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ABSTRACT

The automated discovery of constitutive laws forms an emerging area that focuses on automati-
cally obtaining symbolic expressions describing the constitutive behavior of solid materials from
experimental data. Existing symbolic/sparse regression methods rely on availability of libraries of
material models, which are typically hand-designed by a human expert relying on known models as
reference, or deploy generative algorithms with exponential complexity which are only practicable
for very simple expressions. In this paper, we propose a novel approach to constitutive law discovery
relying on formal grammars as an automated and systematic tool to generate constitutive law expres-
sions complying with physics constraints. We deploy the approach for two tasks: i) Automatically
generating a library of valid constitutive laws for hyperelastic isotropic materials; ii) Performing
data-driven discovery of hyperelastic material models from displacement data affected by different
noise levels. For the task of automatic library generation, we demonstrate the flexibility and efficiency
of the proposed methodology in alleviating hand-crafted features and human intervention. For the
data-driven discovery task, we demonstrate the accuracy, robustness and significant generalizability
of the proposed methodology.

Keywords Automated Model Discovery · Data-Driven Constitutive Models · Formal Grammars · Symbolic
Regression · Generative AI

1 Introduction

From the mechanics of a beating heart to the haptics of a robotic arm, from the rupture of an aneurysm sack to the
aeroelasticity of a spaceship, mechanical phenomena controlled by the behavior and properties of different types
of materials are ubiquitous in nature and in engineering applications alike. Thus, understanding, modeling and
characterizing the mechanical response of materials has been an important research focus for centuries. Accordingly,
extracting so-called material models (or constitutive laws), i.e. relations between stresses, strains and often additional
variables, from experimental data has been and still is a central task in solid mechanics [1]. The conventional approach
to solve this underlying inverse problem requires a large number of experiments and a tedious trial-and-error iterative
procedure, involving at each iteration the choice of a model from the available literature (largely based on experience)
and the subsequent calibration of its unknown parameters [2], often referred to as model updating, which can be
achieved under both deterministic and stochastic schemes [3, 4]. However, the recent advances in imaging techniques
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are increasingly motivating a paradigm shift from point-wise measurements to full-field data acquisition [5]. At the
same time, the stunning recent successes of machine learning, and more generally data-driven techniques, have spawned
a dramatic surge in the adoption of such algorithms also in the field of material modeling [6]; see [7] for a recent review.
In this work, we leverage machine learning techniques to automatize model selection and calibration by condensing
these into the single task of model discovery, see the difference in model identification and discovery in [2]. Moreover,
we are interested in approaches which deliver as output an interpretable material model, i.e. one that can be represented
by mathematical expressions satisfying appropriate constraints, thus moving away from the model-free paradigm [8].

Figure 1: A graphical representation of the process proposed in this manuscript. In a first step, a virtual material library
is assembled offline using a formal grammar. In a second step, a symbolic regression algorithm is trained offline on
the generated virtual material library. In a third step, constitutive laws are discovered from experimental data using
gradient-free optimization, and the trained model from the second step, for solving the resulting inverse problem.

In general, approaches that derive mathematical expressions from targeted experimental data are commonly referred to
as symbolic regression methods. In what follows, we review different symbolic regression methods proposed in the
literature for general (i.e. not necessarily material) model discovery and comment on their advantages and shortcomings
in relation to the discovery of constitutive laws. For the sake of a unified presentation, we choose to view symbolic
regression through the lens of operations on graphs. We further refer readers not familiar with the graph representation
of mathematical expressions to Appendix A, which reviews some basic notions that facilitate reading. From this
perspective, symbolic regression algorithms can be viewed as structured ways to add and discard edges of a graph
between nodes, with the nodes containing so-called primitives (i.e. constants, variables, mathematical operations,
or small expressions). Thus, the construction of a symbolic regression method entails three main choices – i) how
the primitives are chosen; ii) what is the underlying graph topology; iii) how to ensure the derivation of meaningful
expressions for the chosen graph topology. We hereby discuss existing classes of such algorithms in terms of these
defining choices.

Equation Learner. A simple and interpretable framework for symbolic regression is the Equation Learner (EQL) [9].
To construct the EQL algorithm, the primitives include mathematical operations, such as the sin, cos, identity and
· operations, and the input variable X , whereas the underlying topology is a weighted directed graph topology that
represents all the functions that provide an output y given an input X , see Figure 2. This is equivalent to considering
a fully connected neural network whose weights are the weights of the graph and whose activation functions are the
primitive operations. Multiple layers of the network are considered for approximating complex functions and different
paths of the graph represent different mathematical expressions. The method is trained such that, given an input, it
determines the edges of the graph that constitute the simplest path whose resulting expression evaluation is the closest
to the measurements. Even though this method has been successfully employed for different tasks, it comes with some
important drawbacks. First, there is no systematic way to constrain the method to provide meaningful mathematical
expressions. Moreover, EQL is difficult to train for primitives such as division, exponentiation and logarithms even
though ways to alleviate this issue have been proposed [10, 11]. Since these operations are present in many material
models, the application of this method to constitutive law discovery can be problematic. An EQL-based approach
for discovery of hyperelastic constitutive laws is presented in [12, 13]; the authors propose methods that consider the
invariants of the Cauchy-Green tensor as inputs and activation functions consisting of unary operations. These authors
do not consider constitutive laws containing operations such as division, exponentiation or logarithms.

Sparse Regression. An alternate family of algorithms is based on Sparse Regression (SR) [14, 15, 16]. For constructing
a SR algorithm, primitives are chosen to be expressions, rather than operations, and the underlying topology is that of
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a weighted directed acyclic graph connecting the root node (i.e. the input X) with the primitives, see Figure 2. This
is equivalent to considering a fully connected network without activation functions, trained to provide the weighted
combination of edges that best fits the given measurements, while also imposing sparsity [17] with the purpose of
obtaining a parsimonious, i.e. a simple mathematical expression. In SR, whether a generated expression is meaningful
is (at least partially) determined by the primitives. For example, considering simple constitutive laws already as
primitives is likely to result in a valid final constitutive law. This approach has been successfully applied in different
areas of scientific discovery [18] and also to the discovery of constitutive laws with applications to hyperelasticity
[2, 19, 20, 21, 22, 23], viscoelasticity [24], plasticity [25, 26] and generalized standard material models [27]. The main
drawback of SR is that a human expert needs to hand-design the primitives; this inevitably introduces a bias in the
process of discovery and restricts the search space of possible candidate expressions to those included in the starting
library.

Genetic Programming. Instead of imposing sparsity to a directed acyclic graph, other methods achieve sparsity by
operating directly on trees rather than graphs; in other words, sparsity naturally follows from the tree structure. A
standard approach for performing symbolic regression on trees is Genetic Programming (GP) [28, 29]. Here, an initial
population of S-expressions is constructed randomly by combining different primitives, i.e. constants as well as unary
or binary operators [30]. For each random generation, actions are performed that alter step-by-step the structure of the
population of the tree, by either mutating the primitives or removing/adding sub-expressions to the tree. This approach is
not equipped with any structured way to impose constraints to each step of the generation of mathematical expressions.
Moreover, the complexity of the method grows very fast with the depth of the tree [31], making it practically applicable
only to small mathematical expressions. The prohibitive computational cost for potentially complex expressions makes
GP not suitable for constitutive law discovery. Nevertheless, attempts in this direction have been made [32, 33, 34, 26].
In these cases, initial expression trees are evolved using mutations and crossover operations either as a standalone
procedure or as a part of a more general pipeline.

Deep Symbolic Regression. Deep Symbolic Regression (DSR) [35] exploits Recurrent Neural Networks to predict
the probability of children nodes given the parent node. To construct the DSR algorithm one needs to choose a set
of primitives, namely constants as well as unary and binary operations, and a specific sequence of operations that
corresponds to a top-to-bottom, left-to-right ordering of tree nodes, see Figure 2. The algorithm randomly chooses a
root node; then, using auto-regressive sampling, it computes the probability of the next primitive on the tree conditioned
on the previous one. The model is trained using a risk-seeking policy gradient to generate best-fitting expressions with
high probability. In-situ constraints to zero out the probability of particular children given the parents can be considered
to shrink the search space [35, 17, 36]. The difficulty in applying this methodology to a constitutive law discovery
scenario (which, to the best of our knowledge, has not yet been attempted) is that the constraints are imposed at each
step of the generation but not to the whole expression. Moreover, the generation process requires a second optimization
step to calibrate constants, which may end up violating constitutive law constraints.

Figure 2: Schematic representation of abstractions of different symbolic regression methods. For EQL and SR, we are
performing supervised learning to learn a map from X to y parameterized by a network, while also imposing sparsity to
the network. After the training is completed, we track the remaining edges to discover the form of the equation. The
DSR and LSPT methods are constructed by randomly generating and evaluating trees based on a set of primitives, so
they do not directly involve supervised learning.
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Large-Scale Pre-Trained Models. The approaches we introduced so far, learn a model that needs to be re-trained as
new data points are added. To address this issue in symbolic regression, Large-Scale Pre-Trained (LSPT) models have
been proposed [37, 38, 39]. LSPT models are trained once on a library of valid symbolic expressions and then provide
the probability of an expression given a new data point. Constructing a LSPT model entails choosing primitives as
a set of constants and mathematical operations, and a tree topology with a sequence of operations that corresponds
to a top-to-bottom, left-to-right ordering of the tree nodes. By sampling valid sequences of primitives, a library of
potential expressions is constructed and then evaluated for a range of the input variable X and constant values. The pair
consisting of the input variable X and the evaluation of the expression y is encoded using a transformer architecture
and the encoding is then used by a different transformer architecture to provide a distribution of expressions. The whole
process is trained end-to-end by supervised learning via matching the function evaluation and the tree labels. After
the model is trained, a beam search is performed for pairs of (X, y) to discover expressions that provide y with high
likelihood, see Figure 2. This method could potentially translate to constitutive law discovery, but it would need to be
pre-trained on a large library of expressions. At present, there exists no systematic way to construct such library, nor to
impose constraints during the library creation or the expression generation process.

Grammars and Variational Autoencoders. Formal grammars have been explored for the generation of molecules as well
as of mathematical expressions using sequence-to-sequence [40, 41] and recursive [42] learning. Discovery processes
of both new molecules and mathematical expressions can be succeeded via use of a deep generative model, more
specifically using a variational autoencoder (VAE). In Kusner et. al. [40], the authors propose a method that first extracts
from a tree the sequence of grammar rules that generates it and then encodes the sequence using a low-dimensional
vector. In Paassen et. al. [42], the authors directly encode a tree using a recursive procedure that encodes the rule that
generated the parent node given the children. In both cases, a decoding algorithm based on a grammar is considered to
guarantee syntactic validity of the expressions. After the VAE model is trained, a gradient-free optimization procedure,
such as Bayesian optimization or an evolutionary strategy, can be employed for exploring the low-dimensional space
of the VAE to find the expression that best fits a new set of measurements. Methods based on grammar possess low
complexity, constrain the tree generation using rules, and generalize. To the best of our knowledge, they have never
been used for constitutive law discovery.

The above survey on available tools for symbolic regression clearly suggests the following characteristics that would be
desirable for symbolic regression algorithms applied to data-driven constitutive law discovery:

• Accommodation of primitive operations of significant complexity (e.g. including exp, log or /), without
exhibiting training instabilities.

• Alleviation of human bias via flexible and automated generation of new constitutive expressions.

• Low complexity, meaning that the complexity of the discovery process should not increase exponentially with
the length of the expression.

• Possibility to incorporate constraints on both the final expression and the steps of the expression generating
process.

• Generalization of the symbolic regression algorithm, i.e. potential to provide expressions that are valid for new
and unseen data points without re-training.

In this paper, we propose a symbolic regression pipeline for constitutive law discovery that satisfies all the above-listed
requirements. Due to the advantages of formal grammars mentioned earlier (low complexity, ability to systematically
embed constraints stemming from domain knowledge, and generalization capability) we explore grammar-based
symbolic regression and develop formal grammars which are specifically designed for constitutive laws. In this first
investigation, we focus on hyperelasticity, whereby the material behavior is fully encoded by the elastic strain energy
density function for which we seek a parsimonious mathematical expression.

The proposed pipeline is composed by three steps: a library construction step, a pre-training step, and a data-driven
discovery step, as illustrated in Figure 1. In the first step, we define a formal grammar that generates mathematical
expressions in the form of trees. We ensure that the expressions derived by the grammar are valid constitutive laws
(i.e., in our case, valid elastic strain energy density functions) by applying constraints either during the generation
process or to the final expressions. The grammar is then used to perform an off-line library generation of constitutive
laws. Note that this library is a useful result per se, as it may be deployed in place of a hand-crafted library in the
context of constitutive model discovery based on sparse regression [2]. In the second step, this library is used to train
off-line a symbolic regression algorithm that takes advantage of the tree structure of the mathematical expressions and
of the grammar of the constitutive laws. The pre-trained model is trained to encode a tree to a low-dimensional latent
vector representations and decode this low-dimensional vector representation to a tree, creating a low-dimensional
manifold of tree representations. In the third step, we perform a gradient-free optimization approach to search the
low-dimensional manifold for the vectorial representation of the model that best fits the given measurements. Therefore,
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the expensive step of training the deep learning model needs to be executed once and then we perform the discovery
without re-training.

