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Abstract

A large class of inverse problems for PDEs are

only well-defined as mappings from operators to

functions. Existing operator learning frameworks

map functions to functions and need to be modi-

fied to learn inverse maps from data. We propose

a novel architecture termed Neural Inverse Opera-

tors (NIOs) to solve these PDE inverse problems.

Motivated by the underlying mathematical struc-

ture, NIO is based on a suitable composition of

DeepONets and FNOs to approximate mappings

from operators to functions. A variety of exper-

iments are presented to demonstrate that NIOs

significantly outperform baselines and solve PDE

inverse problems robustly, accurately and are sev-

eral orders of magnitude faster than existing direct

and PDE-constrained optimization methods.

1. Introduction.

Partial differential equations (PDEs) are ubiquitous as math-

ematical models in the sciences and engineering (Evans,

2010). Often, solving PDEs entails solving the so-called

forward problem. That is, given inputs such as initial and

boundary conditions, coefficients, and sources, compute

(observables of) the solution of the PDE. However, in many

important contexts in applications, one is instead interested

in solving the so-called inverse problem (Isakov, 2017).

That is, given measurements of (observables of) the solution

of a PDE, infer the underlying inputs.

A large class of such inverse problems takes the following

abstract form: given observables as operators (mappings

between function spaces), infer the underlying input coef-

ficient (functions) of the associated PDE. A prototypical

example is the well-studied Calderón Problem (Uhlmann,

2009) that arises in electrical impedance tomography (EIT)

in medical imaging. Here, the observable is the Dirichlet-
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to-Neumann (DtN) operator that maps the voltage on the

boundary to the current, and one is interested in inferring the

underlying conductivity field. A related example is inverse

wave scattering for geophysical applications. Other exam-

ples include optical tomography (Lai et al., 2019) where

the observable is the so-called Albedo operator, and one

needs to infer the scattering and absorption coefficients of

the underlying medium. Another prominent example arises

in seismic imaging in geophysics (Yilmaz, 2011) where the

observable is the source-to-receiver (StR) operator, and the

task at hand is to infer the underlying sub-surface properties

such as wave velocity or material density. In many of these

examples, the solution to the resulting inverse problem is

unique and stable if and only if the inverse problem is posed

as a mapping from operators to functions.

Given the nonlinear nature of most of these inverse prob-

lems, analytical solution formulas are not available except in

some simple cases. Instead, iterative numerical algorithms

based on the PDE-constrained optimization are commonly

used to approximate the solution (Chavent, 2010). These

algorithms repeatedly apply the forward and adjoint PDE

solvers to converge to the unknown coefficient. However, a

large number of iterations might be necessary, which leads

to prohibitively high computational costs as numerous calls

to PDE solvers are very expensive, particularly in two and

three space dimensions. Moreover, these iterative algo-

rithms can be sensitive to the choice of initial coefficient.

Given these factors, the design of alternative approaches to

solving inverse problems is imperative.

Data-driven approximation of PDEs is rapidly emerging as

a powerful paradigm. Most of the available results pertain to

forward problems for PDEs. A particularly popular frame-

work is operator learning, where one seeks to learn the

underlying forward solution operator of the PDE from data.

Existing approaches to operator learning include Deep oper-

ator networks (DeepONet) (Lu et al., 2021; Mao et al., 2020;

Cai et al., 2021) and their variants, as well as the so-called

neural operators (Kovachki et al., 2021b), which include

the widely used Fourier Neural Operators (FNO) and its

variants (Li et al., 2021b; Pathak et al., 2022). Graph neural

network-based algorithms (Boussif et al., 2022; Brandstetter

et al., 2022) are also emerging as an alternative.

Given the widespread success of operator learning and other
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deep learning-based algorithms in the context of forward

problems for PDEs, it is natural to investigate their utility in

learning the solutions of the corresponding inverse problems

from data. However, this task is very challenging as existing

operator learning algorithms map functions to functions.

On the other hand, the aforementioned inverse problems

are only well-defined as maps from operators to functions.

Hence, one needs non-trivial modifications of existing oper-

ator learning architectures to handle inverse problems. This

is precisely the rationale for the current paper, where our

main contributions are the following.

• Motivated by the underlying mathematical structure of

the considered class of inverse problems, we propose a

novel architecture, termed as Neural Inverse Operators

(NIOs), for learning solutions of these inverse prob-

lems from data. NIOs compose (stack) two existing

architectures, DeepONet and FNO, in order to map

operators to functions.

• We test NIOs extensively on a suite of problems, includ-

ing the Calderón problem in EIT, inverse wave scatter-

ing for object detection, reconstructing the absorption

and scattering coefficients in optical tomography, and

seismic wave migration to infer sub-surface properties.

We show that NIO significantly outperforms baselines

on all these benchmarks.

• Given the inherent sensitivity of PDE inverse problems

to noise and perturbations, we also demonstrate empiri-

cally that NIO is robust with respect to these factors as

well as to the number and location of sensors and un-

derlying grid resolutions. Moreover, we also show that,

unlike baselines, NIO can handle fluctuations in the

number of input measurements as well as generalize

out-of-distribution without any significant loss of accu-

racy. Furthermore, NIO is found to be several orders of

magnitude faster while still being more accurate than

traditional PDE-constrained optimization methods.

Thus, we propose a new learning framework for the fast,

robust and accurate solution of PDE inverse problems.

2. A Class of Inverse Problems.

2.1. Mathematical Framework.

Let D ⊂ R
d be a bounded open set, with (smooth) boundary

∂D. Let T > 0 and Ω = D or Ω = D × (0, T ), depending

on whether the PDE is time-(in)dependent. Correspondingly,

∂Ω = ∂D or ∂Ω = ∂D × (0, T ), respectively. Let a ∈
A(D), with A denoting a suitable function space over D,

be a coefficient. Then, an abstract PDE can be written as

Da(u) = s, B(u) = g, (1)

where u ∈ U(Ω) is the solution, s ∈ S(Ω) is the source term

and g ∈ G(∂Ω) is the boundary condition, for the PDE (1).

Here, Da : U 7→ F and B : U 7→ G are the differential and

boundary operators, respectively and U, S,G are suitable

function spaces, defined over their respective domains.

The forward problem for the abstract PDE (1) amounts to

the following: given the coefficient a ∈ A, source term

s ∈ S and boundary condition g ∈ G, find the solution

u ∈ U of the PDE (1). Often, one is interested in not

only the solution itself but also observables of the solution,

which can be measured in practice. Since measurements

are usually easier to perform at boundaries, a particularly

relevant class of such observables are given by the following

boundary observation operator,

Λa : G(∂Ω) 7→ H(∂Ω), (2)

which maps the boundary data g ∈ G(∂Ω) to a measure-

ment Λa(g) = h(u) ∈ H(∂Ω), a function space on ∂Ω.

Thus, for a fixed coefficient a (and source s), solving the

forward problem amounts to solving the PDE (1), with a

given boundary data g to obtain the solution u and then post-

processing u to compute the boundary observation operator

h(u) = Λa(g). Hence, one can rewrite the forward problem

associated with the PDE (1) to obtain the map,

F : A(D) 7→ L (G(∂Ω),H(∂Ω)) , a 7→ F(a) = Λa, (3)

where Λa is the boundary observation operator (2) and

L(X,Y ) denotes continuous operators between function

spaces X and Y .

In practice, one is often interested in the inverse problem

associated with the PDE (1). For instance, in tomography

(imaging), one needs to infer the unknown coefficient a
from some measurements of the solution u. In general, this

problem is ill-posed, and a single instance (or small num-

ber) of boundary conditions g and measurements h(u) of

the corresponding solutions u, do not suffice in inferring the

underlying coefficient a. Instead, many deep mathematical

results have provided suitable frameworks where such in-

verse problems can be well-posed. The inverse map for the

forward problem (3) takes the form

F−1 : L (G(∂Ω),H(∂Ω)) 7→ A(D), Λa 7→ a = F−1(Λa),
(4)

The rigorous guarantee of the existence and, more impor-

tantly, the uniqueness of this inverse map F−1, for a large

class of PDEs, is a crowning achievement of the mathemat-

ical theory of inverse problems (Isakov, 2017). Moreover,

one can also show Lipschitz or Hölder-stability of the in-

verse problem by proving estimates of the form,

∥F−1(a)− F−1(a)∥L ∼ ∥a− a∥αA, 0 < α ≤ 1. (5)

In some cases, the right-hand side of the above stability

estimate is replaced by a logarithm of ∥a−a∥A, which only

guarantees (weak) logarithmic stability.
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After presenting this abstract framework, we provide four

concrete examples of PDE inverse problems (see SM Fig-

ures 3-8 for illustrations) to which this abstract framework

applies.

2.2. Calderón Problem (EIT).

Let the coefficient 0 < a ∈ C2(D) represent the conduc-

tivity of the underlying medium (domain D ⊂ R
d) and the

associated PDE (1) is the following elliptic equation,

−∇ ·
(
a(z)∇u

)
= 0, z ∈ D,

u(z) = g(z), z ∈ ∂D,
(6)

with Dirichlet boundary value g ∈ H
1
2 (∂D) representing

the voltage and the current source term is s = 0. The

associated boundary observation operator Λa is the well-

known Dirichlet-to-Neumann (DtN) map,

Λa : H1/2(∂D) 7→ H−1/2(∂D),

Λa[g] = a
∂u

∂ν

∣∣∣
∂D

, ∀g ∈ H1/2(∂D),
(7)

which maps the input voltage g into the current a(z)∂u∂ν =
a∇u · ν (with ν being the unit outward normal vector) at

the boundary and u is the solution of (6).

The inverse problem, often referred to as the Calderón prob-

lem, constitutes the basis of EIT (Uhlmann, 2009). It aims to

find the conductivity a of the medium, given different mea-

surements of the DtN (voltage-to-current) pairs. Thus, this

inverse problem falls into the considered abstract formalism

and the inverse map (4) is given by,

F−1 : L
(
H1/2(∂D), H−1/2(∂D)

)
7→ C2(D),

F−1 : Λa 7→ a = F−1(Λa),
(8)

with L(·, ·) denoting the corresponding bounded linear op-

erators. This inverse problem is shown to be well-defined

and (logarithmic-) stable (Clop et al., 2010).

