m Seminar for

Applied

Eidgenodssische Technische Hochschule Ziirich .
& Mathematics

Swiss Federal Institute of Technology Zurich

Semi-Lagrangian Finite-Element Exterior
Calculus for Incompressible Flows

W. Tonnon and R. Hiptmair

Research Report No. 2023-07
January 2023

Seminar fiir Angewandte Mathematik
Eidgendssische Technische Hochschule
CH-8092 Ziirich
Switzerland




Semi-Lagrangian Finite-Element Exterior
Calculus for Incompressible Flows

Wouter Tonnon* Ralf Hiptmair'

January 12, 2023

1 Incompressible Navier-Stokes Equations

We consider the incompressible Navier-Stokes equations—a standard hydrodynamic
model for the motion of an incompressible, potentially-viscous fluid—in a container
with rigid walls, where we impose so-called “free boundary conditions” in the par-
lance of [31, p. 346] and [43, p. 502], see the latter article for further references. We
search the fluid velocity field w (¢, ) and the pressure p(¢, x) as functions of time ¢ and
space x on a bounded, Lipschitz domain @ C R? such that they solve the evolution
boundary-value problem

ou+u-Vu—cAu+Vp=f, on |0, T[x€2 (1a)
V.-u =0, on |0, T[x€, (1b)

u-n =0, on |0, T[x 0%, (1c)

en XV xu=0, on |0, T[x 0%, (1d)

u = U, on {0} x Q, (le)

where ¢ > 0 denotes a (non-dimensional) viscosity, f a given source term, 7" > 0 the
final time, 0 the boundary of €2, and n(x) the outward normal vector at & € 0f). The
initial condition ug is to satisfy V-ug = 0in Q2 andug-n =0,en x V X ug = 0 on
0f). Based on the variational description of the Navier-Stokes equations as described
in [5], u can be interpreted as a differential 1-form [33] and we can recast system (1)
in the following way. Let A*(Q2) for & € N denote the space of differential k-forms on
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). Then we search w € A*(Q2) and p € A°(Q) such that

Dyw + eddw + dp = f, on |0, T[x€, (2a)
dw =0, on |0, T[x€, (2b)

trxw = 0, on |0, T[x 0%, (2¢)

gtrxdw = 0, on |0, T[x 0%, (2d)

W = wy, on{0} x Q, (2e)

where D, w denotes the material derivative of w with respect to u, d : A*1(Q)
A*(Q) the exterior derivative, § : AF(Q) — A¥~1(Q) the exterior coderivative, and the

trace tr is the pullback under the embedding 0€) C ). Here, w is related to w through

w = u”, i.e. w is the vector proxy of w w.r.t. the Euclidean metric. Similarly, we have

that AX(Q) > wy = uo” and AX(Q) > f := f°. Note that (2) can be derived through
classical vector calculus for vector proxies as shown in Appendix A for d = 3.

As shown in [18, 19], sufficiently-smooth solutions w :]0, T'[— A'(£2) of the in-
compressible Navier-Stokes equations as given in system (2) satisfy an energy relation,
that is, B i1

E(t) = £§/Qw(t) Axw(t) = —s/de(t) A xdw(t). 3)
This relation implies energy conservation for ¢ = 0. In the case of € = 0, we also have
helicity conservation, that is,

dH d
= — () = —
co0 — iy dt/ﬂ

Note that the Onsager conjecture tells us that in the case £ = 0 the solutions need to
be at least Holder regular with exponent % for energy conservation to hold [28].

dw(t) ANw(t) = 0. “4)

Remark 1 We acknowledge that the boundary condition (1d) is non-standard. This
boundary condition was chosen because it is the natural boundary condition associ-
ated to system (2). To enforce the standard no-slip boundary conditions, (1d) could
be replaced by eu x n = w on |0, T[x0S), that is, we impose an essential instead
of natural boundary condition to system (2). Unfortunately, in this case, the scheme
presented in this work leads to an ill-posed system. In the case € = 0, the only imposed
boundary condition (1c) is standard.

Remark 2 Boundary conditions (1¢),(1d) can be interpreted as slip boundary con-
ditions. However, on smooth domains (), they are only equivalent to Navier’s slip
boundary conditions if the Weingarten map related to OS2 vanishes [31, section 2].

2 Outline and Related Work

We propose a semi-Lagrangian approach to the discretization of the reformulated
Navier-Stokes boundary value problem (2). This method revolves around the dis-
cretization of the material derivative D,,w in the framework of a finite-element Galerkin
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discretization on a fixed spatial mesh. The main idea is to approximate D, w by back-
ward difference quotients involving transported snapshots of the 1-form w, which can
be computed via the pullback induced by the flow of the velocity vector field w.

Semi-Lagrangian methods for transient transport equations like (2) are well-es-
tablished for the linear case when w is a given Lipschitz-continuous velocity field.
In particular, for w a O-form, that is, a plain scalar-valued function, plenty of semi-
Lagrangian approaches have been proposed and investigated, see, for instance, [8, 7,
20, 21, 23, 35, 39, 40, 6, 12, 45]. We refer to [24, Chapter 5] for a comprehensive
pre-2013 literature review on the analysis of general semi-Lagrangian schemes. Most
of these methods focus on mapping point values under the flow, with the exception
of a particularly interesting class of semi-Lagrangian methods known as Lagrange-
Galerkin methods. Lagrange-Galerkin methods do not transport point values, but
rather triangles (in 2D) or tetrahedra (in 3D). Refer to [10] for a review of those meth-
ods.

Meanwhile semi-Lagrangian methods for transport problems for differential forms
of any order have been developed [26, 25, 24]. The next section will review these
semi-Lagrangian methods for linear transport problems with emphasis on 1-forms.
We will also introduce a new scheme which is second-order in space and time based
on so-called “small edges”, see section 3.1.2 for details.