The remainder of the manuscript is structured as follows. In Section 2 we focus on the notion of formal grammars and
describe the Context-Free and Regular Tree Grammar classes, their properties and semantics. Section 3 is devoted to
the construction of a formal language, the Language of Hyperelastic Materials, where the constitutive law constraints
are either included in the grammar or enforced on the derived expressions. In this section we also discuss how the
Language of Hyperelastic Materials can deployed for the automatic construction of a library of hyperelastic constitutive
laws, and present examples of generation of such a library. In Section 4, we introduce a symbolic regression method
combining VAEs and a Regular Tree Grammar defined for constitutive laws, that fulfils all the requirements of the
earlier list. Finally, we propose a pipeline for discovering constitutive laws from available data and illustrate an example
using artificially generated full-field displacement data. Conclusions and an outlook close the paper in Section 5.

2 Context-Free and Regular Tree Grammars

In this section, we present two different types of formal grammars, namely Context-Free Grammars and Regular Tree
Grammars, along with a simple example to showcase their use. To enable a high-level intuition of how grammar works,
we provide a simplified schematic representation of a tree created using the proposed grammar in Figure 3. The node
labels are variables, e.g. L,Ψ, S, from which one, in this case S, is assigned as the tree root. During tree generation,
these variables are substituted with different primitives (i.e. constants, e.g. 2, 3, variables, e.g. I1, J , or operators, e.g.
+,−, ·), using predefined substitution rules, e.g. r1, r2. The number of arguments that the primitives take (e.g. + takes
two arguments while J takes no arguments) determine the number of their children and the tree connectivity.

2.1 Context-Free Grammars

Roughly described, a Context-Free Grammar (CFG) is a systematic way of generating tree structures that represent syn-
tactically and semantically meaningful expressions using a set of rules. CFGs are defined as a tuple G = {Φ,Σ, R, S},
where Φ is a set of non-terminal symbols, Σ is an alphabet of terminal symbols, R is a set of production rules, and S
denotes a special non-terminal symbol called the starting symbol. Let us explain the meaning of these terms.

• Non-terminal symbols are the variable node labels (i.e. L,Ψ, S in Figure 3). They are syntactic variables that
cannot appear in an expression as standalone entities; to generate a sentence, or, in our context, a mathematical
expression, they are substituted by terminal symbols through production rules.

• Terminal symbols are the primitives. They are the building blocks that compose sentences or, in our context,
mathematical expressions. In our case, the terminal symbols can be defined as constants, variables, operations
(such as in Figure 3), or sub-expressions.

• Production rules are user-defined rules to substitute non-terminals with other non-terminal or terminal symbols.
Each substitution rule consists of a left-hand side that contains a non-terminal symbol, and a right-hand side
that contains a mixture of terminals and non-terminals to be substituted to the left-hand side. E.g., the rule
Ψ → sL, with Ψ, L ∈ Φ and s ∈ Σ, substitutes Ψ with sL in a sentence. If a non-terminal symbol appears on
the left-hand side of more than one production rule, it can be replaced by any of the right-hand sides of these
rules. By recursive substitution of the non-terminal symbols using the production rules, initiating from the
starting symbol S, sentences that contain only terminal symbols are finally derived.

Note that because the production rules of CFGs contain only one non-terminal on the left-hand side, the sentences of
CFGs can be expressed as trees, called derivation trees, as illustrated in Figure 3. Each derivation tree corresponds to a
terminal sentence, or, in our context, to a mathematical expression. A language L(G) is defined as the set of all possible
terminal sentences that can be derived by applying the production rules of the grammar starting from S, or all possible
ways that the nodes of a derivation tree can be connected starting from S.

We now illustrate these concepts with a simple example. Consider the grammar GNH = {Φ,Σ, R, S}, where:
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Figure 3: Schematic explanation of a tree derivation using grammar. The non-terminals are color coded based on the
grammar rules that substitute them. For example, L is substituted by 3, I1, or J and is re-written by the grammar rules
J → 3|I1|J . On the other hand, Ψ and S are re-written by +, −, ·, or pow, and correspond to S → +(L,Ψ)| − (L,Ψ),
and Ψ → pow(L,L)| · (L,L), respectively. The black arrows show two possible tree derivation generated by these
substitutions.

S = { C },

Φ = { C,Ψ, L},

Σ = { +,−, ·, (·)2, I1, J, a , 1, b, 3 },

R = { C → Ψ+Ψ, (1)

Ψ → L ·Ψ, (2)

Ψ → (L− L), (3)

Ψ → (Ψ)2, (4)

Ψ → L, (5)

L→ a, (6)

L→ 1, (7)

L→ b, (8)

L→ 3, (9)

L→ I1, (10)

L→ J(11) }.

Here, C,Ψ, and L denote the non-terminals, with C as the starting symbol, and Ψ and L are used for recursive
substitution of operations and literals (i.e. constants and variables), respectively. More specifically, Ψ describes both
unary and binary operations between terminals and non-terminals, whereas L re-writes the integers 1, 3, the real
constants a, c and the variables I1, J . The numbers next to the production rules are used for their annotation. Note that
rule (3) is written as (L− L), but this does not mean that this rule always provides zero values. Each non-terminal L is
treated separately, which means that the two L’s in rule (3) do not always have the same value.

If we identify I1, J with the first invariant of the right Cauchy-Green deformation tensor and the third invariant of the
deformation gradient in finite deformation kinematics, we can produce the non-dimensional elastic strain energy density
function of a simple Neo-Hookean model W = a · (I1 − 3) + b · (J − 1)2 by performing recursive substitutions of
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non-terminal symbols beginning from the starting symbol C, as follows:

C
(1)
−−→ Ψ+Ψ,

(2)
−−→ L ·Ψ+ L ·Ψ,

(3)
−−→ L · (L− L) + L · (L− L),

(6)
−−→ a · (L− L) + L · (L− L),

(10)
−−−→ a · (I1 − L) + L · (L− L),

(9)
−−→ a · (I1 − 3) + L · (L− L),

(8)
−−→ a · (I1 − 3) + b · (L− L),

(11)
−−−→ a · (I1 − 3) + b · (J − L),

(7)
−−→ a · (I1 − 3) + b · (J − 1).

The grammar GNH can not only produce this specific Neo-Hookean model, but also generate any other expression
that can be derived as a combination of the introduced production rules {(1), ...(11)}. Examples derived from GNH
are shown in Figure 4. All the possible terminal strings derived by recursively substituting the non-terminal symbols
C,Ψ, L ∈ Φ (starting from C) using the production rules constitute the context-free language L(GNH).

2.2 Regular Tree Grammars

Another type of grammar suitable for our application is a Regular Tree Grammar (RTG), defined as the tuple G =
{Φ, Σ̃, R, S}, where Σ̃ is now a ranked alphabet. This is defined as an alphabet augmented by specifying the arity of
each primitive, i.e. the number of arguments each primitive takes. To explain the difference between CFGs and RTGs,
we now consider a Regular-Tree version of GNH, which we denote as ĜNH, where:

S = { C },

Φ = { C,Ψ, L},

Σ̃ = { + : 2,− : 2, · : 2, ()2 : 1, I1 : 0, J : 0, a : 0 , 1 : 0, b : 0, 3 : 0 },

R = { C → +(Ψ,Ψ), (1)

Ψ → ·(L,Ψ), (2)

Ψ → −(L,L), (3)

Ψ → ()2(Ψ), (4)

Ψ → L, (5)

L→ a(), (6)

L→ 1(), (7)

L→ b(), (8)

L→ 3(), (9)

L→ I1(), (10)

L→ J()(11) }.

There are two immediate differences between ĜNH and GNH. First, we provide the arity of each primitive in the alphabet.
We consider operations with arity = 2, such as +, −, with arity = 1 such as ()2, and with arity = 0, i.e. constants and
variables. Operations such as ()2 can also be defined to have arity = 2 in the general case where the exponent is also an
argument. Second, we write all rules in Polish notation, see Section A, to denote that we are working with trees and not
strings. As for CFGs, the sentences (or mathematical expressions) of RTGs are expressed as derivation trees. Also, as
for the context-free case, the Regular-Tree Language L(Ĝ) is defined as the set of all the trees that can be generated
using the RTG Ĝ.
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a ()2
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+
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+

+

3 −

I1 J

()2

a

I1 − J + 3 + a2

Figure 4: Binary trees derived from the context-free grammar GNH ; they are all part of the language L(GNH).

2.3 Characteristics and Operations of Tree Grammars

In general cases, trees are fully described by their node labels and connectivity. For the special case of a tree derived
from a RTG, the tree can be fully characterized by the list of rules used for its generation, as we state more precisely in
the following. In the previous section we have shown that a unique Neo-Hookean model can be derived by a set of
rules. For the case of a RTG, the opposite also holds, meaning that all the information required to describe the specific
Neo-Hookean model is uniquely represented by a set of rules. More precisely, it can be proven mathematically [42] that
this property holds for unambiguous RTGs, i.e. RTGs in which each rule has a unique right-hand side. One can also
prove that any RTG can be made unambiguous and that algorithms handling RTGs possess linear complexity in both
computations and memory [42], see Appendix B for details on the properties of RTGs.

In view of the above, there are two meaningful actions to be performed on a tree derived from a RTG: i. given the
tree, extract its characterization (i.e. the list of rules of the corresponding grammar used for its generation), which is
denoted as parsing; and ii. given a characterization, i.e. a list of rules, generate the tree that it corresponds to, which is
called generation. In Appendix B we provide details on tree parsing and generation algorithms. Note that knowledge
on characterization is key for performing tree-based symbolic regression, as characterization (i.e. the list of rules) is the
dependent variable that the symbolic regression algorithm learns to predict.

Importantly, the bijective relation between trees and the sets of grammar rules used for their generation only holds
for (unambiguous) RTGs, and not for CFGs [43]. On the other hand, CFGs are known to be more expressive than
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RTGs [44]. Looking ahead to the two main outcomes of this work, namely, automated generation of a material model
library and automated model discovery based on data (Sections 3 and 4 respectively), it is quite clear that CFGs are
more suitable for the first task, in which expressivity is important and the unique definition of the set of grammar rules
corresponding to a given model is not essential, whereas RTGs are more suitable for the second task. For this reason,
we will make use of CFGs in Section 3 and of RTGs in Section 4.

A grammar describes the rules that create sentences and constitute the syntax of natural languages. However, the syntax
alone is not enough to define a language that is useful for our purposes; the additional needed ingredient is semantics, i.e.
the meaning of the sentences that the language produces. While it is difficult to define semantics in natural languages,
in physics this is more straightforward. For our purposes, we consider as semantically valid the expressions that satisfy
the constraints of the constitutive law relations.

3 The Language of Hyperelastic Materials

In this section, our objective is to generate the Language of Hyperelastic Materials. We first review the constraints
that need to be satisfied for a mathematical expression to represent a valid elastic strain energy density function. We
then discuss ways of enforcing these constraints. This is done partially during the construction of the grammar and
partially through checks on the final derived expressions. Subsequently, we propose a general language for hyperelastic
materials, i.e. a language whose expressions are valid elastic strain energy density functions (i.e. functions which
correspond to valid hyperelastic constitutive laws). Throughout this paper, we assume to have introduced a suitable
non-dimensionalization such that we only deal with non-dimensional strain energy density functions.

We consider finite-deformation kinematics and denote with u ∈ R
3 the displacement field, with F = I + Gradu

the deformation gradient (where Grad is the gradient operator with respect to the reference coordinates), and with
C = FTF the right Cauchy-Green deformation tensor. The principal invariants of C are defined as:

J = detF = (detC)1/2, I1 = trC, I2 =
1

2
(tr2 C− trC2),

where tr denotes the trace operator. For nearly incompressible materials, it is customary to decompose the deformation
gradient F into a volume-preserving (or isochoric) part, Fiso, and a volume-altering part, Fvol:

F = FisoFvol, (1)

where

Fiso = J−1/3F ⇒ detFiso = 1.

This decomposition translates to the right Cauchy-Green tensor and its invariants as follows

Ciso = J−2/3C, Iiso1 = Ĩ1 = J−2/3I1, Iiso2 = Ĩ2 = J−4/3I2

With the decomposition of the deformation gradient, a frequent choice is to write the strain energy density function
W (F) as the sum of isochoric, W iso, and volumetric, W vol contributions:

W (F) =W iso(F) +W vol(F). (2)

3.1 Requirements for Hyperelastic Constitutive Laws

In the following, we briefly overview the main requirements that hyperelastic constitutive laws have to satisfy according
to continuum mechanics theory. For more details, see [45, 46].

Thermodynamic Consistency: A hyperelastic material is one for which we postulate the existence of an elastic
strain energy density function

W : GL+(3) → R, F 7→W (F),

where GL+(3) is the set of invertible second-order tensors with positive determinant. The laws of thermodynamics lead
to the Clausius-Duhem inequality

9
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P : ḞT − Ẇ ≥ 0,

where : denotes the tensor dot product. The Clausius-Duhem inequality is satisfied as an equality for an arbitrary Ḟ by
the following definition of the first Piola-Kirchhoff stress tensor

P =
∂W

∂F
. (3)

Symmetry of the Stress Tensor: Balance of angular momentum implies the symmetry of the Cauchy stress tensor
σ = J−1PFT , and results in the fact that the strain energy density function W (F) needs to satisfy

PFT = FPT →
∂W

∂F
FT = F

∂W

∂F

T

Objectivity (Frame Indifference): Objectivity means independence from the choice of the observer, which in
hyperelasticity can be expressed as

W (Q · F) =W (F) ∀F ∈ GL+(3), Q ∈ SO(3),

with SO(3) as the 3D rotation group. It is straightforward to show that objectivity is automatically satisfied if W
depends on F through C, i.e. if W = W̃ (C).

