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Abstract

We study frequency domain acoustic scattering at a bounded, penetrable, and inhomogeneous
obstacle Ω− ⊂ Rd, d = 2, 3. By defining constant reference coefficients, a representation formula
for the pressure field is derived. It contains a volume integral operator, related to the one
in the Lippmann-Schwinger equation. Besides, it features integral operators defined on ∂Ω−

and closely related to boundary integral equations of single-trace formulations (STF) for
transmission problems with piecewise constant coefficients. We show well-posedness of the
continuous variational formulation and asymptotic convergence of Galerkin discretizations.
Numerical experiments in 2D validate our expected convergence rates.

1 Introduction

We are interested in solving the frequency domain acoustic wave scattering problem in a medium
that is homogeneous outside a bounded region Ω− ⊂ Rd, d = 2, 3. We denote the exterior domain
Ω+ := Rd \ Ω̄−. Material properties are given by functions a ∈ L∞(Rd) and κ ∈ L∞(Rd) where

a(x) ≡ 1, κ(x) ≡ κ0 ∈ C+:= {z ∈ C : Im{z} ≥ 0} for x ∈ Ω+, (1)

and amax > a(x) > amin > 0 almost everywhere in Rd. In particular, throughout this article we
assume some extra regularity in the interior domain: a ∈ W 1,∞(Ω−). The equation governing the
problem of finding the total wave u := us + uinc in this inhomogeneous medium is

− div (a(x)∇u(x)) − κ(x)2u(x) = 0 for x ∈ R
d, (2)

∗Funding: The work of Ignacio Labarca was supported by SNF as part of the grant 200021184848/1.
†email: ignacio.labarca@sam.math.ethz.ch
‡email: ralf.hiptmair@sam.math.ethz.ch
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where uinc is an incident field satisfying the Helmholtz equation in the whole space,

− ∆uinc(x) − κ2
0u

inc(x) = 0 for x ∈ R
d, (3)

and us satisfies radiation conditions [18, Theorem 9.6]

lim
r→∞ r

d−1

2

(
∂us

∂r
− iκ0u

s

)
= 0. (4)

The problem can be formulated as the following transmission problem: find u ∈ H1
loc(R

d) such that





−∆u− κ2
0u = 0 in Ω+,

−div (a∇u) − κ2u = 0 in Ω−,

γ+u− γ−u = −γuinc in Γ,

∂+
n u− a∂−

n u = −∂nu
inc in Γ,

lim
r→∞

r
d−1

2

(
∂u

∂r
− iκ0u

)
= 0,

(5)

where γ±, ∂±
n denote the exterior/interior Dirichlet and Neumann trace operators. We use u to

denote the scattered field in Ω+, total field in Ω−. We know that there exists a unique solution
u ∈ H1

loc(R
d) under certain assumptions on the material parameters. In particular, we need the

unique continuation principle to hold. In 2D, this is true for a ∈ L∞(Ω) with a positive lower bound
and κ ∈ L∞(Ω) [1].

For the general case mentioned above, volume integral equations (VIEs), also known as the
Lippmann-Schwinger equation, lead to an integral equation formulation where the problem reduces
to finding u in the domain Ω−. Well-posedness of the equation under different assumptions on
the material properties has been studied in [13, 17], with the case of piecewise smooth a the one
presenting more complications. The equation is then discretized by a Galerkin method, where
different approaches lead to the discrete dipole approximation (DDA) [28] and the partial element
equivalent circuit formulation (PEEC) [21], both widely used in the engineering community. A
non-exhaustive list of fast solvers for the case of only non-constant κ is also available [3, 6, 27].

Alternatively, a popular choice for problems dealing with exterior unbounded domains arises
by writing an expression for the Dirichlet-to-Neumann map, which makes it possible to write a
variational formulation that considers the exact radiation conditions. Discretization by a Galerkin
method then leads to finite-element-boundary-element coupled schemes. Well-posedness of several
discrete formulations for the acoustics problem can be found in [15]. Analysis of nonlinearities
and adaptivity for the elliptic case is presented in [4]. In particular, we can mention different well
established formulations: Johnson-Nédélec coupling [16], Bielak-MacCamy [5], Costabel’s symmetric
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coupling [12], where the different boundary integral operators are used for the coupling.

For the particular case of piecewise constant coefficients, i.e. a(x) ≡ a1, κ(x) ≡ κ1 for x ∈ Ω−, it
is possible to reformulate the problem as a boundary integral equation (BIE) system. First and second
kind single-trace formulations (STFs) where the unknown corresponds to the interior Cauchy-data
(Dirichlet and Neumann traces) can be derived followed by discretization with the boundary element
method (BEM) [10]. Its main advantage is that one needs to discretize only function spaces on ∂Ω−,
which leads to smaller (but dense) linear systems. The BEM together with compression techniques
such as H−matrices or the fast multipole method, is a highly efficient approach for this particular case.

A similar approach to the one followed in this article has been introduced as boundary-domain
integral formulations [7]. A combination of BIEs and VIEs is obtained by considering a parametrix
or Levi function for a given differential operator. Different formulations for elliptic BVPs are studied
in [7, 8, 19]. Fast numerical implementations of boundary-domain formulations are studied in [26],
where H2−matrix compression is used.