Semi-Lagrangian schemes for the incompressible Navier-Stokes equations are also
well-documented in literature, with emphasis on the Lagrange-Galerkin method [10,
14, 15, 30, 1, 11, 9]. A survey of the application of Lagrange-Galerkin methods to the
incompressible Navier-Stokes equations is given in [10]. It is important to note that
these methods require the evaluation of integrals of transported quantities and, in case
these integrals cannot be computed exactly, instabilities can occur [12, 32]. A possi-
ble remedy is to add an additional stabilization term that includes artificial diffusion
[10]. Other semi-Lagrangian methods for incompressible Navier-Stokes equations di-
rectly transport point values with the nodes of a mesh instead of evaluating integrals
of transported quantities, see [34, 29, 47, 46, 13] and [16], where the last work makes
use of exponential integrators [17]. Most authors employ spectral elements for the
discretization in space [34, 29], but any type of finite-element space with degrees-of-
freedom relying on point evaluations can be used. The methods proposed in [47, 46]
are also based on finite-element spaces with degrees-of-freedom on nodes, but em-
ploy backward-difference approximations for the material derivative. The work [13]
proposes an explicit semi-Lagrangian method still built around the transport of point
values in the nodes of the mesh. The diffusion term is also taken into account in a
semi-Lagrangian fashion and the incompressibility constraint is enforced by means of
a Chorin projection. Also [13] proposes an explicit semi-Lagrangian scheme using the
same principles, but based on the vorticity-streamfunction form of the incompressible
Navier-Stokes equations.

All the mentioned semi-Lagrangian schemes rely on the transport of point val-
ues of continuous vector fields, which is the perspective embraced in formulation (1).
However, we believe that, in particular in the case of free boundary conditions (Ic)
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and (1d), the semi-Lagrangian method based on (2) offers benefits similar to the bene-
fits bestowed by the use of discrete differential forms (finite-element exterior calculus,
FEEC [3, 4]) for the discretization of electromagnetic fields. Section 4 will convey that
the boundary conditions (2c), (2d), and the incompressiblity constraint can very natu-
rally be incorporated into a variational formulation of (2) posed in spaces of 1-forms.
This has been the main motivation for pursuing the new idea of a semi-Lagrangian
method for (2) that employs discrete 1-forms. Another motivation has been the ex-
pected excellent robustness of the semi-Lagrangian discretization in the limit ¢ — 0.
Numerical tests reported in section 5 will confirm this.

Two more aspects of our method are worth noting: Firstly, a discrete 1-form wy, will
not immediately spawn a continuous velocity field u;, = w;:, However, continuity is
essential for defining a meaningful flow. We need an additional averaging step, which
we present in section 4.1. Secondly, since semi-Lagrangian methods fail to respect the
decay/conservation laws (3) and (4) exactly, we present a way how to enforce them in
section 4.3.

3 Semi-Lagrangian Advection of differential forms

3.1 Discrete differential forms

We start from a simplicial triangulation K, (£2) of €2, which may rely on a piecewise
linear approximation of 0f2 so that it covers a slightly perturbed domain.

3.1.1 Lowest-order case: Whitney forms

For A°(Q2)—the space of O-forms on 2, which is just a space of real-valued func-
tions—the usual (Lagrange) finite-element space of continuous, piecewise-linear, poly-
nomial functions provides the space A271 (Q) of lowest-order discrete 0-forms.

Let d € {2,3}, K a d-simplex with edges {ey,..,e34-1)}. To construct lowest-
order discrete 1-forms on K, we associate to every edge e; a local shape function
w®. Let the edge e; be directed from vertex v} to v?, then the local shape function
w® € AY(K) associated with edge e; is

we = vlld)"uf - )‘v?d)‘v}7 (5

where ), represents the barycentric coordinate associated with vertex v. We define
the lowest-order, local space of discrete 1-forms

A}, 1 (K) = span{w®; e an edge of K}. (6)

Using these local spaces, we can define the global space of lowest-order, discrete 1-
forms

A}L’l(Q) ={w e AN Q);VK € K,(Q) : w|k € A}LJ(K)}, (7
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(a) 9 small edges of a second-order element in 2D. All the edges between the different
connection points are small edges. In 3D, we simply have all these small edges on
the faces of the simplex.
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(b) Local shape functions (I.s.f.) for the unit triangle associated with second-order,
discrete differential forms in 2D as proposed in [38]. Each shape function corre-
sponds to the small edge in (a) with the same numbering.

Figure 1: Illustration of small edges (a) and corresponding local shape functions (b)
for the unit triangle.



where A'(Q2) again denotes the space of differential 1-forms on 2. We demand that
for every w € A'(92) integration along any smooth oriented path yields a unique value.
Thus, the requirement w € A'(Q) imposes tangential continuity on the vector proxy
of w.

3.1.2 Second-order discrete forms

Similar to the lowest-order case, the space A%}Z(Q) of second-order discrete 0-forms
is spawned by the usual (Lagrange) finite-element space of continuous, piecewise-
quadratic, polynomial functions.

Letd € {2,3}, K ad-simplex with edges {e1, .., e3(4—1) } and vertices {v1, .., Vg1 }.
To construct second-order discrete 1-forms, we associate local shape functions to
"small edges". We can construct 3(d + 1)(d — 1) small edges [38, Definition 3.2]
by defining Vi € {1,..,d + 1} and Vj € {1,..,3(d — 1)}

1
{vi,e;} ={v; + 5(:1; —v;);x € e},

where {v;, e;} denotes the small edge. In Figure 1a we illustrate the 9 small edges of a
2-simplex. For example, we see that small edge 9 can be written as {(0, 0), [(1,0), (0, 1)]}.
To make the difference between small edges and edges of the mesh explicit, we will
sometimes refer to the latter as "big edges".

