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Abstract

In this paper we will derive an integral equation which transform a three-dimensional
acoustic transmission problem with variable coefficients, non-zero absorption, and mixed
boundary conditions to a non-local equation on the skeleton of the domain Q C R?,
where “skeleton” stands for the union of the interfaces and boundaries of a Lipschitz
partition of €2. To that end, we introduce and analyze abstract layer potentials as
solutions of auxiliary coercive full space variational problems and derive jump conditions
across domain interfaces. This allows us to formulate the non-local skeleton equation as
a direct method for the unknown Cauchy data of the original partial differential equation.
We establish coercivity and continuity of the variational form of the skeleton equation
without based on an auxiliary full space variational problem. FExplicit knowledge of
Green’s functions is not required and our estimates are explicit in the complex wave
number.

AMS Subject Classification: 65R10, 65N38, 35A35
Key Words: acoustic wave equation, transmission problem, layer potentials, Calderon operator.

1 Introduction
Setting. In this paper we consider acoustic transmission problems in Laplace domain.
div (AVw) + s*’pw =0 in Q C R®. (1.1)

We admit general essentially bounded and uniformly positive (definite) coefficient functions
A and p and mixed boundary conditions. More precisely, the boundary conditions on 0f) are
of Dirichlet and/or Neumann type and decay conditions are imposed at infinity if the domain
is unbounded. We assume that the (complex) wave number s has positive real part so that
the arising sesquilinear form in the variational formulation is coercive and well-posedness in
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H'(R3) follows by the Lax-Milgram lemma. More details are given in Section 2.2 and the
following.

Goal. The goal of this paper is to develop a transformation of the partial differential
equation (1.1) to an non-local equation, an “integral equation”, on the skeleton (interfaces
and the domain boundary) of a Lipschitz partition of £, such that coercivity is inherited from
the coercivity of the PDE. We emphasize that there is a variety of ways to transform a PDE to
an integral equation and we mention the direct and indirect formulation, equations of first and
of second kind, symmetric and non-symmetric couplings for interface problems. Our approach
is based on the direct formulation based on Green’s representation formula and a symmetric
formulation as a system of non-local skeleton equations. The solution is sought in single trace
spaces where the functions on the interfaces are single valued and the transmission conditions
are built into the function spaces; these trace spaces have been introduced in [8].

Main contributions. Usually, Green’s representation formula contains the fundamen-
tal solution of the underlying PDE explicitly and, hence, in literature the arising boundary
integral equations are mostly considered for cases where the fundamental solution is known
explicitly. Our approach to transform the PDE to a non-local equation on the skeleton does
not rely on the fundamental solution; neither its existence nor an explicit form is required.
Instead, we define the layer potentials directly via the variational form of the PDE as solu-
tions of certain transmission problems. We derive jump relations for these abstract potentials,
Green’s representation formula, and non-local skeleton operators which allow us to define the
Calderén operator. We show how coercivity of the sesquilinear form on the skeleton can be
derived directly from the coercivity of the PDE.

While the definition of the single layer potential as the solution of the variational form of
the full space PDE for certain types of right-hand side is standard and applies also to elliptic
PDEs with variable coefficients, the definition of the double layer potential is more delicate.
Various (equivalent) definitions exist in literature for certain types of elliptic PDEs and we
briefly review some of them:

1) If the fundamental solution, say G (x,y), of the differential operator is known the double
layer potential can be defined as an integral over the skeleton of the co-normal deriva-
tive of GG convoluted with a boundary density — first for sufficiently regular boundary
functions and then by continuous extension as a mapping between appropriate Sobolev
spaces. The analysis of the double layer potential (mapping properties/jump relations,
etc.) is then derived from properties of the fundamental solution. However, if the funda-
mental solution is not known explicitly as, e.g., for variable L coefficients the analysis
is far from trivial.

2) For problems with constant coefficients the double layer potential can be defined as the
composition of the full space solution operator (acoustic Newton potential) with the
dual of the co-normal derivative. However, this dual co-normal derivative maps into
a space which is larger than the natural domain of the Newton potential. For PDEs
with constant coefficients this problem can be solved since it is known that the Newton
potential satisfies some regularity shift properties. For variable L> coefficients this is a
subtle issue.

3) In [10], the case of C'™- coefficients is considered. First the double layer potential is
introduced as explained in 1); then a regularity shift theorem from [18] is employed to



directly derive a Green’s representation formula. This Green’s formula can then be used
as an alternative definition of the double layer potential.

4) The definition in [6, (4.5)] expresses the double layer potential as a composition of a
trace lifting of the boundary density with the differential operator and the Newton
potential and thus avoids both, the explicit knowledge of the fundamental solution and
the range space of the dual co-normal derivative. Although the analysis of the double
layer potential can be based on the mature theory of elliptic PDEs, it seems that our
new definition allows for a much more straightforward analysis.

Our new approach defines the double layer potential as the solution of an wultra-weak
variational formulation of the full space PDE with a certain type of right-hand sides. This
definition allows us to derive directly the mapping properties, jump relations, and represen-
tation formula from the underlying PDE.

We derive the skeleton and Calderén operators from this idea. Our paper can be considered
as a generalization of [9] and the recent paper [11] by allowing for unbounded domains (full
space/half space), variable coefficients in the subdomains, and do not require the explicit
knowledge of a Green’s function. We also generalize the stability theory for the Calderén
operator developed in [4] (see also the monograph [21]) to variable coefficients in the principal
and zeroth order part of the differential equation. The estimates for the layer potentials,
Calderén operators, and skeleton operators are explicit with respect to the wave number s
and generalizes the known estimates for problems with piecewise constant coefficients (see,

e.g., [3], [15], [11]).

Outline. The paper is structured as follows. In Section 2 we formulate the acoustic
transmission problem with mixed boundary conditions. This requires the introduction of the
domain partitioning along its skeleton, the definition of one-sided trace operators as well as
the jumps and means of piecewise regular functions. The transmission problem is formulated
in (2.23) and defines the starting point for the various steps in the derivation of the non-local
skeleton equations.

In Section 3, we derive Green’s representation formula in an abstract way. We consider the
homogeneous PDE on a subdomain as well as on its complement domain in R? (with extended
coefficients) and formulate auxiliary variational full space problems which are coercive and
continuous. The single layer potential is defined as the solution operator for a distribution
(density) located on the interface (see (3.17)); the explicit knowledge of a fundamental solution
is not required. We present a new and simple definition of the double layer potential as
the solution of an ultra-weak variational full space problem for a certain type of right-hand
sides. With these layer potentials at hand we prove a Green’s representation formula on both
subdomains (Lemma 3.15) as well as jump relations for both layer potentials.

Section 4 is devoted to the definition of the non-local skeleton operators V, K, K', W which
are used to build the Calderén operator. The important projection property for the Calderén
operator is derived in Lemma 4.3.

In Section 5 we define the free single trace space Xsingle on the skeleton and the one with
incorporated boundary conditions X5, Then, the non-local skeleton equation is formulated
in (5.4) as a variational problem with energy space X5"#°. The remaining part of this section
is devoted to the analysis of the skeleton equation and leads to its well-posedness, formulated
in Theorem 5.5.



We summarize our main achievement in the concluding Section 6 and give comments on
some straightforward extensions of this integral equation method.

In the Appendix A we give the proof of s-explicit coercivity and continuity estimates for
the boundary integral operators and layer potentials. Since the arguments are very similar to
those in [15, Prop. 16, 19] and [6, Lem. 5.2] we have shifted this proof to the appendix.

List of notations

In this article we prefer “verbose” notations conveying maximum information about entities.
We admit that this leads to lavishly adorned symbols, but enhanced precision is worth this
price.

As a convention, we denote scalar functions and spaces of scalar functions with italic let-

ters, vectors in C? (tensors of order 1) with bold letters, and matrices in C3*? (tensors of order
2) by blackboard bold letters.

Rog.oveieiii it positive real numbers
Cogevvieiii complex numbers with positive real part
Rg’;ﬁ ................. symmetric 3 X 3 matrices
S IO N bilinear form in C3 see §2.1 and duality pairing of a function space on a
domain (or manifold) w with its dual
Ao tensor coefficient for transmission problem, see Rem. 2.4
AT pf oo coefficients on the subdomain Qf, o € {+, —}, see Assumption 2.2, (2.8)
APt L extension of the coefficients A", p;~ to R3, see Assumption 2.2
A A?Xt), A (A?Xt> ... lower and upper spectral bound of the tensor coefficient A;?Xt, see (2.5)
A p?’“), A <p§?"t> .... lower and upper bound of the coefficient p?Xt, see (2.5)
My Ao min {A (Agxt) A (pext) } max {A (A;Xt) A (pj.xt) } see (3.3)
S Laplace domain parameter (“wave number”) in Csg, see (2.2)
SO e lower bound of the modulus of s, see (2.2)
Q bounded or unbounded domain in R3, see §2.2
Q= Qj_, ............ subdomains of Q (1 < j < ng), see §2.2
Qj‘ .................. exterior complement ]R?’\Qj_, see §2.2
WCC o w is compactly contained in €2, i.e., W C 2,
) boundary of §2; see §2.2
Ly oo boundary of €2;; see §2.2
Do, common boundary of Q; and (2;; see §2.2
I'p part of I' where Dirichlet boundary conditions are imposed; see §2.2
TN part of I' where Neumann boundary conditions are imposed; see § 2.2
Pa oo set of subdomains of £2; see §2.2
D skeleton of Pq, union of 0€2;, see §2.2
Nj o outward normal vector pointing from Qj_ to Qj, see Prop. 2.5
C*®(w), C® W) ...... space of infinitely differentiable functions and vector valued version
C3 (w), C° (W) ... C° (w) :={u € C* (w) | suppu C w} with vector valued version CJ° (w)
L? (w), ||-HLp(w)> ... Lebesgue space for 1 < p < oo with norm ||| 15 (,; see §2.1
LP(w), H‘”Lp(w)> ..... L? (w) := LP (w)® with norm [lLp (), see §2.1
LP (w), H‘HLP(W)) .. LP(w) = LP (w)**® with norm [l () see 2.1
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L? (w) scalar product in L2 (Q2),L2 (Q2), L2 (Q)

subset of L* (w) of functions which are uniformly positive, see §2.1

subset of L? (w) of functions which map into the set of symmetric 3 x 3
matrices; see §2.1

subset of L (w,Rg’yXH?{) of functions which are uniformly positive definite,
see Def. 2.1