Our focus is on the situations where both a(x) and κ(x) are discontinuous across the boundary
Γ := ∂Ω− and only piecewise smooth. We present a novel formulation that combines boundary
integral representations and volume integral operators. We define appropriate reference coefficients
for the interior domain, in a way that the support of volume integrals can potentially be reduced to
a minimum. For the particular case of piecewise-constant coefficients, our formulation reduces to
the BIE approach. We claim that our formulation can be beneficial in presence of small or locally
supported inhomogeneities. Some examples are cases where the parameters are non-constant only in
a small region in the interior of Ω− or close to the boundary Γ. Volume integral operators taking
into account these inhomogeneities are shown to be compact for quite general, piecewise-smooth
coefficients, contrary to the well-studied problem of the Lippmann-Schwinger equation, where the
compactness is lost for non-smooth a.
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List of symbols

Symbol Description Section

a, κ Inhomogeneous material coefficients Section 1, (1)

C∞ Space of smooth functions Section 2.1

C∞
0 (Ω−) Space of smooth functions that vanish on the boundary Section 2.1

C∞
comp(Rd) Space of smooth, compactly supported functions in R

d Section 2.1

Hs(Ω−) Sobolev space of order s in Ω− Section 2.1

Hs
loc(R

d) Sobolev space of locally integrable functions Section 2.1

Hs
comp(Rd) Sobolev space of compactly supported functions Section 2.1

Hs(Γ) Sobolev space of order s on Γ := ∂Ω− Section 2.1

H̃−1(Ω−) Dual space of H1(Ω−) Section 2.1

H−1/2(Γ) Dual space of H1/2(Γ) Section 2.1

γ, ∂n, γn Dirichlet/Neumann/Normal trace operators Section 2.1

Gj Fundamental solution with wavenumber κj Section 2.2, (6)

Nj Newton potential with wavenumber κj Section 2.2, (7)

Ñj Newton potential with wavenumber κj in Ω− Section 2.2, (9)

Sj, Dj Layer potentials with wavenumber κj Section 2.2, (13) − (14)

Vj, Kj, K
′
j,Wj BIOs with wavenumber κj Section 2.2, (17) − (20)

Aj Calderón operator Section 2.2, (21)

a1, κ1 Constant reference coefficients Section 2.3, (24)

α, β Contrast functions with constant reference coefficients Section 2.3, (24)

ã Scaled material coefficient Section 2.3, (29)

A Volume integral operator Section 2.4, (30)

TΓ, TΩ− Operators related to traces of A Section 2.4, (38)

M Diagonal multiplier Section 2.4, (41)

2 Derivation of VIEs

2.1 Preliminaries

Let Ω− ⊂ Rd be a Lipschitz domain, Γ := ∂Ω− its Lipschitz boundary with outward unit normal
n. We rely on standard Sobolev spaces Hs(Ω−) of order s > 0. We use Hs

loc to denote locally
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integrable functions. Spaces of compactly supported functions will be denoted with the subscript
comp (C∞

comp, H
s
comp). We make the distinction defining spaces in Ω− (open set) and Ω

−
(closed set)

when necessary. We also denote as H̃−s(Ω−) the dual space of Hs(Ω−) [18, Section 3]. Sobolev
spaces on the boundary Γ are denoted as Hs+1/2(Γ), which arise naturally as boundary restrictions
of elements of Hs+1(Ω−) by the interior trace operator

γ− :




Hs+1(Ω−) → Hs+1/2(Γ),

u 7→ u|Γ, u ∈ C∞(Ω
−

),
0 ≤ s < 1.

which is a bounded operator [18, Theorem 3.37]. We will denote H−1/2(Γ) the dual space of H1/2(Γ).
We define also the interior normal trace operator γn [20, Theorem 3.24]

γ−
n :




H(div,Ω−) → H−1/2(Γ),

u 7→ u|Γ · n, u ∈ [C∞(Ω
−

)]d,

where the space H(div,Ω−) is defined as

H(div,Ω−) :=
{
u ∈ [L2(Ω−)]d : div u ∈ L2(Ω−)

}
.

For u ∈ H(∆,Ω−), where

H(∆,Ω−) :=
{
u ∈ H1(Ω−) : ∆u ∈ L2(Ω−)

}
,

we define the Neumann trace operator ∂n as [22, Theorem 2.8.3]

∂−
n :




H(∆,Ω−) → H−1/2(Γ),

u 7→ ∇u|Γ · n, u ∈ C∞(Ω
−

).