The local shape function [38, Definition 3.3] associated with {v;, ;} is given by

w{vi’ej} = )\viwejv

where w® denotes the Whitney 1-form associated with the big edge e; as defined in
(5). In Figure 1b we give explicit expressions for the shape functions associated with
the small edges in Figure la. Note that the local shape functions of the form w{v}
associated with small edges in the interior (d = 2) or on the same face (d = 3) of
the form {v, e} such that v ¢ Je (example: small edge 7, 8, and 9 in Figure 1a) are
linearly dependent. We define the second-order, local space of discrete 1-forms [38,
Definition 3.3]

Ay o(K) = span{w!¥*}; v a vertex of K, e a (big) edge of K}. (8)

Using these local spaces, we can define the global space of second-order, discrete 1-
forms
A,lw(Q) ={w € A(Q);VK € Ki(Q) : w|k € A}LQ(K)}, )

where again we have tangential continuity by a similar argument as in section 3.1.1.

3.1.3 Projection operators

We denote by &;,,(12) the global set of big edges (p = 1) or small edges (p = 2)
associated with /Cp, (€2). We will define the projection operator Z, , : A'(Q) — A}, (Q)
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as the unique operator that maps w € A'(Q2) to wy, € A}, (€2) such that the mismatch

= ()

eESh,p(Q

is minimized. Note that for p = 1, this mismatch can be made to vanish. In this case,
15,1 agrees with the usual edge-based nodal projection operator [27, Eq. (3.11)].

In practice, we can compute the projection locally as follows. Let K € C;,(Q2) be
a d-simplex, d € {2,3}, and let {sy, .., s, ,} and {w*',..,w*"»4} denote the corre-
sponding big (p = 1) or small (p = 2) edges and corresponding shape functions as
introduced above. Specifically, we have N} o = 3, N1 3 = 6, Ny o = 9, and Ny 3 = 24.
We can define the matrix

M= [t S0 < N (an

We will say that there is an interaction from edge s; to s; if (M);; # 0. Note that
for p = 1, M is the identity matrix. For p = 2 the local shape functions are linearly
dependent and, thus, the above matrix is not invertible. However, we can decompose
M into invertible and singular sub-matrices. For illustrative purposes we display for
p = 2 and d = 2 the decomposition of M in Figure 2b. The three top-left sub-matrices
in Figure 2b are invertible 2 x 2 matrices that describe the interaction between the
two small edges that lie on the same big edge, that is, the blue, red, and green sub-
matrix in Figure 2b correspond to the blue, red, and green small edges in Figure 2a,
respectively. The orange sub-matrix in Figure 2b is a 3 X 3 matrix with rank 2 that
describes the interaction between the three small edges that lie in the interior of the
simplex in Figure 2a, that is, the orange small edges. The gray sub-matrix encodes the
one-directional interaction from the the small edges that lie on a big edge to the small
edges in the interior. Note that the decomposition of M as given in Figure 2b is not
limited to d = 2. The idea can be extended to d = 3 by considering each face of a
3-simplex as a 2-simplex. This is sufficient, since for d = 3 we have no small edges in
the interior and there is no interaction between small edges that do not lie on the same
face. We give the general structure of M in Figure 2c. Note that the small, purple
sub-matrices represent invertible 2 x 2 matrices and the bigger, orange sub-matrices
represent 3 X 3 matrices with rank 2.

In order to find wy|,. € A} (K) such that wy|,. = Zppw| .. let 7k be a vector of

. N,
coefficients 1}, .., n;”¢ such that

Np.a
Whlg = > micw®. (12)
=1

We can then compute 7 as a least-squares solution of

My = ( / w> | (13)
si /1<i<N, 4
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(a) 2-simplex K (b) matrix M (d = 2) (¢) matrix M (d = 3)

Figure 2: For p = 2 and d = 2 the matrix M corresponding to the 2-simplex K in (a)
has the form given in (b). Each row and column in M is associated to a small edge
in (a). Each sub-matrix in (b) describes the interactions between edges with the same
color in (a). The gray sub-matrix is an exception as it describes the one-directional
interaction between the small edges that lie on a big edge and the small edges that lie
in the interior. For d = 3, we M has the structure as shown in Figure 2c, where the
purple sub-matrixs are 2 X 2 invertible matrices and the orange sub-matrixs are 3 X 3
matrices of rank 2.

Without loss of generality we assume that M has the form as given in Figure 2c. Then,
we solve (13) as follows:

1. The local shape functions related to small edges that lie on a big edge of the
simplex are linearly independent. We solve for their coefficients first, that is, we
solve the system corresponding to the invertible blue sub-matrices in Figure 2¢
first.

2. Using the results from step 1, we can move the gray sub-matrix in Figure 2c
to the right-hand side. Then, we solve the matrix-system corresponding to the
orange sub-matrices in Figure 2¢ in a least-squares sense.

If we perform the above steps for all K € IC;,(Q), we find wy, = Zp,,w € A, (Q).
Note that only the shape functions associated to small edges on a face contribute to
the tangential fields on that face. Therefore, the above procedure yields tangential
continuity.

Remark 3 For p = 1, (13) reduces to

N = / w, vie{1,.,3(d—1)} (14)
with s; a big edge of the 3-simplex K for all i € {1,..,3(d — 1)}. This yields the
standard nodal interpolation operator of [27, Eq. (3.11)].



3.2 Semi-Lagrangian material derivative

The method described in this section is largely based on [24, 26]. Throughout this
section, unless stated otherwise, we fix the stationary, Lipschitz-continuous velocity
field w € W1 (Q) with u - n = 0 on 99). This means that we consider a linear trans-
port problem and our main concern will be the discretization of the material derivative
Dyw for a 1-form w. We can define the flow |0, T[xQ > (1, x) — X, (x) € R? as the
solution of the initial value problems

0

EXMT(.@) = u(Xi (), Xi(x) = x. (15)

Given that flow we can define the material derivative for a time-dependent differential
I-form w

0
Dyw(t) : 5 Xipwt+7) . (16)

B _7- =0
We employ a first- or second-order, backward-difference method to approximate the
derivative. Writing X/, _ for the pullback of forms under the flow, we obtain for

sufficiently-smooth ¢ — w(t) and a timestep 0 < 7 — 0

Dyw(t) = % [w(t) — X w(t—T7)] +0(7) 17
or
Dyw(t) = % [Bw(t) — 4X},_w(t —7) + X} pw(t —27)] + O(r°),  (18)

respectively. Note that both backward-difference methods are A-stable [41]. In the
remainder of this section we restrict ourselves to (17), but exactly the same considera-
tions apply to (18).