Sobolev space; see §2.1

Sobolev space W2 (w), see §2.1

closure of smooth functions with compact support with respect to the
[ g7 o) nOTm (see §2.1) and its dual space (see §2.1)

Sobolev space of functions which locally belong to H* (w); see §2.1
frequency-weighted Sobolev norm and its dual norm, see (2.1), (3.13)
subspace of L? (w) of functions v satisfying divv € L? (w), see (2.2)

subspace of H! (w) of functions v such that div (BVv) € L? (w) equipped
with the graph norm; see Def. 2.1
i3 —
X HY (9,47
Sobolev space on a closed manifold, see §2.1
Sobolev spaces on manifolds with boundary; see (2.21)

Sobolev space H'/?(T;) x H~Y/2(I;), equipped with bilinear form (-, ')Xj
and norm H'ijv see Def. 2.8, (4.1a)

Sobolev space X (Pg) := X ?21 X, with bilinear form (-, -)x and norm |||y,
see Def. 2.8, (4.2)

single traces space; see (5.2)

single traces space with incorporated zero boundary conditions, see (5.2)
one-sided and two-sided Dirichlet trace operators and frequency scaled ver-
sions; see Prop. 2.5, (2.18)

one-sided and two-sided normal trace operators and frequency scaled ver-
sions; see Prop. 2.5, (2.18)

one-sided and two-sided co-normal derivatives and frequency scaled ver-
sions, see Prop. 2.5, (2.18), Notation 2.9

one-sided and two-sided Cauchy trace operators and frequency scaled ver-
sions, see (2.15), (2.18), Notation 2.9

trace lifting operator; see Lem. 5.1

Dirichlet jump across I'; and frequency scaled version; see Def. 2.7
Dirichlet jump across partial boundary I'; ; see (2.22)

jump of co-normal derivative across I'; and frequency scaled version; see
Def. 2.7, Notation 2.9

jump of co-normal derivative across partial boundary I';x, see (2.22)
mean value of Dirichlet traces and co-normal derivatives across boundary
I'j, and their frequency scaled version; see Def. 2.7, Notation 2.9
sesquilinear form associated to the full space transmission problem with
coefficients A?Xt, p?"t and relative operator; see Def. 3.1

differential operator on subdomains €27, Qj, see (2.7)



Vopwij e eveeeeeeaennnn piecewise gradient; see (3.1)

V; (5),K; (),
KE(s), Wii(s) oovnnnnn boundary integral operators, see Def. 4.1
(O ) Calderén operator for the subdomain 2, see Def. 4.2
C(s),c(8) eevnenenn.. global Calderén operator and associated sesquilinear form; see Def. 4.2
Id...............o L. identity operator

2 Setting

In this section we give details about the acoustic transmission problem. First, we introduce
the appropriate Sobolev spaces, standard trace operators, and co-normal derivatives. Then
we specify assumptions on the coefficients of the problem and formulate boundary and decay
conditions. We write Ry := {x € R | z > 0}, and C.( := {z € C | Re z > 0}, respectively.

2.1 Function spaces

Let w C R? be a bounded or unbounded Lipschitz domain with (possibly empty) boundary dw.
For k > 0,1 < p < oo, WP (w) denotes the classical Sobolev space of functions with norm
-l yn(- As usual we write L? (w) instead of W (w) and H* (w) for W*? (w). For k > 0, we
denote by H} (w) the closure of the space of infinitely smooth functions with compact support
in w with respect to the H* (w) norm. Its dual space is denoted by H " (w) := (H} (w))l.
Vector- and tensor valued versions of the Lebesgue spaces are denoted by L? (w) := L (w)®
and L (w) := L? (w)**® with norm || Lo oy @nd [|*[| (), respectively and we use an analogous
notation for vector and tensor valued Sobolev spaces. For p = 2, these spaces are Hilbert spaces
with scalar product (-, -) L2(w): (-, '>L2(w)7 (-, -)LQ(w). We also employ a “frequency-dependent”
H' (w) norm and define for s € C\ {0}

1/2
1 = (IV0 U + I8l lolleqey) 2.1)
The space H (w, div) is given by
H (w,div) i= {w e L2(Q) | divw € L* (w)}. (2.2)

On the boundary of w, we define the Sobolev space H* (Ow), a > 0, in the usual way (see,
e.g., [16, pp. 98]). Note that the range of o for which H* (0w) is defined may be limited,
depending on the global smoothness of the surface dw; for Lipschitz surfaces, a can be chosen
in the range [0, 1]; for a < 0, the space H* (Ow) is the dual of H™ (0w).

We write (-, -)  for the bilinear form

(u,v), = /wuv so that  (u,v)72(,) = (u, V), (2.3)

and identify (-,-)_ with its continuous extension to the duality pairing H " (w) x H{ (w).
For k > 0, the spaces Hl_ (w) are given by using smooth and compactly-supported cutoff
functions via

Hk

loc

(w) == {v:xv e H" (w) for all x € Cy° (R?*)} (2.4)

and the subscript “loc” is used in an analogue way also for other spaces.
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Let R3S denote the set of real symmetric 3 x 3 matrices. We denote by (-, -) : C*xC* — C
the bilinear form (a,b) := S0 aby for a = (as);_, € C*> and b = (by);_, € C3. Clearly,
this bilinear form is the standard Euclidean scalar product if restricted to R3 x R3. Let

L> (w, R%%3) denote the space of all functions B : w — R23*% whose components belong to the

sym sym
Lebesgue space L (w). We define the spectral bounds for B € L (w,R3x%) and ¢ € L> (w, R)
by
B B
A(B) :=essinf inf Bly)v,v) <esssup sup By)v.v) = A(B) <oco, (2.5a)
yew ver3\fo}  (v,V) vew verd\[0o} (V) V)
Aq) = esseinf q(y) <esssup q(y) =:A(q) < occ. (2.5b)
yew yEw

Definition 2.1 Let

L) (w,R) == {g € L (w,R) | A(q) > 0},
L (w,R2S) == {B € L*® (w,RYS) [ A(B) > 0} .

Sym sym

For B € LY, (w, R%%3), the space H (w,B) is given by

H'(w,B) :={ue€ H' (w) | div(BVu) € L*(w)}

and equipped with the graph norm

1/2
2 . 2
lll s oy = (Nl + v BV a,))

2.2 Differential operators

Next we describe our assumptions on the computational domain and its partition. Let Q C R3
be a bounded or unbounded Lipschitz domain with (possibly empty) boundary T' := 0f.
We assume that there is a finite partition of €2 consisting of disjoint Lipschitz domains €2;,
1 < j < ng, with closed boundary T'; := 92, which satisfy Q = U;ﬁlﬁ_j The subdomains are
collected in the partition Py = {€; : 1 < j < ng}. The intersection of the boundaries 0€2; and

no
0Y; is denoted by I'j; := 9€Q; N 0Q. The skeleton of this partition is given by X := U@Qj.
j=1
To unify notation, we write 27 := §2; and set Qj = ]R?’\Qj_.
We consider mixed Dirichlet and Neumann boundary conditions on 0€2. In this way, we
split
0N =TIpUTIy (2.6)

and assume the relative interiors of these subsets are disjoint.
In the subdomains }; € Pq, we consider partial differential equations and formulate
appropriate assumptions on the coefficients next.

Assumption 2.2 For any 1 < j < ngq, the coefficients in (2.9) satisfy
1. Ay e LY, (Qj,R3X3) and A; can be extended to some A?Xt e L, (R?’,]R?’X?’),

sym sym

2. p; € L% (24, R) and p; can be extended to some pi** € LS, (R3,R),

7



3. s € Csg and |s| > so for some sy > 0.

We exclude a neighborhood of 0 for the frequencies s € C since our focus is on the high-
frequency behavior. Note that the constants in our estimates depend continuously on sy and,
possibly, deteriorate as sy — 0.

For o € {+,—}, we define formally the differential operators:

L7 (s) w := —div (A}’Vw) + SQp?w in 7, (2.7)
where
A7 = A;Xt‘gg and pf = p?Xt|Q;_, oe{+,-}. (2.8)
The differential equation on the subdomain €; is given by
L; (s)u; =0 in €. (2.9)

Remark 2.3 Time harmonic wave propagation with absorption can be described in the sim-
plest case by a Helmholtz equation with wave number (frequency parameter) s of positive real
part. Such problems arise in many applications such as, e.g., in viscoelastodynamics for ma-
terials with damping (see, e.g., [1]), in electromagnetism for wave propagation in lossy media
(see, e.q., [14]) and in nonlinear optics (see, e.g., [19]). The Helmholtz equation for complex
wave numbers also arises within the popular convolution quadrature method for solving time
depending wave propagation problems and within some iterative algorithms for solving the
linear system for the Helmholtz equation (see, e.q., [7, §2] for a more detailed description of
applications).

Remark 2.4 Typically, the coefficients A, p; are the restrictions of some given global co-
efficients A € LY, (R*, R%3), p € LY, (R%,R). Then, the choice AS" := A is admissible and
seems to be natural. In some practical applications, a different choice might be “simpler” and
preferable. For instance, if the global coefficient A is constant on the subdomains §1; and given
by a positive definite matriz A; € Rg’;ﬁ and p; is also constant, then, the choice of A;Xt and
p?"t as the constant extensions of A, p; are preferable since the Green’s function is explicitly
known in these cases (see, e.g., [20, (3.1.3)]). However, in our abstract setting the existence
or explicit knowledge of the Green’s function is not needed and hence, the concrete choice of
the extension is irrelevant and gives considerable freedom depending on the application. We
emphasize already at this point that the single layer and double layer operators will depend on
the chosen extension; however the key point is that their combination in a Green’s represen-
tation formula always represents a homogeneous solution in the corresponding subdomain as

will be shown in Lemma 3.15.

2.3 Traces and jumps

Next, we introduce jumps and means of functions across the boundaries I'j; the index j
indicates that the two-dimensional manifold I'; is regarded from the domain €2;.

