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Neural and gpc operator surrogates:
construction and expression rate bounds

Lukas Herrmann1, Christoph Schwab2, and Jakob Zech3

Abstract Approximation rates are analyzed for deep surrogates of maps between

infinite-dimensional function spaces, arising e.g. as data-to-solution maps of linear

and nonlinear partial differential equations. Specifically, we study approximation

rates for Deep Neural Operator and Generalized Polynomial Chaos (gpc) Operator

surrogates for nonlinear, holomorphic maps between infinite-dimensional, separa-

ble Hilbert spaces. Operator in- and outputs from function spaces are assumed to

be parametrized by stable, affine representation systems. Admissible representation

systems comprise orthonormal bases, Riesz bases or suitable tight frames of the

spaces under consideration. Algebraic expression rate bounds are established for

both, deep neural and gpc operator surrogates acting in scales of separable Hilbert

spaces containing domain and range of the map to be expressed, with finite Sobolev

or Besov regularity. We illustrate the abstract concepts by expression rate bounds

for the coefficient-to-solution map for a linear elliptic PDE on the torus.

Key words: Neural Networks, generalize polynomial chaos, operator learning

1 Introduction

In recent years, deep learning (DL) based numerical methods have started to impact

the numerical solution of (parametric) partial differential equations (PDEs) at every

stage of the solution process. Deep Neural Networks (DNNs) have been promoted

as efficient approximation architectures for PDE solutions and parametric PDE re-

sponse manifolds. However, the theoretical understanding of the methodology re-
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mains underdeveloped; quoting [2, Sec. 4.1.1]: “applying deep learning to infinite

dimensional spaces is associated with a number of fundamental questions regarding

convergence..., if it converges, in what sense?”

1.1 Existing results

Recent successful examples of deployment of DL surrogates in numerical PDE so-

lution algorithms (e.g. [42, 52, 56, 21], has promoted neural network approxima-

tion architectures for PDE solution approximation. The related question of approx-

imation rates of NN based PDE discretizations has been answered in a number of

settings. We mention only [39, 35, 53, 33, 7, 6] and the references there. These

approximation rate results were developed in function spaces on finite-dimensional

domains.

A more recent and distinct development addresses neural networks for operator

learning, i.e. for the neural network emulation of maps between infinite dimensional

function spaces, such as solution operators of PDEs, c oefficient-to-solution and

shape-to-solution maps for elliptic PDEs, to name but a few. These have been pro-

mulgated under the acronym “Neural operators”, “O-Nets”, “operator learning”, see,

e.g., [34, 31] and the references there. Versions of the DNN universal approxima-

tion theorems for operator learning have been established, following the pioneering

work [8], recently in [54, 20, 31, 30, 1]. In these references, generic approximation

properties of operators for several architectures of DNNs of in principle arbitrary

large depth and width have been established. These results are analogous to the

early, universal approximation results of DNNs for function approximation from

the 90s of the previous century, as e.g., [27] and [41] and the references there.

Contrary to the mentioned universality theorems, proofs of operator expression

rate bounds tend to be problem-specific, including assumptions on regularity of in-

put and output data of the operators of interest, and some structural assumptions

on the operator mappings. With domains and/or ranges of the operators of interest

being infinite-dimensional, as a rule, overcoming the curse of dimensionality (CoD)

in the proofs of operator emulation bounds is necessary. The results in the present

paper leverage progress in recent years on approximation rate bounds for gpc repre-

sentations of such maps for DNN approximation. This line of research was initiated

in [45], building on earlier results on gpc emulation rates in [5] and the references

there.

For coefficient-to-solution maps of elliptic PDEs, on domains consisting of

smooth coefficient functions, it was shown recently in [36] that exponential expres-

sion rates of solution operators is possible with certain deep ReLU NNs. This result

leverages the exponential encoding and decoding of smooth (analytic) functions

with tensorized polynomials by spectral collocation, combined with a ReLU NN

which emulates a Gaussian Elimination Method for regular matrices of size N in

NN size O(N4), and scaling polylogarithmically in terms of the target accuracy ε of

the solution vector.
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1.2 Contributions

We establish expression rate bounds for DNN emulations of holomorphic maps be-

tween subsets of (scales of) infinite-dimensional spaces X and Y . We focus in

particular on maps between scales {X s}s≥0 and {Y t}t≥0 of spaces of finite reg-

ularity, such as function spaces of Sobolev- or Besov-type on “physical domains”,

being for example bounded subsets D of Euclidean space. Mappings between func-

tion spaces on manifolds M are also covered by the present operator expression

rate bounds, upon introduction of stable bases in suitable function spaces on M , or

also on space-time cylinders M × [0,T ].
A typical example is the (nonlinear) coefficient-to-solution map for linear, ellip-

tic or parabolic partial differential equations of second order which we develop for

illustration in some detail in Section 6 ahead. In this “linear elliptic PDE” case, the

(nonlinear) coefficient-to-solution map is holomorphic between suitable subsets of

L∞(D) (accounting for positivity) and H1(D) (accounting for homogeneous essen-

tial boundary conditions on ∂D). The notion of operator holomorphy requires com-

plexifications of the domain and range spaces, in the (common) case that physical

modelling will initially comprise only spaces of real-valued functions in D. To sim-

plify technicalities of exposition, we develop the theory for separable, real Hilbert

spaces X . Then, complexificiation is a standard process resulting in a (canonical)

extension [37].

Our results show that for data with finite Sobolev- or Besov regularity, there ex-

ist operator surrogates of either deep neural network or of generalized polynomial

chaos type such that approximation rates afforded by linear approximation schemes

are essentially preserved by the surrogate operators. This generalizes the recent re-

sult in [36] where analyticity of inputs was exploited in an essential fashion to the

more realistic, finite regularity setting, in rather general classes of function spaces.

In addition, our proofs of these results are constructive allowing for a deterministic

construction of the surrogate maps with a set budget of pre-defined, numerical op-

erator queries. Our main results, Theorems 1 and 3, ensure worst case and mean

square generalization error bounds for neural operator surrogates thus computed.

The algebraic operator expression rates are limited by the approximation rates of

the encoding and decoding operators entering into the construction of the surrogates.

Theorem 6 then has corresponding results for the gpc operator surrogate.

We note that alternative approaches to analyzing the generalization error of op-

erator surrogates, such as methods from statistical learning theory (e.g. [32] and

the references there), deliver lower approximation rates (these results do not require

holomorphy of G , however).

1.3 Outline

In Section 2, we present an abstract function space setting, in which the operators

and their surrogates will be analyzed. We precise in particular the notion of stable
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bases in smoothness scales via isomorphisms to sequence spaces, comprising or-

thonormal bases in separable Hilbert spaces of Fourier and Karhunen-Loève type,

as well as biorthogonal bases of spline and wavelet type. Examples are furnished by

Sobolev and Besov spaces, and by reproducing kernel Hilbert spaces of covariance

operators in statistics (e.g. [50] and [47] and the references there).

Section 3 gives a succinct statement of our main results in Theorems 1 and 3;

these theorems provide expression rate bounds of Deep Neural Network operator

emulations and of generalized polynomial chaos emulations for holomorphic maps

between separable Hilbert spaces admitting stable, biorthogonal bases. There, a key

role in building appropriate encoding and decoding operators for neural operator net-

works is taken by dual bases, which must, to some extent, be available explicitly in

order to construct the encoders and decoders. Section 4 provides the proof of Theo-

rem 1 which asserts the existence of operator emulations which preserve algebraic

encoding and decoding error bounds of input and output data.

In Section 5, we discuss in further detail the second, novel class of operator emu-

lations dubbed generalized polynomial chaos operator (“gpc operator”) surrogates.

Its deterministic construction is via finitely truncated gpc expansions of holomor-

phic parametric maps, resulting from suitable encoders and decoders in the domain

and range, respectively. Sparse gpc operator surrogates provide a construction (via

“stochastic collocation”) for operator emulations, i.e., the proof of Theorem 6 on gpc

operator expression rates yields an explicit deterministic construction procedure re-

alizing the proposed operator emulations.

Finally, in Section 6 we illustrate the abstract theory with an example.

1.4 Notation

We write N= {1,2, ...} and N0 = {0,1,2, ...}. Throughout, C . D means that C can

be bounded by a multiple of D, independently of parameters which C and D may

depend on. C & D is defined as D .C, and C ≃ D as C . D and C & D.

For a Hilbert space X , the inner product of v and w ∈ X is denoted by 〈v,w〉.
The space of real-valued square integrable sequences indexed over N is denoted by

ℓ2(N). Complex valued, square summable sequences shall be denoted with ℓ2(N,C).

2 Setting

We fix notation and introduce, following established practice in statistical learning

theory, encoder and decoder operators as stipulated in [8, 30]. Throughout, X , Y

denote two separable Hilbert spaces over R.
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2.1 Framework

“Operator learning” refers, in the present paper, to procedures of emulation of (not

necessarily linear) maps G : X → Y . We will address existence and error bounds

of surrogate maps G̃ , subject to a finite number N of parameters defining G̃ . If we

wish to emphasize the dependence on N, we also write G̃N = G̃ .

On suitable subsets S ⊆ X of admissible input data, we will consider conver-

gence rates in N either in terms of the worst case error

sup
a∈S

‖G (a)− G̃N(a)‖Y (1)

or the mean square error

(

∫

a∈S
‖G (a)− G̃N(a)‖

2
Y dζ (a)

)1/2

, (2)

for a measure ζ on S equipped with the Borel sigma algebra.