Given a temporal mesh .. < ¢" < ¢"*! < .. we approximate w(t", ) € A'(Q)
by a discrete differential form w; € A}l,p(Q) with p € {1,2}. Using the backward-
difference quotient (17), we can define the discrete material derivative for fixed timestep
T>0

1 _
(Dﬁw) (tn) ~ ; [wf? - Ih»PXtﬁ:tf‘er 1] S Ailz,p(Q)v (19)
where we need to use the projection operator Zy, , : A'(Q2) — Ay, () since X7, wi ™' ¢

A,lhp(Q) in general. Recall from section 3.1 that the degrees of freedom for discrete

I-forms are associated to small (p = 2) or big (p = 1) edges. As discussed in sec-
n—1

tion 3.1.3, evaluating the interpolation operator entails integrating X;,  w, " over
small (p = 2) or big (p = 1) edges. We can approximate these integrals as follows

/ Xfwp = / wi! & / wi (20)
e Xt,t—r(€) Xit—r(€)

where e is a small or big edge and

Xii—r(e) = {(1 — f)Xt,th(’lﬂ) + gXt,thCvz); 0<¢< 1} 2D
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Figure 3: Edge e (in red) is transported using the flow 3 (in blue). The exact trans-
ported edge X, (e) and the approximate transported edge X, (e) are given in orange
and green.

with v!, v? the vertices of e. Instead of transporting the edge e using the exact flow
Xi4—r, we follow [12, 24, 26] and only transport the vertices of the small edges (p = 2)
or big edges (p = 1) and obtain a piecewise linear (second-order) approximation
Xt’t_T(e) of the transported edge X, ,(e) as illustrated in Figure 3. We can approxi-
mate the movement of the endpoints of e under the flow as defined by (15) by solving
(15) using the explicit Euler method or Heun’s method for the first- and second-order
case, respectively. We will elaborate on this further in section 4.1.

In Figure 3, we can also see that the approximate transported edge may intersect
several different elements of the mesh. When we evaluate the integral in (20), it can
happen that there are discontinuities of w,’f‘l along X;; ,(e). Therefore, we cannot
apply a global quadrature rule to the entire integral. Instead, we split X;; ,(e) into
several segments defined by the intersection of )_(w,f(e) with cells of the mesh. In
our implementation, for the sake of stability, we find the intersection points by trans-
forming back to a reference element as visualised in Figure 4. Algorithm 1 gives all
details. Note that we can forgo the treament of any special cases (e.g. intersection
with vertices) without jeopardizing stability. After we split the transported edge into
segments, we can evaluate the integrals over these individual pieces exactly, because
we know that w,’j’l is of polynomial form when restricted to individual elements of the
mesh (see section 3.1).

When simulating the fluid model (2), we will not have access to an exact velocity
field. Instead we only have access to an approximation of the velocity field. This ap-
proximation may not satisfy exact vanishing normal boundary conditions. Therefore,
a part of X;; ,(e) may end up outside the domain. This can also happen due to an
approximation of the flow by explicit timestepping. Since wﬁ’l is not defined outside

10



Algorithm 1 Splitting 1-simplex over mesh elements (see Figure 4 for illustration).
Here, K.t denotes the reference simplex.

Input: zy € K, € K;,(Q2) and x; vertices of a 1-simplex e.
Output: Number of elements N, elements { Ky, .., Ky_1} € K,(Q)Y.
: K+ K,

Fold <+ NULL

Kold + NULL

N +1

E + {K}

while z; ¢ K do
Find the isoparametric mapping px : K — K
Find face F' C 0K s.t. F # Fyqand o' (e) Nt (F) # 0
K+ K € K(Q) s.t. F C 0K and K # K4 (K on the other side of face F)
Foq < F
N+ N+1
E+ FEU{K}

. end while

R A o e

—
w N = O

Figure 4: The red line indicates the line that spans multiple elements. On the left we
see the reference triangle associated with the yellow element in the mesh on the right.
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Figure 5: A coarse triangulation of Q = {x € R?;||z|| < 1} with the velocity field
u = [—y, z]? satisfying w - n = 0. Despite the vanishing normal components of the
velocity, the blue edge gets transported out of the domain to the green edge.

the domain, we set

len< Xt,t—T(e) ‘Rd\g )
/_ wz?l _ /W}Tz,l’ (22)
Xt,th(e)LRd\Q 1en (Xt,tT(e)) ‘

where X;; ,(e) {]Rd\Q is the part of X, ,(e) that lies outside the domain (2 and len (-
gives the arclength of the argument. This is motivated by the situation displayed in
Figure 5—a case where an edge gets transported out of the domain due to the use of
approximate flow maps despite vanishing normal components of the velocity. If we
set the value defined in (22) to zero in this case, it would be equivalent to applying
vanishing tangential boundary conditions, which is inconsistent with (1). Instead, (22)
just takes the tangential components from the previous timestep.
We arrive at the following approximation of the material derivative

1 _
(Dpw) (") ~ — [wh = TnpXiprwh ] (23)

where the only difference between (19) and (23) is that X ;_, was replaced by Xt,t,T
and 7, is implemented based on (22). Note that in our scheme X,;“LFT is always
evaluated in conjunction with Zj, ,,, which means that we need define X, . only on
small (p = 2) or big (p = 1) edges. In fact, Xt,t—T is defined through (21) for all points
that lie on small (p = 2) or big (p = 1) edges.