Replacing Ω− by Ω+ := Rd \ Ω− in the previous definitions, we obtain exterior trace operators:
γ+, γ+

n and ∂+
n . We use the convention of defining both exterior and interior traces with the same

outward unit normal. This is important to consider for consistency of the calculations in the next
sections.
We define jump and average trace operators for elements of H1(Rd\Γ), H(div,Rd\Γ) and H(∆,Rd\Γ):

JγK := {γ+ − γ−}, {{γ}} :=
1

2
{γ+ + γ−},

and similarly for γn and ∂n. We denote the sesqui-linear inner product in L2(Ω−) as 〈u, v〉Ω− . It
can be extended to a duality pairing between H̃−1(Ω−) and H1(Ω−). Similarly, we define the dual
product for H1/2(Γ) and its dual H−1/2(Γ), and denote it as 〈·, ·〉Γ.
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2.2 Fundamental Solutions and Newton Potential

The fundamental solution for the Helmholtz operator with wavenumber κ ∈ R is given by Gκ ∈
L1

loc(R
d) [25, Section 5.4]:

Gκ(x,y) :=





i

4
H0(κ|x − y|), d = 2,

exp(iκ|x − y|)

4π|x − y|
, d = 3.

(6)

The Newton potential Nκ : C∞
comp(Rd) → C∞(Rd) is the continuous mapping [22, Section 3.1.1]

defined by

Nκf(x) :=
∫

Rd

Gκ(x,y)f(y)dy. (7)

The Newton potential can be extended to the following two continuous operators

Nκ : H−1
comp(Rd) → H1

loc(R
d),

Nκ : L2
comp(Rd) → H2

loc(R
d)

(8)

and more generally, Nκ : Hs
comp(Rd) → Hs+2

loc (Rd) is continuous for s ∈ R [22, Theorem. 3.12].
Similarly, by extension by zero followed by restriction to Ω−, it is possible to consider the Newton
potential in a bounded domain Ω− :

Ñκ : H̃−1(Ω−) → H1(Ω−),

Ñκ : L2(Ω−) → H2(Ω−).
(9)

The following theorem [11, Theorem 8.1] is essential for the derivation of volume integral equations
for scattering problems.

Theorem 2.1. The Newton potential defines a solution operator for the Helmholtz equation on Rd,
i.e. for f ∈ L2

comp(Rd) compactly supported in Ω−, u := Nκf satisfies

− ∆u− κ2u = f in R
d (10)

and the radiation conditions (4).

Theorem 2.1 provides a global representation of the solution of −∆u − κ2u = f in terms of
the Newton potential, i.e. u as a solution of the problem in Rd. Our approach requires a local
representation formula. We introduce the transmission problem with piecewise constant coefficients:
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find u ∈ H1
loc(R

d) such that




−∆u0 − κ2
0u0 = 0 in Ω+,

−∆u1 − κ2
1u1 = f in Ω−,

γ+u0 − γ−u1 = g1 in Γ,

∂+
n u0 − ∂−

n u1 = g2 in Γ,

lim
r→∞ r

d−1

2

(
∂u0

∂r
− iκ0u0

)
= 0,

(11)

where u0 = u|Ω+ and u1 = u|Ω− . It is possible to write expressions for u0 and u1 depending only on
their traces and source terms [11, Theorem 2.1]

u0 = D0(γ
+u0) − S0(∂

+
n u0) in Ω+,

u1 = S1(∂
−
n u1) −D1(γ

−u1) + Ñ1f in Ω−,
(12)

where Ñ1 is the Newton potential with wavenumber κ1, Sj and Dj denote the single layer and double
layer potentials with wavenumber κj, j = 0, 1, [22, Theorem 3.1.16]

Sj : H−1/2(Γ) → H1
loc(Ω

− ∪ Ω+), (13)

Dj : H1/2(Γ) → H1
loc(Ω

− ∪ Ω+), (14)

which have the integral representation

(Sjψ)(x) :=
∫

Γ

Gκj
(x,y)ψ(y)dsy, x ∈ R

d \ Γ, (15)

(Djϕ)(x) :=
∫

Γ

∂Gκj

∂ny

(x,y)ϕ(y)dsy, x ∈ R
d \ Γ, (16)

for sufficiently smooth densities ϕ and ψ. Later we will make use of boundary integral operators.
These arise from taking jumps of traces of potentials, which yields the following continuous operators
[25, Section 6],[22, Theorem 3.1.16]:

Vj := {{γSj}} : H−1/2(Γ) → H1/2(Γ), (17)

Kj := {{γDj}} : H1/2(Γ) → H1/2(Γ), (18)

K ′
j := {{∂nSj}} : H−1/2(Γ) → H−1/2(Γ), (19)

Wj := − {{∂nDj}} : H1/2(Γ) → H−1/2(Γ). (20)

We collect all of them in the Calderón operator

Aj :=


−Kj Vj

Wj K ′
j


 : H1/2(Γ) ×H−1/2(Γ) → H1/2(Γ) ×H−1/2(Γ). (21)
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Layer potentials also satisfy the jump relations [22, Theorem 3.3.1]

JγSjψK = 0, J∂nSjψK = −ψ,

JγDjϕK = ϕ, J∂nDjϕK = 0.

The representation formula (12) guarantees that u0 and u1 satisfy the Helmholtz equation in Ω+ and
Ω− respectively. Moreover, u0 satisfies Sommerfeld radiation conditions. Transmission conditions
remain to be enforced. This will be presented in the next section.