As in [31, 20] and the references there, we seek surrogates G̃N of the form

G̃N := D ◦ G̃GGN ◦E , (3)

where E : X → ℓ2(N) and D : ℓ2(N) → Y denote the so-called encoder and de-

coder maps. The encoder allows to express elements in X in a certain (efficient)

representation system. For example, E could map vectors in X to their Fourier coef-

ficients w.r.t. some fixed orthonormal basis in X , and D could perform the opposite

operation w.r.t. another fixed orthonormal basis in Y . While we restrict ourselves

to linear encoders/decoders, we will give a more general framework and further de-

tails in the next subsections. The parametric approximations G̃GGN : ℓ2(N)→ ℓ2(N) in

(3) belong to hypothesis classes comprising N-term polynomial chaos expansions

or deep neural networks depending on N parameters.

2.2 Representation systems

We discuss several representation systems and corresponding pairs of encoder/decoder

maps. Specifically, we will admit (possibly redundant) biorthogonal systems such

as Riesz bases realized by Multiresolution Analyses (MRAs) or by wavelet frames,

which offer additional flexibility over mere orthogonal bases. This framework also

comprises Karhunen-Loève eigenfunctions, Fourier bases and other, fully orthogo-

nal families as particular cases. See e.g. [50, Chap. 2,5,6.3] for general discussion

and constructions.
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2.2.1 Frames

Constructions of concrete representation systems are often simplified when one in-

sists on stability, but the basis property is relaxed. This leads to the concept of

frames, which we now shortly recall. It comprises biorthogonal wavelet bases as

a particular case, and allows in particular also iterative realization on unstructured

simplicial partitions of polyhedra via the so-called BPX multi-level iteration [22].

Definition 1. A collection ΨΨΨ = {ψ j : j ∈ N} ⊂ X is called a frame for X , if the

analysis operator

F : X → ℓ2(N) : v 7→ (〈v,ψ j〉) j∈N

is boundedly invertible between X and range(F)⊂ ℓ2(N).

The adjoint F′ of the analysis operator is called the synthesis operator. It is given by

F′ : ℓ2(N)→ X : vvv 7→ vvv⊤ΨΨΨ . (4)

The numerical stability of frames is quantified by the frame bounds

ΛΨΨΨ := ‖F‖X →ℓ2 , λΨΨΨ := inf
0 6=v∈X

‖Fv‖ℓ2

‖v‖X

. (5)

Remark 1. Since ‖F′‖ℓ2→X = ‖F‖X →ℓ2 , (5) implies that for all ννν ∈ ℓ2(N)

∥

∥

∥

∥

∥

∑
j∈N

ν jψ j

∥

∥

∥

∥

∥

2

X

= ‖F′ννν‖2
X ≤ Λ 2

ΨΨΨ ∑
j∈N

ν2
j . (6)

The frame operator S := F′F : X →X is boundedly invertible, self-adjoint and

positive (e.g. [12, 17, 23]) with ‖F′F‖X →X =Λ 2
ΨΨΨ and ‖(F′F)−1‖X →X = λ−2

ΨΨΨ , [12,

Lemma 5.1.5]. The collection Ψ̃ΨΨ := S−1ΨΨΨ is a frame for X which is referred to as

the canonical dual frame of ΨΨΨ . Its analysis operator is F̃ := F(F′F)−1, and its frame

bounds (5) are λ−1
ΨΨΨ and Λ−1

ΨΨΨ , respectively.

Crucially, we have [12, 23]

F′F̃ = I on X . (7)

Whence every v ∈ X has the representation v = vvv⊤ΨΨΨ with vvv = F̃(v) ∈ ℓ2(N), and

Λ−1
ΨΨΨ ≤

‖vvv‖ℓ2

‖v‖X

≤ λ−1
ΨΨΨ . (8)

Property (8) is in fact equivalent to ΨΨΨ being a frame for X (see, e.g., [23, Thm. 8.29

(b)]). Unless ΨΨΨ is a Riesz basis, representation of v∈X as v= vvv⊤ΨΨΨ is generally not

unique: there holds ℓ2(N) = ran(F)⊕⊥ ker(F′) and QQQ := F̃F′ is the orthoprojector

onto ran(F). We refer to [12, 23] and the references there for more details.
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2.2.2 Riesz Bases

Riesz bases are special cases of frames. They are defined as follows.

Definition 2. A sequence ΨΨΨ = {ψ j} j∈N ⊂ X is a Riesz-basis of X if there exists

a bounded bijective operator A : X → X and an orthonormal basis (e j) j∈N such

that ψ j = Ae j for all j ∈ N.

Remark 2. A frame ΨΨΨ is a Riesz basis, iff it is a basis of X . Moreover, a frame ΨΨΨ
is a Riesz basis of X iff ker(F′) = {0}. Equivalently, ran(F) = ℓ2.

Every Riesz basis is a basis of X , and is also a frame for X : there exist Riesz

constants 0 < λΨΨΨ ≤ΛΨΨΨ < ∞ such that for all (c j) j∈N ∈ ℓ2(N)

λΨΨΨ ∑
j∈N

|c j|
2 ≤

∥

∥

∥

∥

∥

∑
j∈N

c jψ j

∥

∥

∥

∥

∥

2

X

≤ ΛΨΨΨ ∑
j∈N

|c j|
2 . (9)

The canonical dual frame Ψ̃ΨΨ = {ψ̃ j} j∈N of ΨΨΨ is also a Riesz basis of X , and is

referred to as the the dual basis or the biorthogonal system to ΨΨΨ , since for all j, and

all k ∈N holds 〈ψ j, ψ̃k〉= δk j. We refer to [12, Sec. 5] for further details and proofs.

Remark 3. Constructions of piecewise polynomial Riesz bases for Sobolev spaces

in polytopal domains D ⊂ Rd are available (e.g. [19, 48] and the references there).

2.2.3 Orthonormal Bases

Orthonormal bases (ONBs) are particular instances of frames and Riesz bases: if

ΨΨΨ is an orthonormal basis of X , then Ψ̃ΨΨ =ΨΨΨ . This includes, for example, Fourier-

bases [23], Daubechies - type wavelets [18] and orthogonal polynomials [49]. It

also includes orthonormal bases obtained by principal component analyses asso-

ciated with a covariance operator corresponding to a Gaussian measure on X as

commonly used in statistical learning theory (e.g. [47]). Such bases are generally

not explicitly available, but may be approximately calculated in practice.

Example 1. Denote by Td the d-dimensional torus. The Fourier basis ΨΨΨ is an ONB

of X = L2(Td). The analysis and synthesis operators F, F′ are in this case the

Fourier transform and its inverse transform.

2.3 Encoder and decoder

In the following we use the notation

ΨΨΨX = (ψ j) j∈N, Ψ̃ΨΨX = (ψ̃ j) j∈N, ΨΨΨY = (η j) j∈N, Ψ̃ΨΨY = (η̃ j) j∈N. (10)
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to denote frames and their dual frames of X , Y respectively. With the correspond-

ing analysis operators FX , FY the encoder/decoder pair in (3) is defined by the

analysis and synthesis operators which are given by

E := F̃X =

{

X → ℓ2(N)

x 7→ (〈x, ψ̃ j〉) j∈N,
D := F′

Y =

{

ℓ2(N)→ Y

(y j) j∈N 7→ ∑ j∈N y jη j .

(11)

Remark 4. If ΨΨΨX , ΨΨΨY are Riesz bases of X , Y , respectively, then the encoder E :

X → ℓ2(N) and decoder D : ℓ2(N)→Y in (11) are boundedly invertible operators.

Remark 5. Encoders and decoders with rate-optimal performance for subsets X s ⊂
X are obtained from n-term truncation. In the most straight forward case, linear n-

term truncation of representations u ∈ X will ensure rate-optimal approximations

for X s being classical Sobolev or Besov spaces with summability index p ≥ 2. It is

well-known that MRAs which constitute Riesz bases in X afford nonlinear encod-

ing by coefficient thresholding. This could also be referred to as adaptive encoding.

Such encoders are known to ensure rate-optimal approximations for a given bud-

get of n coefficients for considerably larger set X s ⊂ X , comprising in particular

Besov spaces in D with summability indices q ∈ (0,1] (see, e.g., [50, 51]).

2.4 Smoothness scales

Our analysis will require subspaces of X and Y exhibiting “extra smoothness”.

Typical instances are Sobolev and Besov spaces with “s-th weak derivatives bounded”.

It is well-known, that membership in such function classes can be encoded via

weighted summability of expansion coefficients.

To formalize this, for a fixed strictly positive, monotonically decreasing weighted

sequence www = (w j) j∈N such that www1+ε ∈ ℓ1(N) for all ε > 0, we introduce scales of

Hilbert spaces X s ⊆ X , Y t ⊆ Y for s, t ≥ 0 with norms1

‖x‖2
X s := ∑

j∈N

〈x, ψ̃ j〉
2w−2s

j , ‖y‖2
Y t := ∑

j∈N

〈y, η̃ j〉
2w−2t

j . (12)

Lemma 1. Let s ≥ 0. The space X s = {x ∈ X : ‖x‖X s < ∞} is a Hilbert space

with inner product 〈x,x′〉X s = ∑ j∈N〈x, ψ̃ j〉〈x
′, ψ̃ j〉w

−2s
j .

Proof. Clearly 〈·, ·〉X s defines an inner product on the set X s compatible with the

norm ‖ · ‖X s . We need to show that X s is closed w.r.t. this norm.

Denote E = F̃X , D = F′
X

and recall that E (X ) is a closed subspace of ℓ2(N)
due to the property ‖E (x)‖ℓ2(N) ≥ λX ‖x‖X . Furthermore, denote in the following

1 All of the following remains valid if we use distinct weight sequences (wX , j) j∈N and (wY , j) j∈N

to define X s, Y t respectively. We refrain from doing so for simplicity of presentation.
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by ℓ2
s (N) the sequence space of xxx∈ ℓ2(N) such that ‖xxx‖2

ℓ2
s

:=∑ j∈N x2
jw

−2s
j <∞. Note

that ℓ2
s (N) is closed, and ‖E (x)‖ℓ2

s
= ‖x‖X s .

