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Abstract

We solve the wave equation with periodically time-modulated material parameters in a

one-dimensional high-contrast resonator structure in the subwavelength regime exactly, for

which we compute the subwavelength quasifrequencies numerically using Muller’s method.

We prove a formula in the form of an ODE using a capacitance matrix approximation.

Comparison of the exact results with the approximations reveals that the method of capac-

itance matrix approximation is accurate and significantly more efficient. We prove various

transmission properties in the aforementioned structure and illustrate them with numerical

simulations. In particular, we investigate the effect of time-modulated material parameters

on the formation of degenerate points, band gaps and k-gaps.
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1 Introduction

Numerous papers have tackled the problem of understanding and manipulating wave propaga-
tion in two- and three-dimensional systems with subwavelength resonant structures [5, 24, 31].
Systems of subwavelength resonant structures are of particular interest due to their ability to
manipulate waves at subwavelength scales in two- and three-dimensional materials [26–28]. Such
media are made up of a background medium and highly contrasting inclusions, which we call
subwavelength resonators. The fact that these inclusions are highly contrasting leads to subwave-
length resonances, frequencies at which the resonators interact with incident waves with wave-
lengths of possibly larger magnitudes [22]. This kind of structure appears in various application
areas. Subwavelength resonances in highly contrasted structures can be found, for instance, in
elastic media [20, 29], in plasmonic particles [15, 17–19], Helmholtz resonators [16, 27] and in
dielectric high-index particles [14, 32]. The plethora of applications of subwavelength resonances
make this topic of more general scientific interest.

Wave propagation through a two- or three-dimensional structure with highly contrasting
resonators is modelled by a high-contrast Helmholtz problem [7]. It has been shown that the
high material contrast within the structure is a key assumption for the existence of resonant
behaviours at subwavelength scales [9, 33]. The way the aforementioned Helmholtz problem
is approximately solved is to use single-layer potentials based on the fundamental solution of
the Laplace problem [10]. Specifically, single-layer potentials are used to derive the so-called
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capacitance matrix, which is used to approximate the differential equations in terms of a discrete
eigenvalue problem [5].

Analogously to the two- and three-dimensional cases, the wave propagation in a one-dimensional
structure is modelled by a Helmholtz problem [22]. However, we note that layer potential tech-
niques cannot be applied to the one-dimensional setting. Thus, we must derive a distinct method
to approximately solve the one-dimensional problem, which has previously been done for the fi-
nite one-dimensional case in [22]. Therefore, the results obtained in higher dimensions are not
bound to hold true in the one-dimensional case, which motivates this work. Here, we seek to
find a capacitance matrix approximation to the subwavelength quasifrequencies for which the
quasi-periodic one-dimensional problem attains a non-trivial solution; see Definition 3.2. Using
such discrete approximation we shall be able to reproduce a number of phenomena induced by
time-modulated material parameters in higher dimensional structures.

Many intriguing phenomena have been shown in two- and three-dimensional high-contrast
metamaterials, however, not in the one-dimensional setting. The interest in the one-dimensional
case has recently risen because, in contrast to higher-dimensional cases, interactions between the
resonators in one-dimensional systems only imply the nearest neighbors. The capacitance matrix
formalism used for analysing systems of subwavelength resonators in one dimension corresponds
to the tight-binding approximation for quantum systems while in three dimensions some corre-
spondence holds only for dilute resonators [8]. Consequently, the one-dimensional case connects
the field of high-contrast metamaterials to condensed-matter theory better.

Relevant recent works which focus on one-dimensional subwavelength resonators are [22] and
[1]. While [22] presents the mathematical theory for the case of finitely many resonators aligned
in one dimension, [1] considers the existence and characterization of topologically protected edge
modes arising from defects in the periodicity of a chain of subwavelength resonators. Further
relevant research has been conducted for the case of one-dimensional chains of resonators con-
tained within a three-dimensional background medium in [6, 7]. Moreover, in [30] the authors
considered topological photonic materials in one dimension, but they look at the consequences
certain topological properties have, but not at the formation of band gaps and non-reciprocity.

This paper particularly introduces periodically time-modulated material parameters in a
quasi-periodic system of resonators, which is a natural extension to already known behaviours
in one-dimensional subwavelength structures. The analogue setting in higher dimensions has
been well-studied in [2–4, 13]. We aim to investigate the formation of band gaps, which is
a regime of subwavelength frequencies with which waves are unable to propagate through the
medium, and they exponentially decay instead [4]. It has been proven in higher dimensions
that the time-modulation of the material’s density leads to the emergence of band gaps [4]. On
the other hand, the time-modulation of the material’s bulk modulus leads to k-gaps [4]. The
so-called k-gaps are known as band gaps in the momentum variable [13]. Additionally, time-
modulated material parameters induce non-reciprocity of waves propagating through two- or
three-dimensional materials [4, 13, 23, 36]. This non-reciprocity can be used to replicate spin
effects from quantum systems [3, 13, 35] and to show that the unidirectional guiding phenomenon
is not particular to quantum systems [25, 34]. The understanding of the coupling between time-
modulated material parameters and the occurrence of band gaps, k-gaps and non-reciprocity is
meaningful to the field of metamaterials. In this paper we aim to prove these three observances
in the case of a one-dimensional periodic structure.

We start by providing an overview of the problem setting and introduce the governing equa-
tions in the form of a modified Helmholtz equation with suitable boundary conditions in Section
2. We particularly assume quasi-periodicity of the problem and the material parameters to be
periodically time-modulated, which makes a new contribution to the understanding of subwave-
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length resonance phenomena in one dimension. In Section 3 we introduce a scheme to solve the
governing equations exactly in order to find the subwavelength quasifrequencies, for which we
make use of the Dirichlet-to-Neumann approach. In Section 4 we provide a brief explanation of
Muller’s method - the root-finding algorithm used to solve the modified Helmholtz equations.
In Section 5 we shift our attention to a further novel contribution of this paper, which consists
of the introduction of a capacitance matrix approximation of the subwavelength quasifrequen-
cies. We prove that such a discrete approximation is a suitable replacement for the numerical
scheme solving the wave problem exactly. Lastly, we move on to apply the capacitance matrix
approximation to investigate the formation of band gaps, k-gaps and degeneracies and analyze
the reciprocity of the wave propagation in Section 6. We summarize our results in Section 7.