2.3. Inverse Wave Scattering.

In many applications of interest, wave propagation in the

frequency domain is used to infer material properties of

the medium, modelled by the squared slowness 0 < a ∈
L∞(D). The associated PDE is the Helmholtz equation,

−∆u− ω2a(z)u = 0, z ∈ D,

u(z) = g(z), z ∈ ∂D,
(9)

for some frequency ω and Dirichlet boundary condition

g ∈ H
1
2 (∂D). The resulting boundary observation operator

is again the Dirichlet-to-Neumann (DtN) map

Λa : H1/2(∂D) 7→ H−1/2(∂D),

Λa[g] =
∂u

∂ν

∣∣∣
∂D

, ∀g ∈ H1/2(∂D),
(10)

where u is the solution to (9) with the coefficient a. The

corresponding inverse problem amounts to inferring the

wave coefficient a from the DtN map (10). Thus, it can be

formulated similar to the inverse map (8). Its well-posedness

and stability have been demonstrated for the Helmholtz

equation in (Nachman, 1988) and references therein.

2.4. Radiative Transport and Optical Imaging.

In optical imaging or tomography, the material properties of

the medium D ⊂ R
d are expressed in terms of the scattering

and absorption coefficients, 0 ≤ a, σa ∈ C(D). The asso-

ciated PDE is the well-known radiative transport equation

(RTE) for the particle density u(z, v) at location z ∈ D and

velocity v ∈ V ⊂ R
d, given by

v · ∇zu(z, v) + σa(z)u(z, v) =
1

ε
a(z)Q[u], z ∈ D,

u(z, v) = ϕ(z, v), z ∈ Γ−,
(11)

where Q[u] =
∫
k(v, v′)u(z, v′)dv′−u(z, v) is the collision

term, ε is the Knudsen number, Γ± = {(z, v) ∈ ∂D × V :
±nz · v ≥ 0} are the inflow (outflow) boundaries and

nz is the unit outer normal vector at z ∈ ∂D. Thus, the

input to this problem is provided by the particle density,

uΓ
−

∈ L1(∂D), prescribed on the inflow boundary. The

associated boundary observation operator Λa defined in (2)

is the so-called Albedo operator,

Λa : L1(Γ−) 7→ L1(Γ+), Λa : u
∣∣
Γ
−

= ϕ 7→ u
∣∣
Γ+

, (12)

that maps the incident boundary values on Γ− to the ob-

served boundary values on the outflow boundary Γ+.

The corresponding inverse problem aims to infer the

medium properties characterized by the scattering and ab-

sorption coefficients a, σa from the measurements of the

Albedo operator. It leads to the following inverse map,

F−1 : L
(
L1(Γ−), L

1(Γ+)
)
7→ C(D),

F−1 : Λa 7→ a = F−1(Λa).
(13)

The well-posedness and Lipschitz-stability of this inverse

map were shown in (Bal & Jollivet, 2008).

2.5. Seismic Imaging.

Seismic imaging is widely used in geophysics to infer and

reconstruct sub-surface material properties for various appli-

cations such as CO2 storage monitoring and seismic hazard

assessment. Given a domain D ⊂ R
d, we are interested

in reconstructing the velocity coefficient 0 < a ∈ L∞(D)
by sending in acoustic waves from the top boundary into

the medium and measuring the response in the time domain.

The associated PDE is the acoustic wave equation,

utt(t, z) + a2(z)∆u = s, (z, t) ∈ D × [0, T ], (14)
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with a time-dependent source term s. Here, u is the pres-

sure variation. The wave equation is supplemented with

zero initial conditions, i.e., u(·, 0) = ut(·, 0) = 0 and suit-

able boundary conditions. In particular, sources are placed

on a subset of the boundary and it is common to consider

point sources s(t, z) = g(t)δS(z) with g(t) ∈ L2([0, T ])
and δS(z) being the Dirac measure concentrated on a set

S ⊂ ∂D. These waves are transmitted, reflected, and re-

fracted through the medium. Under certain assumptions

(see Sec. 2.3 in Symes (2009)), the effective source s can

be treated as in L2([0, T ] × D), which ensures the well-

posedness of the PDE. The resulting signal is recorded at a

set of receivers R ⊂ ∂D on the boundary that take continu-

ous measurement in time [0, T ]. The boundary observation

operator (2) for this wave inverse problem is the Source-to-

Receiver (StR) operator,

Λa : L2([0, T ]×D) 7→ L2([0, T ];XR),

Λa : s 7→ u
∣∣
[0,T ]×R

,
(15)

where XR is the metric space for the (discrete) set R. The

inverse problem that underpins seismic imaging is

F−1 : L
(
L2([0, T ]×D), L2([0, T ];XR)

)
7→ L∞(D),

F−1 : Λa 7→ a = F−1(Λa), (16)

with Λa being the StR operator (15). Thus, seismic imag-

ing aims to infer the subsurface spatial medium properties

from spatial-temporal StR signals. This process is also

termed as migration, or Full waveform Inversion (FWI) in

the literature (Deng et al., 2021). There have been studies

on the well-posedness of the inverse problem for the wave

equation (14) (Liu & Oksanen, 2016; Stefanov et al., 2016;

Caday et al., 2019) although they do not directly apply to

the setting considered here.

3. Neural Inverse Operators.

In this section, we present the neural network architecture

for the proposed Neural Inverse Operators (NIOs).

3.1. Learning Task and Challenges.

All four examples described in the previous section were

particular instances of the abstract framework summarized

in (4). Thus, the solution of the inverse problem (4) boils

down to inferring (learning) the inverse map F−1 from rel-

evant data. Given sufficient training data in the form of

pairs
(
Λa,F

−1(Λa)
)

(or given the injectivity of the forward

map, data in the form of pairs (a,Λa)), we aim to learn the

inverse map F−1 and evaluate it on test (unseen) data. This

task is very challenging on account of the following factors:

1. The inputs to the inverse map F−1 (4) are specified on

the boundaries ∂Ω whereas the output is the coefficient

a, defined in the interior of the underlying domain D.

Thus, there is a mismatch in the domains of the inputs

and outputs for the inverse map F−1.

2. The learning task requires us to learn mappings from

operators to functions for F−1 defined in (4).

3. In general, the inverse map F−1 (4) may only be

weakly stable, for instance, either in terms of small

values of the Hölder exponent α in (5) or even only

logarithmic-stable. In these cases, the learning task

can be very sensitive to noises from the input, and

additional regularization terms might be necessary.

3.2. Existing Operator Learning Architectures.

Before proposing a suitable architectures for learning the in-

verse map F−1 (4), we briefly summarize existing operator

learning architectures to examine whether they can be use-

ful in this context. To this end, let D ⊂ R
dx , U ⊂ R

du

and X = X (D) and Y = Y(U) be suitable function

spaces. Then, a DeepONet (Lu et al., 2021) is the oper-

ator, NDON : X → Y , given by

NDON(u)(y) =

p∑

k=1

βk(u)τk(y), u ∈ X , y ∈ U, (17)

where the branch-net β is a neural network that maps

E(u) = (u(x1), . . . , u(xm)) ∈ R
m, evaluations of the in-

put u at sensor points x := (x1, . . . , xm) ∈ D, to R
p:

β : Rm → R
p, E(u) 7→ (β1(E(u)), . . . , βp(E(u)), (18)

and the trunk-net τ (y) = (τ1(y), . . . , τp(y)) is another

neural network mapping,

τ : U → R
p, y 7→ (τ1(y), . . . , τp(y)). (19)

Thus, a DeepONet combines the branch net (as coefficient

functions) and trunk net (as basis functions) to create a

mapping between functions.

On the other hand, a Fourier neural operator (FNO) NFNO

(Li et al., 2021a) is a composition

NFNO : X 7→ Y : NFNO = Q◦LT ◦· · ·◦L1 ◦R. (20)

For simplicity let us define M = Q ◦ LT ◦ · · · ◦ L1, and

NFNO = M ◦ R, where R : (x, u) 7→ R(u(x), x) is a

“lifting operator” represented by a linear transformation

R : R
du×d → R

dv where du is the number of compo-

nents of the input function, d is the dimension of the domain

and dv is the “lifting dimension” (a hyperparameter). The

operator Q is a nonlinear projection, instantiated by a shal-

low neural network, such that vT+1(x) 7→ NFNO(u)(x) =
Q
(
vT+1(x)

)
. Each hidden layer Lℓ : v

ℓ(x) 7→ vℓ+1(x) is

of the form

vℓ+1(x) = σ
(
Wℓ · v

ℓ(x) + bℓ(x) +
(
Kℓv

ℓ
)
(x)

)
,
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with Wℓ ∈ R
dv×dv a weight matrix (residual connection),

bℓ(x) ∈ R
dv a bias function, σ an activation function, and

the non-local Fourier layer,

Kℓv
ℓ = F−1

N

(
Pℓ(k) · FNvℓ(k)

)
,

where FNvℓ(k) denotes the (truncated)-Fourier coefficients

of the discrete Fourier transform (DFT) of vℓ(x), computed

based on the given N grid values in each direction. Here,

Pℓ(k) ∈ C
dv×dv is a complex Fourier multiplication matrix

indexed by k ∈ Z
d, and F−1

N denotes the inverse DFT.

Both operator learning frameworks (DeepONet and FNO)

and their variants map functions to functions. Hence, they

cannot directly be used to learn the inverse map F−1 (4),

which maps operators to functions. Therefore, we need to

modify and adapt these architectures to learn the inverse

map. The following sections present our proposed approach.

3.3. A Motivating (Formal) Calculation.

We start by providing a heuristic motivation for our proposed

architecture to learn the inverse map (4). To this end and

for definiteness, we consider the inverse wave scattering

problem for the Helmholtz equation (9), presented in section

2.3. Given the domain D ⊂ R
d, we consider the following

eigenvalue problem with Neumann boundary conditions,

−∆φk = λkφk, ∀z ∈ D.

∂φk

∂ν

∣∣
∂D

= 0,

∫

D

φkdz = 0. (21)

By standard PDE theory (Evans, 2010), there exist eigen-

values 0 ≤ λk ∈ R for k ∈ N, and the corresponding

eigenfunctions {φk} form an orthonormal basis for L2(D).
We fix K ∈ N sufficiently large and without loss of gener-

ality, we assume ω = 1 in the Helmholtz equation (9) to

consider the following Dirichlet boundary value problems,

−∆uk − a(z)uk = 0, z ∈ D, 1 ≤ k ≤ K,

u(z) = gk(z), z ∈ ∂D,
(22)

where gk = φk

∣∣
∂D

. Using (21) and (22), we prove in

SM B, the following formal representation formula for all

1 ≤ k ≤ K,

∫

D

aukφkdz =

∫

D

λkukφkdz −

∫

∂D

gk
∂uk

∂ν
dσ(z). (23)

The formula (23) can be used to construct an approxima-

tion to the coefficient a ∈ L2(D) in the following manner.

Writing a ≈
K∑
ℓ=1

aℓφℓ (using the orthonormality of φ’s) for

K sufficiently large, we can evaluate the coefficients aℓ by

solving the following Matrix equation for A = {aℓ}
K
ℓ=1,

CA = B, Ckℓ =

∫

D

ukφkφldx, ∀k, l,

Bk =

∫

D

λkukφkdz +

∫

∂D

gk
∂uk

∂ν
dσ(z), ∀k.