Material Symmetry: The strain energy density function should reflect the desired type of material symmetry, e.g.
isotropy or a specific class of anisotropy, which can be formalized as follows

W (Q · F) =W (F) ∀F ∈ GL+(3), Q ∈ G ⊆ O(3),

where G is the symmetry group of the material.

Polyconvexity: Polyconvexity of the strain energy density function is a sufficient condition for the existence of
solutions to boundary value problems with hyperelastic material behavior under general boundary conditions and body
forces [47, 48]. W (F) is polyconvex if and only if there exists a function P , convex in its arguments, such that

W (F) = P(F, adjF, detF)

where adjF = detFF−T.

Normalization of Stress and Strain Energy Density: In an undeformed configuration, i.e. for F = I, it must be

W (F = I) = 0 and P(F = I) = 0.

In other words, an undeformed configuration implies no stresses and stores no energy.

Growth Condition: The growth condition requires that the strain energy density grows to infinity as the volumetric
deformation tends to zero or to infinity, as follows

W (F) → ∞ as J → 0+ or J → ∞ ∀F ∈ GL+(3).

Its physical meaning is that an infinitesimal material volume cannot grow to infinity or be compressed to a point.

Non-Negativity of the Strain Energy Density: The strain energy density also needs to satisfy

W (F) ≥ 0,

as a negative strain energy density is physically meaningless.

10



The Language of Hyperelastic Materials

3.2 Enforcement of Constraints

Now that the requirements for elastic strain energy densities have been defined, we discuss how these constraints
can be translated to language semantics. The grammar GNH introduced in Section 2 leads to expressions that do not
necessarily satisfy the constraints in Section 3.1. If we consider e.g. W = (J − 0.5)2 + 3 · I21 (one of the examples in
Figure 4 with a = 0.5), it is evident that this expression does not satisfy the normalization condition. In this section, we
propose a process to embed some of the constitutive law constraints directly in the definition of the grammar and to
apply additional semantic checks to generated expressions in order to ensure that the remaining constraints are satisfied.
Therefore, we propose creating a grammar, and the corresponding language, such that its derived expressions comprise
automatically valid strain energy density functions.

Intrinsic Constraints: Some of the requirements in Section 3.1 can be easily fulfilled a priori in the grammar
construction. Thermodynamic consistency for hyperelastic materials is trivially satisfied; symmetry of the stress tensor
and frame indifference are automatically fulfilled by considering W as a function of the deformation gradient through
the right Cauchy-Green deformation tensor C. In terms of material symmetry, from now on we focus on isotropic
hyperelasticity; isotropy is automatically guaranteed by considering W as a function of the invariants of C.

To satisfy normalization, we correct W (F) as follows:

W̃ (F) =W (F) +W 0 +Pc : (F− I) (4)
where W 0 and Pc are corrections to satisfy the strain energy density and the stress normalization, respectively, given by

W̃ (F = I) = 0 →W 0 = −W |F=I, (5)

P̃(F = I) =
∂W̃ (F)

∂F

∣

∣

∣

F=I

= 0 → Pc = −
∂W (F)

∂F

∣

∣

∣

F=I

. (6)

Extrinsic Constraints: The remaining requirements in Section 3.1 are not satisfied a priori, but verified on the final
produced expression. If they are not fulfilled, the expression is discarded. In order to empirically check if the growth
condition holds, we choose F as the diagonal matrix:

F =

[

a 0 0
0 1 0
0 0 1

]

for which J = a. We set a to a large positive real number al to check the case J → ∞ and to a small positive real
number as for the case J → 0+. Then, we choose a large positive real number H and consider the growth condition
satisfied if W > H for a = al and a = as. In our later numerical examples, we choose al = 104, as = 10−4 and
H = 103.

To check (again empirically) the non-negativity and the monotonicity of the strain energy density function, we consider
one-parametric deformation gradients corresponding to several simple tests, namely Uni-axial Tension (UT), Bi-axial
Tension (BT), Uni-axial Compression (UC), Bi-axial Compression (BC), Simple Shear (SS), and Pure Shear (PS) [2],
as follows

FUT =

[

1 + γ 0 0
0 1 0
0 0 1

]

, FUC =

[

1/(1 + γ) 0 0
0 1 0
0 0 1

]

, FSS =

[

1 γ 0
0 1 0
0 0 1

]

,

FBT =

[

1 + γ 0 0
0 1 + γ 0
0 0 1

]

,FBC =

[

1/(1 + γ) 0 0
0 1/(1 + γ) 0
0 0 1

]

,FPS =

[

1 + γ 0 0
0 1/(1 + γ) 0
0 0 1

]

,

(7)

with γ as a real non-negative parameter. W (F(γ)) should be a positive and monotonically increasing function of γ. We
then consider parameters γ1, γ2 with γ2 > γ1 and check that

0 < W (F(γ1)) < W (F(γ2)), ∀γ1, γ2 ∈ (0,∞), (8)

If Equation 8 does not hold for a pair (γ1, γ2) for any of the loading conditions in 7, the mathematical expression is
rejected.
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Polyconvexity: The requisite of polyconvexity deserves a separate discussion. In view of the equivalence mentioned
in Section 3.1 and of an additivity property [48], a possible simple choice of a polyconvex strain energy density is the
following:

W (F) =W1(det F) +W2(̃I1(F, detF)) +W3(̃I
3/2
2 (adjF, detF)),

with W1,W2 and W3 convex and monotonically increasing with respect to their arguments. Since Ĩ1 and Ĩ3/22 are
polyconvex [48], the resulting strain energy density function is naturally polyconvex. Note that this choice is quite
restrictive, as we are not including any terms containing both Ĩ1 and Ĩ2 (since these mixed terms are not polyconvex
[48]).

The approach we follow in this paper allows for more flexibility. As will become clear later, we work with a strain
energy density function of the form

W = Ŵ (J, Ĩ1, Ĩ
3/2
2 ),

thus, we bias the grammar to derive polyconvex expressions through the choice of the exponent for Ĩ2, however we
do not strictly guarantee Ŵ convexity or monotonicity. Over polyconvexity, which may be regarded as an even too
strong requirement for practical purposes, we prefer a more flexible grammar construction to allow for more exotic
expressions to be generated. However, already at this point we would like to stress that the grammar construction fully
controls the properties of the derived expressions; using mathematical tools from formal languages, these properties can
be provably controlled in a rigorous manner [44], hence, in principle they provide the possibility to strictly enforce
polyconvexity if desired.

Example. To exemplify the process of hyperelastic model generation including constraint enforcement, we refer back
to GNH and apply a minor modification. Without loss of generality, we consider a = 0.5, b = 1.5 to define a specific
material and the isochoric invariant Ĩ1 in place of I1. We present the grammar construction in two ways. First, we
rewrite GNH upon implementation of the above modifications:

S = { C },

Φ = { C, Ψ, L },

Σ = { +,−, ·, ()2, Ĩ1, J, 0.5 , 1, 1.5, 3 },

R = { C → Ψ+Ψ, (1)

Ψ → L ·Ψ, (2)

Ψ → (L− L), (3)

Ψ → (Ψ)2, (6)

Ψ → L, (7)

L→ 0.5, (8)

L→ 1, (9)

L→ 1.5, (10)

L→ 3, (11)

L→ Ĩ1, (12)

L→ J(13) }.

As we already did in Section 2.1, we generate an expression by consecutively applying a sequence of production rules,
i.e. r = [(1), (2), (2), (6), (3), (9), (6), (13), (8), (11), (2), (9), (7), (12)], in a top-to-bottom-left-to-right fashion,
as follows:
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C
(1)
−−→ Ψ+Ψ,

(2)
−−→ L ·Ψ+Ψ,

(2)
−−→ L ·Ψ+ L ·Ψ,

(6)
−−→ L · (Ψ)2 + L ·Ψ,

(3)
−−→ L · (L− L)2 + L ·Ψ,

(9)
−−→ 1 · (L− L)2 + L ·Ψ,

(6)
−−→ 1 · (L− L)2 + L · (Ψ)2,

(13)
−−−→ 1 · (J − L)2 + L · (Ψ)2,

(8)
−−→ 1 · (J − 0.5)2 + L · (Ψ)2,

(11)
−−−→ 1 · (J − 0.5)2 + 3 · (Ψ)2,

(2)
−−→ 1 · (J − 0.5)2 + 3 · (C ·Ψ)2,

(9)
−−→ 1 · (J − 0.5)2 + 3 · (1 ·Ψ)2,

(7)
−−→ 1 · (J − 0.5)2 + 3 · (1 · L)2,

(12)
−−−→ 1 · (J − 0.5)2 + 3 · (1 · Ĩ1)

2

and derive W (F) = (J − 0.5)2 + 3 · Ĩ21 . As a second alternative, we introduce two new non-terminal symbols Ψiso

and Ψvol to indicate the isochoric and volumetric parts of the strain energy density, and define production rules for each
of these non-terminals:

S = { C },

Φ = { C, Ψvol, Ψiso, L, Lvol, Liso },

Σ = { +,−, ·, ()2, Ĩ1, J, 0.5 , 1, 1.5, 3 },

R = { C → Ψiso +Ψvol, (1)

Ψvol → L ·Ψvol, (2)

Ψvol → (Lvol − Lvol), (3)

Ψvol → (Ψvol)2, (4)

Ψvol → Lvol, (5)

Ψiso → L ·Ψiso, (6)

Ψiso → (Liso − Liso), (7)

Ψiso → (Ψiso)2, (8)

Ψiso → Liso, (9)

Lvol → 0.5, (10)

L→ 1, (11)

L→ 1.5, (12)

Liso → 3, (13)

Liso → Ĩ1, (14)

Lvol → J(15) },

With this grammar definition, it is possible to derive expressions which distinguish between volumet-
ric and deviatoric (isochoric) contributions, which is a common choice in constitutive modeling of hy-
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perelastic materials. From this grammar we again sample a sequence of production rules, i.e. r =
[(1), (2), (6), (4), (3), (11), (8), (15), (10), (13), (6), (11), (9), (14)], and consecutively apply them in a top-to-
bottom-left-to-right fashion to re-write the non-terminals until we derive a terminal expression, as follows:

C
(1)
−−→ Ψvol +Ψiso,

(2)
−−→ L ·Ψvol +Ψiso,

(6)
−−→ L ·Ψvol + L ·Ψiso,

(4
−→ L · (Ψvol)2 + L ·Ψiso,

(3)
−−→ L · (Lvol − Lvol)2 + L ·Ψiso,

(11)
−−−→ 1 · (Lvol − Lvol)2 + L ·Ψiso,

(8)
−−→ 1 · (Lvol − Lvol)2 + L · (Ψiso)2,

(15)
−−−→ 1 · (J − Lvol)2 + L · (Ψiso)2,

(10)
−−−→ 1 · (J − 0.5)2 + L · (Ψiso)2,

(13)
−−−→ 1 · (J − 0.5)2 + 3 · (Ψiso)2,

(6)
−−→ 1 · (J − 0.5)2 + 3 · (C ·Ψiso)2,

(11)
−−−→ 1 · (J − 0.5)2 + 3 · (1 ·Ψiso)2,

(9)
−−→ 1 · (J − 0.5)2 + 3 · (1 · L)2,

(14)
−−−→ 1 · (J − 0.5)2 + 3 · (1 · Ĩ1)

2

obtaining again W (F) = (J − 0.5)2 + 3 · Ĩ21 . Note that with this second version, where separate non-terminals are
considered for the isochoric and volumetric parts of the strain energy density, the number of grammar rules is larger
since we need rules for each non-terminal. For the sake of simplicity, in the following developments of this paper we
will consider a single non-terminal Ψ and not distinguish between volumetric and deviatoric contributions. However,
considering both terms separately would be straightforward as shown above.

The obtained expression for W (F) does not satisfy the normalization conditions, because W (F = I) = 27.25 and
P(F = I) = I. Thus, we perform the corrections (5) and (6) and derive the expression:

W̃ (F) = 3 · Ĩ21 + (J − 0.5)2 − 27.25 + I : (F− I). (9)

Performing the corrections is equivalent to adding a sub-tree to the original expression, see Figure 5. In Figure 5 we
also provide the predicted displacement field for the benchmark in [2], reproduced in Figure 6, considering W̃ (F) from
eq. (9).

We then execute the remaining empirical checks on volumetric growth and non-negativity, both of which hold in this
case. Therefore, we conclude that the derived expression can indeed be deemed a constitutive law that can characterize
a hyperelastic material.