2 Problem formulation and preliminary theory

2.1 Problem formulation

We seek to solve the one-dimensional wave equation on a domain composed of contrasting ma-
terials. In this section, we first introduce the setting, which we shall consider in the remainder
of this paper. Moreover, we define the material parameters to be time-dependent and assume
quasi-periodicity.

We consider the case of a one-dimensional system of periodically reoccurring chains of N
disjoint subwavelength resonators Di := (x−i , x

+
i ), where (x±i )1≤i≤N are the 2N boundary points

of the resonators satisfying x+i < x−i+1, for any 1 ≤ i ≤ N − 1. We denote by (x±i )i∈N the
infinite sequence defined by x±i+N := x±i +L, where L ∈ R>0 is the period of an infinite chain of

resonators. Furthermore, we denote the length of the i-th resonator Di by ℓi := x+i − x−i , and
the length of the gap between the i-th and the (i+1)-th resonator by ℓi(i+1) := x−i+1 − x+i . Note

that we will use the convention ℓN(N+1) := x−N+1 − x+N = L − x+N + x−1 throughout this paper.
We refer to Figure 1 for an illustration of the hereby introduced setting.

Figure 1: An illustration of the one-dimensional setting for N = 3 resonators in the unit cell.

In what follows, we denote by Y := (0, L) the periodic unit cell and by

D :=

N
⊔

i=1

(

x−i , x
+
i

)

(1)

the union of the N resonators in the unit cell. With this notation, the region within R which is
taken up by the resonators, is given by

D + LZ := {x+ kL : x ∈ D, k ∈ Z}. (2)
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2.2 Time-dependent material parameters

We assume that the material parameter distributions are periodic in x with period L and in t
with period T := 2π/Ω and are given by

κ(x, t) =

®

κ0, x /∈ D,

κrκi(t), x ∈ Di,
ρ(x, t) =

®

ρ0, x /∈ D,

ρrρi(t), x ∈ Di.
(3)

Here, ρ and κ represent in acoustics the density and the bulk modulus of the material, respec-
tively, and Ω is the frequency of the time-modulations of the material parameter distributions.

We define the contrast parameter and the wave speeds by

δ :=
ρr
ρ0

, v0 :=

…

κ0
ρ0

, vr :=

…

κr
ρr

, (4)

respectively. Typically, the most interesting regime of the frequency of modulations of ρi(t) and
κi(t) is Ω = O(δ1/2), i.e., of the same order as the static subwavelength resonances [13]. This
allows strong coupling between the time modulations and the response time of the structure.

We aim at finding ω = O(δ1/2) such that the wave equation










Å

1

κ(x, t)

∂2

∂t2
− ∂

∂x

1

ρ(x, t)

∂

∂x

ã

u(x, t) = 0, x ∈ R, t ∈ R,

u(x, t)e−iωt is T−periodic,

(5)

has a non-trivial solution u(x, t) which is essentially supported in the low-frequency regime.
By substituting the time-harmonic wave field u(x, t) = ℜ

(

v(x, t)eiωt
)

into the wave equation
(5), we obtain

1

κ(x, t)

Å

−iω +
∂

∂t

ã2

v(x, t)− ∂

∂x

Å

1

ρ(t, x)

∂

∂x
v(x, t)

ã

= 0, x ∈ R, t ∈ R. (6)

Due to the assumption that u(x, t)e−iωt is T -periodic with respect to time t, we write the
Fourier series expansion

u(x, t) = eiωt
∞
∑

n=−∞

vn(x)e
inΩt. (7)

Note that any L2-function vn(x) can be decomposed into a superposition of Bloch waves as
follows:

vn(x) =

∫ π/L

−π/L
v̂n(x, α)e

iαx dα, (8)

where α is the so-called momentum and v̂n(x, α) is L-periodic in x. The function v̂n is defined
by

v̂n(x, α) :=

∞
∑

m=−∞

vn(x−mL)e−iα(x−mL), ∀n ∈ Z. (9)

Thus, we can write

u(x, t) = eiωt
∞
∑

n=−∞

∫ π/L

−π/L
v̂n(x, α)e

iαx dα einΩt. (10)
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Inserting the expansion (10) into the differential equation (6), we conclude that for any n ∈ Z,
v̂n must satisfy











− (ω + nΩ)2

κ(x, t)
v̂n −

Å

iα+
∂

∂x

ãÅ

1

ρ(x, t)

Å

iα+
∂

∂x

ã

v̂n

ã

= 0, x ∈ R, t ∈ R, ∀n ∈ Z,

x 7→ v̂n(x, α) isL−periodic.

(11)

Recall that we have assumed the chain of N resonators to be repeated periodically with
period L. Therefore, we study the one-dimensional spectral problem in the unit cell (0, L) for
the quasiperiodic function vn(x, α) := v̂n(x, α)e

iαx:











































































Å

d2

dx2
+

ρ0(ω + nΩ)2

κ0

ã

vn = 0 in (0, L) \
N
⊔

i=1

(

x−i , x
+
i

)

,

d2

dx2
v∗i,n +

ρr(ω + nΩ)2

κr
v∗∗i,n = 0 in

N
⊔

i=1

(

x−i , x
+
i

)

,

vn|−
(

x±i
)

= vn|+
(

x±i
)

for all 1 ≤ i ≤ N,

dv∗i,n
dx

∣

∣

∣

∣

+

(

x−i
)

= δ
dvn
dx

∣

∣

∣

∣

−

(

x−i
)

for all 1 ≤ i ≤ N,

dv∗i,n
dx

∣

∣

∣

∣

−

(

x+i
)

= δ
dvn
dx

∣

∣

∣

∣

+

(

x+i
)

for all 1 ≤ i ≤ N,

(12)

where we use the notation

w|± (x) := lim
s→0, s>0

w(x± s). (13)