2.3 Combined Volume-Boundary Integral Representation

Now we consider the case where the interior coefficients are not constant anymore, i.e. vary in space.
We write the transmission problem (5) as follows





−∆u− κ2
0u = 0, in Ω+,

−∆u−
κ2

1

a1

u = f, in Ω−,

γ+u− γ−u = −γuinc, in Γ,

∂nu
+ − a∂−

n u = −∂nu
inc, in Γ,

lim
r→∞

r
d−1

2

(
∂u

∂r
− iκ0u

)
= 0,

(22)

where

f(x) := div (α(x)∇u) (x) + β(x)u(x), x ∈ Ω−, (23)

α(x) :=
a(x)

a1

− 1, β(x) :=
1

a1

(κ(x)2 − κ2
1), (24)

and a1 ∈ R+, κ1 ∈ C+ are conveniently chosen parameters. The representation formula (12) now
reads

u = D0(γ
+u) − S0(∂

+
n u), in Ω+

u = S1(∂
−
n u) −D1(γ

−u) + Ñ1(div (α∇u) + βu), in Ω−,
(25)

where D0 and S0 are the layer potentials with wavenumber κ0, and D1 and S1 are the layer potentials
with wavenumber κ1√

a1
. Equation (25) holds in the weak sense. We derive a new expression using
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properties of the Newton potential together with integration by parts. Let v ∈ C∞
0 (Ω−), then

〈Ñ1(div (α∇u)), v〉Ω− = 〈div (α∇u) , Ñ ′
1v〉Ω−

= −〈α∇u,∇Ñ ′
1v〉Ω− + 〈α∂−

n u, γ
−Ñ ′

1v〉Γ

= 〈u, div(α∇Ñ ′
1v)〉Ω− − 〈γ−(αu), ∂−

n Ñ
′
1v〉Γ + 〈(Ñ1 ◦ (γ−)′)(α∂−

n u), v〉Ω−

= 〈u, div(α∇Ñ ′
1v)〉Ω− − 〈(Ñ1 ◦ (∂−

n )′)(γ−(αu)), v〉Ω− + 〈(Ñ1 ◦ (γ−)′)(α∂−
n u), v〉Ω−

= 〈u, div(α∇Ñ ′
1v)〉Ω− − 〈D1(αγ

−u), v〉Ω− + 〈S1(α∂
−
n u), v〉Ω−

(26)
where we used the definition of layer potentials in terms of the Newton potential and adjoints of
trace operators (γ−)′ and (∂−

n )′ [22, Definition 3.1.5]. Then,

〈u, div(α∇Ñ ′
1v)〉Ω− = 〈u, α∆Ñ ′

1v〉Ω− + 〈u,∇α · ∇Ñ ′
1v〉Ω−

= 〈αu,∆Ñ ′
1v〉Ω− + 〈u∇α,∇Ñ ′

1v〉Ω−

= −〈αu, v〉Ω− −
κ2

1

a1
〈αu, Ñ ′

1v〉Ω− + 〈u∇α, Ñ ′
1∇v〉Ω−

= −〈αu, v〉Ω− −
κ2

1

a1
〈Ñ1(αu), v〉Ω− − 〈divÑ1(u∇α), v〉Ω− ,

(27)

where the differentiation under the integral sign holds because of v ∈ C∞
0 (Ω−) being smooth and

bounded, vanishing on the boundary of Ω−. Combining (26) and (27) we obtain by a density
argument

Ñ1(div (α∇u)) = S1(α∂
−
n u) −D1(αγ

−u) − αu− Ñ1(a
−1
1 κ2

1αu) − divÑ1(u∇α) in H1(Ω−). (28)

From (25) and (28) we obtain a new representation formula for the solution of (22) for the interior
domain:

ãu = S1

(
ã∂−

n u
)

−D1

(
ãγ−u

)
+ Ñ1((β − a−1

1 κ2
1α)u) − divÑ1(u∇α) on Ω−, (29)

where ã(x) :=
a(x)

a1

.

Remark 2.2. The representation formula obtained in (29) has some similarities with the results on
Boundary-Domain integral formulations [7], where a representation formula is obtained [7, Section 4]
by using a parametrix of a given differential operator. An important difference is the factor ã, which
here is used as a multiplier in the left-hand side, and scaled with a reference coefficient.

2.4 STF-VIEs: Operator Form

Let u solve (22) and denote ϕ := ãγ−u and ψ := ã∂−
n u. We also write

Aw := Ñ1((β − a−1
1 κ2

1α)w) − divÑ1(w∇α). (30)
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Lemma 2.3. Let α ∈ W 1,∞(Ω−) and β ∈ L∞(Ω−). Then, the operator

A : H1(Ω−) → H1(Ω−)

as defined in (30) is compact.

Proof. The result follows from the mapping properties of the Newton potential. The operators

Ñ1((β − a−1
1 κ2

1α)·) : H1(Ω−) → H2(Ω−), (31)

divÑ1(·∇α) : H1(Ω−) → H1(Ω−) (32)

are bounded: (31) follows directly from the mapping properties of the Newton potential in a bounded
domain (9). The case of (32) requires more attention: let u ∈ H1(Ω−) and consider embedding from
H1(Ω−) to L2(Ω−). Multiplication by ∇α ∈ [L∞(Ω−)]d maps to [L2(Ω−)]d. The operator divÑ1

maps to H1(Ω−). Therefore,

divÑ1(·∇α) : H1(Ω) →֒ L2(Ω−) → [L2(Ω−)] → H1(Ω−). (33)

The embeddings H2(Ω−) →֒ H1(Ω−) and H1(Ω) →֒ L2(Ω−) are compact by Rellich’s embedding
theorem [22, Theorem 2.5.5]. The result follows by the composition of a bounded operator and a
compact operator.