The following trace operators along their properties are well known for domains with com-
pact boundary (see, e.g., [16, Thm. 3.37, 3.38, Lem. 4.3, Thm. 4.4}, [13, Thm. 2.5]). For do-
mains with non-compact boundary we refer to [17, Thm. 2.3, Cor. 3.14, Lem. 2.6]. We define
the one-sided co-normal derivatives for an abstract diffusion coefficient B € L3 (R?, R3%3);
in our applications, this will be either A or A%,

8



Proposition 2.5 Let Q, Q;, Q7,1 <j <ng, 0 € {+,—}, be as explained above.
1. For o € {+,—}, there exist linear one-sided trace operators (Dirichlet trace)
Vot H (Q7) — H'V2(Ty),

which are the continuous extensions of the classical trace operators: for u € C° (Q_j), it
holds

Vbt = “lrj :

These operators are surjective and bounded

“,yg§j“H1/2(Fj)<—H1(Q;) S C’D- (210)

For u € H' (R®), the one-sided traces coincide, i.e.,
YDy <U|QJ> = ’YlJ)r;j (U’Qj> (2.11)
and we write short yp,ju for d ; <u|Q;_,>, o€ {—,+}, in such cases.
2. For o € {+, —}, there exist linear one-sided normal trace operators (normal trace)
vg; s H(Q9,div) — H /2 (Ty)
which are continuous extensions of the classical normal trace: for ¢° € C° (Q_?), it

holds
R e

where n; is the unit normal vector on T'; pointing from €2 into Q;r These operators
are bounded

b HH*l/Q(Fj)eH(Q;’,div) =< Ch. (2.12)

Forp € H(R®, div) the one-sided normal traces in the fized direction n; coincide, more
precisely,

Vnsj <"/)|QJ‘> = _’Yi;j (¢‘Qj‘> (2.13)
and we write short Y for v,.; <f¢7|m).

3. Let B € L, (R3,R3X3). For o € {+,-}, 1 < j < ngq, set Bf := B|y,. There exist

Sym

linear one-sided co-normal derivative operators (Neumann trace)
B,o . 1 o o —1/2
W (9, B]) — HT2 (D))
which are the continuous extensions of the classical co-normal derivatives: for u~ €

ok <F> and ut € C! (Q_j> it holds

J

’yﬁ’gu— = (B; Vu~,n;) and 'yﬁ;jw = (B Vu*,—n;).



These operators are bounded

B,o
7N,J

< Cx.

H=1/2(T;)«H' (Q7,BY)

Foru € H' (R3,B) the one-sided co-normal derivatives in the fized direction n; coincide,
more precisely,

Eaf ]B,
IN;j (U|QJ_> = _VN,; <“|Qj> (2.14)
and we write short 71]%-]“ for 71]13’_; (u|Q_>
). 5, N

The one-sided Dirichlet and Neumann traces are collected in the Cauchy trace operators
vt H' (Q7,B9) — HY? (L)) x H7/2(T;) given by

Ve = <76;j77§33}}’) : (2.15)

For u € H'(R?B) and u’ := u|Qq, o € {+,—}, the one-sided Cauchy traces satisfy
(vg;ju_,fyl%’;;u_> = (fyg;jzﬁ —nyJ u*) and we write

Vo H' (RPB) — HY2(Ly) x HV2 (), o u = (nyu,78,0) - (2.16)

We will also use versions of these operators which are scaled by a frequency parameter s € C+
and set for o € {+, -}

7]%;]' (S) 1/27D,]’ ’yg;j (S) 1/27n7]7 ’Yl%:j (S) = 871/271{';;?7
1/2 1/2 B ~1/2,.B (2.17)

Yoy (8) =5y, Ty (8) =5y, Ny (8) =875
Ve ()= (72985, 57 RS (218)

Remark 2.6 It will turn out that the Calderén operator (see Def. 4.2) for these scaled
trace operators has a coercivity estimate which is better balanced with respect to the frequency
parameter s compared to the Calderdn operator for the standard trace operators (see, e.g., [4]).

sym

a function u € L*(Q) with ulg, € H' (Q9,B7), the (Dirichlet) jump and the jump of the
J

co-normal derivative (Neumann jump) of u across I'; are given by

Definition 2.7 Let B € LY, (R3,R¥3). Foro € {+,—}, 1 < j < nq, set B := Bly,. For

[ulp,; = 1D, (u’Qj) — by (u\ﬂj_> , (2.19a)
B B, B,—
[uly,; = —VN;;F (U|Qf> — Ny <U|QJ—> . (2.19Db)
For s € Cso, the frequency-scaled versions are given by [ulp ; (s) == sY2 [u Ip,; and [u ]ﬁd (s):=
5_1/2 [U]IET,) :

The (Dirichlet) mean and the mean of the co-normal derivative (Neumann mean) across
I'; are given by

{ubp, =
{{u}}%;j =

(WSU <u|ﬂj+) + 5, (u|97>) (2.20a)

1
2
1 _

B (_71135 (U|Qj> +71%7;j <U|Q;>> : (2.20b)

10



For s € Cs, the frequency-scaled versions are given by {ulp,;(s) = s'/*{u}p,; and

fudk,; (s) = s {upk,;

We also need to formulate jump conditions on partial boundaries I';; of the subdomains.
For a measurable subset M C 0S); we denote by |M| its two-dimensional surface measure. Let
); and €, be such that I';, := I'; N I'; has positive surface measure. We define the Sobolev

spaces
HY? (ij) ={¢h,, e e BT},
H2(T;,) = (HY? (T;))
Y2 (D, ) - {% L9 € HY2 (D) Ap=0in DAL, L,
<H1/2 )

Definition 2.8 The multi trace space X (Pq) for the partition Pq is given by

(2.21)

H—1/2

no

X(Pq):= X X; with X;:=HY*(T;) x HY*(Ty),

and equipped with the norm

1/2
19,11, = (il o, + Wons i) Vi, = (Yo, xy) € X,
ng 1/2
6l = (Z H%IIQ) vip = ()7, € X (Pa) .
j=1

We seek the solution of our transmission problem in the space
no
H' (Po,A) == X H' (Q;,A))
j=1

(cf. Assumption 2.2, Remark 2.4).

Then, for u € X 72, H' (Q;) and w € H' (Po,B) the jump [u]y,;, € H'/*(T';;) and the
Neumann jump [w]ﬁ;j,k € H™Y2(T;4) across ['j; := I'; N T, (and frequency-scaled versions
thereof) are defined by

[y = (5u) ‘Fj,k = () ‘Fj,k ’ [l (5) = 52 [u]p (2.22a)
B B,— B,— B - B
[W]N;j,k = <7N,j wj) v <7N,k wk) r [W]N;j,kz (s):=s/? [W]N;j,kz‘ (2.22b)
Js Js

We set [u]p,;, =0 and [W]ﬁ,jk := 0 if I'; ;, has zero surface measure or j = k.
Note that for coefficients B and functions w which are piecewise sufficiently regular, the
Neumann jump across I';;, can be written as

[W]ﬁ;j,k — {1y (BVw;), na>| — (Yo (BVwy) nk>|

= <75;j (BVw;) — 1. (IB%Vwk ,nk>‘rj,k = <[BVW]D;j7k,nk>

b
Ljk

where we used n; = —ny, on I';;. Clearly [u]y,;, = —[u]p,, ; depends on the ordering of the
indices 7, k, while the Neumann jump is independent of it.
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Notation 2.9 We have defined co-normal derivatives, Neumann jumps, and Neumann means
for an abstract coefficient B € L, (Q ngxn?;) and used a superscript B in the notation. In
our application, the choices B < A and B + A;?Xt will appear. To simplify notation we skip

the superscript B if B = A and write 7% ; short for fyﬁ?}’ and similar for analogous quantities.

At o
If B = AS", we replace the superscript by “ext” and write ’yexw short for ;= and in the

same way for analogous quantities. This convention is applzed verbatim also to the notation
of Cauchy traces.

2.4 Transmission problem

Now we have collected all ingredients to state the acoustic transmission problem. Let A €
L% (R* R3%3) and p € LY, (R*,R) be given and let the coefficients in (2.9) be defined by

Sym
A = Alg- and p; := p|,- such that Assumption 2.2 is satisfied. We do not require that
J J

the extensions AS*, pi*' in Assumption 2.2 coincide with A (see Remark 2.4).

The given excitation of the acoustic transmission problem consists of given data on the
skeleton as well as on the Dirichlet and Neumann parts I'p and 'y of the boundary (cf. (2.6)).
Let 3 = (ﬁj);ﬁl € X(Pq) with 8; = (Bpy, Bxy) € Xj. For 1 < j, k < ng, define the jumps
of B across ', :=1'; N T'y by

[Bbk = (5D;j|rj,k - BD;k|rjyk » 5N;j‘rj,k - 5N;k‘rj,k

)

if j # k and I'; NIy, has positive surface measure. Otherwise, we set [8];

k-
Given data 3 € X (Pg), the acoustic transmission problem with mixed bo undary condition
seeks u = (u;)72, € H! (P, A) such that

—div (A]VUJ) + s2pjuj =0 in Qj, 1 S] S na,
A .
gmm,k () [ty () = (Bl 1<k <ng,
V]S;j (S) uj) |FjﬂFD = BD;j’ijFD and (/71;;]' <8> uj) ‘F]ﬂFN = 5N;j|rijN 1< j < ng.

(2.23)

Remark 2.10 The inhomogeneity B3 in (2.23) is given in some applications via an incident
wave U € H . (R* A®) for some fivzed v € {1,2,...nq} which satisfies — div (A" V) +

loc
2, ext

$2p™tune = 0 in R3. If Q is unbounded, then typically, v is chosen such that 0, is unbounded.
In any case, it is assumed that the Cauchy trace of up. is well defined, more precisely, (at
least) one of the following two conditions is required:

1. 7E;Vuinc S XI/7

2. the function up. belongs to C' (R3) and satisfies

(a) the traces Yp, Uinc and YN, Uine €xist in the classical pointwise sense,
(b) the restrictions of the traces VD;uUinc|pD and VN;uUinc|pN have compact supports.
We will derive the well-posedness of this problem in Section 5 via layer potentials. For this
goal, we will present a general method to transform such acoustic transmission problems with

mixed boundary conditions and variable coefficients to a system of non-local Calderén oper-
ators on the skeleton, without relying on the explicit knowledge of the Green’s function. The
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resulting boundary integral operators' are coercive, self-dual and continuous (Thm. 5.5) so
that the Lax-Milgram theorem implies well-posedness. In turn, well-posedness of the original
formulation (2.23) follows.