The functions v∗i,n(x, α) and v∗∗i,n(x, α) are defined in each resonator Di through the convolutions

v∗i,n(x, α) =
∞
∑

m=−∞

ri,mvn−m(x, α), v∗∗i,n(x, α) =
1

ω + nΩ

∞
∑

m=−∞

ki,m(ω + (n−m)Ω)vn−m(x, α),

(14)
where ri,m and ki,m are the Fourier series coefficients of 1/ρi(t) and 1/κi(t). Furthermore, we
define the wave number outside and inside the resonators corresponding to the n-th mode through

kn :=
ω + nΩ

v0
, knr :=

ω + nΩ

vr
, (15)

respectively. We assume that the time-modulations of ρi and κi have finite Fourier series in each
resonator Di, that is,

1

ρi(t)
=

M
∑

n=−M

ri,ne
inΩt,

1

κi(t)
=

M
∑

n=−M

ki,ne
inΩt (16)

for some M ∈ N satisfying M = O
Ä

δ−γ/2
ä

, for some γ ∈ (0, 1) [13]. Note that the solution to

(12) is invariant under scaling. Hence, we can assume the solution to be normalized. As u is
continuously differentiable in t, we have

∥vn∥2 = o

Å

1

n

ã

as n → ∞, (17)
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where ∥ · ∥2 denotes the L2-norm on (0, L). Due to folding (see Definition 5.1), we need to
specify the subwavelength quasifrequencies in terms of the oscillations in their associated modes
[13]. As said before, the subwavelength quasifrequencies are those associated with Bloch modes
essentially supported in the low-frequency regime as δ → 0. Therefore, we shall assume that
there exists some Mv = Mv(δ) ∈ N such that

MvΩ → 0 and
∞
∑

n=−∞

||vn||2 =
Mv
∑

n=−Mv

||vn||2 + o(1), (18)

as δ → 0, where the sequence of functions (vn)n∈Z is a nontrivial solution to (12). As we will see
later, we can assume without loss of accuracy that Mv = M .

In order to perform some numerical and analytic analysis in this regime, we adapt the
Dirichlet-to-Neumann approach of [21, 22] to the one-dimensional, quasi-periodic and time-
modulated case to solve (12).

3 Exact solution

In this section we seek to solve the modified Helmholtz problem (12) exactly. We first present a
characterization of the solution to the exterior problem and then to the interior problem. Lastly,
we use the Dirichlet-to-Neumann map to derive a system of equations based on the boundary
condition.

3.1 Exterior problem

In this section we seek to characterize the Dirichlet-to-Neumann map of the Helmholtz operator
on the domain (0, L) with the quasi-periodic boundary condition.

We denote the Sobolev space of quasiperiodic complex-valued functions by H1
per,α(R). We

also denote by C
2N,α the set of quasi-periodic boundary data f ≡ (f±

i )i∈Z such that

f±
i+N = eiαLf±

i , (19)

where f+
i (resp. f−

i ) refers to the component associated with x+i (resp. with x−i ). The space of
such quasi-periodic sequences is clearly finite-dimensional, specifically it is of dimension 2N .

The following lemma from [22] provides an explicit expression for the solution to the exterior
problem on R \ (D + LZ).

Lemma 3.1. Assume that kn = (ω+nΩ)/v0, for some fixed n ∈ Z, is not of the form mπ/ℓi(i+1)

for some non-zero integer m ∈ Z\{0} and index 1 ≤ i ≤ N . Then, for any quasi-periodic sequence
(f±

i )1≤i≤N ∈ C
2N,α, there exists a unique solution vαf,n ∈ H1

per,α(R) to the exterior problem:



















Å

d2

dx2
+ (kn)2

ã

vαf,n = 0 in R\(D + LZ),

vαf,n(x
±
i ) = f±

i for all 1 ≤ i ≤ N,

vαf,n(x+ L) = eiαLvαf,n(x) in R \ (D + LZ).

(20)

Furthermore, when kn ̸= 0, the solution vαf,n reads explicitly

vαf,n(x) = αn
i e

iknx + βn
i e

−iknx if x ∈ (x+i , x
−
i+1), ∀i ∈ Z, (21)
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where, for fixed n ∈ Z, αn
i and βn

i are given by the matrix-vector product

ï

αn
i

βn
i

ò

= − 1

2i sin(knℓi(i+1))

ñ

e−iknx−

i+1 −e−iknx+
i

−eik
nx−

i+1 eik
nx+

i

ô

ï

f+
i

f−
i+1

ò

. (22)

Proof. Identical to [22, Lemma 2.1].

Definition 3.1. For any kn ∈ C, for fixed n ∈ Z, which is not of the form mπ/ℓi(i+1) for some
m ∈ Z\{0} and 1 ≤ i ≤ N−1, the Dirichlet-to-Neumann map with wave number kn is the linear
operator T kn,α : C2N,α → C

2N,α defined by

T kn,α[(f±
i )1≤i≤N ] :=

Ç

±
dvαf,n
dx

(x±i )

å

1≤i≤N

, (23)

where vαf,n is the unique solution to (20).

Using the exponential Ansatz presented in Lemma 3.1 to solve (20) gives rise to a closed form
definition of the Dirichlet-to-Neumann map, which we introduce in the following proposition.

Proposition 3.2. For fixed n ∈ Z, the Dirichlet-to-Neumann map T kn,α admits the following
explicit matrix representation: for any kn ∈ C\{mπ/ℓi(i+1) : m ∈ Z\{0}, 1 ≤ i ≤ N − 1},
f ≡ (f±

i )1≤i≤N , T kn,α[f ] ≡ (T kn,α[f ]±i )1≤i≤N is given by















T kn,α[f ]−1
T kn,α[f ]+1

...
T kn,α[f ]−N
T kn,α[f ]+N















=























−kn cos(knℓN(N+1))

sin(knℓN(N+1))
kn

sin(knℓN(N+1))
e−iαL

Akn(ℓ12)
Akn(ℓ23)

. . .

Akn(ℓ(N−1)N )
kn

sin(knℓN(N+1))
eiαL −kn cos(knℓN(N+1))

sin(knℓN(N+1))





































f−
1

f+
1
...
f−
N

f+
N















,

(24)
where for any ℓ ∈ R, Akn(ℓ) denotes the 2× 2 symmetric matrix

Akn(ℓ) :=

[

−kn cos(knℓ)
sin(knℓ)

kn

sin(knℓ)
kn

sin(knℓ) −kn cos(knℓ)
sin(knℓ)

]

. (25)

Proof. Identical to [1, Proposition 3.3].