Given a velocity field w € WH>°(Q) with w - n = 0, it was shown in [26, section
4] that using a first-order backward difference scheme and lowest-order elements for
the spatial discretization, we can approximate a smooth solution w € A'(Q) of

Dyw = 0, (24)
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with an L2-error of O(7~2h), where h is the spatial meshwidth and 7 > 0 is the
timestep size. However, numerical experiments [26, section 6] performed with 7 =
O(h) show an error of O(h)—a slight improvement over the a-priori estimates. This
motivates us to link the timestep to the mesh width as 7 = O(h).

4 Semi-Lagrangian Advection applied to the Incom-
pressible Navier-Stokes Equations

Given a temporal mesh ¢y < t; < ... < ty_1 < ty, we elaborate a single timestep
tho1 ¥ ty,ofsize T =1, —t,_1, n < N. We assume that approximations wﬁ €

AL (9) of w(ty,) € AY(Q) are available for k < n with [0,7] = w € AY(Q) a
solution of (2).

4.1 Approximation of the flow map

In the Navier-Stokes equations, the flow is induced by the unknown, time-dependent
velocity field u(t, ). Therefore, (15) becomes

5,
EXt,t'f'T(a:) =u(t+ 7, Xiier(x)), Xi(x)=x, te(0,T). (25)

The discretization of the material derivative requires us to approximate the flow map
Xi+—, in order to evaluate (21).

4.1.1 A first-order scheme

We use the explicit Euler method to approximate the (backward) flow according to

Xipt—r (@) = T — T, — T, ), (26)
where ¢,, is a node in the temporal mesh and 7 denotes the timestep size. We only have
access to an approximation 'u,Z_l = (w,’f‘l)# of w at time ¢,,_1, which gives

Xy trr(®) =2 — TU] (). 7

Note that a direct application of the explicit Euler method would require an evaluation
of the velocity field at ¢,,. Instead, we perform a constant extrapolation and evaluate
the velocity field at ¢,, 1, that is, we use u} ' in (27).

The approximation uZ’l resides in the space of vector proxies for discrete dif-
ferential 1-forms as discussed in section 3.1. This means that only tangential conti-
nuity of uZ‘l across faces of elements of the mesh is guaranteed, while discontinu-
ities may appear in the normal direction of the faces. Therefore, u’,f_l is not defined
point-wise—even though (27) requires point-wise evaluation. For that reason, we will
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replace uZ’l by a globally-continuous, smoothened velocity field ﬁZ’l that approxi-
mates 'u,Z_l (see section 4.1.3 for the construction). We then have

Xiptrr(®) = — 0] () (28)

which yields a first-order-in-time approximation of X;, ; _.(x), provided that 112‘1 is

a first-order approximation of w(t,_1, -).
4.1.2 A second-order scheme

A second-order approximation can be achieved by using Heun’s method [44] instead
of explicit Euler. We find the following second-order in time approximations

[wi (@) + ujy ™ (2 — T ()] (29)
Xitnoor(@) mx — 7 [U)(2) + up % (x — 27w ()], (30)

where we approximate the velocity field at ¢,, by the linear extrapolation u; = QuZ_l —
uZ_Q. As described in section 4.1.1, we replace the velocity fields by suitable smooth
approximations. We obtain

\]

Xiptn—r(@) = Xi_o(x) = — 5 [w)(2) + ap (x — 7a;(x))] (3D
KXoty e(@) ~ Xyael@) =@ — 7 (@) + @) 2w — 27w (@)],  (2)

\)

where u; with @ = %, n — 1, n — 2 denotes the smoothened version of u; as it will be
constructed in the next section.

4.1.3 Smooth reconstruction of the velocity field

Given a discrete velocity field u',’1 € A,llvp(Q), we can define a smoothened version u,
of u,, that is

* Lipschitz continuous to ensure stable evaluation of (28),
* well-defined on every point of the meshed domain,

* practically computable, and

* second-order accurate.

We introduce u;, as follows. Let hy,;, denote the length of the shortest edge of the
mesh and (u},);—1, 4 the components of w;. Then,

. 1 Ii+%hmin .
sz(m) = / u;qul? sy Li—1, 57 Tit1y - - 7xd]T)d€ (33)

1
i §hmin
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provides a second-order, Lipschitz-continuous approximation of u;,. In the above def-
inition, we can also replace hy;, by a localized parameter that scales as O(h) with h
the length of the edges "close" to x. Note that the above integral can be evaluated up
to machine precision using the algorithm as described in section 3.2 for (20). The av-
eraging (33) provides a second-order approximation of u; on every point in the mesh.

4.2 A first- and second-order SL scheme

We are now ready to turn the ideas of section 3 into a concrete numerical scheme
for the incompressible Navier-Stokes equations as given in (2). We cast (2a) and
(2b) into weak form and, subsequently, do Galerkin discretization in space relying
on those spaces of discrete differential forms introduced in section 3.1. For the first-
order scheme, we have the following discrete variational formulation. Given w} ' €
A}, 1 (), we search i € A} (), wp € Ay, (€2) such that

1 )
(— i = Tna X7 4w ] »nh)
Q

-
+e (dwy, dny) o + (dpymm)g = (f" 1) q (34a)

(wh, dYn)q =0 (34b)

for all m, € A}, () and ¥y, € A | (Q). Ty, denotes the projection operator as defined
in section 3.1. For the second-order scheme, we use second-order timestepping and
second-order discrete differential forms. Given w) 2, w)'~' € A}, 5(€2), we search pj €
A9 5(Q),wi € A}, () such that

1 ok n— \* n—
(2_ [3(*’2 - 4Ih,2th,tn—rwh '+ Ih,2th,tn—2rWh 2] ) 77h)
T Q

+e (dwf:b7 dnh)ﬂ + (dp;zl7 nh>ﬂ = (fn’ nh)ﬂ ) (353)

(wh,dp)g =0 (35b)

for all n, € Aj,(Q) and ¢, € A} ,(€2). Numerical experiments reported in section 5
give evidence that these schemes indeed do provide first- and second-order conver-
gence for smooth solutions. Note that the schemes presented in this section only re-
quire solving symmetric, linear systems of equations at every time-step.