We rewrite the representation formula (29) as

ãu = S1ψ −D1ϕ+ Au in Ω− (34)

By applying traces γ− and ∂−
n to (34) we get


γ

−

∂−
n


 (ãu) =


γ

−

∂−
n


 (S1ψ −D1ϕ) +


γ

−

∂−
n


Au =

(
1

2
I + A1

)
ϕ
ψ


+


γ

−

∂−
n


Au. (35)

The left-hand side can be equivalently written as

γ

−

∂−
n


 (ãu) =


 ãγ−u

(∂nã)γ−u+ ψ


 =


 ϕ

(n · ∇ã)γ−u+ ψ


 (36)

Combining (35) and (36) we obtain

(
1

2
I − A1

)
ϕ
ψ


− TΓu− TΩ−u = 0, (37)

where

TΓu :=


 0

−(n · ∇ã)γ−u


 and TΩ−u :=


γ

−Au

∂−
n Au


 . (38)
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For the exterior domain it holds
(

1

2
I + A0

)
γ

+u

∂+
n u


 = 0. (39)

The transmission conditions of (22) can be written as

γ

+u

∂+
n u


−M


ϕ
ψ


 = −


 γu

inc

∂nu
inc


 (40)

with a multiplication operator

M :=


ã

−1 0

0 a1


 . (41)

Combining (39) and (40) leads to

(
1

2
I + A0

)
M


ϕ
ψ


 = −


 γu

inc

∂nu
inc


, (42)

Equations (37) and (42) together amount to first-kind and second-kind variants of the single trace
formulation (STF):

(M−1A0M + A1)


ϕ
ψ


+ TΓu+ TΩ−u = −M−1


 γu

inc

∂nu
inc


 , (43)

(I +M−1A0M − A1)


ϕ
ψ


− TΓu− TΩ−u = −M−1


 γu

inc

∂nu
inc


 . (44)

We need an extra equation for our system. This will be the representation formula in the interior
domain (34). For the first-kind variant, the coupled system reads as follows: find ϕ ∈ H1/2(Γ), ψ ∈
H−1/2(Γ), u ∈ H1(Ω−) such that


 M−1A0M + A1 TΓ + TΩ−

D1 −S1 ãI − A







ϕ

ψ

u


 =




g1

g2

0


 (45)

holds in H1/2(Γ) ×H−1/2(Γ) ×H1(Ω−).
The second-kind variant is: find ϕ ∈ H1/2(Γ), ψ ∈ H−1/2(Γ), u ∈ H1(Ω−) such that


 I −M−1A0M + A1 −TΓ − TΩ−

D1 −S1 ãI − A







ϕ

ψ

u


 =




g1

g2

0


 (46)
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in H1/2(Γ) ×H−1/2(Γ) ×H1(Ω−). The right hand side is given by

g1

g2


 = −M−1


 γu

inc

∂nu
inc


 .

We call (45) and (46) single-trace volume integral equations (STF-VIE).

Remark 2.4. We refer to (46) as second-kind, but this formulation fails to be coercive due to the
multiplier matrix M. Nevertheless, we include it into our numerical experiments, although we proceed
to study the first-kind STF-VIE from (45).

2.5 STF-VIEs in Special Settings

In this section we will study what (45) boils down to under different assumptions on the functions a
and κ.

2.5.1 Piecewise Constant Coefficients

Assuming that a(x) ≡ aΩ− > 0 and κ(x) ≡ κΩ− ∈ C+, an appropriate choice of a1 and κ1 leads to:

ã ≡ 1, α ≡ 0, β ≡ 0.

Problem (45) now reads: find ϕ ∈ H1/2(Γ), ψ ∈ H−1/2(Γ), u ∈ H1(Ω−) such that


 M−1A0M + A1 0

D1 −S1 I







ϕ

ψ

u


 =




g1

g2

0




holds in H1/2(Γ) ×H−1/2(Γ) ×H1(Ω−). This is equivalent to solving a single-trace BIE and then
evaluating the solution u by means of the representation formula. Well-posedness of the formulation
has been established in [14].

2.5.2 Piecewise Constant a, Variable κ

Assuming that a(x) ≡ aΩ− > 0, an appropriate choice of a1 leads to:

ã ≡ 1, α ≡ 0.

The volume integral operator A can be rewritten as Au = N1(βu). Problem (45) now reads: find
ϕ ∈ H1/2(Γ), ψ ∈ H−1/2(Γ), u ∈ H1(Ω−) such that


 M−1A0M + A1 TΩ−

D1 −S1 I − A







ϕ

ψ

u


 =




g1

g2

0



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holds in H1/2(Γ) × H−1/2(Γ) × H1(Ω−). In Sections 3 and 4 we will prove well-posedness of the
continuous and discrete problems arising in this special case.