To this end, we have found a way to solve the exterior problem explicitly for some given
boundary data, as stated in Lemma 3.1. Moreover, we have proved an explicit matrix repre-
sentation of the Dirichlet-to-Neumann map in Proposition 3.2, which we will make use of when
dealing with the Neumann boundary condition of (12) in order to solve the interior problem.

3.2 Interior problem

Having dealt with the exterior problem in the previous section, we now focus on the solution of
the interior problem. We can formulate the interior part of problem (12) using the Dirichlet-to-
Neumann map, which leads to























d2

dx2
v∗i,n +

ρr(ω + nΩ)2

κr
v∗∗i,n = 0 in D + LZ,

± d

dx
v∗n(x

±
i , α) = δT kn,α[vn]

±
i for all i ∈ Z,

vn(x+ L, α) = eiαLvn(x, α) for almost every x ∈ D + LZ,

(26)
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for n ∈ Z. Recall that v∗i,n and v∗∗i,n are the convolutions defined by (14).
We now recall the definition of a subwavelength quasifrequency [13].

Definition 3.2. Any frequency ωα(δ) ∈ [−Ω/2,Ω/2) for which the vn’s satisfying (26) are not
all trivial and the corresponding

uα(x, t) = eiω
α(δ)t

∞
∑

n=−∞

vn(x, α)e
inΩt (27)

is essentially supported in the low-frequency regime, i.e., there exists Mv such that (18) holds,
is called a subwavelength quasifrequency. Moreover, uα is called a subwavelength Bloch mode
associated to ωα(δ).

Next, we state the following lemma, which provides us with the solution to the interior
problem upon using an exponential Ansatz. The idea behind this lemma is taken from [1] and
adapted to the time-modulated setting considered in this paper.

Lemma 3.3. The subwavelength quasifrequencies ω to the wave problem (26) are approximately
satisfying as δ goes to zero the following truncated 2N × 2N coupled system of non-linear equa-
tions:

Mv
∑

m=−Mv

ri,mGn−m(ω)

ï

an−m
i

bn−m
i

ò

1≤i≤N

− δT kn,α × Vn(ω)

ï

ani
bni

ò

1≤i≤N

= 0, ∀ −Mv ≤ n ≤ Mv,

(28)

for some Mv ∈ N such that MvΩ → 0 as δ → 0 and a non-trivial (ani , b
n
i )1≤i≤N,|n|≤Mv

. Here,

T kn,α denotes the Dirichlet-to-Neumann map, which is a 2N × 2N matrix defined by (24) and
we have used the following notation:

Gn−m(ω) := diag (Gn,m
i (ω))1≤i≤N , Vn−m(ω) := diag (Vn,m

i (ω))1≤i≤N ,

(29)

Gn,m
i (ω) := iknr γ

(n,m)
i

[

−eik
n
r γ

(n,m)
i x−

i e−iknr γ
(n,m)
i x−

i

eik
n
r γ

(n,m)
i x+

i −e−iknr γ
(n,m)
i x+

i

]

, Vn,m
i (ω) :=

[

eik
n
r γ

(n,m)
i x−

i e−iknr γ
(n,m)
i x−

i

eik
n
r γ

(n,m)
i x+

i e−iknr γ
(n,m)
i x+

i

]

,

(30)

where

γ
(n,m)
i :=

 

ω + (n−m)Ω

ω + nΩ

ki,m
ri,m

. (31)

Furthermore, the subwavelength Bloch modes to (26) correspond approximately to the solution
[

ani bni
]T

1≤i≤N
, where the superscript T denotes the transpose, through the formula

vn−m(x) = an−m
i eik

n
r γ

(n,m)
i x + bn−m

i e−iknr γ
(n,m)
i x, ∀x ∈

(

x−i , x
+
i

)

, (32)

and ani = bni = 0 for all 1 ≤ i ≤ N and |n| > Mv. This allows us to introduce a 2N(2Mv + 1)×
2N(2Mv+1) matrix A∗(ω, δ), which is such that we can define the following system of equations:

A∗(ω, δ)w = 0, w :=

















v−Mv

...
v0
...

vMv

















, vn :=

ï

ani
bni

ò

1≤i≤N

. (33)
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Then, for given δ small enough, the subwavelength quasifrequencies are approximately the char-
acteristic values of A∗(ω, δ).

We present the proof to a more specific formulation of Lemma 3.3 in Section 3.3.

Remark 3.3. For fixed N , the size of the matrix A∗ depends solely on the number Mv of
dominant Fourier modes vn in the Fourier series of v. The number of non-zero off-diagonals in
the matrix A∗ depends on the number M of considered Fourier coefficients of 1/ρi(t) and 1/κi(t).
Hence, we can choose the number of non-zero modes vn to be exactly the same as the number of
Fourier coefficients of 1/ρi(t) and 1/κi(t). We have numerically checked that taking Mv higher
than M does not change the values of the subwavelength quasifrequencies for δ small enough.
Figure 2a shows that for increasing Mv, the time it takes to solve (33) for ω increases. Moreover,
Figure 2b confirms that the resulting error between the value of ω obtained through Lemma 3.3
and through the capacitance matrix approximation, as discussed in Section 5.1, does not depend
on Mv. Therefore, the earlier stated assumption Mv = M is accurate for δ small enough.

(a) The time it takes to solve (33) for ω depending on
the value of Mv, while the other parameters stay fixed.
The run time increases with increasing Mv.

(b) The relative error between the approximate solution
based on the capacitance approximation, as introduced
in Section 5.1, and the ω obtained through solving (33).

Figure 2: For M = 1 with fixed values for N, ri,m, ki,m, δ, Ω, we increase Mv and measure the run time

and resulting relative error.

