinates, an explicit formula in terms of these hat functions for a global basis of high-order
finite elements was given in [24]. We recall it in Prop. 4.1 below. To state the result, on each
subsimplex K ′ of T of dimension m ∈ {0, . . . , d} with vertices a0, . . . , am, for all p ∈ N we
define the set of interpolation points

Np(K
′) :=

{
m∑

k=0

αkak/p : αk ∈ N0 and

m∑

k=0

αk = p

}
.

As nodal basis for Pp(K
′) we consider the Lagrange polynomials {vi}i∈Np(K′) defined by vi(i) =

1 and vi(j) = 0 for all other j ∈ Np(K
′). We denote the set of all interpolation points by

N := Np(T ) := ∪K∈T Np(K) and consider the global Lagrangean basis functions {θ
Sp

i }i∈N of

Sp(T ,D) defined by θ
Sp

i (i) = 1 and θ
Sp

i (j) = 0 for all other j ∈ N .

Proposition 4.1 ([24, Thm. 3.2]) For all p ∈ N and a polytopal domain D ⊂ R
d, for d ∈ N,

let T be a regular, simplicial partition of D. For each interpolation node i ∈ N , if i is a vertex
of T let K ′ = i and m = 0, and else let K ′ be the subsimplex of T satisfying i ∈ intK ′ and let
m denote the dimension of K ′. Denoting the vertices of K ′ by a0, . . . , am, let α0, . . . , αm ∈ N0

be such that i =
∑m

k=0 αkak/p.
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Then,

θ
Sp

i (x) =

m∏

k=0

1
αk!

αk−1∏

j=0

(
pθS1

ak
(x)− j

)
=

m∏

k=0

αk−1∏

j=0

(
p

j+1θ
S1
ak
(x)− j

j+1

)
. (4.1)

From this, the following ReLU NN emulation rate result is obtained in [24].

Proposition 4.2 ([24, Thm. 4.2]) For all p ∈ N and a polytopal domain D ⊂ R
d, for d ∈ N,

let T be a regular, simplicial partition of D.
For all v ∈ Sp(T ,D), there exists a NN Φv with ReLU and ReLU2 activation, such that

R(Φv) = v. The depth L = L(Φv) and the numbers of neurons N1, . . . , NL−1 in the hidden
layers satisfy for some C > 0 independent of T

L(Φv) ≤ (⌈log2(s(V))⌉+ ⌈log2(d+ 1)⌉+ ⌈log2(p)⌉+ 7) |N |,

L−1
max
ℓ=1

Nℓ ≤Cmax{p, (d+ 1)min{d+ 1, p+ 1}s(V)}.

Remark 4.3 The proof of [24, Thm. 4.2] is based on [24, Lem. 4.2], in which single La-
grangean basis functions are emulated. For each p ∈ N and each interpolation point i ∈ N , let
K ′, m, a0, . . . , am and α0, . . . , αm be as in Prop. 4.1.

The first part of the network in parallel emulates the CPwL “hat” functions {θS1
ak
}mk=0 by

subnetworks of depth Lk ≤ ⌈log2(s(ak))⌉+ ⌈log2(d+ 1)⌉+ 7 and numbers of neurons per layer
Nj ≤ C(d + 1)s(ak)2

−j for j = 1, . . . , Lk for some constant C > 0 independent of T .3 The
parallelization of these m+ 1 networks has depth L ≤ maxmk=0⌈log2(s(ak))⌉+ ⌈log2(d+ 1)⌉+ 7
and numbers of neurons per layer Nj ≤ C(d+ 1)2−j

∑m
k=0 s(ak) for j = 1, . . . , L.

The second part of the network emulates the product of p factors stated in (4.1). In [24,
Lem. 4.2], this is realized with ⌈log2(p)⌉ layers. Using a binary tree of product subnetworks,
the numbers Nj of neurons per layer of this binary tree are bounded as 4

Nj ≤ Cp2−j for j = 1, . . . , ⌈log2(p)⌉.