Take a Cauchy sequence (xn)n∈N ⊆ X s w.r.t. ‖ · ‖X s . Then (E (xn))n∈N ⊆ ℓ2(N)
is a Cauchy-sequence w.r.t. ℓ2

s (N), and since ℓ2
s (N) is closed, there exists xxx ∈

ℓ2
s (N) ⊆ ℓ2(N) such that E (xn) → xxx ∈ ℓ2

s (N). Since E (X ) ⊆ ℓ2(N) is closed, xxx

belongs to E (X ) ⊆ ℓ2(N). Since D maps from ℓ2(N) to X , x̃ := D(xxx) ∈ X is

well-defined and belongs to X s since

‖x̃‖X s = ‖xxx‖ℓ2
s
< ∞.

Moreover, using that E ◦D is the identity on E (X ) (cp. (7))

‖xn − x̃‖X s = ‖E (xn)−E (x̃)‖ℓ2
s
= ‖E (xn)−E (D(xxx))‖ℓ2

s
= ‖E (xn)− xxx‖ℓ2

s
→ 0

as n → ∞. This shows that X s is closed w.r.t. ‖ · ‖X s . ⊓⊔

Remark 6. For ONBs ΨΨΨX = {ψ j} j∈N and ΨΨΨY = {η j} j∈N of X and Y , the se-

quences (ws
jψ j) j∈N and (wt

jη j) j∈N form ONBs of X s, Y t respectively.

The Hilbert spaces X s and Y t are included in their (unique, [37]) complexi-

fied versions X s
C
= {1, i}⊗X s and Y t

C
= {1, i}⊗Y t , for which the encoder and

decoder in (11) act on weighted, complex sequence spaces.

Remark 7. The results of this paper can be extended to the case where X and Y

are separable Hilbert spaces over the coefficient field C. We do not elaborate details

in order to avoid having to distinguish between two cases in the following.

3 Main results

Our goal is to approximate maps G from (subsets of) X into Y . In the following

denote by ΨΨΨX , ΨΨΨY fixed frames of the separable Hilbert spaces X , Y as in (10),

and let the encoder E : X → ℓ2(N), decoder D : ℓ2(N)→ Y be as in (11). With

U := [−1,1]N,

and www as in Section 2.4, for s > 1
2
, set

σ s
r :=

{

U → X

yyy 7→ r ∑ j∈Nws
jy jψ j.

(13)

The condition s > 1
2

ensures that the coefficient sequence (rws
jy j) j∈N belongs to

ℓ2(N) so that σ s
r is well-defined as a mapping from U to X (cp. (4)). For s > 1

2
we

then introduce the following “Cubes” in X

Page:9 job:opnet macro:svmult.cls date/time:13-Jun-2022/8:13
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C̃s
r(X ) := {σ s

r (yyy) : yyy ∈U}

and additionally for s ≥ 0

Cs
r(X ) := {a ∈ X : E (a) ∈ × j∈N[−rws

j,rws
j ]}

=

{

a ∈ X : sup
j∈N

|〈a, ψ̃ j〉|w
−s
j ≤ r

}

. (14)

The sets Cs
r(X ) will serve as the domains on which G is to be approximated.

Remark 8. Note that Cs
r(X )⊆ C̃s

r(X ). IfΨΨΨX = (ψ j) j∈N is a Riesz-basis, then (due

to the basis property) the ℓ2(N)-sequence of expansion coefficients of any element

a ∈ X w.r.t. ΨΨΨX is unique. Due to (7) and (13) it thus must hold E (σ s
r (yyy)) =

(rws
jy j) j∈N for all yyy ∈ U . This implies C̃s

r(X ) = Cs
r(X ). For general frames, this

does not hold, since E (σ s
r (yyy)) need not belong to × j∈N[−rws

j,rws
j ] for yyy ∈U .

Remark 9. Let s′ ≥ 0 and s > s′+ 1/2. Then Cs
r(X )⊂ X s′ , since for a ∈Cs

r(X )

‖a‖2

X s′ = ∑
j∈N

〈a, ψ̃ j〉
2w−2s′

j ≤ r2 ∑
j∈N

w
2(s−s′)
j < ∞,

due to (w j) j∈N ∈ ℓ1+ε(N) for any ε > 0.

We shall work under the assumption that G allows a complex differentiable exten-

sion to some open superset of C̃s
r(X ) in XC:

Assumption 1. There exist s> 1, t > 0 and an open set OC⊆XC containingC̃s
r(X )

such that G : OC → YC is holomorphic and supa∈OC
‖G (a)‖Y t

C
≤ M.

We emphasize that holomorphy, i.e. Fréchet differentiablity of G : OC →YC, in As-

sumption 1 is understood w.r.t. the topologies of XC and YC (and not some stronger

topologies such as X
s−1/2

C
and Y t

C
).

3.1 Worst-case error for NN operator surrogates

Our first main result states that a holomorphic operator G as in Assumption 1 can be

uniformly approximated on Cs
r(X ) by a NN surrogate of the form D ◦ G̃GG◦E , where

G̃GG is a ReLU NN. More precisely, G̃GG is a function of the form

G̃GG =AL ◦ReLU◦AL−1 · · · ◦A1 ◦ReLU◦A0 (15)

where the application of ReLU(x) := max{0,x} is understood componentwise, and

each A j : Rn j → R
n j+1 is an affine transformation of the form A j(x) = Wjx+ b j

with Wj ∈ R
n j+1×n j , b j ∈ R

n j+1 . The entries of the weights Wj and the biases b j

are parameters that determine the NN. It is common practice to determine these

Page:10 job:opnet macro:svmult.cls date/time:13-Jun-2022/8:13



Neural and gpc operator surrogates: construction and expression rate bounds 11

parameters by NN “training”, where some regression procedure on input-output data

pairs with the map induced by G̃GG of the form (15) is used to find choices of the

weights and biases. Alternatively, concrete constructions of the NN parameters Wj,

b j based on a-priori specified samples of input-output data pairs are sometimes

proposed (e.g. [25]). The presently developed, constructive proofs are of this type.

We refer to the number of nonzero entries of all Wj and b j, i.e.

size(G̃GG) := ∑
0≤ j≤L

‖Wj‖0 + ‖b j‖0 (16)

as the size of the NN in (15). In other words, the “size” of the network is the number

of trainable network parameters.

Remark 10. Any realization of a NN G̃GG of the form (15) represents a map from

R
n0 → R

nL+1 . Throughout we will also understand G̃GG as a function from ℓ2(N) →
ℓ2(N): Formally replacing A0 with an infinite matrix in Rn1×∞ and AL with an in-

finite matrix in R∞×nL by filling up the (infinitely many) entries with zeros, G̃GG be-

comes a mapping from ℓ2(N) → ℓ2(N). This new network is of the same size as

the original one, since we only add zero entries (cp. (16)). Note that the function it

realizes is simply obtained by padding the original network input and output with

zeros.

The composition D ◦ G̃GG◦E is well-defined in the sense of Rmk. 10.

Theorem 1. Let Assumption 1 be satisfied with s > 1, t > 0. Fix δ > 0 (arbitrarily

small) and r > 0. Then there exists a constant C > 0 such that for every N ∈N there

exists a ReLU NN G̃GGN of size O(N) such that

sup
a∈Cs

r(X )

‖G (a)−D(G̃GGN(E (a)))‖Y ≤CN−min{s−1,t}+δ . (17)

Next, introduce the closed ball of radius r in X s

Br(X
s) := {a ∈ X : ‖a‖X s ≤ r} .

Since for any ε > 0, we have

Br(X
s)⊆Cs

r(X )⊆ Brε (X
s− 1

2−ε)

with rε := r(∑ j∈Nw1+2ε
j )1/2 < ∞ (cp. (12), (14) and Rmk. 9), we trivially get the

following:

Corollary 1. Consider the setting of Theorem 1. Then there exists a constant C > 0

such that for every N ∈ N there exists a ReLU NN G̃GGN of size O(N) such that

sup
a∈Br(X s)

‖G (a)−D(G̃GGN(E (a)))‖Y ≤CN−min{s−1,t}+1+δ .
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12 Lukas Herrmann1 , Christoph Schwab2 , and Jakob Zech3

Remark 11. Clearly Br(X
s) is a proper subset of Cs

r(X ). However, in general there

is no s′ > s and r′ > 0 such that Br′(X
s′)⊆Cs

r(X ), thus we cannot use Theorem 1

to improve the convergence rate on the ball Br(X
s)⊂ X s.

Our results provide sufficient conditions under which operator nets can overcome

the curse of dimensionality, since we allow the operators to have infinite dimensional

domains. The proof hinges on certain “sparsity” properties of the encoded coeffi-

cients. Neural networks are able to exploit this form of intrinsic low-dimensionality

and in this way elude the curse of dimension. However, we emphasize that it is the

intrinsic sparsity of the considered functions, rather than specific properties of NNs

that lead to these statements. The same convergence rate can be obtained with other

methods such as sparse-grid polynomial interpolation or low-rank tensor approxi-

mation, as we discuss in Section 3.3 ahead.

3.2 Mean-square error for NN operator surrogates

We can improve the operator approximation rate of Theorem 1, if we measure the

error in a mean-square sense. To this end assume that ΨΨΨX is a Riesz-basis, and

let µ :=⊗ j∈N
λ
2

be the uniform probability measure on U :=× j∈N[−1,1] equipped

with its product Borel sigma algebra, where λ stands for the Lebesgue measure in

R. By Rmk. 8, the pushforward (σ s
r )♯µ of µ under σ s

r then constitutes a measure on

Cs
r(X ).