2.5.3 Constant Values at the Boundary

Assuming that a(x) ≡ aΓ > 0 for x ∈ Γ, an appropriate choice of a1 leads to ã(x) ≡ 1 for x ∈ Γ.
The operator

M−1A0M + A1 : H1/2(Γ) ×H−1/2(Γ) → H1/2(Γ) ×H−1/2(Γ)

will be injective. The equation (45) remains unchanged, but we will be able to give a complete proof
of a well-posedness result for the continuous and discrete case.

3 Analysis of STF-VIE

3.1 Variational Formulations

We now present variational formulations for the coupled systems (45) and (46). We denote by 〈·, ·〉Ω−

the duality pairing between H̃−1(Ω−) and H1(Ω−). On the boundary, 〈·, ·〉Γ denotes the duality
between H−1/2(Γ) and H1/2(Γ). Moreover, we define

〈〈·, ·〉〉 : H(Γ) × H(Γ) → C, 〈〈ϕ, ξ〉〉 := 〈ψ, ξ〉Γ + 〈η, ϕ〉Γ,

for all ϕ = (ϕ, ψ) ∈ H(Γ), ξ = (ξ, η) ∈ H(Γ) and H(Γ) := H1/2(Γ) ×H−1/2(Γ).

Problem 3.1 (First kind STF-VIE variational formulation). Given g ∈ H(Γ), we seek (ϕ, u) ∈
H(Γ) ×H1(Ω−) such that the variational formulation

a1(ϕ, ξ) + b(u, ξ) = 〈〈g, ξ〉〉,

c(ϕ, v) + d(u, v) = 0,
(47)

holds for all (ξ, v) ∈ H(Γ) × H̃−1(Ω−), where we denote

a1(ϕ, ξ) := 〈〈(M−1A0M + A1)ϕ, ξ〉〉, b(u, ξ) := 〈〈TΓu, ξ〉〉 + 〈〈TΩ−u, ξ〉〉,

c(ϕ, v) := 〈D1ϕ− S1ψ, v〉Ω− , d(u, v) := 〈ãu− Au, v〉Ω− .
(48)

with A0 and A1 defined as in (21), ã in (29), TΓ and TΩ− in (38), M in (41).

Problem 3.2 (Second kind STF-VIE variational formulation). Given g ∈ H(Γ), we seek (ϕ, u) ∈
H(Γ) ×H1(Ω−) such that the variational formulation

a2(ϕ, ξ) − b(u, ξ) = 〈〈(g, ξ)〉〉,

c(ϕ, v) + d(u, v) = 0,
(49)
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holds for all (ξ, v) ∈ H(Γ) × H̃−1(Ω−), where we denote

a2(ϕ, ξ) := 〈〈(I −M−1A0M + A1)ϕ, ξ〉〉, (50)

besides the notations from Problem 3.1.

3.2 Coercivity

In this section we prove results regarding the stability of our formulation. We say that an operator
A : X → X ′ is elliptic if there exists a constant cA > 0 such that

Re{〈Ax, x〉X} ≥ cA ‖x‖2
X , for all x ∈ X.

We say that the operator A is coercive if there exists a compact operator TA : X → X ′ such that
A+ TA is elliptic.

Proposition 3.3 (Coercivity of a1, [14, Theorem 5.3]). Let Γ := ∂Ω− be the boundary of a Lipschitz
domain Ω− ⊂ Rd. Let a ∈ W 1,∞(Ω−), κ ∈ L∞(Ω−) and set a1 ∈ R+, κ1 ∈ C+. Then, for a1 as
defined in (48), there exists a compact operator TA : H(Γ) → H(Γ) and a constant ca1

> 0 such that

Re {a1(ϕ,ϕ) + 〈〈TAϕ,ϕ〉〉} ≥ ca1
‖ϕ‖2

H(Γ)

for all ϕ ∈ H(Γ).

Proposition 3.4 (inf-sup condition for d). Let Γ := ∂Ω− be the boundary of a Lipschitz domain
Ω− ⊂ Rd. Let a ∈ W 1,∞(Ω−), κ ∈ L∞(Ω−) and set a1 ∈ R+, κ1 ∈ C+. Let A : H1(Ω−) → H1(Ω−) be
the volume integral operator defined in (30). There exists a compact operator TA : H1(Ω−) → H1(Ω−)
and a constant cd > 0 such that

cd ≤ inf
0 6=u∈H1(Ω−)

sup
0 6=v∈H̃−1(Ω−)

Re{d(u, v) + tA(u, v)}

‖u‖H1(Ω−) ‖v‖
H̃−1(Ω−)

,

where tA(u, v) := 〈TAu, v〉Ω− .

Proof. Consider the linear operator

G : H1(Ω−) → H̃−1(Ω−)

such that Gu := −∆u+ u. There also exists a bounded inverse for G. For every v ∈ H̃−1(Ω−), there
exists a unique solution of the variational formulation: find u ∈ H1(Ω−) such that

〈Gu,w〉Ω− = (∇u,∇w)Ω− + (u,w)Ω− = 〈v, w〉Ω− for all w ∈ H1(Ω−).
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We know that

‖v‖
H̃−1(Ω−)

= ‖Gu‖
H̃−1(Ω−)

= sup
0 6=w∈H1(Ω−)

〈Gu,w〉Ω−

‖w‖H1(Ω−)

= sup
0 6=w∈H1(Ω−)

(∇u,∇w)Ω− + (u,w)Ω−

‖w‖H1(Ω−)

= ‖u‖H1(Ω−) .