4.3 Conservative SL schemes

In order to enforce energy-tracking—the correct behavior of the total energy F(t) over
time as expressed in (3)—we add a suitable constraint plus a Lagrange multiplier to

15



the discrete variational problems proposed in section 4.2. Given w}'™' € A}L71(Q), we
search pj € A} (), wyy € A} 1(Q), and p” € R such that

1 ok n— U n
(3 [k = B )+ @ + (0 dnnln
Q

+:U’n [(w27 nh)ﬂ + 287—(de7 dnh)ﬂ - T(fn7 77h)9] = (fn> nh)Q s (363)
(wh,dp)g =0, (36b)

(wh,wp)q + 2e7(dwy, dwp)o — 7(f", wp)o = (wz_l,wﬁ_l)g (36¢)

for all n, € A () and ¥, € A} (Q). Note that the last scalar equation enforces
energy conservation for ¢ = 0 and f = 0. To solve the nonlinear system (36) for
wy, pp, 1", we propose the following iterative scheme. Assume that we have a se-
quence (wp ;. )ken With wj, — wj(k — o). Then we can employ the Newton-like
linearization

(Wﬁa WZ)Q «— (wz,k’ w;zl,k:)g

= (Wﬁ,kfh w}?,kfl)g +2 (Ws,kq,WZ,k - Wfrf,kq)g + 0O (||W;le - Wf?,kq“?)) . (37)

We use the above expansion to replace the quadratic terms (w"”, w"), and (dw™, dw"),,
and arrive at the following linear variational problem to be solved in every step of
the inner iteration. Given wﬁ_l,w}’j’k_l € A;1(Q), we search pj ;. € A} (), wity, €
A}, 1(€2), and i € R such that

1 K n— 7 n
(; [ka —Iha X notn—7h 1} ﬂ?h) + (dph,kn nh)Q + 5(dwh,k7 dnn)a
Q

g [(Wh g1 ) + 2e7(dwpt iy, dn)a — T(f™ m)a) = (F",n)g » (38a)
(] diin), = 0, (38b)

(w;’f,k_h wg,k—l)g +2 (Wﬁ,k_h Wh g — wlrzl,k—l)
+2e7((dwp g1, dwp o 1)e + 2(dwy .y, dwy y, — dwy )]

—7(f" whp)e = (Wi e ), (380)

for all n, € A;,(Q) and ¢, € A) (©). This is a symmetric, linear system that
is equivalent to the original system in the limit (wp ., py 1, ) — (Wi, pf, #"). In
numerical experiments we observe that it takes around 2-3 steps of the inner iteration
to converge to machine precision using an initial guess wj , = w}f‘l. We can apply the
same idea for energy-tracking to our second-order scheme as proposed in section 4.2.
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Remark 4 For the case ¢ = 0 and f = 0, we can also enforce helicity conservation by
adding a suitable Lagrange multiplier to the discrete system. Given w}~' € A}L71(Q),
we search il € A} |, wit € Ay 1(Q), and \* € R such that

1 Va n— n n
(; [wh = T X] o i ,77h> + (dpy,, nn) g + €(dwy,, dnn)a
Q

FA"(wy, dnp)a + A" (dwy,nn)a + 1™ (wry, me)a = 0, (39a)

(wh,dibp)g =0, (39b)

(Wi, wi)g = (wp ™ wp ), (39)

(wh>dwp)g = (wp ™ dwp ™)

o (390)

for all n;, € A,ll,l(Q) and Yy, € Ag,l(Q). By linearization as for energy-tracking, we
obtain the following system. Given w"*, wi | € A 1(Q), we search p} ), € A} (),
wiy, € A 1(Q), and A} € R such that

1 n Ok n— n n
(; [wh,k —Iha Xy, 4, W l] ﬂ?h) + (dph,lwnh)Q + e(dwp, k., dnm)
Q

+AR(Wh k-1 dnn)a + N (dwp kg mn)a + g (Wh k-1, e = 0, (40a)

(Wi dibn) o, = 0, (40b)

(w;f,kfl, w}?,kfl>g + 2 (wf?,kflv wﬁ,k - Wfrf,kq) = (wZ”, Wirffl)ﬂ , (40c)

(w;’i,k_l,dwﬁ,k)g + (Wfrf,kadwﬁ,k—l)g - (wﬁ,k—lvdw;;k—l)g = (wZ‘l,dWZ‘l)Q (40d)

Jor all ny € Ay, (Q) and by, € A}, ((Q). Again, this is a symmetric, linear system
that is equivalent to the original system in the limit (W}} ., Ppy 1, i) — (Wi, PR, ™).
Also, numerical experiments hint that it takes around 2-3 steps of the inner iteration to

converge to machine precision using an initial guess wj, , = w;f_l.

5 Numerical Results

In this section, we present multiple numerical experiments to validate the new scheme.
In the following, we will always consider schemes that include energy-tracking as in-
troduced in section 4.3 unless stated otherwise. We only include helicity-conservation
as introduced in Remark 4 for domains in R®> when ¢ = 0 and f = 0. The ex-
periments are based on a C++ code that heavily relies on MFEM [2]. The source
code is published under the GNU General Public License in the online code repository
https://gitlab.com/WouterTonnon/semi-lagrangian-tools.
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Figure 6: Convergence results for Experiment 1 using the first- and second-order
schemes on simplicial meshes with mesh width h, timestep 7 = 0.065804h. We ob-
serve first- and second-order algebraic convergence for all values of ¢.

5.1 Experiment 1: Decaying Taylor-Green Vortex

We consider the incompressible Navier-Stokes equations with (2 = [—%, %]2, T =1,

varying € > 0, f = 0, and vanishing boundary conditions. An exact, classical solution
is the following Taylor-Green vortex [42]

cos(mzy) sin(mzs) 2t

u(t, x) = —sin(mr1) cos(my)

(4D
We ran a h-convergence analysis for different values of ¢ > 0 and summarize the
results in Figure 6. We also track the energy for different values of € and compare the
energy to the exact solution in Figure 7.