Theorem 2. Assume that ΨΨΨX is a Riesz basis. Let Assumption 1 be satisfied with

s > 1, t > 0. Fix δ > 0 (arbitrarily small) and r > 0. Then there exists a constant

C > 0 such that for every N ∈ N there exists a ReLU NN G̃GGN of size O(N) such that

∥

∥G −D ◦ G̃GGN ◦E
∥

∥

L2(Cs
r (X ),(σ s

r )♯µ;Y )
≤CN−min{s− 1

2 ,t}+δ . (18)

3.3 Worst-case error for gpc operator surrogates

For our third main result, instead of a NN G̃GGN we use a multivariate polynomial

pN : Rn → Rm. The operator surrogate then takes the form D ◦ pN ◦ E , where the

composition is again understood as truncating the output of E after the first n param-

eters, and padding the output of pN with infinitely many zeros (cp. Rmk. 10). The

advantage over the NN operator surrogate in Theorem 1 is, that, while we achieve

the same converence rate, the proof is entirely constructive, and one can explicitly

compute pN as an interpolation polynomial. Hence no “training” is required, and one

obtains (higher-order) deterministic generalizations bounds, rather than (low-order)

probabilistic bounds as is common in statistical learning theory.

Contrary to Section 3.2, we now allow for ΨΨΨX again to be a general frame.
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Neural and gpc operator surrogates: construction and expression rate bounds 13

Theorem 3. Consider the setting of Theorem 1. Then there is a constant C > 0 such

that for every N ∈N there exists a multivariate polynomial pN such that

sup
a∈Cs

r(X )

‖G (a)−D(pN(E (a)))‖Y ≤CN−min{s−1,t}+δ .

Furthermore, pN belongs to an N-dimensional space of multivariate polynomi-

als. Its components are interpolation polynomials, whose computation requires the

evaluation of 〈G (a), η̃ j〉 at at most N tuples (a, j) ∈Cs
r(X )×N.

Before coming to the proofs, let us make one further remark. Corollary 1 states that

we can uniformly approximate any holomorphic G as in Assumption 1 with a NN

operator surrogate on the ball Br(X
s); an analogous corollary also holds for gpc

operator surrogates. Since X s is an infinite dimensional Hilbert space, Br(X
s) is

not compact in X s. Thus the image of Br(X
s) will in general also not be com-

pact in Y t , for example in case X = Y t and G : X → Y t is the identity (which

satisfies Assumption 1). Therefore it seems counterintuitive that we can uniformly

approximate G using a NN with only finitely many parameters (or a polynomial of

finite degree). This is possible, because the approximation rate is stated not in the

norm of Y t , but in the weaker norm of Y , and in fact a ball in Y t is compact in Y :

Lemma 2. For every 0 ≤ t ′ < t < ∞, the set Br(Y
t) is compact in Y t′ .

Proof. Let (an)n∈N be a sequence in Br(Y
t) and denote xxxn = E (an), where xxxn =

(xn, j) j∈N ∈ ℓ2(N). Then, due to an ∈ Br(Y
t) holds ∑ j∈N x2

n, jw
−2t
j ≤ r for all n ∈ N

and, in particular,

xn, j ∈ [−rwt
j,rwt

j ] ∀n, j ∈ N.

Compactness of [−rwt
1,rwt

1] implies the existence of a subsequence (xxx1,n)n∈N of

(xxxn)n∈N, such that (x1,n,1)n∈N is a Cauchy sequence in [−rwt
1,rwt

1]. Inductively, let

(xxxk,n)n∈N be a subsequence of (xxxk−1,n)n∈N such that (xk,n,k)n∈N is a Cauchy sequence

in [−rwt
k,rwt

k]. Then x̃xxn := xxxn,n defines a subsequence of (xxxn)n∈N with the property

that (x̃n, j)n∈N is a Cauchy sequence for each j ∈ N. Denote the corresponding se-

quence in Y t by (ãn)n∈N.

Now fix ε > 0 arbitrary. Let N(ε) ∈N be so large that w
2(t−t′)
N(ε) < ε

4r2 . Then for all

n ∈ N

∑
j>N(ε)

x2
n, jw

−2t′

j ≤ w
2(t−t′)
N(ε) ∑

j>N(ε)

x2
n, jw

−2t
j ≤

ε

4
.

Next, since (x̃n, j)n∈N is a Cauchy sequence for each j ≤N(ε), there exists M(ε) ∈N

so large that
N(ε)

∑
j=1

|xm, j − xn, j|
2w−2t′

j <
ε

2
∀m,n ≥ M(ε).

Then for all m, n ≥ M(ε) we have
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14 Lukas Herrmann1 , Christoph Schwab2 , and Jakob Zech3

‖ãn − ãm‖Y t′ ≤
N(ε)

∑
j=1

|xm, j − xn, j|
2w−2t′

j + 2 ∑
j>N(ε)

(x2
m, j + x2

n, j)w
−2t′

j ≤ ε.

Thus (ãn)n∈N is a Cauchy sequence in Y t′ . This concludes the proof. ⊓⊔

4 Proof of Theorem 1 and Theorem 2

With s > 1 and σ s
r as in (13) let in the following

GGG := F̃Y ◦G ◦σ s
r . (19)

Since σ s
r : U → X , G : X → Y and F̃Y : Y → ℓ2(N) we have GGG : U → ℓ2(N).

Moreover, due to D = F′
Y

and (7) we have that D ◦ F̃Y is the identity on Y and

thus

u(yyy) := (D ◦GGG)(yyy) = G (σ s
r (yyy)) (20)

is well-defined for yyy ∈ U . To prove Theorem 1 we first show that GGG : U → X can

be approximated.

4.1 Auxiliary results

The following lemma states that the holomorphic function G : OC → Y from As-

sumption 1, is actually also holomorphic as a mapping to the more regular space

Y t′ for any t ′ < t:

Lemma 3. Let Assumption 1 be satisfied. Then for every t ′ ∈ [0, t), the map G :

OC → Y t′ is holomorphic.

Proof. By Assumption 1, for every a ∈ OC

‖G (a)‖2
Y t
C

= ∑
j∈N

|〈G (a), η̃ j〉|
2w−2t

j ≤ M2

and for every η̃ j ∈ Ψ̃ΨΨ , j ∈ N, the map

OC → C : a 7→ 〈G (a), η̃ j〉

is holomorphic. Thus for each n ∈ N

Gn : OC → Y
t′

C : a 7→
n

∑
j=1

〈G (a), η̃ j〉η j

is holomorphic. In addition,
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Neural and gpc operator surrogates: construction and expression rate bounds 15

lim
n→∞

sup
a∈OC

‖G (a)−Gn(a)‖
2

Y t′
C

= lim
n→∞

sup
a∈OC

∑
j>n

|〈G (a), η̃ j〉|
2w−2t′

j

≤ lim
n→∞

sup
j>n

w
2(t−t′)
j sup

a∈OC

∑
j>n

|〈G (a), η̃ j〉|
2w−2t

j

≤ lim
n→∞

sup
j>n

w
2(t−t′)
j M2 = 0.

Thus we have uniform convergence Gn → G in the topology of Y t′

C
which implies

holomorphy of G : OC → Y t′

C
as claimed, see [26, Theorem 3.1.5c]. ⊓⊔

It is well known, that algebraic decay of the “input” sequence ws
jψ j in (13) is in-

herited by the Legendre coefficients of the “output” u(yyy), see for example [10]

and the earlier works [14, 15] for the analysis for some specific choices of G , and

[13] for the general analysis. To provide a statement of this type, we first introduce

some notation and denote by Ln the n-th Legendre polynomial normalized such that
1
2

∫ 1
−1 Ln(x)

2 dx = 1. For a multiindex

ννν ∈ F := {(ν j) j∈N0
∈ N

N
0 : |ννν|< ∞}

we write for yyy = (y j) j∈N ∈U = [−1,1]N

Lννν(yyy) := ∏
j∈suppννν

Lν j
(y j),

where an empty product is understood as constant 1. With the infinite product mea-

sure µ =⊗ j∈N
λ
2

on U = [−1,1]N, we then have ‖Lννν‖L2(U,µ) = 1. As is well known,

e.g., [44, Theorem 2.12], (Lννν)ννν∈F is an orthonormal basis of L2(U,µ). Moreover,

there holds the bound

‖Lννν‖L∞(U) ≤ ∏
j∈N

(1+ 2ν j)
1/2 (21)

for all ννν ∈ F , see [38, §18.2(iii) and §18.3] with our normalization of Lννν .

We work with the following theorem, which, apart from giving an algebraically

decaying upper bound on the Legendre coefficients, additionally provides informa-

tion on the structure of these upper bounds. It is essentially [55, Theorem 2.2.10]

stated in the current setting. To formulate the result, we first introduce an order-

relation on multi-indices. For µµµ = (µ j) j∈N and ννν = (ν j) j∈N ∈ F we write µµµ ≤ ννν
iff µ j ≤ ν j for all j ∈N. A set Λ ⊆ F is downward closed iff ννν ∈ Λ implies µµµ ∈Λ
whenever µµµ ≤ ννν .