The concatenation of both parts has depth at most

m
max
k=0

⌈log2(s(ak))⌉+ ⌈log2(d+ 1)⌉+ ⌈log2(p)⌉+ 7

and numbers of neurons bounded by

Nj ≤ C(d+ 1)2−j
m∑

k=0

s(ak) for j = 1, . . . ,
m

max
k=0

⌈log2(s(ak))⌉+ ⌈log2(d+ 1)⌉+ 7

and for the last ⌈log2(p)⌉ layers

NL−⌈log2(p)⌉+j ≤ Cp2−j for j = 1, . . . , ⌈log2(p)⌉,

i.e. maxLj=1 Nj ≤ Cmax{p, (d + 1)
∑m

k=0 s(ak)}. For i ∈ V it holds that m = 0 ≤ p, and
for interpolation points that are not vertices, by definition of K ′ it holds that i ∈ intK ′, thus
i =

∑m
k=0 αkak/p for αk ∈ N, i.e. none of the αk vanishes. From

∑m
k=0 αk = p it thus follows

that m ≤ p. By definition, it also holds that m ≤ d, thus we can estimate
∑m

k=0 s(ak) ≤
(m+ 1)s(V) ≤ min{d+ 1, p+ 1}s(V).

3The value C = 23 stated in [24, Lem. 4.2] gives NLk
< 1, which appears inconsistent.

4In [24, Lem. 4.2], the formula for the numbers of neurons per layer is incorrect, as it does not take into
account the numbers of neurons in these last ⌈log2(p)⌉ layers. In fact, for those layers, [24, Eq. (4.11)] states
that Nj < 1.
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To obtain an approximation of v ∈ Sp(T ,D), it remains to take the linear combination of
the Lagrangean basis functions for all interpolation points i ∈ N . In [24, Thm. 4.2], this is
done by placing these subnetworks in subsequent groups of layers, increasing the depth and not
the width. In each layer, the numbers of neurons per layer is increased by 2d + 1 in order to
forward the inputs to the hidden layers and to keep track of the partial sums of the outputs of
the subnetworks, see [24, Properties 4.2]. This gives the bounds on the width and depth in Prop.
4.2.

Remark 4.4 For fixed T and p → ∞, it holds that |N | ≃ pd, thus the total number of neurons

is
∑L

j=0 Nj = O(pd+1 log(p)), which is larger than the number of degrees of freedom, which

equals |N | ≃ pd. The network size may be even larger, as w.l.o.g. it is bounded from below by∑L
j=1 Nj, see Rem. 3.2.

4.2 DNN Emulation of hp-FE spaces on Regular Triangulations

The NN emulation results in [24] focused on the NN size bounds for Lagrangean Finite Elements
with nodal bases, at fixed, uniform, polynomial degree p ≥ 1. Here, we focus on NN size bounds
which are explicit in terms of p ≥ 1 and tighter than those in [24]. This is achieved by a suitably
modified NN architecture for the numerical realization of the shape functions.

Specifically, the emulation of all shape functions {θ
Sp

i }i∈N can be obtained more efficiently
when we rearrange the part of the network that computes the products in (4.1). Rather than
computing for each Lagrangean basis function the product of p factors from (4.1), we first
compute for all nodes q ∈ V the real-valued quantities

wα(θ
S1
q (x)) :=

α−1∏

j=0

(
p

j+1θ
S1
q (x)− j

j+1

)
for α = 1, . . . , p, (4.2)

where wα ∈ Pα ⊂ Pp. For all i ∈ N , Eq. (4.1) can then be rewritten as

θ
Sp

i (x) =

m∏

k=0

wαm
(θS1

am
(x)). (4.3)

Remark 4.5 For all i ∈ N , the number of factors in (4.3) is m + 1 ≤ d + 1, one for each of
the vertices a0, . . . , am. This is independent of p and leads to a network size of the order O(pd),
rather than a number of neurons of the order O(pd+1 log(p)) in [24, Thm. 4.2] (see Rem. 4.4)
and an even larger network size.