(24)

Further setting Ψk = ∂uk

∂ν , we observe that the formal ap-

proximation of the coefficient a relies on the following

building blocks,

• Basis Construction: The operations Bk : z 7→
(φk(z), λk), 1 ≤ k ≤ K, that form a basis. Note

that they are independent of the coefficient a.

• PDE Solve: The operation Ek : (gk,Ψk) 7→(
{uk

j }
K
j=1,

∫
∂D

gkΨkdσ(z)
)

that amounts to (approx-

imately) inferring the coefficients of the solution uk

of the Helmholtz equation (22), given the Dirichlet gk
and Neumann Ψk boundary values. A part of the right-

hand side term Bk is also appended to this operation.

Once the coefficients uk
j are computed, the approxima-

tion uk to the solution of (22) is readily computed in

terms of the basis {φk} by setting uk ≈
K∑
j=1

uk
jφj .

• Mode Mixing: The previous two operations were

restricted to individual modes, i.e., to each k, for

1 ≤ k ≤ K. However, to construct the coeffi-

cients Ckl in (24), we need to mix different modes.

One way to do so is through multiplication. We de-

note this operation by M :
(
{φk}

K
k=1, {uk}

K
k=1

)
7→(

{ukφkφℓ}
K
k,ℓ=1, {λkukφk}

K
k=1

)
.

• Matrix Inversion: In the final step, we need to

build the Matrix C in (24) and (approximately)

invert it. This operation can be summarized by

I :
(
{ukφkφℓ}

K
k,ℓ=1, {λkukφk}

K
k=1

)
7→

∑K
j=1 ajφj ,

with A = {aj} being the solution of (24).

3.4. The Architecture.

The formal approximation of the inverse map F−1 (4) for

the Helmholtz equation by formulas (23)-(24) cannot be

directly used in practice as one cannot solve the PDE (22)

without knowing the coefficient a. However, the build-

ing blocks enumerated above motivate either an iterative

fixed-point procedure or, in our case, a learning algorithm

approximating F−1 from data. To this end, we observe that

the basis construction z 7→ φk(z) amounts to a particular in-

stantiation of a trunk-net (19) of a DeepONet. Similarly, the

PDE solve map Ek : (gk,Ψk) 7→ {uk
j }

K
j=1 is a particular

5
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Figure 1. Schematic representation of Neural Inverse Operator (NIO) architecture, with R given by equation (27), and Randomized

Batching.

instance of the application of a branch-net (18) of a Deep-

ONet. Moreover, they can be combined in a DeepONet (17)

to approximate the solutions uk of the PDE (22). However,

a DeepONet (17) is linear in its trunk-net basis functions

and thus cannot represent the nonlinear mode mixing opera-

tor M. Instead, one can do so by passing the outputs of the

DeepONet to the nonlinear layers of an FNO (20), which

also performs the final inversion operator I.

These heuristic considerations are generalized to the abstract

formalism of the inverse problem (4) and motivate us to

propose the composition (stacking) of DeepONets and FNO

to result in the following map,

NNIO :

(
z

{Ψℓ}
L
ℓ=1

)
τ,β
7−→

(
{τk(z)}

p
k=1

{βk}
p
k=1

)
. . .

. . .
N

DON

7−→ {fℓ(z)}
L
ℓ=1

R
7−→ h(z)

M
7−→ a∗(z),

(25)

for approximating the abstract inverse map F−1 (4). Here,

the linear map R can be explicitly defined as

h(z) = R(f1, . . . , fL, z) =
1

L

L∑

ℓ=1

Dℓfℓ + Ez, (26)

with E,Dℓ ∈ R
dv . In other words, the inputs z ∈ D and

Ψℓ = Λa(gℓ) (2), for 1 ≤ ℓ ≤ L, are fed into the trunk-

and branch-nets of a DeepONet NDON (17), respectively,

to create L representations {fℓ}
L
ℓ=1, defined in the interior

of the underlying domain. These representations are first

linearly transformed through R yielding h(z), and finally

mixed by the nonlinear component M of FNO resulting

in an approximation of the underlying coefficient a∗. We

observe that the DeepONet NDON in NNIO (25) is flexi-

ble enough to handle inputs defined on the boundary, i.e.,

Ψℓ, and produce outputs fℓ, defined on the interior of the

underlying domain.

It is important to note that the model takes only z and

{Ψℓ}
L
ℓ=1 as input, rather than z and the input-output pair

{(gℓ,Ψℓ)}
L
ℓ=1. This choice is motivated by the following

consideration: let us define µg as the underlying measure

(distribution) on the boundary data g, where gℓ ∼ µg,

and µΨ = Λa#µg represents the pushforward measure

given the boundary operator Λa. Hence, Ψℓ ∼ µΨ for

all ℓ = 1, ..., L, with {Ψℓ}
L
ℓ=1 representing the empirical

distribution approximating µΨ. This, together with the injec-

tivity of the boundary observation operator (2), implies that

{Ψℓ}
L
ℓ=1 suffices to provide statistical information about

the operator Λa given µg satisfying certain properties. We

denote L as the number of samples discretizing the measure

µΨ or, with abuse of notation, the operator Λa.

The construction above addresses point (1) in Section 3.1.

However, it does not necessarily satisfy point (2) in its

current form. For the model to effectively process µΨ as the

input rather than a particular discrete realization of it, the

following desirable properties should be met:

• The architecture should exhibit invariance under per-

mutations of the input measurements {Ψℓ}
L
ℓ=1 as they

are i.i.d. samples of µΨ.

• The learning framework must be able to handle an em-

pirical measure of the distribution µΨ with an arbitrary

sample size L̃. In particular, the input sample size at

the training and testing stages could be different.

• The performance of the model should be independent

of the sample size L̃ used to discretize µΨ.

To address the first two points, we can modify the architec-
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ture by redefining the linear transformation R as follows:

h(z) = R(f1, . . . , fL, z) =
D

L

L∑

ℓ=1

fℓ+Ez, E,D ∈ R
dv

(27)

To ensure the performance is independent of L̃, a naive and

inefficient approach would involve constructing all possible

permutations of {Ψℓ}
L
ℓ=1 with size L̂ for all L̂ = 2, . . . , L

and providing them as input to the model. However, in-

spired by the well-known bagging algorithm widely used in

machine learning, we propose an efficient and novel method

to tackle this point which we term randomized batching.

In this approach, given the sequence {Ψℓ}
L
ℓ=1, during each

training iteration, an integer number L̂ is randomly drawn

from the set {2, . . . , L}. Then, L̂ samples are randomly

picked from {Ψℓ}
L
ℓ=1 and the new sequence {Ψk}

L̂
k=1 are

fed into the model at each iteration during training.

We refer to the architecture (25) with the linear transfor-

mation R given in (27), and incorporating the randomized

batching algorithm, as Neural Inverse Operator (see Figure

1 for a schematic representation of the architecture).

4. Empirical Results.

We empirically test NIO on benchmark PDE inverse prob-

lems below. The exact details of the training, as well as the

architecture and hyperparameter choices, are presented in

SM D.

As baselines in the following experiments, we choose two

models. First, we consider a DeepONet with a CNN as

the branch net in (17), which performs mixing of the input

function within the branch itself

NDONet :

(
z

{Ψℓ}
L
ℓ=1

)
τ,βcon

7−→

(
{τk(z)}

p
k=1

{βk}
p
k=1

)
N

DON

7−→ a∗(z).

(28)

Second, we consider a fully convolutional image-to-image

neural network architecture (details in SM D.1). A variant

of this architecture was already used in seismic imaging

(full waveform inversion) in (Deng et al., 2021). We have

extended this architecture significantly to apply it to the

abstract inverse problem (4).

4.1. Calderón Problem for EIT.

We start with the Calderón problem for the elliptic equation

(6) on the computational domain D = [0, 1]2, with source

s = 0. The training (and test) data are generated by sam-

pling from a probability distribution on the conductivity

coefficient a. Once a sample conductivity is drawn, a set

of Dirichlet boundary conditions {gℓ}
L
ℓ=1 are drawn from a

probability distribution on the boundary values. For each gℓ,
the underlying elliptic equation is solved numerically with a

standard five-point finite difference scheme and the current,

Ψℓ = a∂u
∂ν , is evaluated on the boundary. We choose the

boundary data gℓ, for 1 ≤ ℓ ≤ L = 20 as the boundary

values of cos(ω(x cos(θℓ)+y sin(θℓ))), with θℓ =
2πℓ
20 . For

the coefficient a, we sample from trigonometric functions

by setting a(x, y) = exp
(∑m

k=1 ck sin(kπx) sin(kπy)
)
,

with m = mod (m) where m ∼ U([1, 5]) and {ck} ∼
U([−1, 1]m). All the models are trained with 4096 training

coefficient samples, and the relative (percentage) test errors

(with respect to 2048 test samples) in both L1 and L2 norms

for NIO (and the baselines) are presented in Table 1. As the

table shows, NIO is the best-performing model, outperform-

ing the next-best FCNN model by almost halving the errors.

Moreover, the total errors are very small (< 1%) with NIO.

As a second experiment for EIT, we consider a more practi-

cal example suggested in (Muller & Siltanen, 2012), where

the authors model the EIT imaging of the heart and lungs of

a patient using electrodes on the body. This discontinuous

heart and lungs phantom is depicted in SM Figure 4. The

underlying domain is the unit circle, and the elliptic equa-

tion (6) is solved with a standard finite element scheme. The

boundary conditions are given by gℓ(θ) =
1
2π exp(i2πθfℓ),

with ℓ = 1, . . . , 32 and f = [−16, . . . ,−1, 1, 14, 15, 16].
The coefficient a is modelled by adding 8% white noise to

the location, shape, and conductivity of the configuration

of heart and lungs shown in SM Figure 4. The input of

the learning operators is obtained by computing the Fourier

transform at frequencies f of the difference between the

Neumann trace of the PDE solution with the coefficient a
and the one with the unit coefficient a = 1. Again, the

results presented in Table 1 and 2 show that NIO is the

best-performing model and yields very low reconstruction

errors, solving this practical problem with high accuracy.

In contrast, a traditional direct method such as the D-bar

method (Muller & Siltanen, 2012) has a larger error of

8.75% for this numerical inversion test (see SM Section E.8

for details).