3.3 Explicit choice of M

We now assume that ρi and κi are specifically given by

ρi(t) :=
1

1 + ερ,i cos (Ωt+ ϕρ,i)
, κi(t) :=

1

1 + εκ,i cos (Ωt+ ϕκ,i)
, (34)

for all 1 ≤ i ≤ N , where ερ,i, εκ,i are the amplitudes of the time-modulations and ϕρ,i, ϕκ,i the
phase shifts. This means that we can set M = 1 with the Fourier coefficients defined as follows:

ri,−1 :=
ερ,ie

−iϕρ,i

2
, ri,0 := 1, ri,1 :=

ερ,ie
iϕρ,i

2
, (35)

ki,−1 :=
εκ,ie

−iϕκ,i

2
, ki,0 := 1, ki,1 :=

εκ,ie
iϕκ,i

2
. (36)

Having an explicit definition of the material parameters ρ and κ we now want to reformulate
Lemma 3.3 such that it corresponds to ρi(t) and κi(t) defined by (34).

9



Lemma 3.4. If Mv = M = 1, then (28) reduces to the following 2N × 2N coupled systems of
non-linear equations:

ri,−1Gn+1(ω)

ï

an+1
i

bn+1
i

ò

1≤i≤N

+ ri,0Gn(ω)

ï

ani
bni

ò

1≤i≤N

+ ri,1Gn−1(ω)

ï

an−1
i

bn−1
i

ò

1≤i≤N

= δT kn,α × Vn(ω)

ï

ani
bni

ò

1≤i≤N

,

(37)

for −1 ≤ n ≤ 1, where the matrices Gn−m(ω) and Vn−m(ω) are defined by (29). Moreover,
A∗(ω, δ) is the 6N × 6N matrix given by

A∗(ω, δ) :=





A−1(ω, δ)
A0(ω, δ)
A1(ω, δ)



 , (38)

where the matrices A−1, A0, and A1 are defined by

A−1(ω, δ) :=
îÄ

r0G−1−0(ω)− δT k−1,αV−1−0
ä

r−1G−1+1 0
ó

, (39)

A0(ω, δ) :=
î

r1G0−1(ω)
Ä

r0G0−0(ω)− δT k0,αV0−0(ω)
ä

r−1G0+1(ω)
ó

, (40)

A1(ω, δ) :=
î

0 r1G1−1(ω)
Ä

r0G1−0(ω)− δT k1,αV1−0(ω)
äó

, (41)

with rn := (ri,n)1≤i≤N being the vector of the n-th Fourier coefficients in each resonator. Con-
sequently, we obtain the following system of equations:

A∗(ω, δ)w = 0, w :=





v−1

v0

v1



 , vn :=

ï

ani
bni

ò

1≤i≤N

. (42)

Proof. Any solution vn to (26) can be written as (32), and the boundary condition of (26) reads,
for all 1 ≤ i ≤ N

±i
1
∑

m=−1
ri,mkn−m

r

(

an−m
i eiγ

(n,m)
i kn−m

r x±

i − bn−m
i e−iγ

(n,m)
i kn−m

r x±

i

)

− δT kn,α[ani e
iγ

(n,m)
i knr x

+bni e
−iγ

(n,m)
i knr x]±i = 0,

which can be written as (42) by evaluating it for n = −1, 0, 1.

Remark 3.4. We have now found a characterization of the subwavelength quasifrequencies ωα(δ)
through the solution of the interior problem, as stated in Lemma 3.4. The definition (38) of the
matrix A∗(ω, δ) was done for a specific choice of ρi(t) and κi(t), and hence, also M . However,
the matrix A∗(ω, δ) can equivalently be defined for any choice of material parameters and M .

4 Muller’s method

We solve problem (12) with the help of Muller’s method. In particular, we use Lemma 3.3 to
construct a 2N(2M + 1)× 2N(2M + 1) system of equations A∗(ω, δ)w = 0, which provides the
correct coefficients ani and bni of the n-th mode vn in each resonator Di. We seek to find the
subwavelength quasifrequencies ωα(δ), which are those values of ω for which the interior problem
(26) admits a non-trivial solution. Note that these are exactly the values of ω for which A∗(ω, δ) is
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non-invertible, i.e., det (A∗(ω, δ)) = 0. Therefore, we define the function f(ω) := det (A∗(ω, δ))
whose zeros we must find, for a fixed δ. In order to find the zeros of the non-linear function
f(ω), we use Muller’s method upon three initial guesses per root. For a detailed explanation of
Muller’s method we refer the reader to [10, Section 1.6]. One of the reasons for using Muller’s
method to solve the root-finding problem is that, unlike other root-finding algorithms, Muller’s
method is well-suited for complex-valued problems [10, Section 1.6].

Muller’s method requires the definition of three initial guesses to find a zero of f(ω). In
our numerical computations we make use of the already known definition of the capacitance
matrix Cα

static in the static case [1], as further explained in Appendix A. Namely, we compute
the eigenvalues λα

i , 1 ≤ i ≤ N , of the static generalized capacitance matrix Cα
static and employ

the asymptotic approximation from [22]

ωα
i ≈ ±vr

»

λα
i δ, ∀ 1 ≤ i ≤ N. (43)

To initialize Muller’s method we use (43) and two perturbations of this value.
By the definition of Muller’s method we need to supply the algorithm with three initial

guesses in order to find a zero of f(ω), which is not trivial. Furthermore, the run time of
Muller’s method grows exponentially in N , as illustrated in Figure 3b. Therefore, we seek to
introduce an alternative characterization of the subwavelength quasifrequencies ωα, for which we
do not require the exact solution of (26). In view of this, we introduce a discrete approximation
of (12) in Section 5.1.

5 Capacitance approximation and asymptotic analysis

5.1 Capacitance matrix formulation

By fixing an α ∈ Y ∗ := (−π/L, π/L], we seek subwavelength quasifrequencies ω of (12). Follow-
ing the proof of Lemma 4.1 outlined in [13], we can obtain the following result.