Proposition 4.6 For all p ∈ N and a polytopal domain D ⊂ R
d, for 2 ≤ d ∈ N, let T be a

regular, simplicial partition of D.
There exists a NN ΦCPwPp := ΦCPwPp(T ,D) with only ReLU and ReLU2 activation which

in parallel emulates the shape functions {θS1
i }i∈V , i.e. R(ΦCPwPp) : D → R

|N | satisfies

R(ΦCPwPp)i(x) = θ
Sp

i (x), for all i ∈ N and x ∈ D.

The network depth and size satisfy for some C > 0 independent of T , d and p

L(ΦCPwPp) ≤C(log2(p+ 1) + log2(d+ 1) + log2(s(V)) + 1),

M(ΦCPwPp) ≤C
(
d|N | + p2|V| + |V| log2(s(V)) + d2

∑

q∈V

s(q)
)

≤C
(
d|N | + p2|V| + d2s(V)|V|

)
.
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For all v =
∑

i∈V viθ
Sp

i ∈ Sp(T ,D), there exists a NN ΦCPwPp,v := ΦCPwPp(T ,D),v with only
ReLU and ReLU2 activations, such that for a constant C > 0 independent of T , d and p

R(ΦCPwPp,v)(x) = v(x) for all x ∈ D,

L(ΦCPwPp,v) ≤C(log2(p+ 1) + log2(d+ 1) + log2(s(V)) + 1),

M(ΦCPwPp,v) ≤C
(
d|N | + p2|V| + |V| log2(s(V)) + d2

∑

q∈V

s(q)
)

≤C
(
d|N | + p2|V| + d2s(V)|V|

)
.

The layer dimensions and the lists of activation functions of ΦCPwPp and ΦCPwPp,v are
independent of v and only depend on p, and on T through {m(i)}i∈N , |N |, {s(q)}q∈V and |V|.

The set NN (CPwPp; T ,D) := {ΦCPwPp,v : v ∈ Sp(T ,D)} together with the linear operation
ΦCPwPp,v+̂λΦCPwPp,w := ΦCPwPp,v+λw for all v, w ∈ Sp(T ,D) and all λ ∈ R is a vector space.
The realization map R(·) : NN (CPwPp; T ,D) → Sp(T ,D) is a linear isomorphism.

Proof. For each p ∈ N and each interpolation point i ∈ N , let m, a0, . . . , am and α0, . . . , αm be
as in Prop. 4.1. In the remainder of this proof, we will denote them by m(i), a0(i), . . . , am(i)(i)
and α0(i), . . . , αm(i)(i).

This proof consists of three steps. In Step 1, we construct ΦCPwPp and prove the formula
for its realization. in Step 2, we prove the bounds on the network depth and size of ΦCPwPp .
The remainder of the statements is proved in Step 3.

Step 1. First, we recall several NNs which we will use in our construction. From Prop.
3.12 we recall ΦCPwL := ΦCPwL(T ,D), whose depth and size are bounded by

L(ΦCPwL) ≤ 8 + log2(s(V)) + log2(d+ 1), M(ΦCPwL) ≤ |V| log2(s(V)) + d2
∑

q∈V

s(q).

We consider NN emulations of the polynomials {wα}
p
α=1 ∈ Pp defined in (4.2). By sparsely

concatenating these networks {Φwα}pα=1 with a ReLU2 identity network from Prop. 3.9 using
Prop. 3.7, we obtain that for all p ∈ N and α = 1, . . . , p, there exists a ReLU2 NN Φwα

p such
that R(Φwα

p ) = w, L(Φwα
p ) = c⌈log2(p+ 1)⌉ and M(Φwα

p ) ≤ Cp, for constants c ∈ N and C > 0
independent of p and α = 1, . . . , p. We now prove this.