3.3 Generating the Language of Hyperelastic Materials

So far we considered a simple grammar, based on which we could generate simple expressions which we guaranteed to
be valid (simple) constitutive laws. In order to obtain more flexible expressions, we now consider a more complicated
alphabet of terms, include production rules with more operations, and derive constants via recursive substitution of
non-terminals instead of explicitly defining production rules that re-write non-terminals with reals. In the choice of
the primitives we consider logarithmic, exponential, monomials and other operations that often appear in constitutive
relations. To keep a reasonably compact grammar, we do not consider different non-terminals and production rules for
the isochoric and volumetric parts of the strain energy density, but one non-terminal for both. However, if desired, this
can be changed as exemplified earlier. Finally, we define the energy and stress corrections as production rules for the
non-terminal Ψ. The resulting grammar of hyperelastic materials, GHM, is then defined as follows:

S = {C},
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Φ = {C,Ψ,Ψ0, P c, L,M,P,D},

Σ = {+,−, /, ·, ()2, ()3,− log, exp, Ĩ1, Ĩ2, J, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
∂()

∂F
|F=I : (F− I), |F=I},

R = {C → Ψ+Ψ0 + P c, (1)

Ψ → Ψ+Ψ, (2)

Ψ0 → −Ψ|F=I, (3)

P c → −
∂Ψ

∂F
|F=I : (F− I), (4)

Ψ → L, (5)

L→ (L+ L) (6)

L→ (L− L) (7)

L→ (L/R) (8)

L→ (R · L) (9)

L→ (L)2 , (10)

L→ (L)3 , (11)

L→ − log(L) , (12)

L→ exp(L) (13)

L→ Ĩ1 (14)

L→ Ĩ
3/2
2 (15)

L→ J (16)

L→ M, (17)

M → P.P, (18)

P → D , (19)

P → DP, (20)

D → 0 , (21)

D → 1 , (22)

D → 2 , (23)

D → 3 , (24)

D → 4 , (25)

D → 5 , (26)

D → 6 (27),

D → 7 , (28)

D → 8 , (29)

D → 9 (30)}

In GHM, we purposely define multiple production rules for the non-terminals L,P,D; this choice enforces recursions
that increase the expressivity of the grammar. When two rules have the same left-hand side, we randomly select
one to apply. In CFGs non-terminals should be treated independently in each production rule; however, for the
purpose of the normalization correction (see eq. (4)) we enforce that the same non-terminal Ψ is substituted to
the left-hand side in the production rules (1), (3), and (4). Now we return to eq. (9), and show how this simple
constitutive law can be derived also from the present more complex grammar via the sequence of production rules
r = [(1), (3), (4), (2), (5), (10), (7), (16), (17), (18), (19), (21), (26), (5), (9), (18), (21), (10), (14)] with top-
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to-bottom-left-to-right ordering:

C
(1)
−−→ Ψ+Ψ0 + P c,

(3)
−−→ Ψ− (Ψ)|F=I + P c,

(4)
−−→ Ψ− (Ψ)|F=I −

∂Ψ

∂F
|F=I : (F− I),

(2)
−−→ Ψ+Ψ− (Ψ + Ψ)|F=I −

∂(Ψ + Ψ)

∂F
|F=I : (F− I),

(5)
−−→ L+Ψ− (L+Ψ)|F=I −

∂(L+Ψ)

∂F
|F=I : (F− I),

(10)
−−−→ (L)2 +Ψ− ((L)2 +Ψ)|F=I −

∂(L+Ψ)

∂F
|F=I : (F− I),

(7)
−−→ (L− L)2 +Ψ− ((L− L)2 +Ψ)|F=I −

∂((L− L) + Ψ)

∂F
|F=I : (F− I),

(16)
−−−→ (J − L)2 +Ψ− ((J − L)2 +Ψ)|F=I −

∂((J − L) + Ψ)

∂F
|F=I : (F− I),

(17)
−−−→ (J −M)2 +Ψ− ((J −M)2 +Ψ)|F=I −

∂((J −M) + Ψ)

∂F
|F=I : (F− I),

(18)
−−−→ (J − P.P )2 +Ψ− ((J − P.P )2 +Ψ)|F=I −

∂((J − P.P ) + Ψ)

∂F
|F=I : (F− I),

(19)
−−−→ (J −D.D)2 +Ψ− ((J −D.D)2 +Ψ)|F=I −

∂((J −D.D) + Ψ)

∂F
|F=I : (F− I),

(21)
−−−→ (J − 0.D)2 +Ψ− ((J − 0.D)2 +Ψ)|F=I −

∂((J − 0.D) + Ψ)

∂F
|F=I : (F− I),

(26)
−−−→ (J − 0.5)2 +Ψ− ((J − 0.5)2 +Ψ)|F=I −

∂((J − 0.5) + Ψ)

∂F
|F=I : (F− I),

(5)
−−→ (J − 0.5)2 + L− ((J − 0.5)2 + L)|F=I −

∂((J − 0.5) + L)

∂F
|F=I : (F− I),

(9)
−−→ (J − 0.5)2 +M · L− ((J − 0.5) +M · L)|F=I −

∂((J − 0.5)2 +M · L)

∂F
|F=I : (F− I),

(18)
−−−→ (J − 0.5)2 + P.P · L− ((J − 0.5) + P.P · L)|F=I −

∂((J − 0.5)2 + P.P · L)

∂F
|F=I : (F− I),

(24)
−−−→ (J − 0.5)2 + 3.P · L− ((J − 0.5) + 3.P · L)|F=I −

∂((J − 0.5)2 + 3.P · L)

∂F
|F=I : (F− I),

(21)
−−−→ (J − 0.5)2 + 3.0 · L− ((J − 0.5) + 3.0 · L)|F=I −

∂((J − 0.5)2 + 3.0 · L)

∂F
|F=I : (F− I),

(10)
−−−→ (J − 0.5)2 + 3.0 · (L)2 − ((J − 0.5) + 3.0 · (L)2))|F=I −

∂((J − 0.5)2 + 3.0 · (L)2)

∂F
|F=I : (F− I),

(14)
−−−→ (J − 0.5)2 + 3.0 · (I1)

2 − ((J − 0.5) + 3.0 · (I1)
2))|F=I −

∂((J − 0.5)2 + 3.0 · (I1)
2)

∂F
|F=I : (F− I).

By evaluating the production rules r = [(3), (4)] we derive eq. (9). It takes more steps to complete the derivation and
obtain the strain energy density expression because GHM contains more numerous and more general production rules
than GNH. As usual, the growth, non-negativity and monotonicity conditions are empirically checked a posteriori.

To summarize, in the grammar of hyperelastic materials GHM the thermodynamic consistency, the symmetry of the
stress tensor, the objectivity and material symmetry conditions are satisfied a priori, the normalization of the stress and
the strain energy density are satisfied by construction and the growth, non-negativity and monotonicity conditions are
empirically assessed a posteriori by testing the obtained expression on a number of simple one-parametric deformation
paths.

The proposed approach is highly versatile, because with minimal changes to the grammar one can describe different
types of materials. For example in the case where anisotropy is present due to fiber reinforcement, additional invariants
need to be considered to describe the deformation along the direction of anisotropy. For example in a material reinforced
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Figure 5: Left: The tree representation of W = 3 · Ĩ21 + (J − 0.5)2. Middle: The tree representation of the expression
W̃ = 3 · Ĩ21 + (J − 0.5)2 − 27.25 + I : (F− I), with the correction as a sub-tree attached to the original expression.
Right: The displacement plot with W̃ used as constitutive law for the boundary value problem in Figure 6 with δ = 0.3.

Figure 6: Benchmark boundary value problem considered in this work, adapted from [2].

with two fibers, GHM can be further adjusted by considering the production rules [49]:

L→ J4,

L→ J5,

L→ J6,

L→ J7,

and adding J4, J5, J6, J7, i.e. the anisotropic invariants for the two fiber families, to the alphabet. The ensuing language
L(GHM) will include constitutive models for this anisotropy case. Clearly, analogous modifications can be applied for
more complex anisotropy cases.

We provided the derivation of one expression by choosing a sequence of production rules from GHM. All the possible
derivation trees that the grammar can produce comprise the Language of Hyperelastic Materials L(GHM). In the next
section, we elaborate on how this language can be used for the automated generation of a library of constitutive models,
see the first block of Figure 1.

3.4 Deriving Parsimonious Expressions

The recursive substitution process in the grammar of hyperelastic materials GHM is not guaranteed to stop nor to provide
a parsimonious expression, i.e. a shallow tree. To alleviate theses issues, the tree generation process can be manipulated
so as to enforce or favor the generation of shallow trees. There are two main options. One option is to attribute different
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probabilities to the production rules that share the same left-hand side, favoring those that produce terminal strings.
Another alternative is to specify a fixed maximum number of operations to obtain the final expression. In this subsection,
we briefly discuss these two alternative procedures.

Probabilistic Context-Free Grammars: As discussed earlier, in a CFG several production rules may have the same
non-terminal on their left-hand side; as a result, a criterion is needed to select one of these production rules during
the tree generation. A naive approach would consider a uniform probability over all production rules for a specific
non-terminal. A greater flexibility and efficiency can be obtained using Probabilistic Context-Free Grammars (PCFGs)
[50, 51, 52, 53]. PCFGs can be constructed from CFGs by assigning probabilities to the grammar production rules with
the same non-terminal on the left-hand side, with the sum of the probabilities summing up to one. The probability for
each rule can be assigned by the user or learned from the data. As an example, a PCFG can be obtained from GNH (for
a = 0.5, b = 1.5) by assigning probabilities to its production rules (given in square brackets) as follows

S = { C },

Φ = { C, Ψ, L },

Σ = { +,−, ·, (·)2, Ĩ1, J, 0.5 , 1, 1.5, 3 },

R = { C → [1] Ψ + Ψ, (1)

Ψ → [0.3] C ·Ψ, (2)

Ψ → [0.1] (C − C), (3)

Ψ → [0.1] (Ψ)2, (4)

Ψ → [0.5] L, (5)

L→ [0.1] 0.5, (6)

L→ [0.1] 1, (7)

L→ [0.1] 1.5, (8)

L→ [0.1] 3, (9)

L→ [0.3] Ĩ1, (10)

L→ [0.3] J(11) }.

Clearly, the probability of a constitutive law is given by the product of all probabilities associated with the rules chosen
for its derivation, i.e.

P (W ) =

Np
∏

i=1

P (ri), (10)

where r = [r1, ..., rNp
] is the sequence of production rules that derive W . It is also clear that the probabilities of all

possible final expressions sum up to one [52]. For deriving a deeper tree, i.e. a more complex expression, a longer
sequence r is required, which includes a larger number of production rules and is thus associated to a lower probability.
Even though this is an important property that can be used to favor the generation of parsimonious expressions, it
requires a careful design of the grammar, as unrealistically low probabilities may be obtained already for simple models.
For example, with GNH the sequence of rules that produces the Neo-Hookean model W = 0.5 · (Ĩ1− 3)+1.5 · (J − 1)2

is r = [(1), (2), (3), (5), (10), (9), (8), (11), (7)], and the probability of this model being produced from the grammar
(with the individual rule probabilities in the previous example) is P (W ) = 1.35× 10−6.

Clearly, it is possible to modify the grammar and/or the individual rule probabilities to influence the probability of the
resulting model form, but such modifications would require hand-engineering, thereby introducing bias in the model
generation. Thus, PCFGs are not well suited for generation of expressions. Moreover, PCFG are not efficient for
performing data-driven discovery tasks for long expressions because these will be discovered with a low probability.
They are frequently used for tasks involving parsing of expressions, where the probability of each rule is learned from
the data and not manually assigned by a user. For example, we could consider a probabilistic grammar if we were given
a library of constitutive laws and wishes to determine the probabilities of individual rules being used in deriving a valid
expression. This could be useful in a scenario where there is uncertainty about the number and form of the rules used to
derive expressions. In such a case, we could define a more general grammar than we believe is needed and then, by
learning suitable probabilities, we could discover the rules used in generating the library. Probabilistic grammars are
also useful in understanding the decoding process that we employ in Section 4.

Constraining the Number of Operations in a Tree Derivation: The second alternative is to a priori decide the
maximum number of operations that the grammar is allowed to perform in order to derive an expression. To realize
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this constraint, we construct the grammar rules such that they do not allow for long recursions. For this purpose, we
introduce a non-terminal symbol for each operation, e.g. by transforming rule (2) from Ψ → Ψ+Ψ to Ψ → Ψ1 +Ψ2,
and for each of these non-terminal symbols we define unary and binary operations that in one step derive terminal
nodes. In this way, we derive expressions of pre-set maximum length and complexity. We exemplify how this process
works in practice in the next section.