Now, for any arbitrary 0 6= u ∈ H1(Ω−) consider v⋆ =
1

ã
Gu ∈ H̃−1(Ω−) and TA = A. We know that

1
ã

∈ W 1,∞(Ω−) and therefore there exists cG > 0 such that

‖v⋆‖
H̃−1(Ω−)

≤ cG

∥∥∥ã−1
∥∥∥

W 1,∞(Ω−)
‖u‖H1(Ω−) .

Then

sup
0 6=v∈H̃−1(Ω−)

Re{d(u, v) + tA(u, v)}

‖v‖
H̃−1(Ω−)

≥
〈v⋆, ãu〉Ω−

‖v⋆‖
H̃−1(Ω−)

=
cG

‖ã−1‖W 1,∞(Ω−)

〈 1
ã
G(u), ãu〉Ω−

‖u‖H1(Ω−)

= cd

〈Gu, u〉Ω−

‖u‖H1(Ω−)

= cd ‖u‖H1(Ω−) .

Taking the infimum over u ∈ H1(Ω−) concludes the proof.

3.3 Uniqueness

In order to show uniqueness of Problem 3.1, we will need to make the following assumption.

Assumption 3.5. Let Ω− ⊂ Rd be a bounded Lipschitz domain. Consider a ∈ W 1,∞(Ω−), with

0 < amin < a(x) < amax,

for all x ∈ Ω−. Let κ0, κ1 ∈ R+. Then, the trivial solution is the only solution to the problem





−∆u0 − κ2
0u0 = 0 in Ω−,

−∆u1 − κ2
1u1 = 0 in Rd \ Ω−,

γ+u0 − aγ−u1 = 0 in Γ,

∂+
n u0 − ∂−

n u1 = 0 in Γ.

lim
r→∞ r

d−1

2

(
∂u0

∂r
− iκ0u0

)
= 0,

(51)

Remark 3.6. Assumption 3.5 is satisfied for the case where a|Γ ≡ a1 is a constant. In this case a
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simple rescaling ũ1 = a1u1 leads to




−∆u0 − κ2
0u0 = 0 in Ω−,

−div
(

1

a1

∇ũ1

)
−
κ2

1

a1

ũ1 = 0 in Rd \ Ω−,

γ+u0 − γ−ũ1 = 0 in Γ,

∂+
n u0 −

1

a1

∂−
n ũ1 = 0 in Γ.

lim
r→∞

r
d−1

2

(
∂u0

∂r
− iκ0u0

)
= 0,

(52)

Uniqueness of solutions for (52) then follows from the uniqueness of solutions of Helmholtz trans-
mission problems with constant coefficients. It is not clear if the result holds for the general case.
This remains as an open problem, therefore the need of Assumption 3.5.

Lemma 3.7 (Uniqueness). Provided that Assumption 3.5 holds, there exists at most one solution to
Problem 3.1.

Proof. We will prove the result for the first-kind formulation in Problem 3.1. The same idea applies
for Problem 3.2. We study the operator equation


 M−1A0M + A1 TΓ + TΩ−

D1 −S1 ãI − A







ϕ

ψ

u


 =




0

0

0


 . (53)

We want to show that the unique solution in H1/2(Γ) ×H−1/2(Γ) ×H1(Ω−) is ϕ = 0, ψ = 0, u = 0.

(I) From the last equation we have

ãu = S1ψ −D1ϕ+ Au in Ω−. (54)

It is possible to go back using integration by parts (26) and (27) and obtain

u = S1(ψ − ã∂−
n u) −D1(ϕ− ãγ−u) +N1(div(α∇u) + βu), (55)

which shows that u satisfies

− ∆u−
κ2

1

a1

= div(α∇u) + βu in Ω−,

and therefore

− div(a∇u) + κ2u = 0 in Ω−. (56)
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Let us define

u0 =
(
D0 −S0

)
M


ϕ
ψ


 . (57)

By definition, u0 satisfies
∆u0 + κ2

0u0 = 0 in R
d \ Ω−. (58)

Taking interior traces of (54), exterior traces of (57), we obtain

γ

−(ãu)

ã∂−
n (u)


 =

(
1

2
I + A1

)
ϕ
ψ


+ TΓu+ TΩ−u, (59)


γ

+u0

∂+
n u0


 =

(
1

2
I − A0

)
M


ϕ
ψ


 . (60)

Multiplying (60) by M−1, subtracting from (59) and using (53)

M−1


γ

+u0

∂+
n u0


−


γ

−(ãu)

ã∂−
n u


 = 0, (61)

which is equivalent to 
γ

+u0

∂+
n u0


−


 γ−u

a∂−
n u


 = 0. (62)

Combining (56), (58) and (62), we know that

U =




u in Ω−,

u0 in Rd \ Ω−,
(63)

must be the unique solution of a homogeneous transmission problem. Therefore, U ≡ 0 in Rd.
We conclude that u = 0 in Ω−, u0 = 0 in Rd \ Ω−.