Let c ∈ N be such that L(Φwα) < c⌈log2(p+1)⌉ for all α = 1, . . . , p. With Lα := c⌈log2(p+

1)⌉ − L(Φwα) ≤ c⌈log2(p + 1)⌉ we then define Φwα
p := ΦId,ρ2

1,Lα
⊙ρ2 Φwα for all α = 1, . . . , p.

We obtain that R(Φwα
p ) = R(Φwα) = wα, L(Φwα

p ) = Lα + L(Φwα) = c⌈log2(p + 1)⌉ and

M(Φwα
p ) ≤ CM(ΦId,ρ2

1,Lα
)+CM(Φwα) ≤ CLα+C(α+1) ≤ Cp, for a constant C > 0 independent

of α and p.
Analogously, we obtain from Prop. 3.10 the following result. For all d ∈ N, there exist

ReLU2 NNs {Φprod
ℓ,d+1}

d+1
ℓ=1 such that R(Φprod

ℓ,d+1)(x1, . . . , xℓ) =
∏ℓ

j=1 xj for all x1, . . . , xℓ ∈ R, and

such that their NN depths and sizes satisfy L(Φprod
ℓ,d+1) = c⌈log2(d + 1)⌉ and M(Φprod

ℓ,d+1) ≤ Cd,
for constants c ∈ N and C > 0 independent of d.

We can now define

ΦCPwPp :=Φ
CPwPp

(1) ⊙ρ Φ
CPwPp

(2) ⊙ρ Φ
CPwPp

(3) ⊙ρ Φ
CPwPp

(4)

:=FP

({
Φprod

m(i)+1,d+1

}
i∈N

)
⊙ρ Φ

CPwPp

(2) ⊙ρ FP

({
P
({

Φwα
p

}p
α=1

)}
q∈V

)
⊙ρ Φ

CPwL,

where Φ
CPwPp

(2) is a NN of depth 1 emulating a linear transformation x 7→ Ax. Fixing a bijection
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n : N → {1, . . . , |N |}, the weight matrix A of size
(∑

i∈N (m(i) + 1)
)
× p|V| is defined by

Aj1,j2 =





1 if j1 = k + 1 +
∑n(i)−1

n′=1 (m(n−1(n′)) + 1) for some k ∈ {0, . . . ,m(i)}

and wαk(i)(θ
S1

ak(i)
(x)) is the j2’th component of R(Φ

CPwPp

(3) ⊙ρ Φ
CPwPp

(4) ),

0 else.

Note that each row has precisely one nonzero element. The number of rows is bounded by

(d+ 1)|N |, hence M(Φ
CPwPp

(2) ) ≤ (d+ 1)|N |.

It follows directly from these definitions that for all x ∈ R
d

R(Φ
CPwPp

(4) )(x) = {θS1
q (x)}q∈V ,

R(Φ
CPwPp

(3) ⊙ρ Φ
CPwPp

(4) )(x) = {{wα(θ
S1
q (x))}pα=1}q∈V ,

R(Φ
CPwPp

(1) ⊙ρ Φ
CPwPp

(2) ⊙ρ Φ
CPwPp

(3) ⊙ρ Φ
CPwPp

(4) )i(x) =

m(i)∏

k=0

wαk(i)(θ
S1

ak(i)
(x)) = θ

Sp

i (x).

Step 2. To obtain an estimate on the network depth, we combine the bounds from Step 1
on the depths of the subnetworks using Propositions 3.4 and 3.6, and get

L(ΦCPwPp) ≤L(Φ
CPwPp

(1) ) + L(Φ
CPwPp

(2) ) + L(Φ
CPwPp

(3) ) + L(Φ
CPwPp

(4) )

≤ c⌈log2(d+ 1)⌉+ 1 + C⌈log2(p+ 1)⌉+
(
8 + log2(s(V)) + log2(d+ 1)

)

≤C
(
1 + log2(s(V)) + log2(d+ 1) + log2(p+ 1)

)
.