Lemma 5.1. As δ → 0, the functions v∗i,n(x, α) are approximately constant inside the resonator:

v∗i,n(x, α)|(x−

j ,x+
j ) = cj,n +O(δ(1−γ)/2). (44)

For simplicity of notation, we define for any smooth function f : R → R the following:

I∂Dj
(f) :=

df

dx

∣

∣

∣

∣

−

(x−j )−
df

dx

∣

∣

∣

∣

+

(x+j ). (45)

In view of this notation, we observe that

I∂Di
(v∗i,n) = I∂Di

Ñ

N
∑

j=1

cj,nV
α
j

é

=

N
∑

j=1

cj,nC
α
ij , (46)

where V α
j and the capacitance matrix coefficients Cα

ij are defined as in the static case [1]; see
Appendix A. On the other hand, we can insert the transmission conditions in (12) to obtain

I∂Di
(vn) =

1

δ

Ç

dv∗i,n
dx

∣

∣

∣

∣

+

(x−i , α)−
dv∗i,n
dx

∣

∣

∣

∣

−

(x+i , α)

å

= −1

δ

∫ x+
i

x−

i

d2v∗i,n
dx2

(x, α) dx

=
1

δ

∫ x+
i

x−

i

ρr(ω + nΩ)2

κr
v∗∗i,n(x, α) dx.

(47)
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Therefore, I∂Di
(v∗i,n(x, α)) reads

I∂Di
(v∗i,n) =

ρr
δκr

M
∑

m=−M

ri,m(ω + (n−m)Ω)2
∫ x+

i

x−

i

v∗∗i,n−m(x, α) dx. (48)

Equating (46) and (48) yields

N
∑

j=1

cj,nC
α
ij =

ρr
δκr

M
∑

m=−M

ri,m(ω + (n−m)Ω)2
∫ x+

i

x−

i

v∗∗i,n−m(x, α) dx+O
Ä

δ(1−γ)/2
ä

. (49)

Following the same argument laid out in [13] and using the same notation, we arrive at the
following result.

Theorem 5.2. Assuming the material parameters are given by (3), as δ → 0, the quasifre-
quencies in the subwavelength regime are, at leading order, given by the quasifrequencies of the
ordinary differential equation:

Mα(t)Ψ(t) + Ψ′′(t) = 0, (50)

where Mα(t) = δκr
ρr

W1(t)C
αW2(t) +W3(t) with W1,W2 and W3 being diagonal matrices defined

as

(W1)ii =

√
κiρi
|Di|

, (W2)ii =

√
κi
ρi

, (W1)ii =

√
κi
2

d

dt

κ′i

κ
3/2
i

, (51)

for i = 1, . . . , N .

Our numerical results presented in Figure 3 corroborate our analytically proven claim that
the capacitance matrix approximation is an efficient and effective alternative to the exact com-
putation of the subwavelength quasifrequencies using Muller’s method.

(a) The relative error corresponding to this result is given by errrel =

0.0101.

(b) We compare the time it takes Muller’s
method to solve the root-finding problem
with the time it takes the capacitance ap-
proximation to solve the problem.

Figure 3: Comparing the results obtained with Muller’s method and the capacitance matrix approximation

for δ = 0.0001, Ω = 0.05, ερ = εκ = 0, v0 = 1, vr = 1, ϕρ,i = ϕκ,i = π/i, with each resonator being of

length ℓi = 1 with equal spacing ℓij = 1.

To compare the results obtained by Muller’s method ωα
i,muller and the capacitance approxi-

mation ωα
i,cap, we consider the relative error defined by

errrel := max
α∈[−π/L,π/L]

max
i=1,...,N

||ωα
i,muller − ωα

i,cap||C
||ωα

i,muller||C
, (52)
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where ∥ · ∥C denotes the complex euclidean norm. Closer investigations on the obtained error
revealed that if ℑ(ωα

i ) = 0, Muller’s method is unable to exactly recover this. Thus, the error
between ℑ(ωα

i,muller) and ℑ(ωα
i,cap) may be higher than expected. However, this is due to the fact

that Muller’s method is unable to exactly determine a non-zero purely real root.

5.2 Asymptotic analysis

To conduct some asymptotic analysis, we assume the modulation amplitudes of ρi and κi to be
the same over all resonators, i.e., ερ,i = εκ,i = ε, for all 1 ≤ i ≤ N . To analyze the reciprocity
properties of the wave transmission we make use of asymptotic Floquet analysis developed in
[12] and we closely follow [4]. Firstly, assume that the matrix Mα(t) in (50) is analytic in ε,
whence, we can expand Mα(t) as follows [4]:

Mα(t) = Mα
0 + εMα

1 (t) + · · ·+ εnMα
n (t) + . . . , (53)

for small ε > 0. If ρi(t) and κi(t) have finitely many Fourier coefficients, we can assume that the
series (53) converges for any |ε| < ε0, for some ε0 > 0 [3, 12]. Note that we omit the superscript
α in the remainder of this section for the sake of convenience. Next, we rewrite the second order
ODE (50) into the first order ODE [4]

dy

dt
(t) = A(t)y(t), A(t) :=

ï

0 IdN
−M(t) 0

ò

, (54)

where IdN is the N × N identity matrix. By Floquet’s theorem, the fundamental solution of
(54) can be written as X(t) = P (t)eFt, for some matrices P (t) and F [37]. As a consequence of
M(t) being analytic in ε, we can write [4]











A(t) = A0 + εA1(t) + · · ·+ εnAn(t) + . . . ,

P (t) = P0 + εP1(t) + · · ·+ εnPn(t) + . . . ,

F = F0 + εF1 + · · ·+ εnFn + . . . .

(55)

The coefficients A0 and P0 are not time-dependent, as they correspond to ε = 0, which represents
exactly the static case. Due to the T -periodicity of the material parameters, A(t) is T -periodic
and, thus, Aj(t) are also T -periodic, for all j ≥ 1. Hence, we may write [4]

Aj(t) =

∞
∑

m=−∞

A
(m)
j eiΩmt. (56)

We now aim to derive asymptotic expansions of the eigenvalues f = f0 + εf + . . . of F in ε.
Assume the first coefficient A0 in the expansion of A(t) to be diagonal. Then, according to [4],
we have

F0 = A0 − iΩ







m1

. . .

mn






(57)

with mi being the folding number of (A0)ii, which is defined as follows.

Definition 5.1. Let ωA0 be the imaginary part of an eigenvalue of the matrix A0. Then, we
can uniquely write ωA0 = ω0+mΩ, where ω0 ∈ [−Ω/2,Ω/2). The integer m is called the folding
number [4].
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We are specifically interested in investigating perturbations due to the modulations at a
degenerate point f0 of F0, which can be obtained through folding, for which we make use of the
following lemma from [3].