3.5 Automatic Generation of an Hyperelastic Material Model Library

In this section, we demonstrate that the grammar-based generation of elastic strain energy density functions proposed in
the previous sections can be used for the automatic creation of a material model library, which can possibly serve as the
basis for sparse regression approaches such as those in [2, 27]. Moreover, we develop an automated computational
pipeline which, once the mathematical expression for a valid constitutive law is generated, is used to produce the finite
element code needed to solve boundary value problems where the material behavior obeys such a constitutive law.
For the hyperelastic model library generation, we deploy a CFG for deriving mathematical expressions. As illustrated
earlier, the grammar provides a systematic way of checking if the expressions are syntactically and semantically valid,
and it is chosen to be as expressive as possible. For the purpose of obtaining parsimonious expressions, we no longer
use the grammar GHM defined in Section 3.3, but the following grammar, GHMp:

S = { C },

Σ = {+,−, /, ·, (·)2, (·)3,− log, exp, Ĩ1, Ĩ2, J, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
∂()

∂F
|F=I : (F− I), , |F=I}},

R = {C → Ψ+Ψ0 + P c, (1)

Ψ → Ψ1 +Ψ2 +Ψ3 +Ψ4, (2)

Ψ0 → −Ψ|F=I, (3)

Ψ1 → L (4)| U(5) | Y (6) | T (7) ,

Ψ2 → L(8) | U(9) | Y (10) | T (11) ,

Ψ3 → L(12) | U(13) | Y (14) | T (15) ,

Ψ4 → L(16) | U(17) | Y (18) | T (19) ,

P c → −
∂Ψ

∂F
|F=I : (F− I), (20)

T → (Y )2(21)|(Y )3(22)| exp(Y )(23)| − log(Y )(24),

Y → (V +O) (25)| (V −O)(26) | (V/O)(27) | (V ·O)(28) | (V )2(29) | (V )3(30)

U → − log(L)(31) | exp(L)(32)

L→ V (33) |O(34),

V → Ĩ1(35) | Ĩ
3/2
2 (36) | J(37),

O → P.P, (38)

P → D(39) |DP (40),

D → 0(41) | 1(42) | 2(43) | 3(44) | 4(45) | 5(46) | 6(47) | 7(48) | 8(49) | 9(50) },

Φ = { C,Ψ,Ψ0,Ψ1,Ψ2,Ψ3,Ψ4, P c, T, L, U, Y,O,D, P }

(11)

Here, U stands for unary, Y for binary, T for combinations of unary and binary operations, V for invariants, and L for
both invariants and constants. We also denote with O real numbers, with D integers and with P parts of real numbers.
We use the symbol "|" to separate rules with the same non-terminal on the left-hand side, for which we consider a
uniform probability. As explained in Section 3.4, in this new grammar we limit the left-hand side recursions in the
grammar production rules in order to create shallow trees that correspond to parsimonious expressions by introducing
non-terminal symbols and operations of predetermined depth. For this reason, we define the grammar rule (2) of GHMp

as Ψ → Ψ1 + Ψ2 + Ψ3 + Ψ4 instead of Ψ → Ψ + Ψ and introduce the L,U, Y, T to derive terminal nodes in less
steps. Therefore, we enforce that the strain energy density is represented by a tree of maximum depth equal to six.
We use this grammar to produce syntactically valid expressions of elastic strain energy densities, which also satisfy
intrinsic semantic constraints. The full semantic validity of these expressions is then assessed by checking if the growth
and the non-negativity conditions hold, see Section 3.2. If these conditions hold, the expression is accepted as a valid
constitutive law; if not, a new expression is constructed. Figure 7 illustrates several examples of valid final expressions.
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3/2
2

−

211.1 :

0I F

2.0 · Ĩ
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3/2
2

) − 211.1 + 0I : F

+

+

()2

J

+

J ·

2 Ĩ1
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Figure 7: We present different constitutive laws from the language of hyperelastic materials L(GHMp). These expressions
satisfy all the constitutive law constraints.
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Figure 8: We choose four constitutive law relations out of the ones presented in Figure 7 and perform a finite element
simulation for the benchmark boundary value problem in Figure 6. We present the results for δ = 0.3.

Clearly, the total number of models (or trees) that a library can potentially contain depends on the grammar and can be
computed using combinatorial calculus. In this work, we do not generate all possible models stemming from ĜHM, but
fix upfront a desired number, and stop the generation process right after obtaining a number of valid models equal to the
target. The automatic generation of the constitutive law library needs to be performed using symbolic computations,
i.e. in SymPy [54]. The wall-clock time for the generation of a tree on a single processor is of order O(10−4) seconds
computed on an Alienware m16 Laptop with an Intel i9-13900HX CPU and 32GB RAM. In our experience, the
probability of a generated tree to be accepted is about 50%; the entirety of the discarded trees violates the growth
condition of the strain energy density function, whereas about 33% violate both the growth and the non-negativity
conditions. To further speed up the process we leverage the independence of the generation process for different trees
and use multi-threading, whereby each tree is generated by a different core of the CPU in an asynchronous manner.
Thus, the total time for a model library generation depends on the number of available CPU units. For example the
process of generating 1, 000, 000 valid trees, with 100 CPU units available, would take a few minutes. This numbers
naturally depend on the chosen number of operations in the grammar rule (2), and we expect the acceptance rate of a
tree to drop as the number increases, so the average time to produce a tree to increase.

Once a material model library is created automatically, for its practical use it is of fundamental importance to automate
the process leading from availability of a constitutive law to solution of a boundary value problem embedding such law.
The goal should be to seamlessly integrate the library creation with finite element simulations without having to perform
changes to a finite element code for every different strain energy density function. This requires the possibility to use
automatic differentiation to derive the stress and the tangent stiffness tensors from the elastic strain energy density [55],
and this possibility is provided by modern finite element tools such as Fenics [56, 57, 58] or AceGEN/AceFEM [55]. In
Figure 8, we present the displacement fields computed by solving the boundary value problem in Figure 6 with δ = 0.3,
for four of the hyperelastic constitutive models in Figure 7, with the Fenics library. We discretize the domain using
1024 quadratic triangular elements with a three-point Gauss quadrature rule.

The code for the generation of the hyperelastic material model library and the code for solving the boundary value
problem in Figure 6 will be made publicly available at the time of publication.

21



The Language of Hyperelastic Materials

4 Data-Driven Discovery of Hyperelastic Constitutive Laws

One of the possible motivations for generating the Language of Hyperelastic Materials is to use it within the context of
data-driven constitutive model discovery. As discussed already in the introduction, constitutive model identification is
typically formulated as an inverse problem, where the unknown parameters in a chosen model are to be inferred on the
basis of available experimental information from a tested system. Constitutive model discovery goes one step further, as
it integrates model selection with parameter identification [27]. In Section 1 we already discussed the properties that a
symbolic regression method needs to possess in order to be useful for constitutive law discovery. In this paper, we have
chosen to work with methods based on grammar due to their advantages: they overcome human bias, since they are not
restricted to producing known models or combinations thereof, and the grammar construction imposes semantic and
syntactic constraints to the constitutive law expressions. In this section, we aim at showcasing the solution of the inverse
data-driven constitutive law discovery problem using a method that features reasonable complexity, accommodates
different primitive operations without training instabilities, and generalizes across different materials. For this purpose,
we consider a combination of the Recursive Tree Grammar Variational Autoencoder (RTGVAE) method proposed by
Paassen et. al. [42], applied to the Language of Hyperelastic Materials formulated in the previous section, and the
Covariant Matrix Adaptation Evolutionary Strategy [59] (CMA-ES) for gradient-free optimization. Our purpose in
choosing RTGVAE is to show that the proposed methodology can be seamlessly integrated with an already established
symbolic regression method. However, in principle any other symbolic regression method could be considered, e.g.
a LSPT model, in combination with our grammar-generated hyperelastic constitutive laws. In symbolic regression
methods that consider grammar, the latent space is constructed by encoding sequences of grammar rules. Therefore,
when performing the data-drive discovery, the models produced in the process of optimization are biased to satisfies the
grammar and thus be semantically and syntactically valid. If we considered a LSPT model, for example, the latent
space would not be constructed by encoding grammar rules, which means that there would be a higher probability of
obtaining invalid expressions during the discovery process.

4.1 Symbolic Regression Using Grammar and Model Discovery

We discuss in Sections 1 and 2 how trees can be characterized via grammar rules instead of their node labels and
connectivity, see Appendix B for more information. In Appendix B we also discuss the operations of extracting a nested
list of rules given a tree, called parsing, and deriving a tree given a list of rules, called generation. A tree VAE is built
on these two operations. More specifically, its encoder extracts the nested list of production rules that derive different
trees (inputs) and produces its low-dimensional vectorial encoding. The decoder takes an encoding and provides the
most probable nested list of rules that corresponds to the encoding (outputs). The VAE is trained to provide, with high
probability, the correct list of rules given a latent vector. In the next paragraphs, we discuss in more detail how the
encoder, the decoder and the loss function are defined.

Tree Encoder: The purpose of a tree encoder is to provide a systematic way to represent trees that adhere to a
certain set of grammar rules using a low-dimensional vectorial representation. This encoding represents hierarchical or
nested lists as a vector, which is a data structure that is easier to handle in computer programs. We explain how the
encoder works by comparing encoding to the bottom-up parsing process, as they are closely connected. In parallel to
parsing, the encoder assigns a representation to each child and recursively maps the representations of the children to
the representation of the parent using a function fr for each rule r. In [42], the fr functions are defined as Recursive
Neural Networks [60, 61, 62] to capture the hierarchical structure of the trees. This process begins from the leaf nodes
of the tree and stops when it reaches the root, which means that the whole tree is encoded. Then two functions map
the representation of the tree to the mean µ and the covariance σ of the multivariate normal Gaussian distribution that
models the latent variables of the VAE. Finally, the so-called reparameterization trick [63] is performed to sample a
latent vector of the VAE, see Figure 9 for a visual explanation of the encoding process.

More precisely, the tree encoding is defined as a function ϕ : L(Ĝ) → R
nVAE from a language L(Ĝ) to a nVAE-

dimensional space. Consider a grammar rule of the form Ψ → s(L1, ...Lk) that re-writes a non-terminal Ψ with
a k-ary operation and produces L1, ..., Lk children non-terminals. For each grammar rule, we introduce a function
fr : Rk×n → R

n (with n as a user-defined integer) that maps the representation of the k children to the representation
of the parent. If the rule re-writes the non-terminal with a nullary operation, i.e. a constant, then fr is a constant vector
of size n. In practice fr is defined as a fully connected neural network with a single layer:

fr(t1, ..., tk) = tanh(Ur,jtj + br), (12)

where Ur,j ∈ R
n×n are the weights and b ∈ R

n the biases of the neural network. To obtain a representation of the
whole tree, fr is applied during parsing. Therefore, the tree encoder is defined as a recursive equation of the form:
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ϕ(s(t̂1, ...t̂k),Ψ) = fr(ϕ(t̂1, L1), ..., ϕ(t̂k, Lk)), (13)

where r ∈ R is the rule that derives s(t̂1, ...t̂k) from Ψ. For the VAE, the encoding probability qφ(z|ŵ), where
ŵ the derivation tree of an expression, is the Gaussian with mean µ : Rn → R

nVAE and the diagonal covariance
σ : Rn → R

nVAE . Both µ and σ are defined as linear fully connected networks with trainable parameters. The mean and
the covariance are then used to perform the reparameterization z = µ+ ϵ⊙σ, where ϵ ∼ N (0, α · I) and α positive real
number that scales the covariance of ϵ. When the encoding finishes, the entire tree is represented by a vector z ∈ R

nVAE .

Tree Decoder: The purpose of a tree decoder is to provide a process to generate trees conditioned on a low-dimensional
vectorial representation. Even though the decoder and the generation process discussed in Appendix B both work in a
top-down manner, initiating from the starting symbol, they present a notable difference. For each step l of the generation
process, the generation algorithm recovers a non-terminal Ψ from the tail of the list of non-terminals, applies the rule
rl = Ψ → s(L1, ...Lk), removes Ψ from the list and stores L1, ...Lk, see Appendix B. In contrast to the generation
process, the decoding process does not take a list of grammar rules as an input but a vectorial encoding z. For this
reason the rule rl to be applied at the l-th step is not known a priori, but needs to be chosen during the tree generation.

The tree decoding is defined as the opposite process of the encoding, or more precisely, as a function ψ : RnVAE → L(Ĝ)

from a nVAE-dimensional space to the language L(Ĝ). Mirroring the encoder, the first step of the decoding process is to
lift the dimensions of the vector z ∈ R

nVAE using a linear fully connected network ρ : RnVAE → R
n to obtain the vector

s = ρ(z) that represents the entire tree. Then, at each step l of the decoding process, the algorithm takes a vector s and
a non-terminal Ψ as inputs. The vectorial representation s is used to choose which rule rl will be applied as follows.
Let NΨ be the number of rules with Ψ on their left-hand side. A linear fully connected network hΨ : Rn → R

NΨ is
employed to obtain a score vector λ = hΨ(s) for each non-terminal Ψ. Then we choose a rule rl, with l ∈ [1, ..., NΨ],
based on the probability:

pΨ(rl|z) =
exp(λl)

∑NΨ

i=1 exp(λi)
. (14)

For choosing the rules to be applied for non-terminals L1, ...Lk, the representation of the parent needs to be mapped to
the representation of the children. For this purpose, a neural network is defined with k layers gr1, ..., g

r
k, for each rule

r = Ψ → s(L1, ..., Lk), to map the vector representation t of each child, where tj = grj (s) for j ∈ [1, ..., k]. At each
step of the decoder, the tree representation s is updated by removing the representation at step l from the overall tree
representation, i.e. s is substituted by s− tl. We repeat this process until no non-terminal symbol is left. The decoding
function is then written in a recursive manner as follows:

ψ(z,Ψ) = s(ψ(t1, L1), ...., ψ(tk, Lk)). (15)

Using ψ for Ψ = C where C is the starting symbol, we recursively generate a tree ŵ given a vector z. Even though the
decoder learns probabilities of production rules conditioned to a library of valid material laws, which means that it is
strongly biased to produce valid constitutive laws, it is not explicitly constrained to always satisfy the constitutive law
constraints. This means that there exists a probability that the discovery process results to an expression that is not
semantically valid.

Loss Function: The VAE introduces a probability density function qφ(z|ŵ), parameterized by the encoder, and the
conditional probability pψ(ŵ|z) of decoding the input using the latent vector z. The autoencoder is trained to minimize
the loss:

L(ϕ, ψ) =
m
∑

i=1

Eqφ(zi|ŵi)[− log(pψ(ŵi|z))] + βDKL(qφ||N ), (16)

where DKL(qφ||N ) is the Kullback–Leibler divergence between the distribution parameterized by the encoder and the
standard normal distribution N and β is a user-defined parameter that controls the effect of this term on the overall
loss [64]. Eq. (16) trains the model to maximize the probability of choosing the correct rule for a step in the decoding
process given that all the choices for the previous steps have been correct [42].