Theorem 4. Let Assumption 1 be satisfied with some s > 1 and t > 0. Fix τ > 0,

p ∈ ( 1
s
,1] and t ′ ∈ [0, t). For bsnu ∈ F , set ωννν := ∏ j∈suppννν(1+2ν j) for all ννν ∈ F

(empty products are equal to 1). Then there exists C > 0 and a sequence (aννν)ννν∈F ∈
ℓp(F ) of positive numbers such that

(i) for each ννν ∈ F

ωτ
ννν

∥

∥

∥

∥

∫

U
Lννν (yyy)u(yyy) dµ(yyy)

∥

∥

∥

∥

Y t′
≤Caννν , (22)
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16 Lukas Herrmann1 , Christoph Schwab2 , and Jakob Zech3

(ii) there exists an enumeration (ννν i)i∈N of F such that (aννν i
)i∈N is monotonically

decreasing, the set ΛN := {aνννi
: i≤N}⊆F is downward closed for each N ∈N,

and additionally

m(ΛN) = O(log(|ΛN |)), d(ΛN) = o(log(|ΛN |)) as N → ∞. (23)

(iii) the following expansion holds with absolute and uniform convergence:

∀yyy ∈U : u(yyy) = ∑
ννν∈F

Lννν(yyy)

∫

U
Lννν(xxx)u(xxx) dµ(xxx) ∈ Y

t′ .

Proof. By definition u(yyy) = G (∑ j∈N y jw
s
jψ j) for all yyy ∈ U . Our choice of the se-

quence www guarantees ∑ j∈N ‖ws
jψ j‖

p

X
≤ Λ

p/2

ΨΨΨ ∑ j∈Nw
sp
j < ∞, where we used that

‖ψ j‖X ≤ Λ
1/2

ΨΨΨ by (6). Moreover by Lemma 3 the map G : OC → Y t′

C
is holo-

morphic and uniformly bounded in norm by M, where by Assumption 1 the set

{∑ j∈N y jw
s
jψ j : yyy ∈ U} is contained in OC. Thus u(yyy) := G (σ s

r (yyy)) satisfies [55,

Assumption 1.3.7].

Now [55, Theorem 2.2.10 (i) and (ii)] with “k = 1” give the existence of

(aννν)ννν∈F ∈ ℓp(F ) satisfying item (i) of the current theorem. Item (ii) is a conse-

quence of [55, Theorem 2.2.10 (iii)]2 and [55, Lemma 1.4.15]. Finally (iii) holds by

[55, Corollary 2.2.12]. ⊓⊔
To approximate the bounded function u : U →Y in (20), we first expand it in the

frame (η jLννν(yyy)) j,ννν of L2(U,µ ;Y ):

u(yyy) = G (σ s
r (yyy)) = ∑

j∈N
∑

ννν∈F

cννν, jη jLννν (yyy) (24a)

with coefficients

cννν, j :=

∫

U
Lννν (yyy)〈G (σ s

r (yyy)), η̃ j〉 dµ(yyy) (24b)

with convergence in L2(U,µ ;Y ). We have the following weighted bound on these

coefficients:

Proposition 1. Consider the setting of Theorem 4. Then for each ννν ∈ F

ω2
ννν ∑

j∈N

w−2t′

j c2
ννν, j ≤C2a2

ννν .

Proof. It holds

∥

∥

∥

∥

∫

U
Lννν(yyy)u(yyy) dµ(yyy)

∥

∥

∥

∥

2

Y t′
= ∑

j∈N

w−2t′

j

〈

∫

U
Lννν (yyy)u(yyy) dµ(yyy), η̃ j

〉2

= ∑
j∈N

w−2t′

j c2
ννν, j.

Together with (22) this gives the statement. ⊓⊔

2 The set J occurring in [55, Theorem 2.2.10 (iii)] can for example be chosen as {0}∪{2 j : j ∈N0},

but the specific choice is of no significance here.
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Neural and gpc operator surrogates: construction and expression rate bounds 17

Before proving the main statement we need one more lemma.

Lemma 4. Let α > 1, β > 0 and assume given two sequences (ai)i≥1,(d j) j≥1 ⊂

(0,∞)N with ai . i−α and d j . j−β for all i, j ∈N. Assume that additionally (d j) j∈N

is monotonically decreasing. Suppose that there exists C < ∞ such that the sequence

(ci, j) j,i∈N satisfies

∀i ∈ N : ∑
j∈N

c2
i, jd

−2
j ≤C2a2

i .

Then for every δ > 0

(i) for every N ∈N exists (mi)i∈N ⊆N0 monotonically decreasing such that ∑i∈N mi ≤
N and

∑
i∈N

(

∑
j>mi

c2
i, j

)1/2

. N−min{α−1,β}+δ ,

(ii) for every n∈N exists (mi)i∈N ⊆N0 monotonically decreasing such that ∑i∈N mi ≤
N and

(

∑
i∈N

∑
j>mi

c2
i, j

)1/2

. N−min{α− 1
2 ,β}+δ .

Proof. Fix n ∈ N. Set mi := ⌈( n
i
)(α−1)/β⌉ for i ≤ n and mi := 0 otherwise. For i ≤ n,

since (d j) j∈N was assumed monotonically decreasing,

(

∑
j>mi

c2
i, j

)1/2

=

(

∑
j>mi

c2
i, jd

2
j d

−2
j

)1/2

≤Cdmi
ai . m

−β
i i−α

and for i > n we have (∑ j>mi
c2

i, j)
1/2 = (∑ j≥1 c2

i, j)
1/2 . ai . i−α . Thus

∑
i∈N

(

∑
j>mi

c2
i, j

)1/2

. ∑
i≤n

m
−β
i i−α +C ∑

i>n

i−α . ∑
i≤n

(n

i

)−α+1

i−α + n−α+1 . n−α+1 log(n).

Moreover

∑
j∈N

m j . n+n
α−1

β

∫ n+1

1
x
− α−1

β dx. n+n
α−1

β















1 if α−1
β > 1

log(n) if α−1
β = 1

n
1− α−1

β if α−1
β < 1

.















n
α−1

β if α−1
β > 1

n log(n) if α−1
β = 1

n if α−1
β < 1.

With M := ∑ j∈Nm j we get

∑
i∈N

(

∑
j>mi

c2
i, j

)1/2

.

{

M−β+δ if α − 1 ≥ β

M−α+1+δ if α − 1 < β .

Choosing n(N) appropriately we can guarantee M(n)∼ N.
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For the second item fix again n ∈ N and set mi := ⌈( n
i
)(2α−1)/(2β )⌉ for i ≤ n and

mi := 0 otherwise. For i ≤ n

∑
j>mi

c2
i, j = ∑

j>mi

c2
i, jd

2
j d

−2
j ≤Cd2

mi
a2

i . m
−2β
i i−2α ,

and for i > n we have ∑ j>mi
c2

i, j . a2
i . i−2α . With the same calculation as in the

first case (but with α , β replaced by 2α , 2β respectively) we get with M :=∑ j∈N m j

∑
i∈N

(

∑
j>mi

c2
i, j

)

.

{

M−2β+δ if 2α − 1 ≥ 2β

M−2α+1+δ if 2α − 1 < 2β .

This concludes the proof. ⊓⊔

Remark 12. The convergence rates in the above lemma are optimal as can be

checked.

4.2 Proof in a particular case

We prove a particular case of Theorem 1, with fixed parameter range y j ∈ [−1,1].

Theorem 5. Let Assumption 1 be satisfied for some s > 1 and t > 0. Fix δ > 0

(arbitrarily small).

Then there exists a constant C > 0 such that for every N ∈ N exists a ReLU NN

G̃GGN of size O(N log(N)5) such that

sup
yyy∈U

∥

∥G (σ s
r (yyy))−D(G̃GGN(yyy))

∥

∥

Y
≤CN−min{s−1,t}+δ (25)

and
∥

∥G (σ s
r (yyy))−D(G̃GGN(yyy))

∥

∥

L2(U,Y )
≤CN−min{s− 1

2 ,t}+δ . (26)

Proof. Let (aννν)ννν∈F and the enumeration (ννν i)i∈N be as in Theorem 4 (with “τ” in

this theorem being 1/2), so that (aνννi
)i∈N is monotonically decreasing and belongs

to ℓp(N), where we fix p ∈ ( 1
s
,1] such that 1

p
≥ s− δ/2. Note that due to ia

p
ννν i

≤

∑ j∈N a
p
ννν j

< ∞ this implies aννν i
. i−1/p ≤ i−s+δ/2.

Fix N ∈ N and set ΛN := {ννν j : j ≤ N} ⊂ F , which is a downward closed set by

Theorem 4. By [40, Proposition 2.13], for every 0 < γ < 1 there exists a ReLU NN

(L̃ννν)ννν∈ΛN
such that

sup
yyy∈U

sup
ννν∈ΛN

|Lννν (yyy)− L̃ννν(yyy)| ≤ γ,

and using (23) one has the bound

size((L̃ννν)ννν∈ΛN
) = O(N log(N)4 log(1/γ)) (27)
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Neural and gpc operator surrogates: construction and expression rate bounds 19

on the network size. The constant hidden in O(·) is independent of N and γ . In

the following fix for N ∈ N, N ≥ 2, the accuracy γ := N−s+ 1
2 ∈ (0,1). With these

choices, the right-hand side of (27) is O(N log(N)5).
Next fix t ′ ∈ [0, t) such that t ′ > t−δ/2. By Proposition 1 with ωννν :=∏ j∈suppννν(1+

2ν j)≥ 1 we have for every i ∈N

ω
1/2
ννν i

(

∑
j∈N

w−2t′

j c2
ννν i, j

)1/2

. aννν i
. i−s+ δ

2 . (28a)

Moreover, due to (wt′

j ) j∈N ∈ ℓ1/(t−δ/2)(N), by the same argument as above (using

that (w j) j∈N was assumed monotonically decreasing) it holds

wt′

j . j−t+ δ
2 . (28b)

We now show (25) and (26) separately.