3 Potentials and Green’s formula

In the subdomains Q; € Pq, a function u; € H' (Q;,A;) which satisfies the homogeneous
partial differential equation (2.9) can be expressed in terms of its Cauchy trace via layer
potentials. In this section, we introduce in a fairly standard way the Newton potential and
the single layer potential as solutions to coercive, full space PDEs in variational form. We
present a new definition for the double layer potential as a solution of an ultra-weak variational
problem. This allows us to derive its mapping properties and jump relations from the theory of
elliptic PDEs. Finally, we derive a Green’s representation formula for our acoustic transmission
problem based on these potentials.

3.1 Sesquilinear forms and associated operators
Throughout this section we require that Assumption 2.2 holds and employ the notation
- . ANO.
Qj = Qj, Qj— =R \Qj7
+ . Aext + . ext
A = A; }9;7 pj == p; |g;'

We also need the piecewise gradient V,.; which is given, for a function w € H' (R*\I;), by

(Vowigtlgr =V (wlos )+ o € {=+) (3.1)
and considered as a function in L? (R?).
Definition 3.1 Let Assumption 2.2 be satisfied. For s € Csg, the sesquilinear form
li(s): H' (R*) x H' (R*) = C
is given by

Ui (s) (u,v) == (A§'Vu, Vo), + s* (i u, 7)

J

R3 Yu,v € H' (R3) ,

and the associated operator L; (s) : H' (R*) — H1 (R®) by
(Lj (s) u,0)gs == 1; (5) (u,v) Vu,v € H' (R?). (3.2)

Next, we prove continuity and coercivity for the sesquilinear form ¢; (s) (+,-) in the spirit
of [3]. We take pains to elaborate the explicit dependence of the constants on s.

Lemma 3.2 Let Assumption 2.2 be satisfied. The sesquilinear forms {; are continuous and
coercive: for p = s/ |s| it holds for any v,w € H' (R3)
1€ (5) (v, 0)] < Mg 0ll g gy 10 o s Rey () (v, 10) 2 N EEE 0] gy
with
Aj 1= min {)\j (peiXt) A (A?Xt)} and A; :=max {Aj (pe?Xt) A (A?Xt)} ) (3.3)

J J

'We use here the traditional notion of boundary integral operators (instead of skeleton operators) since
they are defined on the subdomain boundaries.
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Proof. Fix u = s/|s|. For v € H' (R?), it holds

Re?; (s) (v, uv) = Re <32 ext,, MU>R3 + Re <Aextvv MVU>R3 (3.4)
> A (5) Re (°7) [0l 72ges) + A (AF) Re ) |V 2y

Res
> ‘ | )‘ HU”Hl(]R3)

To establish continuity, we use

10; (s) (v,w)| = ’52< <ty w>R3 ‘(AeXth Vw>R3
<A ( eXt) s | ||U||L2(R3 w72 ®) T A (AeXt) Vo[ (R3) VWl (R3)

<A HUHHl(RS);s HwHHl(RS);s

for all v,w € H' (R?). m
Since the right-hand side in the first equation of (2.23) is the zero function we conclude
that a solution u; belongs to H' (Q;,A7).

Lemma 3.3 (Green’s identities) Let Assumption 2.2 be satisfied and set Af := AS
P = p?"t’m for o e {+,-}.
J

Q97
J

1. For any o € {+,—}, assume that v° € H! (Q}’,Aj) satisfies
L7 (s)v” =0 in Q7. (3.5)
Then, the co-normal derivative of v° satisfies

<A§TVU”,V@>Q? + ? <p;.’uf’,—> = (1 ()07, 7D, (s )W), VYwe H' ().
(3.6)

2. Forv e H' (R?), set v7 := v|g,. Assume that v belongs to H* (Qj,A‘;) and satisfies
(3.5) for o € {+,—}. Then

0 (s) (v, w) = <— W1 (5) vy () w>r . Vwe H'(RY). (3.7)

J

3. For v € L*(R%), set v7 := v|g,. Assume v” € H' (QF,A7), [ = 0, and that v°
satisfies, (3.5). Then

> (7Y V), 48" (0, 07) g, = (RS ()0~ [Ty, (), (39)
oe{+,—} /

for any w € L? (R?) with w” := w|p, € H' (Q7), 0 € {+,—}.

4. Let v”,w” € H' (Q7,A7). Then,
(v7, L7 (s) W>Q; — (L7 (s) UU,W>Q? (3.9)
= (W57 (90798 () w7)y = (38 () v, W57 () (@), -
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Proof. @ 1. For any v € H' (Q9,A9), it holds

<A?VU,W>Q§ + <s2p§-’v,w>9§, = (LI (s)v w>m + (" (s)v,78,5 (s) w). (3.10)

J

35 (M7 () 0,90 (8)@>rj Yw e H' () .

@ 2. Let v € H' (R?) and assume v satisfies the conditions in part 2. We conclude from
part 1 that

i (s) (v,w) Z (A7Vv, Vw>Qo <s2p?v,@>gg

oce{+,—}
= (g (DT Ny ()T g ()W), = <_ IR ()05 (5) w>

J

holds for all w € H' (R3).
@ 3. The relation (3.8) follows in the same fashion as (3.6).
@ 4. Relation (3.9) follows by integrating by parts the first term in (3.10). =

3.2 Volume and layer potentials

In this section we define volume and layer potentials as solutions to certain variational for-
mulations of elliptic partial differential equations without relying on the explicit knowledge
of the Green’s function.

3.2.1 The Newton potential

We will define the acoustic Newton potential as the solution of the variational formulation of
a full space partial differential equation depending on a single subdomain 2;, corresponding
to extended coefficients Ae"t, p§*, and the frequency parameter s.

Definition 3.4 Let Assumption 2.2 be satisfied. The solution operator (acoustic Newton
potential) N; (s) : H1 (R3) — H' (R®) is defined through

0 (s)(N; (s) fw) = (f,W)gs Vfe H ' (R®), vVweH'(R?). (3.11)

Lemma 3.2 implies that ¢; (s) is continuous and coercive. Hence, the Lax-Milgram theorem

ensures that
N; (s): H ' (R*) —» H' (R?) (3.12)

is well defined, linear, and bounded. An estimate of the operator norm in frequency depen-
dent norms (see (2.1), (3.13)) is given by the following lemma. Note that the dual space of

(Hl (R3), ||'||H1(]R3);s) is given by <H‘1 (R3), ||-HH71(R3);S) with dual norm defined by

[f -1 (may,s == sup 1 Gs|

: (3.13)
geH1(R3)\{0} ”gHHl(RB);S

Lemma 3.5 Let Assumption 2.2 be satisfied. The Newton potential is an inverse of L; (s),
1.e.,

v=Nj(s)oL;(s)v Yve H (R®) and f=L;(s)oN;(s)f VfeH " (R®); (3.14)
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it satisfies the estimate

5]

AjRes

N (8) fll 71 oy, < 1F s uays Vf € H(RY), (3.15)

with A\j as in (3.3).

Proof. For v € H' (R?), we have L, (s)v € H~' (R?) and hence the Newton potential can
be applied:

0 (s) (N () o L (s) v, w) = (L; (s) 0, Wga = £ (5) (v,w)  Vw € H' (R?).

Since ¢, (s) (-, -) is coercive the first identity in (3.14) follows. The second one is a direct
consequence of the definition of N; (s).
To prove (3.15), we use the coercivity of ¢; (s)(-,-) with respect to the Hilbert space

(Hl (R, -l sy ) The dual space with dual norm is (H‘l (R?), H-||H_1(R3);S>. From the

Babuska-Lax-Milgram theorem [2, Thm. 2.1] and the definition (3.13) of the dual norm the
assertion follows. m

3.2.2 The single layer potential

The single layer potential is defined by using the same sesquilinear form as for the Newton
potential for a certain type of right-hand sides.

Definition 3.6 Let Assumption 2.2 be satisfied. For 1 < j < ng and ¢ € H V2 (T;) the
single layer potential S; (s) p € H' (R?) is given as the unique solution of:

0 (s)(S;(s) ¢, w) = (¢, 7D (s) E>Fj Yw e H! (]R3) . (3.16)

This defines a continuous operator H~%/2(T;) — H'(R?). The single layer can be repre-
sented as the composition of the Newton potential and the dual Dirichlet trace as can be seen
from the next lemma, where also important properties of S, (s) are collected.

Lemma 3.7 Let Assumption 2.2 be satisfied. Then
S; (s) = N; (s) o (py (5))"- (3.17)

For any ¢ € H™Y/2 ('), the single layer potential u :=S; (s) ¢ satisfies u € H* (R3\T;, A?Xt).
For the restrictions u’ := ulg., 0 € {+,—}, hold

J
L7 (s)u” =0 in Qf (3.18)

J

and the jump relations

[(S; () )py (8) =0, [(S;(s) @) (5) = —. (3.19)
Proof. The representation (3.17) follows by writing (3.16) as

0 (s) (S (5) o, w) = (10 (5)) 0, W)y Vw € H' (RY),
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so that S;(s)¢ = N; (s) (yp, (5))" ¢. Indeed, the mapping properties of the dual Dirichlet
trace (VD,J (5)) : Hl/2 (I';) — H~'(R?) imply that the Newton potential can be applied in
(3.17).

For ¢ € HY/2(T'), let u := S; (s) ¢ and u? := u|,,. By choosing in (3.16) test functions

v € H' (R3) with zero trace on I'; we obtain
L7 (s)u” =0 inQF, o€ {+ —}.

In particular, this implies v € H' (R*\I';, A%"). An integration by parts in (3.16) over Q;
and Q} leads to

~ ([ (5) 70 ()W) = {2,303 (5) Dy, Vo € ().