Similarly, using the same propositions to combine bounds on the sizes of the subnetworks, we
obtain as bound on the network size

M(ΦCPwPp) ≤CM(Φ
CPwPp

(1) ) + CM(Φ
CPwPp

(2) ) + CM(Φ
CPwPp

(3) ) + CM(Φ
CPwPp

(4) )

≤C(d+ 1)|N | + C(d+ 1)|N | + Cp2|V| + C
(
|V| log2(s(V)) + d2

∑

q∈V

s(q)
)

≤C
(
d|N | + p2|V| + |V| log2(s(V)) + d2

∑

q∈V

s(q)
)

≤C
(
d|N | + p2|V| + d2s(V)|V|

)
.

Step 3. For all v ∈ Sp(T ,D), the NN ΦCPwPp,v is defined as (A′, 0, IdR) • Φ
CPwPp , where

A′ ∈ R
1×|N| is the row vector containing the weights A′

1,i = vi for all i ∈ N . It holds that

L(ΦCPwPp,v) = 1− 1 + L(ΦCPwPp) = L(ΦCPwPp).
To estimate its size, we observe that the hidden layers of ΦCPwPp and ΦCPwPp,v coincide,

as these layers emulate the FE basis functions. The layer dimensions and the lists of activation

functions of Φ
CPwPp

(4) depend on T only through {s(q)}q∈V and |V|. Those of Φ
CPwPp

(3) only

depend on p and |V|, and those of Φ
CPwPp

(1) and Φ
CPwPp

(2) only on p, |V|, |N | and {m(i)}i∈N .

Furthermore, each weight in the output layer of ΦCPwPp,v is the inner product of the row vector
A′ with a column of the output layer weight matrix of ΦCPwPp , hence the number of nonzero
weights of ΦCPwPp,v is at most that of ΦCPwPp . The same holds for the number of nonzero
biases, as the bias of ΦCPwPp,v is the inner product of A′ with the bias vector of ΦCPwPp . Thus,
it follows that

M(ΦCPwPp,v) ≤ M(ΦCPwPp).

By definition of ΦCPwPp,v, the realization R(ΦCPwPp,v) is a linear combination of the outputs
of R(ΦCPwPp), which is determined uniquely by the weights in the output layer, (vi)i∈N (which
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coincide, due to (4.1), with the nodal values of v). Therefore, R(·) : NN (CPwPp; T ,D)
→ Sp(T ,D) is a bijection. With the linear operations defined in the proposition, this map
is linear by definition, thus a linear isomorphism. ✷

Remark 4.7 Using that |V| ≤
∑

q∈V s(q) ≤ (d + 1)|T | by Rem. 3.13 and that |N | ≃ pd|T |
with a proportionality constant which depends on d, we obtain that the network size is bounded
by C(d)(log2(s(V)) + pd)|T |.

For a fixed triangulation T , for increasing polynomial degree this scales as O(pd), which
significantly improves the complexity of the networks from [24, Thm. 4.2], cf. Rem. 4.5 above.
Actually, it is of the same order of p as the number of degrees of freedom of the high-order finite
elements which it emulates.

When we do not consider a fixed partition, but a family of regular, simplicial partitions
of D which is uniformly κ-shape regular, the value s(V) is bounded from above in terms of κ,
according to Rem. 1.1. Using again that |V| ≤ (d+ 1)|T | and |N | ≃ pd|T |, it follows that

M(ΦCPwPp) ≤C
(
d|N | + p2|V| + d2s(V)|V|

)
≤ C(d, κ)

(
pd|T | + p2|T | + |T |

)
≤ C(d, κ)|N |.