5.2 Experiment 2: Taylor-Green Vortex

We consider the incompressible Navier-Stokes equations with Q = [-1,1)%, T = 1,
varying € > 0, f and the boundary conditions chosen such that

| cos(mzy) sin(mzs)
u(t, @) = | sin(mzy) cos(mas) (42)

is an exact, classical solution. We ran a h-convergence analysis for all parameters
and summarize the results in Figure 8. We observe first- and second-order algebraic
convergence for the corresponding schemes. Note that the error of the scheme is stable
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Figure 7: Energy of the discrete and exact solution for Experiment 1 using the first-
and second-order, energy-tracking schemes on a simplicial mesh with mesh width h =
0.0949795, timestep 7 = 0.00625.
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Figure 8: Convergence results for Experiment 2 using the
non-conservative schemes on simplicial meshes with mesh
0.032902h. As € — 0 the error remains bounded.

as ¢ — 0. This is in agreement with the analysis performed on the vectorial advection
equations presented in [24]. This experiment thus suggests that this analysis can be
extended to the scheme presented in this work.

5.3 Experiment 3: A rotating hump problem

The Taylor-Green vortices provide exact solutions to the incompressible Navier-Stokes
equations, but they are rather "static" solutions. In this experiment, we consider a more
dynamic solution. Let us consider the incompressible Navier-Stokes equations with
Q= [—%, %]2 T =1, =0, f = 0, and vanishing normal boundary conditions. We
consider the following initial condition

—me®t cos(mzy ) sin(mxs)
me®t sin(mxy) cos(mag) — €' cos(may) cos(mas)

uo(x) = (43)
The exact solution to this problem is unknown, so we compare the solution computed
by our scheme to the solution produced by the incompressible Euler solver Gerris [37].
The algorithm used in this solver is described in [36]. We computed the solution to this
problem using the second-order, energy-tracking scheme presented in this work. Then,
we plotted the magnitude of the computed velocity vector field for different mesh-sizes
and time-steps at different time instances in Figures 10 to 13. Note that different visu-
alisation tools were used to visualize the fields computed using the different solvers,
but we observe that the solution computed by the semi-Lagrangian scheme comes vi-
sually closer to the solution computed by Gerris as we decrease the mesh width and
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Figure 9: Convergence results for Experiment 2 using the second-order, conservative
scheme on simplicial meshes with mesh width h, timestep 7 = 0.06580h, and final
time 7" = 1. The reference solution is a solution computed by Gerris [36]

time step. This is confirmed by Figure 9, where we display the L2 error between the
solution computed using the semi-Lagrangian scheme and the solution computed using
Gerris. In Figure 15, we display the vector field as computed using the second-order,
conservative semi-Lagrangian scheme.

Also, in Figure 16 we display the values of the L2 norm over time of the solu-
tions produced using our first- and second-, energy-tracking and non-energy-tracking
schemes. Note that the energy-tracking schemes preserve the L2 norm as expected.
The first-order, non-conservative scheme seems unstable at first, but in reality the or-
dinate axis spans a very small range and it turns out that the L2 norm converges to a
bounded value for longer run-times. Note that the helicity has no meaning in R?.

5.4 Experiment 4: Taylor-Green Vortex in 3D

To observe conservation of helicity, we need to consider a problem in 3D. We con-
sider the incompressible Navier-Stokes equations with {2 = [—%, %]3, T =1, =0,

vanishing normal boundary conditions, and f chosen such that

cos(mry) sin(mxs) sin(mws)

u(t, ) = | —3 sin(mz) cos(mas) sin(mwzs) (44)
— 5 sin(may) sin(mas) cos(mwas)

is a solution. Note that since the solution is static, we can enforce helicity conser-
vation despite f # 0. We run several experiments using the first- and second-order,
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Figure 10: Experiment 3: mesh width & = 0.379918 and time-step 7 = 0.025.
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Figure 11: Experiment 3: mesh width h = 0.0949795 and time-step 7 = 0.00625.

(@)t =0.25 (b)t=20.5 ()t =0.75

Figure 12: Experiment 3: mesh width A = 0.023744875 and time-step 7 = 0.0015625.

Sl

(@)t =20.25 (b)t=0.5 ()t =0.75 @t=1

Figure 13: Reference solution Experiment 3 computed using [37].
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Figure 14: Colorbar associated with Figures 10 to 13
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Figure 15: Velocity field for Experiment 3 computed using the second-order, conser-
vative semi-Lagrangian scheme on a simplicial mesh with mesh width A = 0.189959
and time-step 7 = 0.0125. The colors indicate the magnitude of the vector.
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Figure 16: The L2 norm of the computed solutions for Experiment 3 using differ-
ent variants of the semi-Lagrangian scheme on a simplicial mesh with mesh width
h = 0.04748975 and time-step 7 = 0.003125. In the legend, ’cons’ is short for ’con-
servative’ and refers to energy-tracking schemes. We use ¢ = 0 and f = 0.

conservative semi-Lagrangian schemes. We summarize the results in Figure 17 and we
observe first- and second-order algebraic convergence for the corresponding schemes.
In Figure 18 and Figure 19 we plot the L2 norm and helicity over time of the discrete
solution for both the first- and second-order scheme. We observe that both quantities
are conserved up to machine precision.