Since yp.; (s) : H' (R®) — H'Y2(T;) is surjective (see, e.g., [16, Thm. 3.37], [17, Lem. 2.6]) it

follows that [u ]eXt (s) = —¢. Finally, the relation [u]}, ; (s) = 0 follows from u € H"' (R?) (see,
g. [16, (6.20)], [17, Lem. 2.5]). m

3.2.3 The double layer potential

Next, we introduce the double layer potential and start by reviewing some standard definitions
as already sketched in the introduction. For problems with constant coefficients as, e.g., in
20, Def. 3.1.5], the double layer potential is defined by

D; (s) = Nj (s) o (1%5)" (5). (3.20)

The continuity of the co-normal derivative 48 - H (R?, A®") — H~Y/2(T;) (see (2.14)) leads
to the continuity of its dual (v e"t) HY2(T;) — (H' (R3, A?Xt))/. The problem with (3.20)

is that the image space (H ! (]R3, A;Xt))/ in general is larger than H~! (R3) and hence exceeds
the domain of N;(s) in (3.20). The extension of the domain of N, (s) for problems with
varying coefficients is far from trivial. Another common definition uses explicit knowledge of
the fundamental solution G (x,y) and first defines

0000 = [ (5500) vy xR

(0/0ny, with fy := A$*'n; denotes the co-normal derivative with respect to y) for coefficients
A;?Xt and boundary densities ¢ : I'; = C, which are sufficiently regular, and then continuously
extends this definition to appropriate Sobolev spaces. However, the derivation of mapping
properties of D, (s) via this approach relies on properties of the unknown fundamental solution
and is far from trivial for problems with L> coefficients.

Instead, we present here a new definition of the double layer potential as a solution of some
ultra-weak variational problem which allows us to derive properties of these potentials directly
from the well-established theory of linear elliptic partial differential operators of second order.

For the definition of the double layer potential we introduce two auxiliary variational
problems.

1. Ultra-weak variational problem (UWVP): Given ¢ € HY/?(T;), find u € L?(R?) such that

{u, L; ( = (¥, %5 (s >Fj Vo e H' (R? AS). (3.21)
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II. Mized variational problem (MVP). For given ¢ € HY?(T;), find j € H(R? div) and
u € L?(R3) such that

<(A6Xt) J,m >R3 — (u, divi)ps = (¥, 1y (5) r_n>Fj vm € H(R? div),
(3.22)

—(divj, §)ps +57 (PP, q)p, =0 Vg € L?(R?).

In Lemmas 3.8 and 3.9 we will prove that the variational problems (3.9) and (3.22) are
well posed.

Lemma 3.8 Let Assumption 2.2 be satisfied. The ultra-weak variation problem (3.21) is well
posed.

Proof. We will show that there exist constants 0 < C7, Cy, ¢; < oo such that the continuity
estimates

Vue L2 (R), ve H' (RS ATY) (L (5)0)ns] < O lull aquoy 10l (o sy (3:230)

v e H2D), ve B (R:ASY) (6,985 (9)7),.,

leHHlﬂ(F) HUHHl(RB,A;Xt) .

(3.23b)
and the following inf-sup conditions hold:
Yu € L? (Rg) Jv e H! (RS,A§Xt) ‘<’U,, Lj (S) @>R3‘ > HUHL2(R3) HUHH1(R3A§xt) ) (323(3)
Vo e H' (R? AS) ( sup | (u, L; (s R3|—0> = (v=0).
ueL2(R3)
(3.23d)

The Babuska-Lax-Milgram theorem (also sometimes called Banach-Necas-Babuska theo-
rem) (see, e.g., [2, Thm. 2.1] and, e.g., [12, Thm. 25.9] for the form we will apply it) then
implies well-posedness of (3.21).

@(3.23a). The continuity of the sesquilinear form in (3.21) follows from

[ (, L (5) D) ga| < Mlull gy 1L (8) Tll ooy < Mull ooy || — div (AFVD) + 50| 1 s
: extyr—) ||2 4 1/2
< \/§”ul|L2(R3) <Hd1v (Aj tV“)HLZ’(RS) +|s] A? ”UH%Q(RZ*’))
<
< (i HUHLZ(RS) HU“Hl(RB,Agxt)

for Cy = v/2max {1, |s|2Aj}.
@(3.23b). It is a simple consequence of the mapping properties of the trace operator that
the right-hand side in (3.21) (¢, 7% (s)7),. defines a continuous functional on H' (R?, A?)
J

so that (3.23b) follows.
@(3.23c). We choose the test function in (3.21) as v <= N; (5) u. It is easy to deduce

from Definition 3.4 that N; (3) u = N; (s) @ holds so that
(L (IN;E ) = (L () Ny () T = [l -
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Hence, the inf-sup constant for problem (3.21) can be estimated from below by

: (u, Lj (5) D)ps . [l 22 )
inf sup > in .
weL2ENO e g1 (g3 aoxo ) o) 10l 2oy 0]l (s ) we22@N0} [IN; (8) el s o

We estimate the denominator by
: ex < 2
IN; (5 )U||H1(R3 ast) = ||div (ASVN; (5) U)HLQ g3y T IN; (5 )u||H1(R3)
= ||L; 5)N; (5) u — 8%pF*N, (5 u||L2(R3 + IN; (3) 7 g

SQHLJ' (3)N ( )UHL2 R3)+2| | A2||N (5 )UHL2(R3 + HN (s )UHHl (R3)
2
< 2 [l 2 sy + 1sI° CF IN; (3) ull 3 oy

for Cp := max {, [2A% + 8%,851}. From (3.15) we get
0

_ sl 191l 22 Rs)
N: (5)u < u s S T sup 0 | ||u
N )l s AjRes el e AjRes \ gemn @i o} 1191 moy;s lellzaes)
1

< X Res [ull 2 (e

and, in turn,

o |S|2 1/2
IN; (5) U||H1(R3,A§xt) < (2 + O—)2> ||u||L2(R3) :

A7 (Res
The combination of these estimates leads to the inf-sup estimate
L,
1nf sup (u,L;(s)v >R3 > 61%7

u€L2(R3)\{0} vEHl(]RS Aext) {0} ||U’||L2(R3) ||U||H1(R3,A§Xt) |S|

where ¢; > 0 only depends on Aj, A;, 5.
@(3.23d). We choose u = L, (s)v and obtain
sup [, (5) 0| 2 |(L (50 Ly (9)7)_ | = L5 () e (3.24)

ueL?(R3)

Since L; (s) : H' (R*) — H~*(R?) is an isomorphism (see (3.12)), the implication L; (s)7 =
0 = v =0 holds for all v € H'(R?). Since H' (R* A®") C H'(R?*) we conclude from
(3.24) that (3.23d) holds. m

Lemma 3.9 Let Assumption 2.2 be satisfied. The mized variational problem (3.22) is well
posed.

Proof. Again, we employ the Babuska-Lax-Milgram theorem and prove the relevant prop-
erties for the sesquilinear form and anti-linear form associated with (3.22). The sesquilinear
form b : (H (R3,div), L? (R?)) x (H(R3,div), L? (R?)) — C related to the mixed variational
problem (3.22) is given by

b((j,u),(m,v)) = <(A6Xt) J, >R3 (u, divm)ps — (div j, U)ps + s <p§Xtu 6>R3.
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The anti-linear form associated to the right-hand side is f : (H (R3,div), L? (R3)) — C

f((m,0)) = (4, gy (5) M)

J

We will verify the four conditions for the Babuska-Lax-Milgram theorem. The continuity of b
follows by straightforward Cauchy-Schwarz inequalities. For the analogue of (3.23¢) we choose

1 3 1
V 4— igu 83 — leJ and m <+ — (1 + —2>J (325)
|s|” Pj Js| ]

] J
and obtain after some straightforward manipulations

(Gt = 5 (14 |$2)<<A?”1L3>w'*ﬁ3§<pﬂt¢VJd““>

J

5 (i 5>R3) L.

R3

+2iIm<

Hence,

6((,w), (m,v))| = Reb ((j,u), (m,v))

Res 12 Res
> g (1 1) Wl + s I + oA e

From this, the estimate

. Res 1 .
G )] 2 5 min {0 (1 + ol
J

5]
follows. The choice (3.25) can be bounded by

2
s/*

S
<12
< G (il ) + el F2ces))

I e
(1ol + 5 B
J

1 2
2 2 o112
nmmwm+mmmgs0+mgummmv

for a positive constant Cy which depends solely on sy and A;. This leads to

) ) 1/2 1/2
(G0, (m, o) > ex (il vy + lelFaes)) (Il ) + 1ol 2es)) -
Next, we prove the analogue of (3.23d). Let (m,v) € (H (R?,div), L? (R?)) and assume
V(j,u) € (H(R? div), L* (R?)) b((§,u), (m,v)) = 0. (3.26)

The analogous choice to (3.25) for the primal variables (j,u) is

5 5 1 S 1
U4 —5U — divm and j=-—— (1+—>m
s sl p5e 5] |sI”
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and we obtain in the same way as before

. S 1 exty —1 o S 1
b((j,u), (m,v)) = Tl (1 + W) <(Aj °) m,m>R3 + 3_|3 <pext divim d1vm>

J R3

+2iIm< i
Bk

5 (divm, D)ps )
S eX
+ — 5] (P50, T) s -

For the real part the estimate

Res

. . 1 2 2
Reb (). 1) > 35 i { b b (Il + o)

S

follows. In view of (3.26), (m,v) = (0,0) follows.
The continuity of the anti-linear form f follows by combining a Cauchy-Schwarz inequality

L ((m, 0)] < el grraqeyy 517 1mig () (@) oo,

with the estimate (2.12) for the normal trace. m
The next lemma states an equivalence of the solutions of (3.21) and (3.22).

Lemma 3.10 Let Assumption 2.2 be satisfied. The mized variational problem (3.22) and the
ultra-weak variational problem (3.21) are equivalent:

1. If (j,u) € (H(R?,div) , L? (R®)) is the solution of (3.22), then u solves (3.21).

2. If u is the solution of (3.21), then the pair (j,u) := (A™Vyju,u) solves (3.22). In
particular, it holds j € H (R3, div).