4.2. Inverse Wave Scattering.

In this problem, the Helmholtz equation (9) is considered

on the domain D = [0, 1]2, and the task is to learn coeffi-

cients sampled from a distribution, a(x, y) =
∑m

k=1 exp
(
−

c(x − c1,k)
4 − c(y − c2,k)

4
)
, with c = 2 × 104/3. It

represents a homogeneous medium with square-shaped

inclusions, randomly spread in the domain (see SM Fig-

ure 5). Here, m = mod (m), m ∼ U([1, 4]) and

{(c1,k, c2,k)} ∼ U([0, 1]m×2). For each draw of the co-

efficient, 20 Dirichlet boundary values are prescribed, ex-

actly as in the EIT experiment with trigonometric coeffi-

cients. The corresponding (approximate) solutions of the

Helmholtz equation (9) are computed with a central finite

difference scheme, and the Neumann trace is evaluated to

represent the DtN map. We train the models with 4096 train-

ing samples and present the relative (median) test errors, on
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Figure 2. Inverse Wave Scttering. Left Panel: testing median L1-error VS number of input samples L̃ (left: L̃ < L, right: L̃ > L). The

black dot represents the number of training samples L. Right Panel: ground truth (left), NIO reconstruction (middle), and reconstruction

with the PDE constrained optimization method (right) for an out-of-distribution test sample

a test set of 1600 samples, in Table 1. Again, NIO is the

best-performing model, beating the next-best FCNN by a

significant margin.

4.3. Radiative Transport Equation and Optical Imaging.

Next, we consider the radiative transport equation (11) in

the domain X × V , where X = [0, 1] and V = [−1, 1],
with ε = 1. Consequently, Γ− = {(0, v), v ∈ [0, 1]} ∪
{(1, v), v ∈ [−1, 0]}. The task is to infer the absorption

and scattering coefficients from the Albedo operator (12).

To this end, we fix k(v, v′) = 1, σa = 1 − a in (11)

and draw the absorption coefficient a from the distribu-

tion, a(x) = cχ[−1/2,1/2](rx − x0) + 1, with χ denot-

ing the characteristic function and with c ∼ U([0.5, 1]),
x0 ∼ U([0, 1]) and r ∼ U([0, 0.8]). Once the coefficient

is drawn, boundary conditions on the inflow boundary Γ−

are imposed by setting ϕℓ(0, v) = exp
(
− 200 (v − vℓ)

2 )
,

and ϕℓ(1, v) = 0, if vℓ > 0, and ϕℓ(0, v) = 0, and

ϕℓ(1, v) = exp
(
− 200 (v − vℓ)

2 )
, if vℓ < 0, with vℓ

being the ℓ-th quadrature point used to approximate the

integral term in (11), 1 ≤ ℓ ≤ 32. Then, the radiative

transport equation is approximated with a finite-element

method, and the resulting solution uℓ is evaluated at the out-

flow boundary Γ+ as the output of the Albedo operator (12).

All the models are trained on 4096 training samples, and

the relative median test errors on a test set of 2048 samples

are presented in Table 1, demonstrating that NIO signifi-

cantly outperforms both FCNN and DeepONet, also in this

case, resulting in low test errors even for the underlying

discontinuous absorption coefficient.

4.4. Seismic Imaging.

In the final test, we model seismic imaging by considering

the acoustic wave equation (14) in the space-time domain

[0, 1]2× [0, T ] and the task at hand is to learn the underlying

squared-slowness coefficients a from the source-to-receiver

map (15). To this end, we choose two types of coefficients

from (Deng et al., 2021), the so-called Style-A and CurveVel-

A datasets. For each medium, waves are generated at source

locations (xsℓ,0) on the vertical boundary, for ℓ = 1, . . . , 5.

The corresponding acoustic wave equation is solved with a

finite difference scheme, and the temporal data is recorded

at receivers on the vertical boundary. We follow (Deng

et al., 2021) and train all the models with 55000 and 22000
training samples for the Style-A and CurveVel-A datasets,

respectively, and present the resulting (median) relative test

errors, on a test set of 7000 and 6000 samples, in Table 1.

We observe from the table that even for this problem, NIO

is either outperforming or on par with FCNN. This is par-

ticularly noteworthy as the FCNN architecture was demon-

strated to be one of the states of the art on this problem in

(Deng et al., 2021) among several machine learning models.

4.5. Robustness and Computational Efficiency of NIO.

In the SM E, we provide further details on the performance

of NIO and its comparison to the considered baselines in

terms of several factors. Here, we present a succinct sum-

mary of these results. First, inverse problems are character-

ized by sensitivity to perturbations of different types. Hence,

it is imperative to test the robustness of the proposed NIO

framework to these factors. To this end, we start with adding

noise to the inputs of each of the benchmarks at test time

and present the resulting test errors in SM Table 8 to ob-

serve that NIO (as well as the baselines) are not sensitive

to this noise. Next, in SM Table 9, we plot the test errors

for the models when the underlying grid resolution is varied

at test time to observe that NIO is not sensitive to the input

grid resolution. Finally, in SM Table 10, we present errors

when the locations of input sensors are chosen randomly at

test time, in contrast to sensors located on a uniform grid

at training, to see that NIO is also robust to this variation.

However, these factors are less salient in this context than

the discretization of the input boundary observation operator.

The key element of this discretization is the number of input

samples. As argued in the previous section, NIO has been

constructed to be independent of the number of samples

that discretize the boundary observation operator. We test

this behavior for the inverse wave scattering problem (see

SM E.2 for other benchmarks) and present the errors in

Figure 2, where the number of input samples at the testing

stage are decreased (left) and increased (right) at test time.

We clearly see that NIO is very robust to this fluctuation,

completely contrasting to the baselines whose performance
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deteriorates, and the test errors increase by almost an or-

der of magnitude. This demonstrates that NIO genuinely

learns the underlying inverse map rather than just a discrete

representation of it. Finally, in SM E.6, it is shown that

NIO generalizes very well out-of-distribution for a variety

of problems, outperforming baselines considerably.

We conclude this section by comparing NIO with the well-

established PDE-constrained optimization algorithms. To

this end, we consider an out-of-distribution example for the

inverse wave scattering benchmark and compare the results

of NIO and PDE-constrained optimization (see details in

SM E.8) in Figure 2 (Right) to observe that NIO is much

more accurate in reconstructing the scatterers than PDE-

constrained optimization. The L1-test errors are 2.3% for

NIO and 11.1% for PDE-constrained optimization. More-

over, it took less than 1 sec of inference time for NIO (on a

CPU) compared to a single GPU training time of 8.5 hours

for the PDE-constrained optimization problem. Thus, this

experiment demonstrates the real efficiency of NIO as it is

5 times more accurate while being 4 orders of magnitude

faster than the PDE-constrained optimization algorithm.

5. Related Work.

Existing methods for solving the class of PDE inverse prob-

lems considered here include the so-called Direct Methods,

such as the D-bar method (Isaacson et al., 2004) for EIT and

the so-called Imaging condition (Claerbout, 1985) for seis-

mic inversion. Iterative methods approximating fixed points

(Bakushinsky & Kokurin, 2005) are also used, including

the very popular gradient-based PDE-constrained optimiza-

tion methods (Chavent, 2010). Another approach falls in

the category of Bayesian formulation of inverse problems

(Tarantola, 2005; Stuart, 2010), which also quantifies the

uncertainty of the solution. Finally, directly learning some

PDE inverse operators from data has been considered in

(Maarten et al., 2022) and references therein.

Table 1. Relative median L1-error and L2-error computed over

testing samples for different benchmarks and models with the best

performing model highlighted in bold.

DONet FCNN NIO

L1 ↓ L2 ↓ L1 ↓ L2 ↓ L1 ↓ L2 ↓

Calderón Problem
Trigonometric

1.97% 2.36% 1.49% 1.82% 0.85% 1.05%

Calderón Problem
Heart&Lungs

0.95% 3.69% 0.27% 1.62% 0.18% 1.16%

Inverse Wave Scattering 3.83% 7.41% 2.53% 7.55% 1.07% 2.94%

Radiative transport 2.35% 4.35% 1.46% 3.71% 1.1% 2.9%

Seismic Imaging
CurveVel - A

3.98% 5.86% 2.65% 5.05% 2.71% 4.71%

Seismic Imaging
Style - A

3.82% 5.17% 3.12% 4.63% 3.04% 4.36%

6. Discussion.

For PDEs, written in the abstract form (1), we consider a

large class of inverse problems that are only well-defined

when the underlying inverse operator (4), maps an opera-

tor (the boundary observation operator (2)) to the underly-

ing coefficient (a function). The resulting inverse problem

amounts to inferring the unknown coefficient a from data

pairs (Λa,F
−1(Λa)) representing the observation operator.

Existing operator learning frameworks such as DeepONets

(17) and FNOs (20) only map functions to functions. Hence,

one needs to adapt them to be able to learn mappings be-

tween operators and functions in order to solve the inverse

problem (4). To this end, we have proposed a novel archi-

tecture, termed Neural Inverse Operators (NIO), based on

a composition of DeepONets and FNOs, augmented with

suitable architectural priors (definition of R in (27)), and

trained with randomized batching, to guarantee invariance

of the generalization error to the different discretization of

the input operator. Our architecture is motivated by the un-

derlying structure of the inverse map. We tested the NIO on

a variety of benchmark inverse problems. These include the

Calderón Problem in electrical impedance tomography, in-

verse wave scattering modelled with the Helmholtz equation,

optical imaging using the radiative transport equation, and

seismic imaging with the acoustic wave equation. For all

these problems, NIO outperformed baselines significantly

and provided accurate and, more importantly, robust ap-

proximations to the unknown coefficients with small errors

(see SM E). Finally, a series of experiments were also pre-

sented to demonstrate that NIO is robust with respect to

various factors such as varying sensor locations, grid res-

olutions, noise, and discretizations of the input operator

while being able to generalize out-of-distribution and being

more accurate and much faster than direct and PDE con-

strained optimization algorithms. As this is the first paper

where an end-to-end machine learning framework is pro-

posed for learning maps between operators and functions,

various extensions are possible. For instance, other archi-

tectures, such as recently proposed LOCA (Kissas et al.,

2022), VIDON (Prasthofer et al., 2022), or graph-based ap-

proaches (Boussif et al., 2022; Brandstetter et al., 2022), can

be adapted in this context. Problems in higher-dimensional

(particularly with seismic) imaging need to be considered

to explore how NIOs scale with increasing problem size. Fi-

nally, approximation bounds and universality results, in the

spirit of (Lanthaler et al., 2022; Kovachki et al., 2021a) need

to be derived in order to place NIOs on a solid theoretical

footing.
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Supplementary Material for:

Neural Inverse Operators for solving PDE Inverse problems.

A. Depiction of PDE Inverse Problems.

In the following figures, we illustrate the different PDE inverse problems considered in the main text.

g ∂u

∂ν

∣∣∣
∂D

Λa

Λa

Λa

F−1F−1F−1

a

Figure 3. Illustration of a typical input (left) and output (right) sample for the Calderón Problem for EIT with trigonometric coefficients.