Inverse Problem Solution: The data-driven discovery stage of the process consists of searching the reduced space of
the VAE for an encoding, which when decoded provides a model whose evaluation matches well the measured data.
At this stage, we do not focus on the optimal solution of this problem, but rather opt for a heuristic method, which is
a popular choice for the solution of inverse formulations linked to multi-step model evaluation processes [65]. We
consider a global instead of a gradient based optimization method, because we expect the landscape of the latent space
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Figure 9: A schematic representation of the recursive tree VAE process for the case of W (F) = (J − 0.5)2 + 3 · Ĩ21 .
Left: The encoder maps the representation of the children to the representation of the parent using fr, where r is the
rule used to produce the children. The process starts from the leaf nodes until it reaches the root and encodes the whole
tree. Middle: Perform the reparameterization trick to sample a latent vector z. Right: The decoder generates a tree from
a low-dimensional vector z by first using function hΨ to decide the next rule to be applied, beginning from the starting
symbol, and then function grj to predict the vectorial representations of the children.

to present multiple local minima. The data-driven discovery is performed on displacement measurements from only one
type of loading (Biaxial Tension), which is not necessarily information to constrain the discovery to one material model,
thus a global minimum. In this case, we opt for the adoption of a covariance matrix adaptation evolutionary strategy
(CMA-ES) [59] for generating candidate solutions from a probability distribution whose parameters are iteratively
updated. The CMA-ES method fits naturally for performing global optimization in the latent space of VAEs, as they
both consider a multivariate normal distribution over the latent vectors z. A difference lies in the fact that the CMA-ES
uses a full covariance matrix during the adaptation process, while the VAE considers a diagonal covariance matrix. For
measuring the goodness of fit, a root mean square error metric is adopted reflecting the discrepancy between the model
evaluation and the available measurements. The CMA-ES reflects one of several possible heuristic tools one can opt for,
with Genetic Algorithms [66] or Particle Swarm Optimization [67] representing further usual choices.

4.2 Constitutive Law Discovery Based on Data

In this section, we demonstrate how the proposed grammar-based approach can be used to perform efficient data-driven
model discovery, thus covering the spectrum of tasks in Figure 1. The model discovery is geometry and load agnostic,
which means that the same process without any change would work for any geometry, loading or boundary condition.
We consider a simple RTG and generate a language for hyperelastic materials, which we then use to train a RTGVAE
[42]. As a final step of the process we employ the CMA-ES [59] to discover the model that best fits synthetic data that
are contaminated with different levels of noise. In real applications, these measurements may come from experiments
or from higher fidelity (e.g., multiscale) finite element computations.

In the cases of EQL and SR, see Section 1, the data-driven discovery process is designed such that the learning algorithm
chooses the combination that best fits the data out of a library of primitives, expressions or operations. The underlying
assumption of these methods is that the constitutive laws can be described by a weighted sum of an priori chosen
basis. The selection of such a basis biases the discovery process to recover combinations of already known relations
and it is conditioned by the expertise of the person designing the library. However, in real applications the form of
the constitutive law is not always known a priori such that an informed choice of the basis can be made. For such
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cases, a weighted sum of the library elements may not accurately describe the constitutive law, because the library
construction may be missing important information. With our grammar-based approach, on one hand we can fully
automatically generate a much wider library of material models than possible by manual construction, as already
demonstrated in Section 3.5; on the other hand, we can discover an interpretable material model which well interprets
the data even though the true model underlying the data is not present in the library. While the capability of finding a
good approximation for a model not present in the library was already demonstrated with SR [2], it still had to be a
combination of the library terms. This is no longer the case in the present setting, as we demonstrate in this section.

Data Generation. For generating the data that we are going to use to perform the discovery, we consider the benchmark
proposed in [2, 68] that emulates digital image correlation measurements using computational data generated by the
finite element method. The domain is a plate with a central hole which undergoes a symmetric bi-axial loading
controlled by a displacement parameter δ. Due to symmetry, only a quarter of the plate is studied with symmetry
boundary conditions on the left and bottom boundaries [2], see Figure 6. Plane-strain conditions are assumed. In the
data generation, we consider four different (baseline) hyperelastic constitutive models:

• A Neo-Hookean (NH) model containing a quadratic volumetric term

W = 0.5 · (Ĩ1 − 3) + 1.5 · (J − 1)2;

• An Isihara (IS) model [69] containing a quadratic deviatoric term

W = 0.5 · (Ĩ1 − 3) + (Ĩ2 − 3) + (Ĩ1 − 3)2 + 1.5 · (J − 1)2;

• A Haines-Wilson (HW) model [70] containing a cubic deviatoric term

W = 0.5 · (Ĩ1 − 3) + (Ĩ2 − 3) + 0.7 · (Ĩ1 − 3) · (Ĩ2 − 3) + 0.2 · (Ĩ1 − 3)3 + 1.5 · (J − 1)2;

• A Gent-Thomas (GT) model [71] containing a logarithmic deviatoric term

W = 0.5 · (Ĩ1 − 3) + log(Ĩ2/3) + 1.5 · (J − 1)2.

We set the applied displacement parameter to δ = 0.3 and, for each constitutive model, we obtain the displacement field
u which we then use to compute the deformation gradient F and the volumetric and isochoric invariants of the right
Cauchy-Green deformation tensor J, Ĩ1, Ĩ2. We add artificial noise to the displacement data, as follows:

ũai = uai + eai , eai ∼ N (0, σ∗) ∀i = 1, 2, ∀a = 1, . . . , ndofs, (17)

with ndofs as the number of degrees of freedom in the finite element discretization. We adopt two levels of noise,
namely σ∗ = 10−4, and σ∗ = 10−3, as in [2]. We perform no denoising on the resulting displacement data ũ.

Choosing the Grammar. For the reasons explained in Section 2.3, we adopt a RTG for the data-driven discovery
of the material model. With respect to the grammars we used so far (e.g. the CFG GHMp in eq. (11)), we introduce
some simplifications; namely, we consider the terminals J − 1, Ĩ1 − 3, and Ĩ2 − 3 to promote expressions where the
normalization holds a priori. However the normalization conditions are not strictly enforced, as the final expression
could contain operations that violate them, e.g. additions between scalars. Moreover, we rewrite C as Ψ1 +Ψ2 +Ψ3

to derive final expressions that contain a smaller number of operations such that the grammar derives parsimonious
expressions. The designed RTG, ĜHMs, is defined as follows:
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S = { C },

Σ̃ = { + : 2, / : 2, · : 2, (·)2 : 1, (·)3 : 1, log : 1, (Ĩ1 − 3) : 0, (Ĩ2 − 3) : 0,

(J − 1) : 0, 0.2 : 0, 0.5 : 0, 0.7 : 0, 1.5 : 0, 2 : 0, 3 : 0},

R = {C → Ψ1 +Ψ2 +Ψ3,

Ψ1 → L|U |Y |W |Q,

Ψ2 → L|U |Y |W |Q,

Ψ3 → L|U |Y |W |Q,

Y → +(L,L) | /(L,L) | · (L,L) ,

U → log(L),

W → ()2(Y ) | ()3(Y ),

E → ·(Y, Y ),

L→ V |O,

V → (Ĩ1 − 3)() | (Ĩ2 − 3)() | (J − 1)(),

O → 0.2() | 0.5() | 0.7() | 1.5()},

Φ = { C,Ψ1,Ψ2,Ψ3, Y, U,E,W,L, V,O }.

(18)

In eq. (18), as done previously, we use the symbol "|" to separate grammar rules with the same left-hand side. The
grammar ĜHMs contains additions and multiplications between terminals and thus it can potentially derive the NH model.
However, the log(Ĩ2/3) operation of the GT model or additional + operations for the IS and HW models cannot be
used when deriving the library of constitutive laws, hence these constitutive laws cannot be recovered exactly. Thus, for
the data obtained using these laws our goal is to discover parsimonious expressions that deliver a physical behavior
similar to the baseline using the available grammar ĜHMs.

Training Setup. We derive expressions from the language L(ĜHMs) and construct a library of Ntrain = 600, 000 valid
constitutive models for different hyperelastic materials. We then train the recursive tree VAE model on this library.
For the VAE, we set β = 0.0001 in eq. (16) and α = 0.0001 for the reparameterization trick, see Section 4.1. We
choose the latent dimension of the VAE as n = 8, the learning rate as 0.001 and the width of the recursive encoder and
decoder as 128. We check the performance of the model against Ntest = 100 test expressions using a root mean tree
edit distance metric [72].

Data-driven Discovery. Once we train the model on the library, we perform gradient-free optimization on the latent
space of the RTGVAE to discover different hyperelastic material models using the CMA-ES method. For CMA-ES
we consider the number of new solutions per iteration as 1, 000 trees, a zero mean, a 0.1 variance and 10 maximum
iterations per adaptation. Since dense (full-field) displacement measurements are available and the expression of the
baseline constitutive law is known, we can assess the goodness of fit using a root mean square error metric:

RMSEW =

√

√

√

√

1

Nn

Nn
∑

i=1

(Wi − W̃i)2, (19)

where Wi and W̃i are respectively the baseline and the predicted strain energies for node i, and Nn = 2, 752 is the
number of nodes in the non-uniform finite element mesh used for data generation. The computation of the root mean
square error is performed using the SymEngine [73] SymPy interface for fast computations.

For the assessement of the prediction accuracy, we employ the relative L2 error metric referred to the entire domain:

RelativeL2 Error =
∥W − W̃∥2

∥W∥2
and analogous for other quantities, such as the first component of the first Piola-Kirchhoff stress tensor.

In Table 1, we report on the wall-clock time to run an iteration of the CMA-ES method with respect to the new solutions
generated at each adaptation step on an Alienware m16 Laptop with an Intel i9-13900HX CPU and 32GB RAM.
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New solutions per iteration 100 500 1, 000 5, 000
Wall-clock time in sec 1 5 11 60

Table 1: The wall-clock time in seconds of the discovery process for different numbers of new solution per iteration that
are used for the covariance adaptation.

Assessing the Discovery Process for the NH Model. First, we test the performance of the symbolic regression
algorithm in discovering the NH model from displacement data with σ∗ = 0, 10−4, 10−3. The best discovered
expressions as well as the relative L2 errors between the baseline and the predicted strain energy density are presented
in Table 2 for different noise levels. Being contained in the language generated by the starting grammar, the NH model
is discovered exactly for the noise-free case. Interestingly, the process is able to discover the exact model also for the
noisy case with σ∗ = 10−4, although no denoising is applied to the data. For the σ∗ = 10−3 case, a very accurate
approximation is discovered, with a relative L2 error of 1.2%.

Model Discovered Expression Relative L
2 Error

NH, σ∗ = 0 W̃ = 0.5 · (I1 − 3) + 1.5 · (J − 1)2 0
NH, σ∗ = 10−4 W̃ = 0.5 · (I1 − 3) + 1.5 · (J − 1)2 0
NH, σ∗ = 10−3 W̃ = 0.49 · (I1 − 3) + 1.5 · (J − 1)2 0.012

Table 2: Best discovered expressions and relative L2 errors between the best predicted and the baseline strain energy
density for the NH model, obtained from data with different noise levels.

Assessing the Discovery Process for the IS, HW and GT Models. We then run the discovery algorithm for each
of the IS, HW and GT models separately. Since none of these models is contained in the language generated by the
grammar in use, we do not expect an exact discovery. The best discovered models for the noise-free, σ∗ = 10−4, and
σ∗ = 10−3 noise cases as well as the relative L2 errors between the baseline and the predicted strain energy density are
presented in Table 3. We observe that for the IS and the HW models the relative L2 error is less than 1.5% for all noise
levels, while for the GT model the error increases to 2.6% for all cases.

We note that the models discovered from the IS data are very close to the baseline ones. While in the grammar (18) we
defined the constitutive law as Ψ1 +Ψ2 +Ψ3, which means that constructed expressions in the library contain two
binary + operations, the discovery process returns an expression containing three binary operations; this indicates that
the decoding process can predict expressions that are not limited to the strict structure of those contained within the
library. Thus, interestingly, the discovered models for the noiseless and the lowest-noise case have the same structure of
the baseline model, but different material constants. We attribute the discrepancy in the constants to inaccuracies of the
symbolic regression algorithm and the inability of the heuristic CMA-ES method to determine the global minimum
of the optimization problem. Also interestingly, the predicted expression for the HW model is less complicated than
the baseline and yet it achieves an excellent accuracy, with an error less than 1% independently of the noise level.
Finally, for the GT model the discovered expression is a linearized version of the baseline, which is reasonable for the
relatively limited amount of deformation included in the data (a similar result is reported in [2]). This further reflects
the dependence of the inference process on the richness of the available dataset, including the amount of non-linearity
that is observed.