3. The solution u of the ultra-weak variational problem satisfies the jump relation

[ulp.; (s) = 2. (3.27)
Proof. Part 1.
Let (j,u) € (H(R3,div), L? (R?)) be the solution of (3.22). We test the first equation in

(3.22) with m := A®Vv for v € H' (R*, A®"). Clearly, m € H (R?, div) is an admissible test
function. This leads to

= {3, V0)gs — (u, div (ATIVD))yy = (9% (5) D)y, Vo € HY(RY AP
Next we test the second equation in (3.22) with ¢ € H* (R?, A®") and integrate by parts
<J VQ>R3 + s* <peXtu G>R3 =0 Vqe H! (Rg'AEext]> .

We set ¢ = v and sum both equations, which yields

(u, L ( = (95 (5)7), Vo€ H' (R? AFY).
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Hence, the solution u of the mixed variational problem (3.22) solves the ultra-weak problem
(3.21). Lemma 3.8 implies uniqueness of solutions of (3.22) so that u is the unique solution
of (3.21).

Now, we test the first equation in (3.22) with functions m € C5° (R?) satisfying supp (m) CC
Q7 for some o € {+,—}. This leads to Vyyu = (A;Xt)_lj € L?(R?) and, in turn, to
u € H' (R3\T;).

Part 2.

Lemma 3.8 and 3.9 imply the existence and uniqueness of solutions for the variational
problems (3.21) and (3.22). For ¢ € HY?(T), let uy, denote the solution of (3.21) and
(jum, um) the solution of (3.22). Part 1 implies that u,, € H' (R*\I';) solves the ultra-weak
problem so that u,, = u,. Vice versa, u,, equals the u,-component of the solution for
the mixed variational problem. We test the first equation in (3.22) with test functions m €
H (R?, div) with compact support in Q; U Q" and obtain by integration by parts

: ext ext
Jm = Aj va;jum = Aj va;juuw~

Since jn € H(R? div) it follows that (A%"V .t ) € H (R?,div) x L? (R?) solves the
mixed variational problem.
Part 3.

We consider the first equation of the mixed problem (3.22) and employ j = A;f"tva;ju.
Integration by parts in each subdomain yields

(¢, 7y () M) = — <(A§"t)”j,m>R3 — (u, div M) s = — (Vpujtt, T gy — (U, div ) s
= — (Vpwyju, M)ps + <vu7m>R3\1‘j + <[U]D;j (8) s Ymyj (5) (m)>r

_ <[U]D;j (5) s Yy () (m)>F ¥m € H (R?, div) . (3.28)
The range of the normal trace is H~Y2 (T';) = v (s) (H (R3,div)) (cf. [13, Cor. 2.8]) so that
the jump relation (3.27) follows from (3.28). m

The well-posedness of the ultra-weak variational problem allows us to define the double
layer potential as its solution.

Definition 3.11 Let Assumption 2.2 be satisfied. For 1 < j < ng and ¢ € HY*(T;) the
double layer potential D; (s)y € L*(R®) is given as the unique solution of the ultra-weak
variational problem

(D (5) ¥, L (8) Vs = (¥, 75055 () @>Fj Vo e H' (R? AS). (3.29)

Remark 3.12 Note that our definition (3.29) has the same form as formula (4.7) in [10].
However, we employ this directly as the definition while, in [10] (where the coefficients are
assumed to be infinitely smooth) a different definition is used and (3.29) is deduced as an
intermediate step within the proof of the jump relations.

In the following lemma, important properties of D, (s) are collected which are well-known,
e.g., for PDEs with piecewise constant coefficients.
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Lemma 3.13 Let Assumption 2.2 be satisfied. For 1) € HY?(T), the double layer potential
w := D; (s) ¢ satisfies w € H' (R\L';, AP), the restrictions w® := wlq, solve the homoge-
neous equations: ’

L7 (s)w” =0 inQ7, o€ {+ -}, (3.30)

J 737

and the jump relations hold:
[(D; (5)¥)]p,; () =, [(D; (s) ) (s) = 0. (3.31)

In fact, the double layer potential is a continuous operator D; : HY2([';) — HY(R3\
[y, AS).

Proof. From Lemma 3.10 we conclude that the pair (j, w) with j := A;Xtva;jw solves the
mixed variational formulation (3.22). We insert this into the second equation of (3.22) and
test with functions ¢ € L? (R?) which vanish in a neighborhood of I';. From Lemma 3.10(2)
it follows w € H' (R3\I';, A%") and w satisfies (3.30). Again from Lemma 3.10 it follows
j € H(R? div) so that [(j, n;)]p,.; = 0. We conclude [(D; (s) w)]le\?; (s) = 0. Finally, we insert
J into the first equation and substitute u <— w. Integrating by parts over {2 and Qj leads to

([l (5) g (9)TE)_ = (7 (5) )y, Vi € HL (R, ).

Since the mapping vVa,; : H (R3, div) — H~1/2(T;) is surjective (see, e.g., [13, Cor. 2.8]) it
follows [(D; (s) ¥)]p,; (s) =¢. =

3.2.4 Layer potential representation formula

The key observation for the transformation of our transmission problem to a non-local skeleton
equation is the fact that solutions of the homogeneous PDE can be expressed by Green’s
representation formula via their Cauchy data by means of layer potentials. We start with
some preliminaries. For ¢ € H~Y/2(T';) and v € H'/?(T;) we define the potential

w:=D;(s)y—S5;(s)p. (3.32)
From Lemmas 3.7 and 3.13 we conclude that w € H! (R3\Fj, A?Xt) and satisfies

—div (A?Xti) + 82p™tw =0 in R*\T';,

J

[w]p,; (s) =¢ and  [w]y; (s) = . (3.33)

Proposition 3.14 The transmission problem: “for given ¢ € H-Y/*(T;) and ¢ € HY/*(T;),
find w € H' (R¥\I;, A%") such that (5.33) holds” is well posed and the unique solution is
given by w in (3.52).

Proof. Existence follows since the potential w in (3.32) defines a solution. For uniqueness,
we assume that there are two solutions w;, ws so that the difference d = w; — w, satisfies

—div (AS*Vd) + s*p$d =0 in R°\T;,
[dlp; (s) =0 and [d]3; (s) = 0.
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We multiply the first equation by test functions v € H' (R3) and integrate by parts over Q;
and Qj After inserting the transmission conditions we get

l;(s)(d,v) =0 YveH" (R?).

Since 4; (s) (+,-) is coercive (cf. Lem. 3.2)) we conclude that d = 0 holds and uniqueness
follows. Hence, the potential w in (3.32) defines the unique solution. Since the single and
double layer operators are continuous, well-posedness follows. m

Lemma 3.15 (Green’s representation formula) Let Assumption 2.2 be satisfied. Let
u~ € H' (Q,A]) and

Ly (s)u” =0 in Q.
Then, the Green’s representation formulae hold

u” = (Sj () (s)u™ = Dj(s) 5, (s)
0= (Sj () (s)u™ = Dj(s)p, (s) u_)\ﬂj' (3.34b)

Proof. Define u € H' (R¥\I';, A%") by u|Q_7 =u" and u|g+ := 0. Clearly
J

IS

pirss (3.34a)

—div (A%'Vu) + s*pPu =0 in R¥\I;

and
ext ext,—

[U]D;j (s) = —Tpyj (s)u™, [U]N;j (s) = —INy (s)u™.
From Proposition 3.14 we deduce that the unique solution of this transmission problem
can be written in the form

u=S;(s) 7y (s)u” —Dj;(s)py(s)u

From this and the definition of u, the representation (3.34) follows. m

4 Calderén operators

Green’s representation formula from Lemma 3.15 expresses homogeneous solutions of a linear,
second order, elliptic PDE by means of their Cauchy data on the domain boundary. By
applying the Cauchy trace to this formula we obtain the Calder6on identity. In this way,
Dirichlet and Neumann traces have to be applied to the single layer and double layer potential
which give rise to non-local boundary integral operators on the subdomain boundaries.

Definition 4.1 Let Assumption 2.2 be satisfied. For 1 < j < ngq, the single layer boundary
integral operator (V| (s)), the double layer boundary integral operator (K; (s)), the dual dou-
ble layer boundary integral operator (K’ (s)), the hypersingular boundary integral operator
(W; (s)) are given by

Vj(s): H-'V2(T;) — H'2(Ty), Vi(s) o == {S; (s) by (s),
K (s): H'? (L)) = H'?(T;), Kj (5) 9 = {D; (s) ¥ }py (s)
K (s): HV2(T;) — HTV2(Ty), K} (s) = {S; (s) w355 (5),

W, (s) - H'2(T;) — H'2(T;), W; (s) ¢ := —{D; (s) ¥} (s)

for all p € H~Y2(T;) and ¢ € HY*(T;).
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In order to define the Calderén operator we introduce a bilinear form on the multi trace
spaces (cf. Def. 2.8) and set, for ¢; = (¢p;, ¥x;) € X, and ¥, = (Y., ¥ny;) € X,

<¢jv'¢j>xj = (i, Unij)r, + (Upyj, dngj)r, (4.1a)

where, again, (-,-)Fj designates the pairing between H'Y2(I';) and H-Y/2(T;). For ¢ =
(qb]):zl € X(Pq) and = (1,03):21 € X (Pq) we define the bilinear form (-,-) : X (Pq) X
§§(7>Q) —é'Kj‘by

<¢a ¢>X = Z <¢j7 ”’bj>Xj . (42)

1<j<ng
Definition 4.2 Let Assumption 2.2 be satisfied. The Calderén operator C(s) : X (Pq) —
X (Pq) is given by

—K; (s) Vj(s)

(o) = ding Gy ()1 <5 <ol with ()= | 950 G

The sesquilinear form c(s) : X (Pq) X X (Pq) — C associated to the operator C(s) is
c¢(s) (@, ) == (C(s) P, %), .

Let Id : X(Pq) — X(Pgq) denote the identity. An essential property of the Calderén
operator is that (C (s) — %Id) is a projector into the space of Cauchy traces of solutions of
the homogeneous PDE (2.9) as can be seen from the next Lemma. Recall the definition of
the one-sided Cauchy trace 'y‘éxz_ (s) from (2.16) and (2.18).