Lemma 5.3. The following holds:

• (F1)jj =
Ä

A
(0)
1

ä

jj
, for all j = 1, . . . , N ;

• For l ̸= j, we have

(F1)jl =











(

A
(mj−ml)
1

)

jl
, if (F0)jj = (F0)ll,

((F0)ll − (F0)jj)
∞
∑

m=−∞

(Am
1 )jl

iΩm+(A0)ll−(A0)jj
, otherwise.

(58)

Proof. The first claim is proved in [3, Lemma 4.3] and the second one in [3, Lemma 4.4].

As a direct consequence of Lemma 5.3 we can state the following theorem and corollary.

Theorem 5.4. Let f0 be a degenerate point of F with multiplicity r. Then, F has associated
eigenvalues given by f0 + εfi +O(ε2), where fi, for i = 1, . . . , r, are the eigenvalues of the r × r
upper-left block of F1 with entries

(F1)lk =
Ä

A
(ml−mk)
1

ä

lk
, ∀ l, k = 1, . . . , r, (59)

where ml denotes the folding number of the l-th eigenvalue of A0.

Proof. This theorem is proved in [3, Theorem 4.7].

Corollary 5.5. If the degenerate points are of order r = 2 and A
(0)
1 = 0, then the eigenvalues f

of F associated with the degenerate point f0 are given by

f1,2 = f0 ± ε
»

(F1)12(F1)21 +O(ε2). (60)

Next, we seek to compute the first-order perturbation of the quasifrequencies. Note that
Corollary 5.5 characterizes the perturbation of the quasifrequencies for which the non-zero Fourier
coefficients of A1 are used. Therefore, we need to compute the non-zero Fourier coefficients of
M1. As proved in [4, Theorem 5], the following asymptotic expansion of M holds if ρi(t) and
κi(t) are modulated as defined in (34) with ερ,i = εκ,i = ε, for all 1 ≤ i ≤ N :

Mlj :=











Llj + εLlj (cos (Ωt+ ϕρ,l)− cos (Ωt+ ϕρ,j)

−1
2 (cos (Ωt+ ϕκ,l) + cos (Ωt+ ϕκ,j))

)

+O(ε2), l ̸= j,

Lll + ε
Ä

Ω2

2 − Lll

ä

cos (Ωt+ ϕκ,l) +O(ε2), l = j.

Note that the quantity 2ε
√

(F1)12(F1)21 provides some information about the size of the band
gap and in order to compute the coefficients of F1 we need the definition of Mlj .
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6 Physical interpretation and numerical simulations

The numerical results presented in this section are obtained for ρi(t) and κi(t) defined by (34),
where we vary the parameters ερ,i, εκ,i, ϕρ,i, ϕκ,i. Note that ερ,i = εκ,i = 0 corresponds to the
static case. In the upcoming notation we omit the subscript 1 ≤ i ≤ N of a parameter, if we
assume the parameter to be constant over the resonators Di, 1 ≤ i ≤ N .

Having studied the effect of small periodic perturbations of the material parameters on sub-
wavelength quasifrequencies analytically in Section 5.2, we now want to validate these results
numerically. We use the capacitance matrix approximation in order to conduct some numeri-
cal experiments under different conditions. We seek to analyze the so-called band structure of
the material, which describes the quasifrequency-to-momentum relationship of the propagating
waves [4]. We are especially interested in the occurrence of band gaps and k-gaps as a con-
sequence of time-modulated material parameters. By definition, band gaps are the regimes of
quasifrequencies with which waves cannot propagate through the material. Instead of propagat-
ing, waves with quasifrequencies in band gaps will decay exponentially. Previous work [11] has
proven the occurrence of subwavelength gaps in three-dimensional high-contrast material.

(a) We consider a setting with δ = 0.0001, Ω =

0.03, v = 1, vr = 1. We assume the material parame-
ters ρ and κ to be static, i.e., ερ = εκ = 0.

(b) Assume that the resonators in the unit cell are each
of length ℓ1 = ℓ2 = ℓ3 = 1 with spacing ℓ12 = ℓ23 =

1, ℓ34 = 2. This leads to L = 6.5 and x±

i .

(c) We consider a setting with δ = 0.0001, Ω =

0.03, v = 1, vr = 1. We assume the material parame-
ters ρ and κ to be static, i.e., ερ = εκ = 0.

(d) Assume that the resonators are each of length ℓ1 =

ℓ2 = ℓ3 = 1 with spacing ℓ12 = ℓ23 = ℓ34 = 1. This
leads to L = 6 and x±

i .

Figure 4: Subwavelength quasifrequencies for three resonators repeated periodically in the static case. The

figures on the right-hand side illustrate the setting corresponding to the numerical results shown in the

left-hand side figures.
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Moreover, we want to understand the effect of time-modulation on the reciprocity of wave
transmission properties. The reciprocity of wave transmission is defined as follows.

Definition 6.1. We say that a wave propagates reciprocally if for each α in the space Brillouin
zone Y ∗, the quasifrequencies of the wave problem (5) at α coincide with the quasifrequencies at
−α [4].

Note that in [3] it is proved that time-modulating the densities in a two- or three-dimensional
resonator structure breaks the time-reversal symmetry of the wave propagation, which we now
want to investigate in one dimension. Specifically, it has been shown in higher dimensions that
time-modulating ρ turns degenerate points of the folded band structure into non-symmetric band
gaps [4].

It becomes apparent from Figure 4c that there is a degenerate point at α = 0 if the gap
size between each resonator is equal, which can be treated equivalently to the case of N = 1
resonator in the unit cell.

(a) Assume that ρ is time-modulated. We consider
three resonators repeated periodically each of length
ℓ1 = ℓ2 = ℓ3 = 1 with spacing ℓ12 = ℓ23 = 1, ℓ34 = 2.

(b) Assume that κ is time-modulated. We consider
three resonators repeated periodically each of length
ℓ1 = ℓ2 = ℓ3 = 1 with spacing ℓ12 = ℓ23 = 1, ℓ34 = 2.