Remark 4.8 Because the outputs of ΦCPwPp are continuous, piecewise polynomial Lagrangean
basis functions which vanish in all nodes in N except one, it follows that the coefficients (vi)i∈N

are equal to the function values in N , i.e. vi = v(i) for all i ∈ N . In particular, the construction
of ΦCPwPp,v is well suited for obtaining NN approximations based on high order finite element
interpolation.

Remark 4.9 (Univariate case d = 1) Although the proposition is stated for d ≥ 2, the NN
construction in the proof of Prop. 4.6 also holds for d = 1. However, the proposition does
not hold as stated in the univariate case d = 1, because the parallel emulation of p univariate
polynomials of degree p which is used in the proof has network size bound Cp2, which is not
linear in the polynomial degree.

In the univariate case, when d = 1, an exact NN emulation with size |N | ≃ p|T | can
be constructed as follows. In [39, Appendices A and B], for p ∈ N we constructed a NN
with one input and p outputs, of depth ⌈log2(p)⌉ + 1 and size at most Cp, whose outputs
approximate the Chebyšev polynomials of degree 1, . . . , p. While [39, Prop. A.2] is stated for
tanh-NNs, by [39, Rem. B.4] it also holds for ReLU2 NNs. In the proof of [39, Prop. A.2],
approximations of the Chebyšev polynomials are constructed using subnetworks, among which
subnetworks that approximate the identity with a network of fixed size, independently of the
accuracy. Similarly, subnetworks approximating the product of two numbers are used whose
size is fixed and independent of the desired accuracy. When we replace those by the product
and identity networks from Prop. 3.9 and 3.10, we obtain a ReLU2 NN which exactly emulates
the Chebyšev polynomials of degrees 1, . . . , p with depth ⌈log2(p)⌉+ 1 and network size at most
Cp. This result can be used in the constructions from [38] instead of [38, Prop. 3.8]. Following
the steps in the proofs of [38, Corollary 3.10 and Prop. 3.11] then gives an exact ReLU - and
ReLU2 -activated NN emulation of univariate continuous, piecewise polynomial functions on a
partition of a bounded interval into |T | elements with elementwise polynomial degree p, whose
depth is of the order O(log(p+ 1)) and with a network size of the order O(p|T |).

5 NN Approximation of Weighted Gevrey Regular Func-

tions

The main result is now obtained as a direct consequence of Prop. 2.2 and 4.6.
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Theorem 5.1 In a bounded polytope D ⊂ R
d, d = 2, 3, with plane sides resp. faces, suppose

given a weight vector β as in (2.3) if d = 3 or (2.4) if d = 2.

Then, for all δ > 0, there exist constants b, b̃, C > 0 depending on Cu, du in (2.6), inde-
pendent of p, such that for every u ∈ Gδ

β(S; D)) and p ∈ N, there exists a NN Φhp,u,p with only

ReLU and ReLU2 activation, which satisfies

L(Φhp,u,p) ≤C log2(p+ 1), M(Φhp,u,p) ≤ Cpd+1/δ,

∥∥u− R(Φhp,u,p)
∥∥
H1(D)

≤





C exp(−bp1/δ) ≤ C exp(−b̃M(Φhp,u,p)
1

1+δd ) δ ≥ 1,

C
(
Γ
(
p1/δ

))−b(1−δ)
≤ C

(
Γ
(
M(Φhp,u,p)

1
1+δd

))−b̃(1−δ)

0 < δ < 1.

(5.1)

In addition, if u|∂D = 0, then R(Φhp,u,p)|∂D = 0.

Proof. For some 0 < σ < 1 and κ > 0, consider a sequence Mκ,σ(S) of nested, regular
simplicial meshes in D which are σ-geometrically refined towards S and which are κ-shape
regular, e.g. those constructed in [16, Alg. 1]. By Prop. 2.2, for all p ∈ N, with ℓ ≃ p1/δ, the
continuous, piecewise polynomial function v := Πp

κ,σu ∈ Sp(M(ℓ)) satisfies

∥u− v∥H1(D) ≤ C





exp(−bN
1

1+δd ) δ ≥ 1,
(
Γ
(
N

1
1+δd

))−b(1−δ)

0 < δ < 1,

where N = dim(Sp(M(ℓ))) ≃ pd+1/δ. If u|∂D = 0, then v|∂D = 0.