The input is the Dirichlet-to-Neumann (DtN) map (7), represented here by three Dirichlet Boundary conditions (Voltage) to Current pairs,

and the output is the conductivity coefficient a.

g ∂u

∂ν

∣∣∣
∂D

Λa

Λa

Λa

F−1F−1F−1

a

Figure 4. Illustration of EIT for the discontinuous heart-lung Phantom of (Muller & Siltanen, 2012). Left: Input through the DtN

(voltage-to-current) map. Right: Conductivity field showing the Phantom of the heart and lungs.
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g ∂u

∂ν

∣∣∣
∂D

Λa

Λa

Λa

F−1F−1F−1

a

Figure 5. Illustration of detection of inclusions through the Inverse Wave Scattering with the Helmholtz equation. Left: Input represented

through 3 samples for the DtN map. Right: Coefficient a.

u

∣∣
Γ
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u

∣∣
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F−1F−1F−1

a

Figure 6. Illustration of Optimal Imaging through the Radiative Transport Equation. Left: Input is the Albedo operator (12) illustrated

with three mappings between the inflow and outflow boundaries. Right: Output is the Scattering coefficient.
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s u

∣∣
R

Λa

Λa

Λa

F−1F−1F−1

a

Figure 7. Illustration of Seismic Imaging. Left: Input is Source-to-Receiver map (15) between Incident waves generated at Sources to

Temporal signals recorder at Receivers. Right: Output is the velocity coefficient, corresponding to Style A dataset of (Deng et al., 2021).

s u

∣∣
R

Λa

Λa

Λa

F−1F−1F−1

a

Figure 8. Illustration of Seismic Imaging. Left: Input is Source-to-Receiver map (15) between Incident waves generated at Sources to

Temporal signals recorder at Receivers. Right: Output is the velocity coefficient, corresponding to CurveVel A dataset of (Deng et al.,

2021)

B. Proof of Formula (23) in Main Text.

Below, we prove the representation formula (23) in the main text.
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Proof. Multiplying uk (the solution of (22)) to Eqn (21) and integrating over space, we obtain,

∫

D

uk∆φkdz + λk

∫

D

φkdz = 0

Integrating by parts in the above equation and using the Gauss-Green formula yields,

−

∫

D

⟨∇uk,∇φk⟩dz +

∫

∂D

uk
∂φk

∂ν︸︷︷︸
=0

ds(z) + λk

∫

D

ukφkdz = 0. (29)

Note that the Neumann boundary conditions from (21) in the above.

Similarly, multiplying the solution φk of the Neumann problem (21) to the Eqn (22) and repeating the above integration

parts yields,

−

∫

D

⟨∇uk,∇φk⟩dz +

∫

∂D

gk
∂uk

∂ν
ds(z) +

∫

D

a(z)ukφkdz = 0. (30)

Formula (23) follows by subtracting (29) from (30).

C. Mathematical Description of Heart and Lungs Phantom

To describe the phantom for the heart and lungs, we define the following sets of points on the domain D:

sh =

{
(x, y) ∈ D s.t

√
eh,1(x− ch,1)2 + eh,2(y − ch,2)2 < 0.2

}

sl1 =

{
(x, y) ∈ D s.t

√
el1,1 (cos(α)x+ sin(α)y − cl1,1)

2
+ el1,2 (cos(α)y − sin(α)x− cl1,2)

2
< 0.5

}

sl2 =

{
(x, y) ∈ D s.t

√
el2,1 (cos(α)x+ sin(α)y − cl2,1)

2
+ el2,2 (cos(α)y − sin(α)x− cl2,2)

2
< 0.4

}
(31)

Here, eh,1 = 0.8, eh,2 = 1, el1,1 = 3, el1,2 = 1, el2,1 = 3, and el2,2 = 1 represent the eccentricities of the ellipses

describing the heart and lungs. The center locations of the heart and lungs are given by ch,1 = −0.1, ch,2 = 0.4, cl1,1 = 0.5,

cl1,2 = 0.2, cl2,1 = −0.6, and cl2,2 = 0.1 and the orientation of the lungs by α = π
7 . Then the body conductivity is defined

as,

a(x, y) =





ah (x, y) ∈ sh

al1 (x, y) ∈ sl1
al2 (x, y) ∈ sl2
ab else

with ah = 2, al1 = al2 = 0.7, ab = 1.

The training coefficients are obtained by adding 8% white noise to all the parameters above. Specifically, given

y = [eh,1, eh,2, el1,1, el1,2, el2,1, el2,2, ch,1, ch,2, cl1,1, cl1,2, cl2,1, cl2,2, ah, al1 , al2 ], we define the perturbed version of the

parameter vector y as ỹ = y(1 + 0.08ξ), where ξ ∼ N (0, 1) is a random variable drawn from the standard normal

distribution. The coefficient is then defined as:

ã(x, y) =





ãh (x, y) ∈ s̃h

ãl1 (x, y) ∈ s̃l1
ãl2 (x, y) ∈ s̃l2
ãb else

where s̃h, s̃l1 and s̃l2 are defined as above, but with the parameters replaced by their corresponding perturbed values in ỹ.
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D. Architecture and Training Details

Below, details concerning the model architectures and training are discussed. The implementation of the experiments of the

paper is realized within the PyTorch framework and available at

■ https://github.com/mroberto166/nio.git

D.1. Architecture Details

D.1.1. FEED FORWARD DENSE NEURAL NETWORKS

Given an input y ∈ R
m, a feed-forward neural network (also termed as a multi-layer perceptron) transforms it to an output,

through a layer of units (neurons) which compose of either affine-linear maps between units (in successive layers) or scalar

nonlinear activation functions within units (Goodfellow et al., 2016), resulting in the representation,

uθ(y) = CLt
◦ σ ◦ CLt−1 . . . ◦ σ ◦ C2 ◦ σ ◦ C1(y). (32)

Here, ◦ refers to the composition of functions, and σ is a scalar (nonlinear) activation function. For any 1 ≤ ℓ ≤ Lt, we

define

Cℓzℓ = Wℓzℓ + bℓ, for Wℓ ∈ R
dℓ+1×dℓ , zℓ ∈ R

dℓ , bℓ ∈ R
dℓ+1 , (33)

and denote,

θ = {Wℓ, bℓ}
Lt

ℓ=1, (34)

to be the concatenated set of (tunable) weights for the network. Thus, in the machine learning terminology, a feed-forward

neural network (32) consists of an input layer, an output layer, and Lt hidden layers with dℓ neurons, 1 < ℓ < Lt. In all

numerical experiments, the trunk net of DeepONet is a feed-forward neural network. Moreover, we consider a uniform

number of neurons across all the layers of the network dℓ = dℓ−1 = d, 1 < ℓ < Lt.

D.1.2. FULLY CONVOLUTIONAL NEURAL NETWORK

Fully convolutional neural networks are a special class of convolutional networks which can be evaluated for virtually any

resolution of the input. We use them as a strong baseline for PDE inverse problems in the results presented in Table 1. The

networks consist of an encoder and decoder, both defined by a composition of linear and nonlinear transformations:

Eθe(y) = Ce
L ◦ σ ◦ Ce

L−1 . . . ◦ σ ◦ Ce
2 ◦ σ ◦ Ce

1(y),

Dθd(z) = Cd
L ◦ σ ◦ Cd

L−1 . . . ◦ σ ◦ Cd
2 ◦ σ ◦ Cd

1 (z),

uθ(y) = Dθd ◦ Eθe(y).

(35)

The affine transformation Cℓ commonly corresponds to a convolution operation in the encoder and transposed convolution

(also known as deconvolution) in the decoder.

The (de)convolution is performed with a kernel Wℓ ∈ R
kℓ×kℓ , stride s, and padding p. It takes as input a tensor

zℓ ∈ R
wℓ×hℓ×cℓ with cℓ being the number of input channels, and computes zℓ+1 ∈ R

wℓ+1×hℓ+1×cℓ+1 . Therefore, a

(de)convolutional affine transformation can be uniquely identified with the tuple (kℓ, s, p, cℓ, cℓ+1).

A visual representation of the convolutional architectures used for the benchmark problems is depicted in Figures 9, 10,

11,12. The convolutional block (or transposed convolution block) is the composition of a convolution (or transposed

convolution) operation, batch normalization, and activation function (Leaky ReLU). The cropping operation involves adding

negative padding to the edges of a tensor to achieve the desired output width and height. The number of channels c is

selected with cross-validation. The architecture used for seismic imagining is referred to as InversionNet in (Deng et al.,

2021).

D.1.3. DEEPONET

The architectures of the branch and trunk are chosen according to the benchmark addressed. In particular, we employ

standard feed-forward neural networks as trunk-net in all the experiments. In contrast, the branch is obtained as a composition

of the encoder of the fully convolutional networks depicted in figures 9, 10 11 and 12, and a linear transformation from
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Figure 9. Schematic representation of the Fully-Convolutional Neural Network (FCNN) architecture used for the Calderón problem with

Trigononmetric coefficients and for the Inverse Wave Scattering with Helmholtz Equation.
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Figure 10. Schematic representation of the Fully-Convolutional Neural Network architecture used for the optical imaging for the Calderón

Problem with Heart&Lungs phantom.
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Figure 11. Schematic representation of the Fully-Convolutional Neural Network architecture used for the optical imaging for the radiative

transport Equation.

17



Supplementary Material for ”Neural Inverse Operators for solving PDE Inverse problems”

510
00

70

32 50
0

70

64 64 25
0

70

64 64 12
5

70

128 128 63

70

128 128 32

35

256 256 16

18

256 256 8

9
512 1

1

512 5

5

512

256

10

256 10

128

20

128 20

64

40

64 40

64

40

64 40 32 80

80

32 70

70

1 70

70

Encoder

Decoder

Figure 12. Schematic representation of the Fully-Convolutional Neural Network architecture used for the seismic imaging problems.
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Figure 13. Schematic representation of the NIO-BranchNet architecture used for the Calderón problem with Trigononmetric coefficients

and for the Inverse Wave Scattering with Helmholtz Equation
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Figure 14. Schematic representation of the NIO-BranchNet architecture used for the optical Imaging with Radiative transport Equation

and Calderón Problem with Heart&Lungs phantom.

R
n to R

p, where n denotes the number of channels in the last layer of the encoder and p the number of basis functions.

Moreover, c = 32 for the seismic imaging and c = 64 for all the other benchmarks.

Hence, the architecture of the branch is fixed. The number of the trunk hidden layers Lt, units d, and p are chosen through

cross-validation. On the other hand, the activation function σ is chosen to be a leaky ReLU for both the branch and the trunk.