(i) Due to (28) with α := s − δ/2 and β := t − δ/2, by Lemma 4 we can find

(mi)i∈N ⊂ N0 such that ∑i∈N mi ≤ N and

∑
i∈N

ω
1/2
ννν i

(

∑
j>mi

c2
νννi, j

)1/2

≤ N−min{s−1,t}+δ . (29)

Now define for j ∈N (where an empty sum is equal to 0)

g̃ j(yyy) := ∑
{i∈N:mi≥ j}

L̃ννν i
(yyy)cννν, j. (30)

Then by (24) with G̃GGN = (g̃ j) j∈N for all yyy ∈U

‖G (σ s
r (yyy))−D(g̃(yyy))‖Y =

∥

∥

∥

∥

∥

∑
i, j∈N

cνννi, jLννν i
(yyy)η j − ∑

i∈N
∑

j≤m j

cνννi, jL̃ννν i
(yyy)η j

∥

∥

∥

∥

∥

Y

≤

∥

∥

∥

∥

∥

∑
i∈N

Lννν i
(yyy) ∑

j>m j

cνννi, jη j

∥

∥

∥

∥

∥

Y

+

∥

∥

∥

∥

∥

∑
i∈N

(Lννν i
(yyy)− L̃νννi

(yyy)) ∑
j≤m j

η jcνννi, j

∥

∥

∥

∥

∥

Y

≤ ΛY ∑
i∈N

‖Lννν i
‖L∞(U)

(

∑
j>m j

c2
ννν i, j

)1/2

+ΛY γ ∑
i∈N

(

∑
j≤m j

c2
ννν i, j

)1/2

,

where ΛY denotes the upper frame constant in (5) for the frame ΨΨΨY = (η j) j∈N,

cp. Rmk. 1. By (21) and (29) the first term is O(N−min{s−1,t}+δ ) and the second

term is O(γ) = O(N−min{s−1/2,t}) which shows the error bound (25).

The size of G̃GGN = (g̃ j) j∈N in (30) is bounded by
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size((L̃ννν )ννν∈ΛN
)+ ∑

j∈N

|{i ∈ N : mi ≥ j}|= O(N log(N)5)+ ∑
i∈N

∑
j≤mi

1

= O(N log(N)5),

since ∑i∈Nmi ≤ N.

(ii) Due to (28) with α := s − δ/2 and β := t − δ/2, by Lemma 4 we can find

(mi)i∈N ⊂ N0 such that ∑i∈N mi ≤ N and

∑
i∈N

∑
j>mi

c2
ννν i, j

≤ N−min{s− 1
2 ,t}+δ . (31)

The rest of the calculation is similar as in the first case. Let g̃ j be as in (30).

Then by (24) and because (Lννν(yyy)η j)ννν , j is an ONB of L2(U,µ ;Y )

‖G (σ s
r (yyy))−D((g̃ j(yyy)) j∈ΛN,ε

)‖L2(U,Y ) ≤

∥

∥

∥

∥

∥

∑
i∈N

∑
j>mi

cννν, jLννν i
(yyy)η j

∥

∥

∥

∥

∥

L2(U,Y )

+

∥

∥

∥

∥

∥

∑
i∈N

∑
j≤mi

cννν, jη j |Lννν(yyy)− L̃ννν(yyy)|

∥

∥

∥

∥

∥

L2(U,Y )

≤ ΛY

(

∑
i∈N

∑
j>mi

c2
ννν, j

)1/2

+ΛY γ

(

∑
i∈N

∑
j≤mi

c2
ννν i, j

)1/2

,

where ΛY denotes again the upper frame constant in (5) for the frame ΨΨΨY =
(η j) j∈N. By (31) the first term is O(N−min{s−1/2,t}+δ ) and the second term is

O(γ) = O(N−min{s−1/2,t}), which shows the error bound (26).

The size of G̃GGN is bounded in the same way as in the first case.

⊓⊔

4.3 Proof of Theorem 1 in the general case

We obtain Theorem 1 from Theorem 5 by a scaling argument, via the weight se-

quences which characterize the admissible input data.

Introduce the scaling

S =× j∈N[−rws
j,rws

j ]→U : (x j) j∈N 7→
( x j

rws
j

)

j∈N
, (32)

where U = [−1,1]N. Then (cp. (11) and (14))

S ◦E (a) ∈U ∀a ∈Cs
r(X ).

Page:20 job:opnet macro:svmult.cls date/time:13-Jun-2022/8:13



Neural and gpc operator surrogates: construction and expression rate bounds 21

Let G̃GGN : ℓ2(N) → ℓ2(N) be as in Theorem 5. Since σ s
r : U → C̃s

r(X ) is surjective

and C̃s
r(X )⊇Cs

r(X ) (see Rmk. 8), (25) in Theorem 5 implies with ĜGGN := G̃GGN ◦ S

sup
a∈Cs

r(X )

‖G (a)−D(ĜGGN(E (a)))‖Y

= sup
{yyy∈U:σ s

r (yyy)∈Cs
r (X )}

‖G (σ s
r (yyy))−D(G̃GGN(S(E (σ s

r (yyy))))‖Y

≤ supyyy∈U ‖G (σ s
r (yyy))−D(G̃GGN(yyy))‖Y = O(N−min{s−1,t}+δ ).

Since S is an infinite linear diagonal transformation, ĜGGN is a network of the same

size as G̃GGN and thus of size O(N log(N)5) by Theorem 5 (cp. Rmk. 10 and (15)).

Setting M = M(N) := N log(N)5 we obtain a network of size O(M) that achieves

error O(N−min{s−1,t}+δ ) = O(M−min{s−1,t}+2δ ). Since δ > 0 is arbitrary here, we

obtain (17). The calculation for (18) is similar.

4.4 Proof of Theorem 2 in the general case

The argument is similar as in Sec. 4.3 Let S be as in (32). Since ΨΨΨX is assumed to

be a Riesz basis, by Rmk. 8 it holds (cp. (13) and (32))

Cs
r(X ) = {σ s

r (yyy) : yyy ∈U} and E (σ s
r (yyy)) = S−1(yyy) ∀yyy ∈U.

With G̃GGN as in Thm. 5 and ĜGGN := G̃GGN ◦ S we find with (26)

‖G (a)−D(ĜGGN(E (a)))‖L2(Cs
r (X ),(σ s

r )♯µ) = ‖G (σ s
r (yyy))−D(ĜGGN(E (σ s

r (yyy))))‖L2(U,µ)

= ‖G (σ s
r (yyy))−D(G̃GGN(yyy))‖L2(U,µ)

= O(N−min{s− 1
2 ,t}+δ ).

The size on the bound of ĜGGN follows by the same argument as in Sec. 4.3.

5 Sparse-grid interpolation

In this section we discuss operator approximation using sparse-grid interpolation

instead of NNs. In contrast to neural network approximation, the construction of

surrogate operators via sparse-grid gpc interpolation is, in the current setting, an

entirely deterministic algorithm of essentially linear complexity, which in particu-

lar does not rely on solving a (nonconvex) optimization problem. Moreover, for the

case of uniform approximation we will prove the same convergence rate as in Theo-

rem 1. Thus, from a theoretical viewpoint, sparse-grid interpolation has significant

advantages over NN training in the construction of surrogate operators.
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To recall the construction of the Smolyak (sparse-grid) interpolant (e.g. [9]) fix

a sequence of distinct points (χ j) j∈N0
⊆ [−1,1]. For a multiindex ννν ∈ F and a

function u : U →R we define for yyy = (y j) j∈N ∈U

(Iνννu)(yyy) = ∑
{µµµ∈F :µµµ≤ννν}

u((χµ j
) j∈N)∏

j∈N

ν j

∏
i=0

i6=µ j

y j − χi

χµ j
− χi

, (33)

where ννν ≤ µµµ is understood as µ j ≤ ν j for all j ∈ N. Note that the sum in (33) is

over ∏ j∈N(1+ν j) indices, which is finite since ννν ∈ F . Moreover we point out that

Iννν maps from C0(U) to span{yyyµµµ : µµµ ≤ ννν}. Throughout we assume that the (χ j) j∈N

are such that the Lebesgue constant L((χ j)
n
j=0) of (χ j)

n
j=0 enjoys the property

L((χ j)
n
j=0)≤ (1+ n)τ ∀n ∈N0 (34)

for some fixed τ > 0. One popular example for such a sequence are the so-called

Leja points, see [11] and the references there.

For a finite downward closed set Λ ⊆ F denote

PΛ := span{yyyννν : ννν ∈ Λ}.

The Smolyak interpolant is the map IΛ : C0(U)→ PΛ defined via

IΛ := ∑
ννν∈Λ

ςΛ ,ννν Iννν , ςΛ ,ννν := ∑
{eee∈{0,1}N:ννν+eee∈Λ}

(−1)|eee|.

Remark 13. It can be checked that the number of function evaluations of u required

to compute IΛ u equals |Λ |.

The Smolyak interpolant has the following well-known properties, see for exam-

ple [55, Lemma 1.3.3], [9].

Lemma 5. Let Λ be finite and downward closed. Then with τ as in (34) and ωννν :=

∏ j∈N(1+ 2ν j)

(i) IΛ : C0(U)→ PΛ and IΛ p = p for all p ∈ PΛ ,

(ii) ‖IΛ Lννν‖L∞(U) ≤ ω
3/2+τ
ννν for all ννν ∈ F .

The following theorem shows the same convergence rate as established in Theo-

rem 5 for NNs, for Smolyak interpolation pN of the components of the parametric

map GGG:

Theorem 6. Let Assumption 1 be satisfied for some s > 1 and t > 0, and let the

interpolation points (χ j) j∈N0
be such that (34) holds. Fix δ > 0 (arbitrarily small).