Model Discovered Expression Relative L
2 Error

IS, σ∗ = 0 W̃ = Ĩ1 − 3 + 0.5 · (Ĩ2 − 3) + (Ĩ1 − 3)2 + 1.5 · (J − 1)2 0.011
IS, σ∗ = 10−4 W̃ = Ĩ1 − 3 + 0.5 · (Ĩ2 − 3) + (Ĩ1 − 3)2 + 1.5 · (J − 1)2 0.011
IS, σ∗ = 10−3 W = (Ĩ1 − 3) · (Ĩ2 − 3) + 1.5 · (Ĩ1 − 3) + 1.5 · (J − 1)2 0.014
HW, σ∗ = 0 W̃ = 1.5 · (Ĩ2 − 3) + (Ĩ1 − 3)2 + 1.5 · (−1 + J)2 0.01

HW, σ∗ = 10−4 W̃ = (Ĩ1 − 3) · (Ĩ2 − 3) + 1.5 · (Ĩ2 − 3) + 1.5 · (−1 + J)2 0.007
HW, σ∗ = 10−3 W̃ = (Ĩ1 − 3) · (Ĩ2 − 3) + 1.5 · (Ĩ2 − 3) + 1.5 · (−1 + J)2 0.007

GT, σ∗ = 0 W̃ = 0.5 · (Ĩ1 − 3) + 0.3 · (Ĩ2 − 3) + 1.5 · (J − 1)2 0.026
GT, σ∗ = 10−4 W = 0.5 · (Ĩ1 − 3) + 0.3 · (Ĩ2 − 3) + 1.5 · (J − 1)2 0.026
GT, σ∗ = 10−3 W̃ = 0.5 · (Ĩ1 − 3) + 0.2 · (Ĩ2 − 3) + 1.5 · (J − 1)2 0.026

Table 3: Best discovered expressions and relative L2 errors between the best predicted and the baseline strain energy
density for the IS, HW and GT models, obtained from data with different noise levels.
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Generalization to Different Loading Conditions. In practice, we are interested in expressions that describe the
behavior of a material under general loading conditions. For this reason, we now assess the performance of the
discovered models in an extrapolation setup (i.e. for problems different from the one in Figure 6). For each discovered
model, we perform the six simple loading tests in equation 7 in the range γ ∈ [0, 1]. We compare the baseline and the
discovered constitutive laws in terms of strain energy density and first component of the first Piola-Kirchhoff stress
tensor for all six loading conditions and noise levels. We present the results for the NH, IS, HW and GT models in
Figures 10, 11, 12, and 13, respectively.

As expected, the NH model predictions are identical to the baseline for the noise-free and σ∗ = 10−4 cases, while they
are very close to the baseline for σ∗ = 10−3. For the IS model, the predictions for the strain energy density in the
noise-free case are very close to the baseline, while for the noisy cases we observe discrepancies especially in UC. The
predictions for the first component of the first Piola-Kirchhoff stress tensor are very accurate for the noise-free case, but
present discrepancies for the noisy cases especially for SS and UC loading. For the HW model, the predictions for the
strain energy density are quite accurate for all loading conditions and noise levels, except for UC and BC, where we
observe discrepancies for higher deformations. For the first component of the first Piola-Kirchhoff, we observe more
pronounced discrepancies especially for the UC, SS and PS loading conditions and in the presence of noise. For the GT
model, we observe a very good agreement between the baseline and the predicted model for all loading conditions for
both strain energy density and stress in the noise-free and σ∗ = 10−4 cases. However, for the noise level σ∗ = 10−3

we observe high discrepancies for most loading conditions, which is reasonable considering the significant level of
noise contamination and the usage of the raw noise-affected data with no denoising. For all the models and out of
all loading cases, slightly larger discrepancies are obtained for the loading conditions involving shear. This can be
explained by the fact that the extent of shear in the training data is quite limited. Similar observations were made in
previous works with model discovery approaches based on SR [2].

5 Conclusions

In this paper, we proposed formal grammars (specifically, Context-Free Grammars and Regular Tree Grammars) as
conceptual and practical tools for the automated discovery of material models, featuring low complexity, ability to
systematically embed constraints stemming from domain knowledge, and generalization capability. Leveraging formal
grammars specifically designed for constitutive laws (focusing on hyperelasticity in this initial paper), we could achieve
two important goals. On the one hand, we could automatically generate extensive libraries of hyperelastic material
models including a desired, very large number of terms which satisfy the relevant physics constraints, combine high
expressivity with parsimony and can be deployed for model discovery based on sparse regression. On the other hand,
we proposed and explored a grammar-based symbolic regression pipeline for constitutive law discovery composed by a
library construction step, a pre-training step, and a data-driven discovery step, and leveraging a combination of the
Recursive Tree Grammar Variational Autoencoder method [42] and the Covariant Matrix Adaptation Evolutionary
Strategy [59] for gradient-free optimization. We demonstrated that the approach is able to discover accurate and
parsimonious hyperelastic models on four different benchmark cases.

We here put forth an important first step toward establishing the language of material models, along with a number of
possible useful downstream tasks and applications. However, the proposed method in its current form presents certain
limitations. First, the efficiency and computational wall clock time required for the library generation is limited by the
rate of rejections of the expressions, because the normalization and volumetric growth constraints are not imposed a
priori but checked after the final expression is generated. Moreover, the decoder of the VAE does not allow to check
the semantic validity of the generated expression during the process of decoding, which implies that expressions are
yielded that may not satisfy the constitutive law constraints. Furthermore, the CMA-ES method is an evolutionary
strategy, which implies that different runs of CMA-ES can lead to different results and expressions offering different
levels of approximation to the baseline. Finally, in this paper we considered grammars that only describe the behavior
of isotropic hyperelastic materials, but the proposed methodology is extendable to more general and complex classes of
material behavior. These limitations will be addressed in forthcoming research.

Code Availability

The code for automated model discovery with the proposed procedure will be made available online at the time of
publication.
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Figure 10: Neo-Hookean model: Left: comparison between the baseline and the predicted strain energy density, Right:
comparison between the first component of the Piola-Kirchhoff stress tensor for the loading conditions not in the training
set evaluated for different displacement magnitudes parameterized by γ. For all cases, the solid red line represents
the baseline, the dashed blued line the prediction for the noise-free data, the orange dashed line the prediction for
σ∗ = 10−4 and the green dashed line the prediction for σ∗ = 10−3.
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Figure 11: Isihara model: Left: comparison between the baseline and the predicted strain energy density, Right:
comparison between the first component of the Piola-Kirchhoff stress tensor for the loading conditions not in the
training set evaluated for different displacement magnitudes parameterized by γ. For all cases, the solid red line
represents the baseline, the dashed blued line the prediction for the noise-free data, the orange dashed line the prediction
for σ∗ = 10−4 and the green dashed line the prediction for σ∗ = 10−3.
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Figure 12: Haines-Wilson model: Left: comparison between the baseline and the predicted strain energy density,
Right: comparison between the first component of the Piola-Kirchhoff stress tensor for the loading conditions not in
the training set evaluated for different displacement magnitudes parameterized by γ. For all cases, the solid red line
represents the baseline, the dashed blued line the prediction for the noise-free data, the orange dashed line the prediction
for σ∗ = 10−4 and the green dashed line the prediction for σ∗ = 10−3.
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Figure 13: Gent-Thomas model: Left: comparison between the baseline and the predicted strain energy density, Right:
comparison between the first component of the Piola-Kirchhoff stress tensor for loading conditions not in the training
set evaluated for different displacement magnitudes parameterized by γ. For all cases, the solid red line represents
the baseline, the dashed blued line the prediction for the noise-free data, the orange dashed line the prediction for
σ∗ = 10−4 and the green dashed line the prediction for σ∗ = 10−3.
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A Representation of Mathematical Expressions

Mathematical expressions can be represented using graphs, which can then be used to perform downstream regression or
classification tasks. Within a general approach, we can view mathematical operations, variables, or expressions, which
we collectively call primitives, as graph node labels and define different expressions as different ways to connect these
nodes. To explain this concept we first introduce some basic terminology on graphs, S-expressions and Polish notation.
We then summarize the construction of mathematical expression using graph representations and their utilization in the
context of symbolic regression.

Basic Glossary on Graphs: Throughout the manuscript, we consider nomenclature to describe different graphs and
their nodes. For this purpose, we consider a short glossary accompanied by Figure 14 to explain these terms. A general
graph is a topology whose edges are undirected, meaning that moving both from x to 3 and from 3 to x is allowed, all
nodes can be connected with all other nodes without restrictions and also cycles, meaning a node is connected with
itself, are allowed to exist. A directed acyclic graph is a topology where the edges are directed, meaning that moving
only from x to 3 is allowed, all nodes can be connected with all nodes, and no cycles are allowed. A weighted directed
acyclic is an directed acyclic graph whose edges have also weights. The weights can be thought of as the importance of
edges or how strongly correlated two nodes are. A tree is a graph topology that nodes are connected to other nodes in a
specific hierarchy. The node − is called the parent of the nodes · and y which are called the children of −. A tree takes
its name from the number of children that appear at most in it. For example, a tree where the nodes have two children is
called binary, with three ternary and with k k-ary. The nodes that have no children are called leaf nodes and the node
with no parent a root node in a tree, see the green and magenta nodes in Figure 14 respectively.
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Figure 14: Examples of three graph topologies. On the far left, we have a general graph; In the middle left, a directed
acyclic graph; In the middle right, a weighted directed acyclic graph; On the far right, a binary tree.

Graph and Tree Representations, S-expressions: A graph representation of a mathematical expression is one where
the graph nodes represent primitives, see Figure 15 left, and the edges of the graph describe different possible orders of
operations. By considering orders of operations between the primitives, implying a direction on the graph edges, and
different paths on the graph, possible expressions are defined, see Figure 15 middle. A more simplified, yet also more
restricted, representation that a priori assumes the order of the operations is the tree representation, see Figure 15 right.
Any tree can be represented using a recursive structure of nested lists called symbolic or S-expressions.
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Polish Notation: To better clarify the relation between a mathematical formula and a tree, we introduce the so-called
Polish notation. This is a mathematical notation where operators proceed operands. Mathematical operations on any
number of arguments written in Polish notation can be easily translated into trees because their nested operation format
is compatible with S-expressions. For example, let us consider the red path in Figure 15, which provides the expression
x · 3− y. We can write this expression in Polish notation as −(·(x, 3), y), and then translate it into a tree structure, as
shown in Figure 15 right.
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y

An example of a general graph. Each node
contains a primitive, i.e. either a mathemati-
cal operation or a variable.

x

·

1
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The path in red provides the expression
x · 3− y or in Polish notation −(·(x, 3), y).
The path in blue does not deliver a meaning-
ful expression.

−

·

x 3

y

Tree representation of −(·(x, 3), y).

Figure 15: Left: a possible representation of mathematical expressions using an acyclic graph; middle: examples of
paths on a directed acyclic graph; right: an example of a tree.

Construction of Expressions using Graph Representations: By choosing the possible order of operations between
primitives, either by considering different paths in directed acyclic graphs or different trees, we can generate expressions.
It is evident that not all paths provide meaningful mathematical expressions; e.g. in Figure 15 the blue path delivers
x13y. To ensure that only meaningful expressions are generated, constraints can be considered in the choice of the
graph paths or, in the case of trees, in the choice of the children given the parent. It is also clear that the space of
possible expressions grows exponentially with the number of nodes; thus the choice of the primitives plays a crucial
role on the size of this space.

Discovering Expressions from Data (Symbolic Regression): As discussed in the previous paragraphs, expressions
are constructed by choosing orders of operations between nodes and paths that provide meaningful results. Symbolic
regression is a systematic way of finding a possible path in a graph or a tree that corresponds to an expression that best
fits given data. Different symbolic regressions algorithms differ by their choices of i. primitives, i.e. whether they are
only mathematical operations or variables or whether they can also consist of sub-expressions, ii. graph representations,
i.e. directed acyclic or tree representations, iii. schemes to enforce that the resulting expressions are meaningful. A
further choice of that of the objective function to be minimized to optimize the fit of the given data, see Figure 16.

B Regular Tree Grammars

The purpose of this section is to provide a more detailed description of the properties of RTGs, and more specifically
how production rules and trees/sub-trees are defined. Moreover, we present the parsing and generation algorithms with
simple examples.

Properties of Regular Tree Grammars: A RTG is defined as the 4-tuple Ĝ = {Φ, Σ̃, R, S}, where Φ a set of
non-terminal symbols, Σ̃ a ranked alphabet, R a set of production rules, and S the starting non-terminal symbol.
Consider Σ̃ = {+ : 2, a : 0, 3 : 0} for simplicity and a + 3 a derivation of the grammar using a list of production
rules. We write a+ 3 in Polish notation as +(y, 3), then we can define a tree as ŵ = s(t̂1, t̂2), where x = +, t̂1 = a,
and t̂2 = 3. More generally, a tree with k children, a k-ary tree, can be defined as ŵ = s(t̂1, ..., t̂k), where s ∈ Σ̃ an
element of the alphabet, and t̂1, ..., t̂k sub-trees defined using rules involving elements of the alphabet. In this definition
k = 0 denotes leaf nodes, nodes without children, of the tree. The production rules are defined as Ψ → ŵ where Ψ ∈ Φ
a non-terminal symbol and ŵ a possible sub-tree derived by performing recursive substitutions of non-terminal symbols
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Figure 16: Symbolic regression methods can be constructed by choosing i. a set of primitives consisting of operations,
and sub-expressions, top left, ii. a representation of the possible functions, i.e. directed acyclic graphs, top right, and iii.
sampling valid expressions based on constraints.

starting from Ψ using production rules that have Ψ on their left-hand side. More specifically, the production rules for an
operation s of arity k of the alphabet is defined Ψ → s(L1, ..., Lk), where L1, ..., Lk ∈ Φ non-terminal symbols. In
Section 1 and 2, we discussed how the trees produced by grammar are characterized by production rules. In RTGs, the
trees are derived in a recursive, hierarchical, manner and we represent this hierarchical structure of rules using nested
lists. We provide examples of sub-tree expressions derived starting from symbol Ψ of ĜNH , see Equation 20, together
with the nested lists of production rules that derive them in Figure 17.

−

J a

Expression: −(J(), a()), Rules: r = [3, [11, 6]]

·

3 ()2

I1

Expression: ·(3, ()2(I1())), Rules: r = [2, [9, [4, [10]]]]

+

I1 ·

J 3

Expression: +(I1(), ·(3(), J())), Rules: r = [1, [10, [2, [11, 9]]]]

·

a ()2

−

I1 a

Expression: ·(a, ()2(−(I1(), a())), Rules: r = [2, [6, [4, [3, [10, 6]]]]]

Figure 17: Examples of sub-trees produced by the grammar. We present the derivations of the sub-trees in Polish
notation to emphasize the fact that we are now working with tree grammars.