D.1.4. FOURIER NEURAL OPERATOR

We use the implementation of the FNO model provided by the authors of (Li et al., 2021a). Specifically, the projection

Q to the target space is performed by a shallow neural network with a single hidden layer with 128 neurons and GeLU
activation function. The same activation function is also used for all the Fourier layers. Moreover, bℓ(x) = 0, for all

ℓ = 1, . . . , T and the weight matrix Wℓ used in the residual connection derives from a convolutional layer defined by

(kℓ = 1, s = 1, p = 0, cℓ = dv, cℓ+1 = dv), for all 1 < ℓ < T .
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Figure 15. Schematic representation of the NIO-BranchNet architecture used for the seismic imaging.

D.1.5. NEURAL INVERSE OPERATOR

In all numerical experiments, the proposed architecture is constructed by combining the DeepONet and Fourier Neural

Operator by means of the lifting operator R defined in equation (27).

The implementation of DeepONet follows the same description as outlined in Section D.1.3. However, the branch structure

differs from the encoder structure depicted in figures 9, 10, 11, and 12. In the proposed NIO architecture, the channel

mixing is performed downstream through the operator M. Specific details regarding the branch-net architectures used in

NIO for the benchmark problems can be found in Figures 13, 14, and 15. For instance, for the seismic imaging, the branch

architecture is the same as the encoder shown in Figure 12, but only a single input channel is used instead of five, following

the same rationale as mentioned above. Overall, the model includes the following hyperparameters: the number of layers Lt

and neurons d of the DeepONet trunk, the number of basis functions p, and the lifting dimension dv , the number of Fourier

layers T and number of (truncated)-Fourier coefficients k, of FNO.

D.2. Training Details

The training of the models, including the baselines, is performed with the ADAM optimizer, with a learning rate η for

1000 epochs (250 epochs in the Seismic imaging problem) and minimizing the L1-loss function. We also use a step

learning rate scheduler and reduce the learning rate of each parameter group by a factor γ every epoch. We train the

models in mini-batches of size 256, and a weight decay of magnitude w is used. Moreover, the input and output data are

transformed with a suitable map before training. Observe that the testing error reported in Table 1 has been obtained on the

non-transformed output data. We consider two different data transformations to preprocess the data:

1. MinMax. This transformation involves scaling both the inputs and outputs to a range between -1 and 1:

f̃ = 2
f −m

M −m
− 1, (36)

where M and m are the maximum and the minimum value of f across all the training samples.

2. log-MinMax. This transformation is specifically used for Seismic Imaging problems. The input data are transformed

according to the following equation:

f̃ = log (|f |) sign (f) , (37)

and then, the obtained input and output scaled between −1 and 1.
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All the parameters mentioned above, including the type of data transformation (Identity, MinMax, log-MinMax, are chosen

through cross-validation.

At every epoch, the relative L1 error is computed on the validation set, and the set of trainable parameters resulting in the

lowest error during the entire process is saved for testing. Early stopping is used to interrupt the training if the best validation

error does not improve after 50 epochs.

The cross-validation is performed by running a random search over a chosen range of hyperparameters values and selecting

the configuration, realizing the lowest relative L1 error on the validation set. Overall, 50 hyperparameter configurations are

tested for NIO and 30 for the baselines. The model size (minimum and maximum number of trainable parameters) covered

in this search are reported in Table 2.

The results of the random search, i.e., the best-performing hyperparameter configurations for each model and each benchmark,

are reported in tables 3, 4, and 5. The FCNN hyperparameters reported in the table for the seismic imaging problem are

those used in (Deng et al., 2021).

Calderón
Problem

Trigonometric

Calderón
Problem

Heart&Lungs

Inverse Wave
Scattering

Radiative
Transport

Seismic
Imaging

CurveVel - A

Seismic
Imaging
Style - A

DONet
4.6M

9.07M
4.6M

9.07M
9.54M

14.01M
9.54M

14.01M
12.01M
15.85M

12.01M
15.85M

FCNN
1.07M
68.32M

1.07M
68.32M

4.31M
275.37M

2.48M
39.53M

24.4M
24.4M

24.4M
24.4M

NIO
7.95M
27.79M

10.6M
50.76M

7.95M
27.79M

9.6M
10.3M

13.07M
32.91M

13.07M
32.91M

Table 2. Minimum (Top sub-row) and maximum (Bottom sub-row) number of trainable parameters among the random-search hyperpa-

rameters configurations for all the models in every problem reported in Table 1 in the main text.

D.2.1. SENSITIVITY TO INITIALIZATION OF THE TRAINABLE PARAMETERS

Next, we consider the best performing NIO model corresponding to the hyperparameters reported in Table 5. We then train

the model again using multiple initializations of the model parameters, and each model is trained a total of 10 times. Table 6

presents the means and standard deviations of the 10 test median errors for various benchmark experiments.

From the results shown in Table 6, we observe that NIO demonstrates remarkable robustness with respect to random

initializations, exhibiting a significantly low standard deviation to mean ratio for the chosen benchmarks. However, it should

be noted that the Calderón problem with trigonometric functions is an exception to this trend, as it appears to be quite

sensitive to different initializations of the model parameters.

D.2.2. SENSITIVITY TO THE NUMBER OF TRAINING SAMPLES

Once again, we revisit the best-performing NIO architectures for different benchmark problems and focus on varying the

number of training samples and retraining the selected models accordingly. We then plot in Figure16 the median of the

testing error as we change the cardinality of the training set. We observe that even for 512 training samples, the accuracy

of the models, except for the Inverse Wave Scattering, remains very satisfactory. It should be observed that the number

of training samples used in the benchmarks is very small compared to the state-of-the-art data-driven models used in this

context.

E. Further Experimental Results

E.1. Illustration of Results reported in Table 1.

We start by elaborating on the results obtained on the benchmarks and presented in Table 1. In Figure 17, we show two

randomly drawn test samples for the Calderón Problem for inferring conductivity with trigonometric coefficients by EIT.

For both these test samples, we see that NIO (and FCNN) can accurately approximate the ground truth without any visible

artifacts. This observation correlates with very small test errors with NIO. At least for these two samples, there appears to be
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(a) Calderón Problem Trigonometric (b) Calderón Problem Heart&Lungs

(c) Inverse Wave Scattering (d) Radiative transport

Figure 16. Median of the L1-error computed over testing samples VS number of training samples for different benchmarks with NIO.
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η γ w Data Trans p Lt d
Trainable
Params

Calderón Problem
Trigonometric

0.001 1.0 0.0 Identity 25 8 200 4.84M

Calderón Problem
Heart&Lungs

0.001 1.0 0.0 MinMax 100 15 500 13.1M

Inverse Wave Scattering 0.001 1.0 1e-06 Identity 1000 12 500 8.32M

Radiative transport 0.001 1.0 0.0 MinMax 100 15 500 13.1M

Seismic Imaging
CurveVel - A

0.001 0.98 1e-06 log-MinMax 400 12 500 15.09M

Seismic Imaging
Style - A

0.001 0.98 1e-06 log-MinMax 400 12 500 15.09M

Table 3. DeepONet best-performing hyperparameters configuration for different benchmark problems.

η γ w Data Trans c
Trainable
Params

Calderón Problem
Trigonometric

0.001 1.0 0.0 MinMax 16 1.07M

Calderón Problem
Heart&Lungs

0.001 1.0 0.0 MinMax 128 275.37M

Inverse Wave Scattering 0.001 1.0 0.0 MinMax 128 68.32M

Radiative transport 0.001 1.0 1e-06 MinMax 16 2.48M

Seismic Imaging
CurveVel - A

0.001 1 1e-04 log-MinMax 64 24.4M

Seismic Imaging
Style - A

0.001 1 1e-04 log-MinMax 64 24.4M

Table 4. Fully convolutional neural network best-performing hyperparameters configuration for different benchmark problems.

little visible difference between NIO and FCNN. Nevertheless, the results from Table 1 demonstrate that NIO outperforms

FCNN considerably on this problem by almost halving the test error.

Next, in Figure 18, we focus on the discontinuous heart-lungs Phantom inferred with EIT. Also, in this case, there is no

visual difference between the NIO and FCNN, which are both very accurate in reconstructing the ground truth, and this is

indeed consistent with the very low generalization error achieved by both models.

In Figure 19, we plot the results of two randomly chosen test samples for the inverse wave scattering problem and compare

the ground truth with the reconstruction with NIO and FCNN. In the first sample (top row), both models accurately

reconstruct the ground truth coefficient with very little visible difference between the competing models. In contrast, in the

second sample, the reconstruction with NIO and FCNN are noticeable differences. In particular, FCNN cannot reconstruct

the small rectangular scatterer (at the top right of the square domain), whereas NIO can reconstruct it. This possibly explains

why NIO is significantly more accurate (see Table 1) for this experiment in reconstructing scatterers.

In Figure 20, we plot two randomly chosen test samples to recover the absorption coefficient with optical imaging for the

Radiative transport equation (11). The ground truth and reconstructions obtained with NIO and FCNN are shown. For the

first test sample, both models can provide an accurate reconstruction with a sharp resolution of the discontinuities in the

absorption coefficient. On the other hand, for the second sample (Figure 20 Right), we see that FCNN gets the correct

location but the wrong magnitude of the discontinuity, whereas NIO can approximate both accurately, probably accounting

for the significant gain in accuracy on this problem (see Table 1 of main text).

In Figures 21 and 22, we show two randomly chosen test samples for Seismic imaging of the subsurface property (squared

slowness) by the acoustic wave equation (14), corresponding to the CurveVel-A and Style A datasets (considered in (Deng
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η γ w Data Trans p Lt d k dv L
Trainable
Params

Calderón Problem
Trigonometric

0.001 1.0 1e-06 Identity 100 8 100 25 32 4 12.06M

Calderón Problem
Heart&Lungs

0.001 1.0 1e-06 MinMax 100 8 100 25 32 4 14.74M

Inverse Wave Scattering 0.001 0.98 0.0 Identity 100 8 200 16 64 4 15.57M

Radiative transport 0.001 0.98 1e-06 MinMax 400 4 100 32 64 4 10.3M

Seismic Imaging
CurveVel - A

0.001 0.98 1e-06 MinMax 25 4 200 16 32 3 16.49M

Seismic Imaging
Style - A

0.001 0.98 1e-06 log-MinMax 100 8 200 16 64 2 16.49M

Table 5. Neural Inverse Operator best-performing hyperparameters configuration for different benchmark problems.