Then, there exists a constant C > 0 (depending on δ , τ , s, t, r) such that, for every

N ∈N, there exist downward closed index sets (ΛN, j) j≤N such that ∑N
j=1 |ΛN, j| ≤ N

and with the interpolated coefficients pN(yyy) = (IΛN, j
〈u(yyy), η̃ j〉) j≤N holds

Page:22 job:opnet macro:svmult.cls date/time:13-Jun-2022/8:13



Neural and gpc operator surrogates: construction and expression rate bounds 23

sup
yyy∈U

‖G (σ s
r (yyy))−D(pN(yyy))‖Y

≤CN−min{s−1,t}+δ . (35)

Remark 14. The convergence rate is in terms of N ≥ ∑N
j=1 |ΛN, j|, which is an upper

bound of the number of required evaluations of 〈u(yyy), η̃ j〉 for all j ∈ N (here u is as

in (20)).

Proof.[Proof of Theorem 6] Let (aννν)ννν∈F and the enumeration (ννν i)i∈N be as in

Theorem 4 (with “tau” being 3
2
+ τ for the value in (34)), so that (aννν i

)i∈N is

monotonically decreasing and belongs to ℓp(N), where we fix p ∈ ( 1
s
,1] such that

1
p
≥ s − δ/2. Again we point out that due to ia

p
νννi

≤ ∑ j∈N a
p
ννν j

< ∞ this implies

aνννi
. i−1/p ≤ i−s+δ/2.

Next fix t ′ ∈ [0, t) such that t ′ > t−δ/2. By Proposition 1 with ωννν :=∏ j∈suppννν(1+
2ν j)≥ 1 we have for every i ∈N

ω
3/2+τ
ννν i

(

∑
j∈N

w−2t′

j c2
ννν i, j

)1/2

. aννν i
. i−s+ δ

2 . (36a)

Moreover, due to (wt′

j ) j∈N ∈ ℓ1/(t−δ/2)(N), by the same argument as above (using

that (w j) j∈N was assumed monotonically decreasing) it holds

wt′

j . j−t+ δ
2 . (36b)

Due to (36) with α := s − δ/2 and β := t − δ/2, by Lemma 4 we can find

(mi)i∈N ⊂ N0 such that ∑i∈N mi ≤ N and

∑
i∈N

ω
3/2+τ
ννν i

(

∑
j>mi

c2
ννν i, j

)1/2

≤ N−min{s−1,t}+δ . (37)

Now define for j ≤ N

ΛN, j := {ννν i : mi ≥ j}= {ννν i : i ≤ max{r : mr ≥ j}},

where the equality follows by the fact that (mi)i∈N is monotonically decreasing ac-

cording to Lemma 4. Thus each ΛN, j is downward closed by Theorem 4. Moreover

∑
j∈N

|ΛN, j |= ∑
j∈N

∑
{i:mi≥ j}

1 = ∑
i∈N

∑
{ j: j≤mi}

1 = ∑
i∈N

mi ≤ N.

With (24) it holds

IΛN, j
〈u,η j〉= IΛN, j ∑

ννν∈F

cννν, jLννν = ∑
ννν∈ΛN, j

cννν, jLννν + ∑
ννν∈F\ΛN, j

cννν, jIΛN, j
Lννν ,

where we used that IΛN, j
Lννν = Lννν for all ννν ∈ ΛN, j by Lemma 5 (i).

Thus for all yyy ∈U with pN(yyy) = (IΛN, j
〈u,η j〉)

N
j=1
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‖G (σ s
r (yyy))−D(pN(yyy))‖Y

=

∥

∥

∥

∥

∥

∥

∑
j∈N

∑
ννν∈F

cννν, jLννν(yyy)η j − ∑
j∈N

∑
ννν∈ΛN, j

cννν, jLννν(yyy)η j − ∑
j∈N

∑
ννν∈F\ΛN, j

cννν, jIΛN, j
Lννν(yyy)η j

∥

∥

∥

∥

∥

∥

Y

≤

∥

∥

∥

∥

∥

∑
j∈N

∑
{νννi:mi< j}

cννν i, jLννν i
(yyy)η j

∥

∥

∥

∥

∥

Y

+

∥

∥

∥

∥

∥

∑
j∈N

∑
{ννν i:mi< j}

cνννi, j(Lννν i
(yyy)− IΛN, j

Lννν i
(yyy))η j

∥

∥

∥

∥

∥

Y

=

∥

∥

∥

∥

∥

∑
i∈N

∑
j>mi

cννν, jLννν(yyy)η j

∥

∥

∥

∥

∥

Y

+

∥

∥

∥

∥

∥

∑
i∈N

∑
j>mi

cννν i, j(Lννν i
(yyy)− IΛN, j

Lννν i
(yyy))η j

∥

∥

∥

∥

∥

Y

≤ ΛY ∑
i∈N

(

∑
j>mi

c2
νννi, j

‖Lννν i
‖2

L∞(U)

)1/2

+

(

∑
j>mi

c2
ννν i, j

(‖Lνννi
‖L∞(U)+ ‖IΛN, j

Lννν i
‖L∞(U))

2

)1/2

,

where ΛY denotes again the upper frame constant in (5) for the frame ΨΨΨY =
(η j) j∈N, cp. Rmk. 1. By Lemma 5 (ii) and (21) we have

‖Lνννi
‖L∞(U)+ ‖IΛN, j

Lννν i
‖L∞(U) ≤ 2ω

3/2+τ
ννν .

Thus, using (37) we find

sup
yyy∈U

‖G (σ s
r (yyy))−D(pN(yyy))‖Y ≤ 3ΛY N−min{s−1,t}+δ

which concludes the proof. ⊓⊔
Theorem 3 is now a direct consequence of Theorem 6; specifically the statement

of Theorem 3 follows after introducing a scaling to map × j∈N[−rws
j,rws

j ]→ U as

in the proof of Theorem 1.

Remark 15. As mentioned above, sparse-grid interpolation is deterministic. In prac-

tice, computing the interpolant requires determining the sets ΛN, j occurring in The-

orem 6. For given weights (w j) j∈N, this can be achieved in almost linear complexity

as is discussed for example in [55, Theorem 2.2.10 and Section 3.1.3].

6 Example: Diffusion equation on the torus

Denote by Td ≃ [0,1]d the d-dimensional torus, d ∈N. In the following all function

spaces on Td are assumed to be 1-periodic with respect to each variable.
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6.1 Operator G

Given a nominal coefficient ā ∈ L∞(Td), a diffusion coefficient a ∈ L∞(Td), and a

source f ∈ H−1(Td)/R, we wish to find u ∈ H1(Td) such that

−∇ · ((ā+ a)∇u) = f on T
d and

∫

Td
u(x) dx = 0 (38)

in a weak sense. Assuming

ess inf
x∈Td

(ā(x)+ a(x))> amin, (39)

for some constant amin > 0, it follows by the Lax-Milgram Lemma that (38) has

a unique solution u ∈ H1(Td)/R that we denote by G (a) := u. Thus G is a well-

defined map from {a ∈ L∞(Td) : (39) holds}→ H1(Td)/R →֒ H1(Td).

6.2 X s and Y t

We first construct the usual Fourier basis on L2(Td): Set for j ∈N

ξ0 = 1, ξ2 j(x) = (2π)−1/2 cos(2π jx), ξ2 j−1(x) = (2π)−1/2 sin(2π jx),

and for d ≥ 2 and jjj ∈ Nd
0

ξ jjj(x1, . . . ,xd) :=
d

∏
k=1

ξ jk (xk).

Then {ξ jjj : jjj ∈Nd
0} is an ONB of L2(Td). Moreover, recall that for s ≥ 0, holds

Hs(Td) =







u ∈ L2(Td) : ∑
jjj∈Nd

0

〈u,ξ jjj〉
2 max{1, | jjj|}2s < ∞







, (40)

where throughout we consider Hs(Td) equipped with the inner product

〈u,v〉Hs := ∑
jjj∈Nd

0

〈u,ξ jjj〉L2〈v,ξ jjj〉L2 max{1, | jjj|}2s. (41)

Fixing s0, t0 ≥ 0 (to be chosen later) we let

X := Hs0(Td), ψ jjj := max{1, | jjj|}−s0ξ jjj,

Y := Ht0(Td), η jjj := max{1, | jjj|}−t0ξ jjj,
(42)
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so that ΨΨΨX := (ψ jjj) jjj∈Nd
0
, ΨΨΨY := (η jjj) jjj∈Nd

0
form ONBs of X , Y respectively. Next,

introduce the weight sequence

w jjj := max{1, | jjj|}−d jjj ∈ N
d
0 ,

so that (w1+ε
jjj )

jjj∈Nd
0
∈ ℓ1(Nd

0) for any ε > 0 as required in Sec. 2.4. Then, by (40) and

the definition of X s in (12), it holds for s ≥ 0

X
s =







u ∈ Hs0(Td) : ∑
jjj∈Nd

0

〈u,ψ jjj〉
2
Hs0 w−2s

jjj < ∞







=







u ∈ L2(Td) : ∑
jjj∈Nd

0

〈u,ξ jjj〉
2
L2 max{1, | jjj|}2s0+2sd < ∞







= Hs0+sd(Td).

Here we used that for u = ∑ jjj∈N0
c jjjξ jjj holds by (41)

〈u,ψ jjj〉Hs0 = 〈u,ξ jjj max{1, | jjj|}−s0〉Hs0 = c jjj max{1, | jjj|}s0 = 〈u,ξ jjj〉L2 max{1, | jjj|}s0 .

By the same argument Y t = Ht0+td(Td) for any t ≥ 0.

6.3 Coefficient-to-Solution surrogate approximation rates

We now give a convergence result for the approximation of the solution operator G

(corresponding to the PDE (38)) on a Sobolev ball. The encoder E and decoder D

are as in (11), w.r.t. the spaces and ONBs in (42), which depend on the constants s0,

t0 ≥ 0 that are still at our disposal. The parameter s0 controls the regularity of the

input space and thus determines the encoder E . It will have to be chosen suitably

in order to achieve possibly fast convergence. On the other hand, t0 controls the

regularity of the output space. It may be chosen freely and determines the norm in

which the error is measured—smaller t0 amounts to a weaker norm in the output

space and thus yields larger convergence rates.