Now, by Prop. 4.6 there exists Φhp,u,p := ΦCPwPp(M
(ℓ),D),v, with only ReLU and ReLU2

activations, which satisfies for a constant C > 0 independent of M(ℓ), d and p

R(ΦCPwPp(M
(ℓ),D),v)(x) = v(x) for all x ∈ D,

L(ΦCPwPp(M
(ℓ),D),v) ≤C(log2(p+ 1) + log2(d+ 1) + log2(s(V)) + 1),

M(ΦCPwPp(M
(ℓ),D),v) ≤C

(
d|N | + p2|V| + d2s(V)|V|

)
.

By Rem. 1.1, s(V) can be bounded in terms of the shape regularity constant κ, which is
bounded independently of p. Also, d ∈ {2, 3} is bounded independently of p, which shows
that L(Φhp,u,p) ≤ C log2(p + 1) for C > 0 depending on κ. To estimate the network size, we

recall from Rem. 4.7 that M(Φhp,u,p) = M(ΦCPwPp(M
(ℓ),D),v) ≤ C|N | = CN ≃ pd+1/δ for a

constant C depending on κ, independent of p. To finish the proof, we substitute this into the
error bound. ✷

Remark 5.2 The treatment of homogeneous Dirichlet boundary conditions on a strict subset
Γdir ⊂ ∂D comprising the union of several boundary faces (when d = 3) or edges (when d = 2)
is the topic of [16, Sect. 4.2.7]. Because Prop. 2.2 is based on nodal interpolation, it also holds
that u|Γdir

= 0 implies that Πp
κ,σu|Γdir

= 0. By the presently developed exact NN emulation, this

implies that R(Φhp,u,p)|Γdir
= 0.

6 Conclusions

For DNNs with a suitable combination of ReLU and ReLU2 activations, we established ex-
ponential expression rate bounds (5.1) in polytopal domains D ⊂ R

d, in dimension d = 2, 3.
The results built on a general result on DNN emulation of hp-FE spaces, Prop. 4.6, which
is of independent interest, also allowing for DNN emulation of the so-called p-version Finite
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Element Method, and Spectral Element Methods in D. Prop. 4.6 improves earlier results from
[24] by realizing the same finite element with NNs which are smaller, i.e. the network size
admits smaller bounds in terms of the polynomial degree p (cf. Rem. 4.5). With Prop. 4.6
in place, exponential expression rate bounds for the constructed DNNs on countably normed,
corner-weighted function classes (2.6) follows from known results on hp-FE approximation e.g.
in [16], which go back to the hp-FE approximation rates by I.M. Babuška and B.Q. Guo in
[18, 2, 5].

The proposed DNN emulation of Lagrangean basis functions of the space of polynomials of
total degree p ≥ 1 in equispaced nodes (in barycentric coordinates in elements K ∈ T ) is, as
was shown in the proof of Prop. 4.6, mathematically exact. The well-known conditioning issues
of these nodal basis functions may preclude their training in finite-precision arithmetic for very
high orders. Here, themodal bases such as those proposed by I.M. Babuška and coworkers, which
are based on antiderivatives of univariate Legendre polynomials, will afford better conditioning
of the resulting “feature-space”, but do not exhibit the separability which we used in the
proof of Prop. 4.6. Other polynomial bases, both nodal and modal, with substantially better
conditioning for large polynomial orders, are known (e.g. [10, 27]). Separable, nodal bases are
provided by Dubiner’s approach [13], which also yields bases whose conditioning is improved
w.r. to the Lagrangean basis (4.2) used in the proof of Prop. 4.6. The NN size bounds for DNN
emulation of these bases is the topic of future work.
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