Calderón
Problem

Trigonometric

Calderón
Problem

Heart&Lungs

Inverse Wave
Scattering

Radiative
Transport

1.03± 0.45% 0.19± 0.03% 1.08± 0.16% 1.14± 0.18%

Table 6. Means ± standard deviations of relative median L1 test errors computed over 10 different NIO retrainings for different

benchmarks.

et al., 2021)), respectively. Both figures show that NIO and FCNN reconstruct the coefficient reasonably accurately, although

slight differences exist between the models. Nevertheless, coupled with quantitative results from Table 1, we can conclude

that NIO is at least on par with FCNN, which was shown to be one of the state-of-the-art models in this context in (Deng

et al., 2021).

E.2. Robustness of Reconstruction to Λa-Discretizazion.

As outlined in Section 3.4, one crucial property that the model should exhibit is robustness to the number of samples L̃ used

to approximate the pushforward measure µΨ. To assess this, we conduct two different experiments.

In the first experiment, we consider the test set used to compute the errors reported in the main table 1 and consisting of

input-output pairs ({Ψℓ}
L
ℓ=1, a). For each model (NIO and baselines) and each benchmark, we construct a new test set by

picking at random L̃ samples from {Ψℓ}
L
ℓ=1, L̃ ≤ L and compute the corresponding testing error. As a remark, it should

be noted that NIO can be evaluated directly for any input {Ψk}
L̃
k=1, without any change in the architecture. On the other

hand, in order to even evaluate the baselines, interpolation (we chose to use the nearest interpolation) must be used to obtain

inputs consisting of exactly L samples. In Figure 23, we plot the median L1-error obtained as a function of the number of

samples L̃ for different models and benchmarks. We observe that the performance of NIO remains invariant with respect to

L̃, with the testing error only showing a slight increase as L̃ decreases, which is typically expected since the approximation

of the measure µΨ by the empirical distribution becomes less accurate as the number of samples decreases. In contrast, the

performance of the baselines deteriorates even when the number of samples L̃ is extremely close to the training set size.

This demonstrates that the baselines are not invariant to permutations of the samples {Ψℓ}
L
ℓ=1.

Next, we consider the Calderón problem with trigonometric functions and the inverse wave scattering problem. We generate

a new testing set from scratch, consisting of input-output pairs ({Ψℓ}
L
ℓ=1, a), where L = 100 (compared to the L = 20

samples used for model training). We then conduct the same experiments as before and present the results in Figure 24.

These results further reinforce the fact that NIO exhibits invariance with respect to the discretization of the input measure

µΨ.
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(a) Test Sample 1

(b) Test Sample 2

Figure 17. Exact and predicted coefficients for two different test samples (Rows) for the Calderón problem with Trigonometric coefficients.

Left Column: Ground Truth. Middle Column: NIO reconstruction. Right Column: FCNN Reconstruction.

E.3. Robustness of Reconstruction to Noise

Inverse problems, such as the abstract PDE inverse problem (4), can be very sensitive to noise as the stability estimate (5)

indicates, and reconstruction methods have to show some robustness with respect to noisy measurements in order to be

practically useful. To test the robustness of NIO (and competing models) to noise, we take all the benchmark test problems

reported in Table 1 of the main text and add 1% noise to the inputs to each model at test time. Table 8 presents the resulting

test errors. This table shows that NIO (as well as DOnet and FCNN) is very robust to this measurement noise.

Furthermore, upon closer examination of the results, it is evident that the models displaying the highest robustness with

respect to additional noise are those trained using the log-MinMax data scaling transformation. To validate this observation,

we consider the inverse wave scattering problem and train NIO with the hyperparameters reported in Table 5, but employing

the log-MinMax scaling of the data. Additionally, instead of monitoring the validation error computed on the noiseless data,

we monitor the validation error computed on data corrupted by 10% noise and interrupt the training based on this metric.

The final median testing error on 1%-noisy data is 1.64%, two times lower than the value reported in Table 8. Moreover, the

testing error on the noise-free data only marginally increased to 1.61%. These findings suggest that utilizing log-MinMax

scaling and potentially monitoring the validation error on the corrupted data can significantly enhance the model’s robustness

to noise, with minimal loss in performance on the noise-free data.
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(a) Test Sample 1

(b) Test Sample 2

Figure 18. Exact and predicted coefficients for two different test samples (Rows) for the Calderón problem with Heart&Lungs Phantom.

Left Column: Ground Truth. Middle Column: NIO reconstruction. Right Column: FCNN Reconstruction.

E.4. Robustness of Reconstructions to Varying Grid Sizes.

Although the inputs and outputs to the inverse problem (4) are continuous objects in principle, in practice, one has to deal

with discretized versions of both inputs and outputs. This is true when the ground truth is generated by numerical simulations

and observed through other forms of measurement. It is highly desirable that an operator learning algorithm be robust to the

resolutions at which it is tested; see (Kovachki et al., 2021b) for further discussion on this topic. To test if the proposed

NIO architecture is robust with respect to resolution, we focus on the inverse wave scattering with the Helmholtz equation

example, where NIO was trained with data obtained from a finite difference scheme on a uniform 70× 70 grid. To test the

robustness with respect to resolution, we use this trained model to also infer at two different resolutions, namely at 50× 50
and 100× 100, and present the results, together with DeepONet and FCNN baselines in Table 9 to observe that NIO (and

the baselines) is robust to varying resolutions.

E.5. Robustness of Reconstruction to Random Sensors Location.

While training data typically assumes equidistant placement of sensors along the boundaries of the square domain (as they

are synthetically generated using standard numerical methods), real-world scenarios often involve sensors located randomly

along the boundaries. Hence, the learning model must exhibit robustness to these random sensor placements.

Our experiments to assess this robustness focus on two specific problems: the Calderón problem with trigonometric function

and inverse wave scattering. We perform testing with input data obtained from 200 sensors randomly distributed along the

domain boundary. Observe that the training data accounts for 272 sensors. Therefore, before feeding the data to NIO (and

baselines), we interpolate it onto the original equispaced set of points. For both problems, we examine the L1 error, as
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(a) Test Sample 1

(b) Test Sample 2

Figure 19. Exact and predicted coefficients for two different test samples (Rows) for the Inverse Wave Scattering with Helmholtz Equation.

Left Column: Ground Truth. Middle Column: NIO reconstruction. Right Column: FCNN Reconstruction.

(a) Test Sample 1 (b) Test Sample 2

Figure 20. Exact and predicted absorption coefficients for two different test samples, obtained with optical imaging for the radiative

transport Equation.
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(a) Test Sample 1

(b) Test Sample 2

Figure 21. Exact and predicted coefficients for two different test samples (Rows) for the Seismic Imaging with the acoustic wave equation

with CurveVel A data set. Left Column: Ground Truth. Middle Column: NIO reconstruction. Right Column: FCNN Reconstruction.
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(a) Test Sample 1

(b) Test Sample 2

Figure 22. Exact and predicted coefficients for two different test samples (Rows) for the Seismic Imaging with the acoustic wave equation

with Style A data set. Left Column: Ground Truth. Middle Column: NIO reconstruction. Right Column: FCNN Reconstruction.
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(a) Calderón Problem Trigonometric (b) Calderón Problem Heart&Lungs

(c) Inverse Wave Scattering (d) Radiative transport

(e) Seismic Imaging CurveVel - A (f) Seismic Imaging StyleVel - A

Figure 23. Median of the L1-error computed over testing samples ({Ψk}
L̃

k=1, a) VS L̃ for different benchmarks with different models

(L̃ < L).

(a) Calderón Problem Trigonometric (b) Inverse Wave Scattering

Figure 24. Median of the L1-error computed over testing samples ({Ψk}
L̃

k=1, a) VS L̃ for different benchmarks with different models (L̃

spans the entire range 10-100).

29



Supplementary Material for ”Neural Inverse Operators for solving PDE Inverse problems”

DONet FCNN NIO

L1 ↓ L2 ↓ L1 ↓ L2 ↓ L1 ↓ L2 ↓

Calderón Problem
Trigonometric

1.3%
3.19%

1.58%
3.75%

1.08%
2.24%

1.33%
2.7%

0.56%
1.21%

0.7%
1.47%

Calderón Problem
Heart&Lungs

0.87%
1.42%

3.32%
4.11%

0.25%
0.44%

1.37%
3.5%

0.16%
0.2%

0.88%
1.53%

Inverse Wave Scattering
2.28%
5.55%

4.37%
11.0%

0.84%
4.98%

2.08%
13.47%

0.3%
2.15%

1.08%
5.92%

Radiative transport
1.56%
3.38%

2.72%
6.5%

1.0%
2.26%

2.02%
6.0%

0.74%
1.63%

1.82%
4.86%

Seismic Imaging
CurveVel - A

3.25%
4.93%

4.79%
7.4%

2.01%
3.53%

3.98%
6.52%

2.16%
3.36%

3.83%
5.81%

Seismic Imaging
Style - A

2.97%
4.88%

4.02%
6.61%

2.39%
4.1%

3.49%
6.09%

2.4%
3.83%

3.4%
5.6%

Table 7. 0.25 and 0.75 quantiles of the relative L1-error and L2-error computed over testing samples for different benchmarks and models.

DONet FCNN NIO

Calderón Problem
Trigonometric

2.02% 1.51% 0.91%

Calderón Problem
Heart&Lungs

0.95% 0.27% 0.18%

Inverse Wave Scattering 3.83% 2.54% 3.72%

Radiative transport 2.38% 1.47% 1.1%

Seismic Imaging
CurveVel - A

3.98% 2.65% 2.73%

Seismic Imaging
Style - A

3.82% 3.13% 3.09%

Table 8. Median of the relative L1-error computed over 1%-noisy testing samples for different benchmarks with different models.

presented in Table 10.

The results show that the L1-error increases only to 1.18% and 1.43%, compared to the original setup where the errors were

0.86% and 1.11%, respectively. These findings underscore the NIO model’s ability to maintain robust performance even

when the boundary sensors are placed at different locations.

E.6. Out-of-Distribution Reconstruction.

In addition to in-distribution testing, we also consider an out-of-distribution testing task. This will enable us to evaluate the

ability of the models to generalize to inputs (and outputs) that possess different features from the training ones.

First, we considered the Calderón Problem (Trigonometric) benchmark. The coefficients in the training distribution were

sampled from the exponential of a sum of sines, with up to 4 frequency modes (up to 8π). We now test with the following

distributions:

• Distribution A: a(x, y) = exp
(∑6

k=1 ck sin(kπx) sin(kπy)/k
3
2

)

• Distribution B: a(x, y) = exp
(∑6

k=1 ck sin(kπx) sin(kπy)/k
)

Here, ck is a uniformly distributed random variable in the range [0, 1]m. The coefficients include up to 6 frequency modes,

with different decays of the higher order modes (1.5 and 1). Thus, at test time, the model now has to infer data with
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DONet FCNN NIO

Resolution 50× 50 100× 100 50× 50 100× 100 50× 50 100× 100

Inverse Wave Scattering 3.74% 3.63% 1.81% 1.66% 0.93% 0.95%

Table 9. Relative median L1-error computed over testing samples generated at different resolutions (grid sizes).