5.5 Experiment 5: A transient solution in 3D

To verify the scheme for transient solutions in 3D, we consider the incompressible
Navier-Stokes equations with 2 = [ 113 T = 1, ¢ = 0, vanishing normal boundary

272
conditions and f is chosen such that

—xom cos(t + maows) cos(mas)
u(t, @) = | —w3mcos(t + mri23) cos(ma;) (45)
—xy7 cos(§ + mayxy) cos(may)

is a solution. We ran a simulation for different mesh-sizes with time-steps determined
by a suitable CFL condition. We summarize the results in Figure 20. We observe
second-order convergence for the second-order scheme. The first-order scheme seems
to achieve an order of convergence that is between first- and second-order, but this may
be pre-asymptotic behaviour.
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Figure 17: Convergence results for Experiment 4 using the first- and second-order,
conservative schemes on simplicial meshes with mesh width h, timestep 7 = \/%h.
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Figure 18: The L2 norm of the computed solutions for Experiment 4 using differ-
ent variants of the semi-Lagrangian scheme on a simplicial mesh with mesh width
h = 0.08838834764 and time-step 7 = 0.0625. In the legend, ’cons’ is short for ’con-
servative’ and refers to energy-tracking schemes and helicity-conserving schemes. We

use e = 0and f = 0.
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Figure 19: The helicity of the computed solutions for Experiment 4 using differ-
ent variants of the semi-Lagrangian scheme on a simplicial mesh with mesh width
h = 0.08838834764 and time-step 7 = 0.0625. In the legend, ’cons’ is short for
"conservative’ and refers to energy-tracking and helicity-conserving schemes. We use
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Figure 20: Convergence results for Experiment 5 using the first- and second-order
schemes without energy-tracking and helicity-conservation on simplicial meshes with

. . . 1
mesh width A, timestep 7 = 7§h.
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Figure 21: Velocity field at " = 7.93s of Experiment 6 computed using the second-
order, non-conservative semi-Lagrangian scheme on a simplicial mesh with mesh
width A = 0.189959 and 7 = 0.01.

5.6 Experiment 6: Lid-driven cavity with slippery walls

In this section, we simulate a situation that resembles a lid-driven cavity problem.
Consider the incompressible Navier-Stokes with Q = [—1,1]%, T = 7.93, ¢ = 0,
vanishing normal boundary conditions and the initial velocity field is set equal to zero.

Then, to simulate a moving lid at the top, we apply the force-field f (¢, z) = [v(x),0]”

with

1 . 2

ey = {9 (1 _ 1_100(0_5_302)2) . if1—100(0.5 — 2)% > 0, )
0, else.

This force field gives a strong force in the x;-direction close to the top lid, but quickly

tapers off to zero as we go further from the top lid. In Figure 21, we display the

computed velocity field. Note that, because we apply slip boundary conditions, we do
not expect to observe vortices. The numerical solution reproduces this expectation.
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5.7 Experiment 7: A more complicated domain

The numerical experiments given above, show the convergence and conservative prop-
erties of the introduced schemes. However, these experiments are all performed on
very simple, rectangular domains. In this experiment, we consider a more complicated
domain and mesh (generated using [22]) as shown in Figure 22.

We consider the case of the incompressible Navier-Stokes equations on the domain
as given in Figure 22, T' = 100, ¢ = 0, f = 0 and vanishing normal boundary condi-
tions. We need to construct an initial condition that is divergence-free with vanishing
normal boundary conditions. Following an approach close to a Chorin projection, we

start with
w(z,y) = sin (2 cos(y/2? + y?) — atan2(y, z)) 47)
P Lsin (cos(v/a? + ) — 2 atan2(y, 7)) ]~

We use this definition to define a scalar function, ¢, as

Ap =V w in Q, (48)
Veo-n=w-n on 0f). (49)

We can define our initial condition, wg, as
uy =w — Vo (50)

Note that u is divergence-free and has vanishing normal boundary conditions. The
above system of equations can be solved using an appropriate finite-element imple-
mentation.

Note that in this experiment, the field outside the domain is unknown. This is
well-defined on a continuous level, since vanishing boundary conditions imply that
no particle will flow in from outside the domain. However, on the discrete level we
cannot guarantee that the same will happen. It could happen that a part of a transported
edge (as discussed in section 3.2) ends up outside the domain. In this case, we will
assume that the average of the vector field along the part of the edge that lies outside
the domain, will have the same value as the average of the corresponding edge in its
original location (before transport) at the previous timestep.

The first ten seconds were simulated and a video of the results can be found at
https://youtu.be/Eica8XHLtxY. For the different schemes, we also tracked
the energy in Figure 23.

6 Conclusion

We have developed a mesh-based semi-Lagrangian discretization of the time-dependent
incompressible Navier-Stokes equations with free boundary conditions recast as a non-
linear transport problem for a momentum 1-form. A linearly implicit fully discrete
version of the scheme enjoys excellent stability properties in the vanishing-viscosity
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Figure 22: Domain and mesh associated with Experiment 7.
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Figure 23: The L2 norm of the computed solutions for Experiment 7 using different
variants of the semi-Lagrangian scheme on a simplicial mesh as given in Figure 22
and time-step 7 = 0.01. In the legend, ’cons’ is short for ’conservative’ and refers to
energy-tracking schemes.
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limit and is applicable to inviscid incompressible Euler flows. However, in this case
conservation of energy and helicity have to be enforced separately. Making the reason-
able choice of a time-step size proportional to the mesh width, the algorithm involves
only local computations. Yet, these are significantly more expensive compared to those
required for purely Eulerian finite-element and finite-volume methods. At this point
the verdict on the competitiveness of our semi-Lagrangian scheme is still open.

A Two formulations of the momentum equation
Consider the momentum equation in (1)

du+u-Vu—cAu+ Vp=0.
Note that we have by standard vector calculus identities

Au=V(V-u)—V xV xu,
where we can use V - u = 0 to obtain

Au=-V x V x u.
This allows us to rewrite the momentum equation as
ou+u-Vu+eVxVxu+Vp=0.
Using the gradient of the dot-product, we find
V(iu-u) =2u-Vu+2ux (Vxu).

This identity allows us to rewrite the momentum equation to
1
Ou+V(u-u)—ux (qu)+€VXqu—l—V<—§u-u+p> =0.

From [27, 24], we obtain the identity
(Luw)# =V(u-u)—ux(Vxu)

where w is the differential 1-form such that u = w¥. Since the material derivative for
this 1-form is
Dyw = 0w + Lyw,

we find that the momentum equation can be written as
Dyw + eddw +dp = 0,

where p = —su - u + p.
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