Lemma 4.3 Let Assumption 2.2 be satisfied. Let u~ € H* (QJ_,AJ_) and
Ly (s)u™ =0 in Q.
Then, for any j € {1,2,...,nq} it holds

1 ext,— [\, —
(669~ 31 ) 425 ()u =0, (13)
where Id; : X; = X is the identity in X;.
Proof. Green’s representation formula (3.34a) gives us
7]5,‘7 (S) U = ’7]5,] ( ) ( )Vl‘ifx‘; ( )U_ - 7]57] (8) D] (8) 7]5,‘7 (8) U’_’
0=15,(s)S; () 1y~ (8)u™ — b (5)Dj (8)vpy () u™,
Ty (8)uT =%y ()55 () ey (9)u” — vy () Dy (s)py (s)u,
0=—7%y" (5)S; (s) 1y~ ($)u” +%5" () Dj (8) 1y () u

We multiply the first two relations by 1/2 and add them and do the same with the last two
relations. This yields

1 — — ext,— — - -
o (547 = Vi (5) 185 () u™ — K, ()75, ()
1

SNy () u” = K5 ()G (5)u™ + W; (s) 1y () u”
and after a reordering of the terms (4.3) follows. m
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5 Single-trace formulation of the transmission problem

In this section, we formulate the transmission problem (2.23) as a non-local skeleton equation
for the Cauchy data of the solution. We start from a transmission problem with given jump
data: We seek

W (), = () € X (P

as the solution of
(G () = 31dy) wpt =0, =i=me
[umu L‘,k (s) = [5]j,kv 1 <jk < na, (5.1)

g1/2 g mult and s~1/2 1 <j<ng

— 1t —
Dy Ir,nrp ﬂD;j|rijD uﬁ“} ’ijFN - /BN;j|rijN !

with 3 as in (2.23). Note that u™" is multi-valued on the inner skeleton ¥ N ). Following
9], a single trace formulation and single-valued functions is obtained when the transmission
conditions are incorporated into the multi trace space X (Pq). We define the free single
trace space X*8l° (Pg) and the single trace space with incorporated homogeneous boundary
conditions by

Jv e H (Q)

. . wD] = 'YD'jfU
single L ) \\"e s.t. V1 S i S neo } ) )
X (PQ) = ((wD;J7¢N;J)>]’:1 eX (PQ) | Iwec H (Q,div)

s.t. V1 <7 <ng } PN = W
(5.2)

X(S)ingle (PQ> = {((Q/’D;j?@bN;j))?gl € Xrinele (PQ) | Vi< j<ng: ¢D;j|pijD =0 A 77ZJN;j|1“ijI\I =

We set usnele :.— (umlt — 3, (5))],7 , and observe that u*"#" satisfies

(C] (S) — %Id]> usingle = — (CJ (S) — %Idj) IBj in Qj, ]_ S j S no,

) J
[usmgle]j’k (S) — 07 1< ju k < na, (53)

usinele =0 and uivee =0, 1 <7 <nq.
D;j I; Cp N;j I,y >7 > ho
This implies that us™ele ¢ X5 € (Py,).
A reversed perspective on this derivation of the skeleton equation in the single trace space
from the original transmission problem (2.23) is as follows: One solves the non-local skeleton
problem in the single trace space (in variational form): find us™e € X5"€° (P such that

() (0 p) = 5 (0 ), = = (9 (8() ) - 3 (B() W) ) (b

for all ¢ € X" (Pg), and obtains u = ¥ 4 3 (s). Then, we use Green’s representa-
tion formula
uj = (S; (s)uly' = D; (s)up') ]+ 1<J < na.

Finally, the function u = (u;)72, € H (2, A) solves the original transmission problem (2.23).
Next, we prove the well-posedness of (5.4). The essential point is to prove s-explicit
continuity estimates for the layer potentials and the boundary integral operators as well as
coercivity results for V (s), W (s), and C (s) — 3 Id.
We start with an estimate of the Dirichlet and Neumann trace of homogeneous solutions
of the acoustic PDE.
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Lemma 5.1 Let Assumption 2.2 be satisfied and set Af := A;"t‘m, o € {+,—}. Then there
are constants Cp, C' > 0 independent of s such that ’

||71%;j (S)UHHI/Q(FJ-) <Cp |S|1/2 HU”H1<Q§’) <C ’3‘1/2 HUHHl(Qg);s Yue H' (Qj) : (5.5)

Vice versa, there exists C' > 0 independent of s and a linear bounded extension operator
E; (s): HY2(T;) — H' (R3) which satisfies for all ¢ € HY*(T;) :

0,5 () Ej(s)o =0 and |E;(s) @l g1 gays < Cllellmrze, - (5.6)

Let v € H' (R?) such that v7 := v|o, belongs to H' (Q9,A7) and
—div (A'Vv) + s?p% = 0 in R3\T;.

Then,

ext ,0
()]

(R < A 0 s ey (5.7)

H=1/2(L;)

where A; is as in Lem. 3.2 and C' depends only on the domain €.

Proof. The estimates in (5.5) follow from the scaling of 73, (s) with respect to s and
(2.10).

The extension operator E; (s) : HY2(I';) — H* (R3) is defined for ¢ € H/?(T';) piecewise
in Qf, 0¢€ {+,—}, by

75, (5) (Ej (s)9) = ¢ and
(V(E; () 9), V)pa(ar) + sl (B () 9, w) oy =0 Vw € H' (7).

From [21, Prop. 2.5.1] the estimate (5.6) follows.
For (5.7) we adapt the standard proof (see, e.g., [21, Prop. 2.5.2]) to our setting. For
given ¢ € HY2(T;) let w := E; (s)%. Let w’ := w|y, and v7 = v|q., 0 € {+,—}. Green’s
J J
first identity (3.6) gives us

. —\ 1/2 o
[OR57 6) 0Py, | = ‘() (57 (5) 0728y (5) %),

J

= |(agvv, Vi) g+ (D507, 07)

Lem. 3.2

< A N g 1 s
(ag )i 19l a7
(5.6)
< A 10" s o 10 s

Finally,

(557 ()78,

J

ext Reg

)UUH sup

f)/
H YeH/2(T';)\{0} WHHW(F])

S CAJ HUUHHl(Q;.’);S :

H-V2(r)) ~
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Lemma 5.2 Let Assumption 2.2 be satisfied. Then the sesquilinear form induced by the single
layer boundary integral operator satisfies the coercivity and continuity estimates

Res \;

Re (o V;01%), 2 e e el Vo€ HRT), (5.580)
ol ? _
(Vi ) 0,00, | < O s Wl Wl vy Yoo € HP (D). (5.80)
The dual double layer boundary integral operator is bounded and satisfies the estimates
3/2
s _
1K ) ell 12, <OA‘&3me,m@ﬂ Vo € H™V2 (L), (5.9)

The sesquilinear form induced by the hypersingular boundary integral operator satisfies the
coercivity and continuity estimate

— R
Rdwﬂﬁww%,_‘fkwwmm> vy € HY2(T;), (5.10a)
2
]II

(W; (5) v, 2y, | <
The double layer boundary z'ntegml operator is bounded and satisfies the estimate

A [gl32
1K () Ul c—' o

ey ol Vo, € H'? (). (5.10b)

— Nl Vo€ HY2(IL)). (5.11)

For the single layer potential, the estz’mate
|3|3/2 1/2
19 () Pl oy < O oo Welluaey Yo € 72T (512

holds. The operator norm of the double layer potential is bounded by

bl
1D, (5) Ul s g, o < O

IWHHm ry Ve HY2 (L), (5.13)
where for u € L? (R3) with u’ := uly, € H1 (Q;’), o = {+,—} the broken H' norm is given
J
by
1/2
o2
||u||H1(R3\Fj);8 = Z ||U ||H1(Q§.’>;s
oe{+,—}
All constants c,C > 0 only depend on Q) and, in particular, are independent of s.

The proof of this lemma follows standard arguments and hence is postponed to Ap-
pendix A.

Lemma 5.3 Let Assumption 2.2 be satisfied. The sesquilinear form (C; (s) -, 7>X]_ (X xX; —
C is coercive:

A R
R€<C ¢J’¢ >X — 1+JA2 |e|28 H’lpHX v’(pg era
and continuous:
l—I—A- |s|?
(G958 | < O s sl 1901l 90 €%
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The proof follows closely the arguments in [4, Lem. 3.1] for the case of constant coefficients
and we adapt it here to our general setting.
Proof. We pick some v, := (¢n;, ¥n;;) € X; and define v € H' (R*\I';) b

w:=S;(s)¥n,; — D (5) ¢Yp,.

We set u” := u|g., 0 € {—,+}. The jump relations (3.19), (3.31) imply

[U]D;j (s) = —¢p; and [UE{; (8) = —¥ny

while the relations

{udn (s) = V; (s) ¥ny — K; (8) ¥y,
{uBss (s) = K (s) ¥nyy + W, (5) ¥y

follow directly from the definition of the boundary integral operators. A more compact for-
mulation is fdo (5
UgD
Ci(s eXJ
Since S; (s)¢n;; and Dj (s) ¢p,; satisfy the homogeneous PDE in Q@ and QF (cf. (3.18),

(3.30)) we may apply Green’s identity (3.6) and the definition of the jumps and means (2.19),
(2.20) to obtain by a jump-average parallelogram identity:

Re (C; ()%, %)
= —re ((5)" (1o (0. @), + (3) (o ). 035 9), )

_\ 1/2
= Re ((S) ((A*Vu Vu+>m + 5" (pfu* u+>m>>
1/2 _ _
+ Re <<§) <<A;Vu—, Vu™),- + 5 <pju—,u>ﬂ.>) :
As in the proof of Lemma 3.2 we obtain

Res
Re<c ¢]717/) >X - | | A HUHH1 (R3\T});s (514)

To estimate the right-hand side we start with

From (5.5) and a triangle inequality we conclude that
~1/2 2 _ o172 2 516
HS wD;jHHUQ(F.) =5 [U]D;j (8) HY2(T,) ( : )
a2 2
<2 Z ‘/VD] u HHl/Q(Fj) <C HUHHl(R?'\F]-);s'
oe{+,—-}
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From (3.7) and by using the lifting E; (s) as in Lemma 5.1, we obtain