We are going to use the expressions in Figure 17 as examples, together with the grammar ĜNH presented in Equation
20, to explain how the nested list structures work. The list that contains the rules that generate the expression −(J, a) is
comprised by two levels. The second level [11, 6] corresponds to the rules that generate the left and the right children of
−, respectively. The first level [3, ...] corresponds to the rule that generates −. Therefore, what the nested list [3, [11, 6]]
represents in words is "the first level of the tree is generated using the rule (3), and on the second level the left child is
generated using rule (11) and the right is generated using rule (6). For more complicated cases, the same logic applied.
For example in the expression ·(a, ()2(−(I1(), a())), the nested list [2, [6, [4, [3, [10, 6]]]]] can be connected to the tree
structure as follows:

• The first level of the tree is derived by rule (2) which then created two children, meaning r = [2, [, ]].

• The left child in the second level is derived by rule (6), r = [2, [6, ]].The right child in the second level is
created by first applying rule (4) which created one child, r = [2, [6, [4, []]]].
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• The child in the third level is derived by rule 3 and creates two children, r = [2, [6, [4, [3, [, ]]]]].

• The left child of the fourth level is derived by rule (10) and rule (6) is applied to derive the right child,
r = [2, [6, [4, [3, [10, 6]]]]].

S = { C },

Φ = { C,Ψ, L},

Σ̃ = { + : 2,− : 2, · : 2, ()2 : 1, I1 : 0, J : 0, a : 0 , 1 : 0, b : 0, 3 : 0 },

R = { C → +(Ψ,Ψ), (1)

Ψ → ·(L,Ψ), (2)

Ψ → −(L,L), (3)

Ψ → ()2(Ψ), (4)

Ψ → L, (5)

L→ 0.5(), (6)

L→ 1(), (7)

L→ 1.5(), (8)

L→ 3(), (9)

L→ I1(), (10)

L→ J()(11) }.

(20)

Each sub-list in the nested list structure describes one level of the tree hierarchy. Next we discuss the process of
extracting this information given a tree and the process of generating a tree given a nested list structure in the general
case. For implementing data-driven discovery of constitutive laws, RTGs need to be defined in a deterministic manner,
meaning that two production rules cannot have the same right hand side. The reason that this property is favorable is
that deterministic grammars are unambiguous, which means that each list of production rules uniquely generates one
tree and vise versa [42]. In deterministic RTGs the parsing and generation procedures possess a O(|ŵ|) time, where |ŵ|
the size of the tree, and computation complexity [42].

Tree Parsing We discussed how expressions represented as trees can be characterized using grammar rules and
provided some examples in Figure 17. In this section, we are going to discuss the process of extracting a characterization
given a tree and a grammar, called parsing. Parsing takes a tree, i.e. ŵ = +(I1(), ·(3(), J())) as an input and provides
a nested list of rules, i.e. r = [1, [10, [2, [11, 9]]]] as an output. This is done by traversing the tree structure either
starting from the bottom (bottom-up parsing) or starting from the top (top-down parsing), and extracting the rules that
generate each level of the hierarchy. Consider a case where ŵ = s(t̂1, ..., t̂k), and rules of the form Ψ → s(L1, ..., Lk)
that generate any possible tree ŵ starting from Ψ. Bottom-up parsing finds the rule rj that provides Ψ given Lj and
top-down parsing tries to find the rule rj that provide Lj given Ψ where Ψ, Lj ∈ Φ and j ∈ [1, ..., k] denotes the
indices of the children of a k-ary tree. Regular tree grammars consider a bottom-up parsing approach.

In a RTG, the parsing is done recursively starting from identifying the rule rj with Lj on its right hand side that
generated the sub-tree t̂j with Lj as a starting point. For each step of the process the algorithm provides the rule rj
with Lj on its left-hand side and the non-terminal Lj for each j ∈ [1, ..., k]. Then R is searched for a rule with the
non-terminal Ψ on its left-hand side, i.e. r = Ψ → s(L1, ..., Lk), and returns a concatenation of the rules that generate
each sub-tree, i.e. [r, r̂1, ..., r̂k]. If a rule that contains Ψ on the left hand is not found then the process fails, which
means that a tree cannot be produced by the chosen grammar. If the recursive process successfully reaches the starting
symbol S, then the sentence is in the language L(G). We provide the general form of the parsing algorithm in Algorithm
1.

Tree Generation Guided by a List of Rules: The inverse process of parsing is generation. The parsing process
extracts a nested list of rules from a tree, while the generation constructs a tree based on a list of rules. Therefore, the
generation algorithm takes as an input a list, i.e. r = [1, 10, 2, 11, 9] and generates a tree, i.e. ŵ = +(I1(), ·(3(), J())),
presented in Figure 17. This process does not require a nested list of rules, but instead a list of rules r = [r̂1, ..., r̂Nk

],
where Nk the number of rules, and S the starting non-terminal. This process is performed by traversing the tree from
the top to bottom and from left to right.

Consider a case where ŵ = s(t̂1, ..., t̂k) a tree and Ψ → s(L1, ..., Lk) the form of the grammar rules. The generation
substitutes a non-terminal Ψ in a tree according to a rule Ψ → s(L1, ..., Lk), and at the same time stores Lk, ..., L1,

39



The Language of Hyperelastic Materials

Algorithm 1 The tree parsing algorithm for a RTG Ĝ considered in this work.

Input: An expression tree of the form ŵ = s(t̂1, ..., t̂k).
Output: A nested list of rules [r, r̂1, ..., r̂k] that generate ŵ.
function parsing(ŵ)

for j = 1, ..., k do
Lj , r̂j = parsing(t̂j)

end for
if r = [r̂1, ..., r̂k] exists with r̂1, ..., r̂k rules with L1, ..., Lk on their right-hand side such that r : Ψ →

s(L1, ..., Lk) then
return Ψ, [r, r̂1, ..., r̂k]

else
There exists no rule sequence with the non-terminal Ψ on its right-hand side, therefore the expression is not
in the language.

end if

where Ψ, Lj ∈ Φ and j ∈ [1, ..., k] denotes the indices of a k-ary tree. For each step of the process, the algorithm
recovers the non-terminal Lj on the top of the list, checks if the given rule has Lj on the left-hand side, applies it and
then removes Lj from the list. The process stops when the list of non-terminals is empty and all the pre-defined rules
have been applied. If the list is not empty then the process fails.

Algorithm 2 The tree generation algorithm for a RTG Ĝ and a list of rules [r1, ..., rT ] considered in this work.

Input: A list of rules [r̂1, ..., r̂Nr ] that generate ŵ.
Output: An expression tree of the form ŵ = s(t̂1, ..., t̂k).
Create an empty list of non-terminals and store the starting symbol S.
function generation(ŵ)

for j = 1, ..., Nr do
Recover non-terminal Ψ from the tail of the list.
Check if there a exists a non-terminal with Ψ on the left-hand side.
Apply the rule Ψ → s(L1, ...Lk).
Replace Ψ in the generation with s(L1, ..., Lk)
Store L1, ..., Lk in the list.

end for
if The list in non-empty then

The process fails.
end if

return ŵ

An Example of Parsing and Generating for a Simple Tree: In this paragraph, we present a detailed example
of the tree parsing and generation algorithms. We consider a RTG version of ĜNH and the expression W (F) =
3 · I21 + (J − 0.5)2 to explain the concepts of parsing and generation. We can write W (F) in Polish notation as
W (F) = +(·(3(), ()2(I1())), ()

2(−(J(), 0.5()))) and is be written as a tree:

ŵ = +(t̂1, t̂2),

where the sub-trees t̂1 and t̂2 are written as:

t̂1 = ·(t̂11, t̂
2
1), t̂2 = ()2(t̂12),

the sub-trees t̂11, t̂
2
1, and t̂12, as:

t̂11 = 3(), t̂21 = ()2(t̂211 ), t̂12 = −(t̂121 , t̂
12
2 ),

and the sub-tree t̂211 , t̂
12
1 and t̂122 as:

t̂211 = I1(), t̂121 = J(), t̂122 = 0.5(),

Now we can apply the parsing algorithm 1 to W (F), as follows:
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• The algorithm begins from parsing ŵ = +(t̂1, t̂2), which is composed from the sub-trees t̂1, and t̂2. The
presence of the two sub-trees triggers recursion and the process considers parsing the sub-trees t̂1 = ·(t̂11, t̂

2
1)

and t̂2 = ()2(t̂12) first.

• We consider the left sub-tree t̂1 = ·(t̂11, t̂
2
1) which is composed by t̂11 = 3(), and t̂21 = ()2(t̂211 ). For the right

sub-tree, the recursion is triggered and the algorithm parses the t̂211 = I1().

• After parsing t̂211 , which is in this case the bottom level, the algorithm continues to the upper levels of the
hierarchy extracting the grammar rules that derive each level.

• The algorithm performs the same actions for the right sub-tree t̂2 = ()2(t̂12).

The application of the algorithm 1 can be written in detail as:

for j = 1 do
L1, r̂1 = parser(t̂1)

for i = 1 do
L1
1, r̂

1
1 = parser(t̂11)

return L, 9
for i = 2 do
L2
1, r̂

2
1 = parser(t̂21)

for l = 1 do
L21
1 , r̂

21
1 = parser(t̂211 )

for k = 1 do
L21
1 , r̂

21
1 = parser(t̂211 )

return L, 5
return L, [5, [10]]

return Ψ, [4, [5, [10]]]
return Ψ, [2, [9, [4, [10]]]]
for j = 2 do

for i = 1 do
L1
2, r̂

1
2 = parser(t̂12)

for l = 1 do
B12

1 , r̂
12
1 = parser(t̂121 )

return L, 11
for l = 2 do
B12

2 , r̂
12
2 = parser(t̂122 )

return L, 6
return Ψ, [3, [12, 6]]

return Ψ, [4, [3, [12, 6]]]
return C, [1, [2, [9, [4, [5, [10]]]]], [4, [3, [11, 6]]]]

The final result of the algorithm is the nested list r = [1, [2, [9, [4, [5, [10]]]]], [4, 3, [11, 6]]]] that characterizes the tree
ŵ = (·(3(), ()2(I1())), ()

2(−(J(), 0.5()))).

We now consider the inverse process for the previous example to showcase the generation algorithm. In this case,
we provide the list of rules r = [1, 2, 9, 4, 5, 10, 3, 11, 6] and the starting non-terminal S as an input and get the tree
ŵ = (·(3(), ()2(I1())), ()

2(−(J(), 0.5()))) as an output following Algorithm 2. The process is provided in detail:

Create an empty list of non-terminals and store the starting symbol S
for j = 1 do
Get S from the list.
Apply rule r1 = S → +(Ψ,Ψ).
Replace Ψ with +(Ψ,Ψ) in the tree generation.
Now ŵ = +(Ψ,Ψ).
Store Ψ,Ψ in the list.

for j = 2 do
Get Ψ from the tail of the list.
Apply rule r2 = Ψ → ·(L,Ψ).
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Replace Ψ with ·(L,Ψ) in the tree generation.
Now ŵ = +(·(L,Ψ),Ψ).
Store L,Ψ in the list.

for j = 3 do
Get L from the tail of the list.
Apply rule r3 = L→ 3().
Replace L with 3() in the tree generation.
Now ŵ = +(·(3(),Ψ),Ψ).
Rule r3 did not produce a non-terminal to store.

for j = 4 do
Get Ψ from the tail of the list.
Apply rule r4 = Ψ → ()2(Ψ).
Replace Ψ with ()2(Ψ) in the tree generation.
Now ŵ = +(·(3(), ()2(Ψ)),Ψ).
Store Ψ in the list.

for j = 5 do
Get Ψ from the tail of the list.
Apply rule r4 = Ψ → L
Replace Ψ with L in the tree generation.
Now ŵ = +(·(3(), ()2(L)),Ψ).
Store L in the list.

for j = 6 do
Get L from the tail of the list.
Apply rule r10 = L→ I1().
Replace L with I1() in the tree generation.
Now ŵ = +(·(3(), ()2(I1())),Ψ).
Rule r10 did not produce a non-terminal to store.

for j = 7 do
Get Ψ from the tail of the list.
Apply rule r4 = Ψ → ()2(Ψ).
Replace Ψ with ()2(Ψ) in the tree generation.
Now ŵ = +(·(3(), ()2(I1())), ()

2(Ψ)).
Store L,L in the list.

for j = 8 do
Get Ψ from the tail of the list.
Apply rule r3 = Ψ → −(L,L).
Replace Ψ with −(L,L) in the tree generation.
Now ŵ = +(·(3(), ()2(I1())), ()

2(−(L,L))).
Store L,L in the list.

for j = 9 do
Get L from the tail of the list.
Apply rule r11 = L→ J().
Replace L with J() in the tree generation.
Now ŵ = +(·(3(), ()2(I1())), ()

2(−(J(), L))).
Rule r11 did not produce a non-terminal to store.

for j = 10 do
Get L from the tail of the list.
Apply rule r6 = L→ 0.5().
Replace L with 0.5() in the tree generation.
Now ŵ = +(·(3(), ()2(I1())), ()

2(−(J(), 0.5()))).
Rule r6 did not produce a non-terminal to store.
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return ŵ = +(·(3(), ()2(I1())), ()
2(−(J(), 0.5()))).

These two algorithms generalize for the general case of the list of rules r = [r̂1, ..., r̂Nr
] and ŵ = s(L1, ..., Lk) that

generates ŵ.
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