Proposition 2. Assume f ∈ C∞(Td)/R. Let α > 3d
2

, r > 0, amin > 0 and let δ > 0

(arbitrarily small). Suppose that ā+ a satisfies (39) for all a ∈ Br(H
α(Td)).

Then for every t0 ∈ [0,1] there exists a constant C > 0 and for all N ∈ N there

exists a ReLU NN G̃GGN of size O(N) such that

sup
a∈Br(Hα (Td))

‖G (a)−D ◦ G̃GGN ◦E (a)‖Ht0 (Td) ≤CN−R+δ (43a)

where

R =

{

α
d
− 3

2
if α ∈ ( 3d

2
, 3d

2
+ 1− t0]

α+1−t0
2d

− 3
4

if α > 3d
2
+ 1− t0,

(43b)
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and where E , D are as in (11) with the spaces/ONBs in (42) with t0 from above and

s0 =

{

d
2
+ δ

2
if α ∈ ( 3d

2
, 3d

2
+ 1− t0]

α+t0−
d
2 −1

2
if α > 3d

2
+ 1− t0.

Proof. Step 1. We check Assumption 1. First, recall that by the standard Sobolev

embedding for all β > d
2

Hβ (Td) →֒Cγ (Td) ∀γ ∈ [0,β −
d

2
).

Furthermore, classical elliptic regularity (Schauder estimates, for second order

divergence-form linear elliptic equations, also with complex-valued coefficients,

e.g., [3, pg. 625], [4, Sec. 2]) implies for β > 0

G : {a ∈Cβ (Td) : ā+ a satisfies (39)}→C1+β (Td) →֒ H1+β (Td),

and that G (a) is bounded on bounded subsets of {a ∈Cβ (Td) : ā+a satisfies (39)}.

Thus, if

s0 >
d

2
, (44)

using that for any γ ∈ [0,s0 −
d
2
) holds Hs0 →֒Cγ , we find

G : {a ∈ Hs0 : ā+ a satisfies (39)}→C1+γ ∀γ ∈
[

0,s0 −
d

2

)

.

We require (44) to ensure Hs0(Td) →֒ L∞(Td), which is necessary in order for G to

be well-defined, see Section 6.1. In addition,

C1+γ(Td) →֒ H1+γ(Td) = Y
t

with t ≥ 0 such that t0 + td = 1+ γ , i.e. t = 1+γ−t0
d

(t ≥ 0 holds since by assumption

t0 ≤ 1 ≤ 1+ γ). With X = Hs0(Td) this shows

G : {a ∈ X : ā+ a satisfies (39)}→ Y
t ∀t ∈

[

0,
1+ s0 −

d
2
− t0

d

)

and for fixed t the map is bounded on bounded subsets of {a∈X : ā+a satisfies (39)}.

Next, if s > 1, C̃s
r(X ) (which is equal to Cs

r(X ) by Rmk. 8) is in particular a

bounded subset of X →֒ L∞(Td) (cp. Rmk. 9). Hence, for example by [55, Propo-

sition 1.2.33 and Example 1.2.38] there exists an open complex set OC ⊂ XC con-

taining C̃s
r(X ) such that due to t0 ∈ [0,1],

G : OC → H1(Td ,C) →֒ Y = Ht0(Td) (45)

is holomorphic. Furthermore, it follows from the a-priori estimate [4, Theorem 9.3],

which is also valid for (38) with periodic boundary conditions, by combining the
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Td-periodicity of solutions w.r. to Rex with the “hemisphere” a-priori bounds in [4,

Theorem 9.2] on each face of Td , that

G : OC → Y
t ∀t ∈

[

0,
1+ s0−

d
2
− t0

d

)

(46)

is bounded.

Step 2. We conclude the proof. According to Cor. 1, for s> 1 and t ∈ (0,
1+s0−

d
2 −t0

d
)

we have with X s = Hs0+sd(Td), Y = Ht0(Td) and for all δ > 0 (arbitrarily small)

sup
a∈Br(H

s0+sd(Td))

‖G (a)−D(G̃GGN(E (a)))‖Ht0 ≤CN−min{s−1,t}+δ .

Substituting α = s0 + sd, i.e. s = α−s0
d

, and taking the maximal t this reads

sup
a∈Br(Hα (Td))

‖G (a)−D(G̃GGN(E (a)))‖Ht0 ≤CN−min{
α−s0

d
−1,

1+s0−
d
2
−t0

d
}+δ .

The constraint s > 1 implies the constraint α > d + s0 on α . We are still free to

choose s0 > d
2
, and wish to do so in order to maximize the resulting convergence

rate. Solving

α − s0

d
− 1 =

1+ s0−
d
2
− t0

d

for s0 we have

s0 =
α + t0 −

d
2
− 1

2
. (47)

The constraint s0 >
d
2

implies the constraint α > 3d
2
+ 1− t0.

We therefore now distinguish between two cases. First, if α ∈ ( 3d
2
, 3d

2
+ 1− t0],

then we let s0 := d
2
+ ε for some small ε > 0 (ε > 0 small enough implies in partic-

ular that α > d + s0). In this case we obtain, up to some arbitrarily small δ > 0, the

convergence rate

min
{α − d

2

d
− 1,

1+ d
2
− d

2
− t0

d

}

= min
{α

d
−

3

2
,

1− t0

d

}

=
α

d
−

3

2
,

where we used that α ≤ 3d
2
+ 1− t0 for the last equality.

Next assume α > 3d
2
+ 1− t0 and define s0 as in (47). The constraint α > d+ s0

is then equivalent to

α > d +
α + t0 −

d
2
− 1

2
⇔ α >

3d

2
+ t0 − 1,

which already holds since α > 3d
2
+ 1− t0 ≥

3d
2
+ t0 − 1 for all t0 ∈ [0,1]. The con-

vergence rate amounts in this case to

Page:28 job:opnet macro:svmult.cls date/time:13-Jun-2022/8:13



Neural and gpc operator surrogates: construction and expression rate bounds 29

α − s0

d
− 1 =

α + 1− t0

2d
−

3

4
.

This shows (43). ⊓⊔
The above proposition is based on Cor. 1. Applying instead Thm. 1, one obtains

for example that for all s > 1, s0 >
d
2

, t0 ∈ [0,1], with X = Hs0(Td) and for δ > 0

fixed but arbitrarily small (cp. Step 2 in the proof of Prop. 2)

sup
a∈Cs

r(X )

‖G (a)−D(G̃GGN(E (a)))‖Ht0 (Td) ≤CN−min{s−1,
1+s0−

d
2
−t0

d }+δ .

Similarly, Thm. 2 gives an improved L2-type error estimate, and Thm. 3 gives a

convergence result for gpc operator surrogates.

7 Concluding Remarks and further developments

We established expression rate bounds for finite-parametric approximations to non-

linear, holomorphic maps between scales of infinite-dimensional, separable function

spaces endowed with suitable stable, affine representation systems such as frames.

Our approximations are based on combining a linear input encoder with suitable,

finite-parametric surrogates {G̃GGN}N of a countably-parametric map transforming

coefficient sequences from the input encoder into corresponding sequences for the

output decoder.

While being of independent, mathematical interest, the present results open a per-

spective of ‘refactoring’ key parts of widely used scientific computing methods. We

mention only Schur-complement (or Dirichlet-to-Neumann) maps for elliptic PDEs

with variable coefficients which constitute, in discretized form, a key component in

many algorithms of scientific computation.

A further, broad range of applications for the considered operator surrogates is

efficient numerical realization of domain-to-solution maps for elliptic PDEs. Upon

pullback onto one common, canonical reference domain, physical domain shapes

are encoded in variable coefficients of the transformed PDE, and the domain-to-

solution map is equivalent to the coefficient-to-solution map. Such maps feature the

holomorphy required for the presently developed theory (e.g. [16] for Navier-Stokes

equations, [24] for nonlocal (boundary) integrodifferential operators, [28] for time-

harmonic Maxwell equations ). We mention [43] for a recent application to deep

NNs in computational physiology.

The main results, Theorems 1 and 3, considered in detail the emulation of holo-

morphic maps G by either NNs or by novel generalized polynomial chaos operator

surrogates. The latter class of surrogate operators allows, in particular, for efficient

deterministic construction w.r. to the number of the encoded input parameters. The

presently developed technical tools also accomodate other approximation architec-

tures for the parametric surrogate map G̃GGN in (3), e.g. tensor-networks or multipole

operators (e.g. [29]).
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While the present results are limited to the case of bounded parameter ranges in

the basis representations of admissible input data from the spaces X s, expression

rates for inputs subject to a Gaussian measure on the input spaces X s will require

admitting unbounded parameter ranges of encoded input data. Here, similar results

are conceivable, but will require ReLU DNN emulations of Wiener polynomial chaos

expansions as in [46].

Our analysis exploited the quantified holomorphy of the function space map G

(or its countably-parametric version GGG) in an essential way; while at first sight, this

may seem restrictive, in recent years large classes of maps of engineering interest

have been identified which admit this property. We only mention [16] for the station-

ary Navier-Stokes equations, [28] for time-harmonic Maxwell equations and [24]

for shape to boundary integral operator maps. Both, generalization error bounds and

the work bounds do not incur the curse of dimensionality, which enters in straight-

forward application of classical approximation results.

The discussed gpc surrogate operator constructions assumed availability of noise-

free evaluations of 〈G (a), η̃ j〉 in at most N pairs of Cs
r(X )×Ψ̃ΨΨY . Accounting for

effects of “noisy” evaluations of these functionals, e.g. through numerical discretiza-

tions, will be considered elsewhere.
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