(c) Assume that ρ is time-modulated. We consider
three resonators repeated periodically each of length
ℓ1 = ℓ2 = ℓ3 = 1 with spacing ℓ12 = ℓ23 = ℓ34 = 1.

(d) Assume that κ is time-modulated. We consider
three resonators each of length ℓ1 = ℓ2 = ℓ3 = 1 with
spacing ℓ12 = ℓ23 = ℓ34 = 1.

Figure 5: Subwavelength quasifrequencies for three resonators repeated periodically in the time-modulated

case. We consider a setting with δ = 0.0001, Ω = 0.03, v = 1, vr = 1. We set the amplitudes for the

respective modulations to be ε = 0.2 with phases ϕ1 = 0, ϕ2 = π/2, ϕ3 = π. The green lines mark the

band gaps and k-gaps.

Comparing Figure 4 with Figure 5, it becomes apparent that modulating ρ in time turns
degenerate points into band gaps and modulating κ in time turns degenerate points into k-gaps.
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Furthermore, measuring the size of the band gaps and k-gaps shows that the gaps forming in the
regime α < 0 do not have the same size as the gaps forming in the regime α > 0. This means
that the wave transmission is non-reciprocal in the time-modulated case. The following theorem
holds true in higher dimensions [3].

Theorem 6.1. If only the material density ρ is time-modulated, then there is a non-reciprocal
band gap opening around the degenerate point.

Proof. The proof valid in higher dimensions is still valid in one dimension due to the equivalent
ODE characterization given by (50).

The following theorem has been proven in higher dimensions in [4, Theorem 8], but can
equivalently be proven in the one-dimensional case.

Theorem 6.2. If only the material bulk κ is time-modulated, then at a degenerate point with
multiplicity 2, one of the two Bloch modes is exponentially decaying and the other is exponentially
increasing over time. The momentum gaps where waves exhibit this exponential behavior are
called the k-gaps.

Proof. Similar to the proof of [4, Theorem 8].

(a) We consider three resonators each of length ℓ1 =

ℓ2 = ℓ3 = 1 with spacing ℓ12 = ℓ23 = ℓ34 = 1.
(b) We consider three resonators each of length ℓ1 =

ℓ2 = ℓ3 = 1 with spacing ℓ12 = ℓ23 = 1, ℓ34 = 2.

Figure 6: Subwavelength quasifrequencies for three resonators in the time-modulated case. We consider

a setting with δ = 0.0001, Ω = 0.03, v = 1, vr = 1. We set the amplitudes for both time-modulations to

be ε = 0.2 with phases ϕ1 = 0, ϕ2 = π/2, ϕ3 = π. The green lines mark the band gaps and k-gaps.

Figure 6 shows the resulting quasifrequencies if both ρ and κ are time-modulated. It can be
observed that under these time-modulations, wave transmission is non-reciprocal.

7 Conclusion

In this paper we have provided the mathematical foundation to solve the quasi-periodic Helmholtz
equation in one dimension with periodically time-dependent material parameters. We presented
a discretization of the problem (12), which led to a scheme solving the interior problem exactly
up to a negligible numerical error induced by Muller’s method.

Furthermore, we have introduced a novel capacitance matrix approximation to the subwave-
length quasifrequencies in one dimension assuming the problem to be quasi-periodic and the
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material periodically time-modulated, which is equivalent to the approximation formula valid
in higher dimensions [13]. This approximation formula is advantageous because it recovers the
quasifrequencies in the subwavelength range much more efficiently. Based on the capacitance
matrix, the subwavelength quasifrequencies can be approximated by the formula ωα

i ≈ vr
√

λα
i δ,

for all 1 ≤ i ≤ N , where λα
i are the eigenvalues of the generalized capacitance matrix Cα. We

have showed in Figure 3b that approximating the subwavelength quasifrequencies with the help
of the capacitance matrix is indeed much faster than computing them with Muller’s method.
This observation is especially true for large values of N . We have also showed numerically that
the relative error is around 0.01, which reassured the capacitance matrix approximation to be
very efficient and effective.

Our numerical analysis led to the conclusion that under time-modulated material parameters,
the wave transmission is non-reciprocal, which aligns with the asymptotic analysis in Section 5.
Moreover, it became apparent that periodic time-modulations in the ρi’s lead to the formation
of band gaps, while periodic time-modulations in the κi’s lead to the formation of k-gaps.

A Capacitance matrix approximation to the static problem

In this section, we recall results from [1] regarding the capacitance matrix approximation to the
static problem.

Definition A.1. Consider the solution V α
i : R → R of the following problem:











− d2

dx2V
α
i = 0, (0, L)\D,

V α
i (x) = δij , x ∈ Dj ,

V α
i (x+mL) = eiαmLV α

i (x), m ∈ Z.

(61)

The corresponding capacitance matrix is defined by

Cα
static,ij =

dV α
j

dx

∣

∣

∣

∣

−

(x−i )−
dV α

j

dx

∣

∣

∣

∣

+

(x+i ) (62)

= − 1

ℓ(j−1)j
δi(j−1) +

Ç

1

ℓ(j−1)j
+

1

ℓj(j+1)

å

δij −
1

ℓj(j+1)
δi(j+1)

− δ1jδiN
e−iαL

ℓN(N+1)
− δ1iδjN

eiαL

ℓN(N+1)
, (63)

or equivalently by

Cα
static =





















1
ℓN(N+1)

+ 1
ℓ12

− 1
ℓ12

− e−iαL

ℓN(N+1)

− 1
ℓ12

1
ℓ12

+ 1
ℓ23

− 1
ℓ23

. . .
. . .

. . .
. . .

. . . − 1
ℓ(N−1)N

− eiαL

ℓN(N+1)
− 1

ℓ(N−1)N

1
ℓ(N−1)N

+ 1
ℓN(N+1)





















. (64)

The following asymptotics of the band functions hold.

Proposition A.1. The first N subwavelength band functions are approximately given by

ωα
i =
»

δλα
i +O(δ) (65)
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as δ → 0, where λα
i are the eigenvalues of the generalized capacitance matrix

Cα
static := V 2L−1Cα

static.

Here, V := diag((vi)) and L := diag((ℓi)).
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