(25 ).5)

e ll-sv2qeyy = |5 )| - swp J’ (5.17)
IINH=1/2( H*1/2(F) e H/2(T;)\{0} ”QSHHl/?(Fj)
5\1/2 ext =7~
(5" (R (), 90 () E; () 6),
= sup J
peH/2(I;)\{0} H¢HH1/2(F])
l; E;
o O @E )]
peH/2(I';)\{0} H¢”H1/2(r7)
m 3.2 1E; (5) &Il 111 (ges);s
< A ||u||H1(R3\Fj);s sup J H(R3);
peH/2(I';)\{0} ”d’“Hl/?(rj)

(5.6)
< CA ‘|U|’H1(R3\Fj);s'

The combination of (5.14)-(5.17) leads to the coercivity estimate

>\j Res

Re<C 'lp];"/) >X - 1+A2 | ‘2 H’(p ||X

For the continuity estimate we obtain for any 1; = (VD ¥nig), @ = (¥py, ony) € X
from Lemma 5.2

_ —K; (8) Yoy +V; (5) ¥ny D
‘<C ¥ bi)x, ‘ <( W; (s) ¥py; + Kj (5) ) ’ ( PNy )>X
- \<—K» (5) iy + Vs () ¥ B, + (707 W (5) oy + K () )y |

L sl ()
< O3 fres (A1 Mool Il vacey + 511l Nosall v,

1/2
A2 05l oy il + A 1517 Tebsallyrarmge Iomillmrsy )

1 |5’ _ 2 1/2
= )\ Res (Ai HS 1/2¢D?ﬂ'||H1/2(l“g') + ‘|¢N;j”i]1/2(rj)> %
1/2
X <A2 HS—I/Q@Z)DU”ZIM(FJ-) + ||90N;j||2H—1/2(Fj)>
14+ A, Jsf’
=0 s sl 1],

]
A summation of the local coercivity estimates (of the local continuity estimates, resp.)
over all subdomains leads to the following global coercivity (global continuity, resp.).

Corollary 5.4 Let Assumption 2.2 be satisfied. The sesquilinear form (C(s)-,%)x : X (Pq) X
X (Pq) — C is coercive: for any ¥ € X (Pq) it holds

Re (C(s) ), %), > _ A Res
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and continuous: for any ¥, ¢ € X (Pq) it holds

(€6 By < CLEA LD

with A := minlgjgm >\j and A\ = maxi<j<ng Aj.

S 1Pl D@l (5.19)

We have collected all prerequisites to prove the well-posedness of the non-local variational
problem on the skeleton (5.4) in single trace spaces.

Theorem 5.5 Let Assumption 2.2 be satisfied. The sesquilinear form (c(s) (-,+) — 5 (. )x) :
XEMEe (Do) % XS (Pg) — C s coercive and continuous: for any o € X3"€°(Pg) and
P, ¢ € X(Pq) holds

e (C<S) o) L A Res

j o) = e all

1 1+A s
< —
< <2+ o ) 461191

For any B € X (Pq), the variational problem (5.4) has a solution u™"®° e XS (Pg) which
is unique and satisfies

(5) (1, 9) — 5 (. B),

| |9/2

<o

where C only depends on A\, A, sqg, and on the domain Q) via trace estimates.
Proof. Let a = (aj)?jl € Xf)ingle (Pa) with a; = (apy, any;) and ¢ = (¢j)§21>¢ =
(v;))2, € X(Pq) with 9; = (¥ny, ¥ny) and é; = (¥py, ¢n;). Then

‘ ‘ usingle

181, (5.20)

Re (c(s) (@) = § @), ) = Ree(s) (o)

owing to the self-polarity of the single trace space, see [8, Lem. 4.1], [9, Remark 55]. Thus,
the coercivity estimate follows from (5.18):

Re (c(s) (a, ) — % <a,6)x) 1 _;\AQ I|{e|2s | HX

The continuity estimate follows by combining (5.19) with

(.80 < = |(wou. @rady, + (i, P50 |

1<j<nq

< 7 (vallaey lowslla-vay + 18l a-vay levillma,))
1<j<ng

< 3 iy 195y, < 19l Il
1<j<na

In particular, the continuity of (c(s)(-,-) — 1 (-,")x) implies that for any 8 € X(Pg) the

form (c(s)(B(s),) —1(B(s),)yx) Xg"ele (Pg) — C defines an anti-linear operator with

upper bound ( + ol P‘{is) 5|/ |8B||x for its norm. By the Lax-Milgram theorem we infer

well-posedness of (5.4) and the bound in (5.20). m
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6 Conclusion

In this paper, we have considered acoustic transmission problems with mixed boundary con-
ditions and variable coefficients. We have developed a general approach to transform these
equations to non-local skeleton equations in such a way that the resulting variational form
is continuous and coercive so that well-posedness follows by the Lax-Milgram theorem. The
transformation is based on Green’s representation formula involving single and double layer
potentials which are defined as solutions of some variational full space problems without re-
lying on the explicit knowledge of the Green’s function. The paper can be regarded as a
generalization of [11] by allowing for unbounded domains (full space/half space) and variable
coefficients in the subdomains.

In contrast to other methods such as the indirect method of boundary integral equations
(see, e.g., [20, Chap. 3.4.1]) the well-posedness of the non-local skeleton (integral) equation
follows directly from the well-posedness of the auxiliary variational problems in full space.

Another important contribution of this work is the completely s-explicit nature of all
estimates. Its significance is due to the possibility to apply our boundary integral equa-
tion method to transform the space-time wave transmission problem (in analogy to (2.23))
to an integro-differential equation which may serve as a starting point for its discretization
by convolution quadrature. The well-posedness of this integro-differential equation follows
from the coercivity and continuity of the variational skeleton equation (5.4) via operational
calculus; for details we refer to [11], [4], [21], [5]. We also mention that the restriction to
mixed Dirichlet and Neumann boundary conditions was merely done to reduce technicalities:
Dirichlet-to-Neumann boundary conditions and impedance conditions can be incorporated
into the variational skeleton equation following the approach in [11].

A  Proof of Lemma 5.2

The proof of Lemma 5.2 is an adaptation of the arguments in [15, Prop. 16, 19] to our
setting; see also [6, Lem. 5.2]. In this appendix, we present the proof to show that the known
arguments apply to our general setting.
Proof of Lemma 5.2. Let ¢ € HY/2(T') and set u := S; (s) ¢. The jump relations for
flhe single layer potential (cf. (3.19)) imply vp.; (s) u =V (s) ¢ and [u]le\?; (s) = —p. Then, we
ave

Re (.V; (s)¢) = Re (= [ul3} ()70, (3)7)

. ’ .
J F]

(218 <(§) v <_ [l (5) Dy (s)ﬂ>rj> -
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We employ (3.7) with v = w = w and A (-), A; as in Lem. 3.2 to obtain (cf. (3.4))

Re (()/ (= 15 (5) .0 (9 >) - Re (()/ £ () <u,u>)

— ((AY'Vu, VU>R3 + |s]? (pSu, E>R3>

N (A [Vl + A (05) 15 [l e e

= W ||U||H1 (R3);s

Finally, the coercivity estimate (5.8a) for V (s) follows from (5.7)
Next, we prove the continuity of the single layer operator. For ¢ € H~1/? (L)), let v :=
S; (s)¢. Then (5.12) follows from

Re s 9 —_—
A 0oy < Re {0 V51 9) < llellgvaqey i (9) oo,

5] (e = ry
5.5) 1/2
< O3l 1ol =120y 101 1 sy -
The continuity (5.8b) of V (s) is a direct consequence of the estimate
[V, (5) 0,80 | = (i ()55 (5) 2,0 | < s (5155 () @l ooy Nl

2
12 5]
<C |5’ / ||S] (5> <PHH1(R3);5 ||¢HH—1/2( < C)\ Re s H(:OHH 1/2(r ”wHH 1/2(r

Finally, the dual double layer boundary integral operator K’ (s) can be estimated by using
the mapping properties of S; and 1%, Let v” := (S;(s) ¢)lg., 0 € {+,—}. Then, we have
J

for all p € H~Y/2(T;) :

K5 (8) @l 1o, = 1S5 ) IRE Ol sy < D2 RS S0 |yosagr
oe{+,—-}
(5.7) (12) A |s]?/?
< CN; Z ||UU||H1(Q;.’);S < C)\_], |E{|es H‘pHH‘l/?(Fj)'
oe{+,—} J

Next, we investigate the mapping properties of the operators related to the double layer
potential and start with the coercivity estimate of W, (s). Let ¢ € HY2(T;) and set u :=
Dj (s)%. The jump relations for the double layer potentials (cf. (3.31)) imply & (s)u =
—W; (s) ¢ and [u]p; (s) = 9. Then, we have

Re (W; () 0, 0),, = Re (=384 () u, [, (5))

L

C19 Re (G) - <—7§?§§ (s) u, [@p, (5>>Fj> '
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We employ (3.8) with v = w = w and A(-), A; as in Lem. 3.2 to obtain (cf. (3.4)) with
A7 = A;Xt’%, and pf := p?Xt|Q;_,, oe{+, -}

_\ 1/2
Re (W; (s) 9, ). = Re (g) > <<A?VuU,VF>Q?+52<p}7u0,m>ﬂ§r>

oce{+,—}

R _ _
:ﬁ 3 <<A?VUJ,VU">Q;,—|—|S|2<p?u”,u‘7>ﬂg>
oe{+,—}

| ‘ >‘ Z HUUHHl QU ‘ ‘ )‘ HUHH1 (R3\T'j);s (Al)
oe{+,—-}

Thus, the coercivity relation (5.10a) follows from the trace estimate (cf. (5.5))

2

2 o112
[0y = [ ) € 2 80 ()0 e
oe{+,—}
o2 2
<Clsl Y u HHl(Q;..);s:cm el o e
oce{+,—}

Next, we prove the continuity of the double layer operator. For ) € HY2 (T';), let u := D, (s) 1.
Then (5.13) follows from

Res — —
||)‘ ||U||H1 (R3\T;); <Re< j(5)¢7¢> —Re< ’VeXt (s)u ¢>F

J

< H,yext UHH—l/Q r;) ||,¢}||H1/2(Fj)

(5.7
< CA,; ||U||H1(R3\F ||¢||H1/2

The continuity estimates for the operators W; (s) and K; (s) follow from the combination of
this and the trace estimates (Lem. 5.1). m
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