DONet FCNN NIO

L1 ↓ L1 ↓ L1 ↓

Calderón Problem Trigonometric 3.39% 1.88% 1.18%

Inverse Wave Scattering 3.84% 2.53% 1.43%

Table 10. Relative median L1-error computed over testing samples with random location of the boundary measurements with different

models and different benchmarks.

significantly higher frequencies than the training data.

Next, we consider the Calderon problem of the Heart and Lungs. Here, the training distribution was based on a normally

distributed perturbation of the Heart and Lungs Phantom, with the amplitude of the perturbation being at most 8% of the

Phantom values (See SM 4). At test time, we now consider perturbations with amplitudes being 12% of the Phantom values,

thus sampling from a different distribution. For instance, this higher amplitude could model individuals with some diseases.

Note that even higher variations are probably unrealistic as this problem models body organs and one has to restrict to some

biological constraints.

As a third benchmark, we consider the inverse scattering problem. Here, the training distribution was of a coefficient that

consisted of between 1-4 scatterers, of identical shape, whose locations were randomly chosen (See SM 5). We chose to test

this model now on two different test distributions

• Distribution A: a(x, y) =
∑5

k=1 exp
(
− c(x − c1,k)

4 − c(y − c2,k)
4
)
. In this case, we use a family of coefficients

with a fixed number of inclusions equal to five.

• Distribution B: a(x, y) =
∑m

k=1 exp
(
− b4k(x − c1,k)

4 − b4k(y − c2,k)
4
)
, with bk ∼ U [5, 15], m = mod (m),

m ∼ U([1, 4]) and {(c1,k, c2,k)} ∼ U([0, 1]m×2). This corresponds to a medium with one to four scatterers with

varying shapes.

The relative median L1 error for different models and different out-of-distribution testing is reported in Table 11. We

observe that NIO generalizes well to unseen data, with test errors increasing at most by approximately a factor of 4, and still

outperforms the baselines in all cases.

E.7. Ablation Studies.

We conduct two ablation studies focusing on two key elements of the Neural Inverse Operator. Firstly, we focus on the

architecture shown in Figure 1, where we remove the nonlinear part M of FNO and set dv = 1. In this case, we have:

a∗(z) = R(f1, . . . , fL, z) =
D

L

L∑

ℓ=1

fℓ + Ez, (38)

where E and D are real-valued parameters. With these experiments, we aim to assess if the channels’ mixing realized with

M could improve the model’s performance. Secondly, we examine the influence of randomized batching by training NIO

without including the algorithm.

In order to maintain consistency, we use the same hyperparameter configurations for the ablation models as those of the

best-performing NIO models (refer to Table 5 for the specific values).
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DONet FCNN NIO

L1 ↓ L1 ↓ L1 ↓

Calderón Problem
Trigonometric Distribution A

1.37% 1.27% 1.2%

Calderón Problem Trigonometric
Distribution B

1.62% 1.28% 0.91%

Calderón Problem
Heart&Lungs

1.05% 0.28% 0.19%

Inverse Wave Scattering
Distribution A

4.61% 3.84% 3.0%

Inverse Wave Scattering
Distribution B

8.61% 8.98% 4.54%

Table 11. Relative median L1-error computed over out-of-distribution test samples with different models and different benchmarks.

(a) Calderón Problem Trigonometric (b) Calderón Problem Heart&Lungs

(c) Inverse Wave Scattering (d) Radiative Transport

Figure 25. Median of the L1-error computed over testing samples ({Ψk}
L̃

k=1, a), VS L̃ for different benchmarks with different models

(NIO and ablations).

The ablation study is being carried out for the Calderón problem with trigonometric function and heart&lungs Phantom,

inverse wave scattering, and radiative transport. We consider the same experimental setup outlined in Section E.2 and report

the corresponding results in Figure 25. The figure shows that the nonlinear term M and randomized batching significantly

improve the model’s performance. For the Calderón problem with trigonometric coefficients, removing M resulted in a

nearly 2-times increase of the generalization error. On the other hand, for the remaining problems, the improvement is

considerably more relevant, up to a factor of six for the inverse wave scattering.

It should be noted that in all experiments, only between L = 20 and L = 32 boundary measurements are used for training.

In this scenario, the limited measurement data represents a bottleneck in accurately reconstructing the target coefficient.

With a larger number, the nonlinear part may lead to an even greater reduction in the generalization error.
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Regarding randomized batching, the improvements for the Calderón problem and radiative transport are substantial, ranging

from 5 to 10 times compared to the ablated version. On the other hand, the improvements are more modest for the Inverse

Wave Scattering, and the algorithm does not appear to considerably enhance generalization. However, these results are

particularly impressive on account of the virtually zero cost associated with the randomized batching algorithm.

E.8. Comparison Standard Numerical Methods for Inverse Problems

In this section, we compare the performance of the proposed architecture, in terms of accuracy and inference time, with

standard numerical methods, particularly PDE-constrained optimization techniques.

E.8.1. CALDERÓN PROBLEM HEART&LUNGS

We begin by considering the Calderón problem for the discontinuous heart-lungs Phantom and conduct a comparative

analysis between the proposed approach and the well-known D-bar method (Muller & Siltanen, 2012), which is commonly

employed in the context of EIT. In Figure 4, we present the ground truth along with the NIO reconstruction for a randomly

selected set of test samples. For comparison, we also include the reconstruction obtained using the D-bar method. As the

figure shows, NIO reconstructs the ground truth to very high accuracy, consistent with the very small errors presented in

Table 1. On the other hand, the D-bar method is relatively inaccurate and provides a blurred and diffusive reconstruction of

the shapes. In fact, the L1-test error for the D-bar method is an unacceptably high 8.75%, compared to the almost 0.15%
test error with NIO. This is even more impressive when one looks at the run times. The D-bar method takes approximately 2
hours to run for a single sample, whereas the inference time for NIO is only 0.1 seconds (on CPU). Thus, we can provide a

method which two orders of magnitude more accurate while being four orders of magnitude faster to run. This highlights the

massive gain in performance with machine learning-based methods, such as NIO, compared to traditional direct methods.

E.8.2. INVERSE WAVE SCATTERING

Next, we investigate the Inverse Wave Scattering problem and compare the NIO reconstruction with the results obtained

through PDE-constrained optimization. We examine an out-of-distribution (Distribution A) test sample to accomplish this.

For PDE-constrained optimization, we employ a feed-forward neural network with trainable parameters θ that parameterizes

the coefficient a. The neural network architecture follows the form specified in Equation 32, with L layers, d neurons, and

activation function σ. The model parameters θ are initialized randomly, and the Helmholtz equation (9) is numerically

solved for L = 20 realizations of the boundary conditions gℓ, where ℓ = 1, ..., L and the L2-loss

J(θ) =
L∑

ℓ=1

||Ψℓ − Ψ̃ℓ||
2
2 (39)

computed. Here, Ψ̃ℓ, ℓ = 1, ..., L denotes the target data. The trainable network parameters are updated using LBFG in the

direction of the gradient of J(θ). The process is iterated until convergence (1000 iterations, corresponding to 1000× 20
PDE solves).

Observe that the hyperparameters of the network are chosen through a random search by picking the one minimizing J(θ).

The reconstructed coefficient obtained through PDE-constrained optimization, along with the NIO prediction obtained by

directly feeding the model with Ψ̃ℓ for ℓ = 1, . . . , L, are depicted in the right panel of Figure 2. The NIO reconstruction is

significantly more accurate than the one obtained with PDE-constrained optimization, further reinforced by the corresponding

L1-error, equal to 2.3% and 11.1%, respectively. The corresponding total time required to reconstruct the coefficient, amounts

to less than 1 second (on CPU) for NIO and 8.5 hours for the traditional method. It is worth noting that the finite difference

(FD) solver employed for solving the equation is implemented on GPU within the PyTorch framework. By solving the PDE

in parallel for L = 20 boundary measurements on 20 different GPUs, the computation time could potentially be reduced to

30 minutes, which is still three orders of magnitude slower than NIO’s inference.

Finally, an alternative approach would be to replace the forward solver with a learning model instead of directly learning the

inverse map. Although the surrogate model might achieve low errors in learning the forward map (compared to the inverse

map), the inference time for the model could be approximately 0.1 seconds (on a CPU). If we require 1000 calls to the

model for the optimization process, this will result in an overall inference time that is two orders of magnitude longer than

NIO. Moreover, the reconstruction accuracy cannot surpass that obtained using the FD forward solver, which is already four

times worse than the accuracy achieved with NIO.
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E.8.3. SEISMIC IMAGING

We also tested the PDE-constrained optimization method in the context of Seismic imaging with the CurveVel-A dataset.

Unlike the NIO approach, in the PDE-constrained optimization approach, we first discretize the velocity coefficient a(z)
using a piecewise-constant parameterization, denoting the parameters as θ. We then solve the wave equation (14) using the

finite difference method. The method is thus naturally dependent on the discretization of a(z) and the PDE solver used

to evaluate the source-to-receiver operator. We use the same experimental setup as provided in (Deng et al., 2021). A

similar squared L2 loss to (39) is used as the objective function to measure the mismatch between the observed data and

the simulated receiver data based on the current prediction of a(z). We also solve a corresponding adjoint wave equation

whose solution is used to compute the gradient of the objective function J(θ) with respect to θ. We use the standard gradient

descent method to perform the optimization. Each gradient evaluation requires two time-dependent PDE solves, which is

the most expensive part of this PDE-constrained optimization approach.

The method leads to errors (in L1) 2.5-4 times larger than CNIO for the same test sample while taking approximately

30 minutes of run-time on an 8-core M1-chip CPU. Figure 27 depicts the results for two test samples. The L1-error

achieved with NIO is 2.03% and 4.84% for samples 1 and 2, respectively, whereas the ones obtained with PDE-constrained

optimization are 5.05% and 16.9%.

(a) Test Sample 1

(b) Test Sample 2

Figure 26. Exact and predicted coefficients for two different test samples (Rows) for the Calderón problem with Trigononmetric -

coefficients. Left Column: Ground Truth. Middle Column: NIO reconstruction. Right Column: Reconstruction with the D-bar Direct

method of (Muller & Siltanen, 2012).
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(a) Test Sample 1

(b) Test Sample 2

Figure 27. Exact and predicted coefficients for two different test samples (Rows) for the Curve Vel family. Left Column: Ground Truth.

Middle Column: NIO reconstruction. Right Column: Reconstruction with the PDE-constrained optimization method.
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