(II) This implies

0 =
(

1

2
I + A1

)
ϕ
ψ


 , 0 =

(
1

2
I − A0

)
M


ϕ
ψ


 . (64)

Now, note that M = a1M̃ := a1


a

−1 0

0 1


. Therefore, using (53) and the fact that u = 0 in

Ω−,

(M−1A0M + A1)


ϕ
ψ


 = (M̃−1A0M̃ + A1)


ϕ
ψ


 = 0. (65)
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Define

v :=
(
−D0 S0

)
M̃


ϕ
ψ


 in Ω−, (66)

v0 :=
(
D1 −S1

)

ϕ
ψ


 in R

d \ Ω−. (67)

Taking traces, we derive

γ

−v

∂−
n v


 =

(
1

2
I + A0

)
M̃


ϕ
ψ


 ,


γ

+v0

∂+
n v0


 =

(
1

2
I − A1

)
ϕ
ψ


 .

By (65), we get 
γ

+v0

∂+
n v0


− M̃−1


γ

−v

∂−
n v


 = 0.

We conclude that

−∆v − κ2
0v = 0 in Ω−,

−∆v0 −
κ2

1

a1

v0 = 0 in R
d \ Ω−,

γ+v0 − aγ−v = 0 in Γ,

∂+
n v0 − ∂−

n v = 0 in Γ.

There is a unique solution by Assumption 3.5. Therefore, we know that

V =




v in Ω−,

v0 in Rd \ Ω−,

must be zero. This implies v = 0 in Ω−, v0 = 0 in Rd \ Ω−, and

0 =
(

1

2
I + A0

)
M̃


ϕ
ψ


 , 0 =

(
1

2
I − A1

)
ϕ
ψ


 . (68)

Combining (64) and (68) we conclude that ϕ = 0, ψ = 0.

Remark 3.8. It is worth noting that Assumption 3.5 ensures uniqueness for the traces ϕ ∈
H1/2(Γ), ψ ∈ H−1/2(Γ). Uniqueness holds for the solution u ∈ H1(Ω−) of Problem 3.1 without
Assumption 3.5.
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Theorem 3.9 (Well-posedness of Problem 3.1). Under Assumption 3.5, there exists a unique solution
(ϕ⋆, u⋆) ∈ H(Γ) ×H1(Ω−) to Problem 3.1, that satisfies

‖ϕ⋆‖H1/2(Γ) + ‖ψ⋆‖H−1/2(Γ) + ‖u⋆‖H1(Ω−) ≤ C
(
‖g1‖H1/2(Γ) + ‖g2‖H−1/2(Γ)

)
.

Proof. Lemma 3.7 shows that the block operator is injective. Proposition 3.3 shows coercivity of
the first-kind single-trace operators. Layer potentials are bounded operators and ãI − A satisfies an
inf-sup condition up to a compact operator, according to Proposition 3.4. Therefore, Assumption
A.1 holds and the result follows from Proposition A.2, see Appendix A.

4 Galerkin Discretization

4.1 Finite Element and Boundary Element Spaces

Let {Th}h>0 be a globally quasi-uniform and shape-regular family of triangular meshes of Ω−. Let
{Σh}h>0 be the induced family of meshes of Γ. We choose finite element spaces Vh := Vh(Th) ⊂ H1(Ω−)
of piecewise linear functions on Th. We also use the same finite dimensional space Vh as a conforming
subspace of H̃−1(Ω−). We consider boundary element spaces Uh := Uh(Σh) ⊂ H1/2(Γ) of piecewise
linear functions. For the first-kind formulation we will use Wh := Wh(Σh) ⊂ H−1/2(Γ) of piecewise
constant functions, while the second-kind formulation requires Uh ⊂ H−1/2(Γ).

4.2 Asymptotic Quasi-Optimality

The first result needed is a discrete version of Lemma 3.4.

Proposition 4.1 (Discrete inf-sup condition for d). There exists c̃d > 0 such that

c̃d ≤ inf
0 6=uh∈Vh

sup
0 6=vh∈Vh

〈vh, ãuh〉Ω−

‖uh‖H1(Ω−) ‖vh‖
H̃−1(Ω−)

for all h > 0.

Proof. We start by denoting as 〈·, ·〉ã the weighted L2 inner product and by ‖·‖ã the induced weighted
L2-norm. This norm is equivalent to ‖·‖L2(Ω−), due to ã ∈ W 1,∞(Ω−) being bounded below by a
positive constant. Moreover,

cmin ‖w‖H1(Ω−) ≤ ‖ãw‖H1(Ω−) ≤ cmax ‖w‖H1(Ω−) for all w ∈ H1(Ω−),

because ã ∈ W 1,∞(Ω−) and 1
ã

∈ W 1,∞(Ω−). We know ([24, Section 2.1]) that there exists an
L2-orthogonal projection operator Qh : H1(Ω−) → Vh ⊂ H1(Ω−) such that

〈Qhu,wh〉Ω− = 〈u,wh〉Ω− , for all wh ∈ Vh,

19



with

‖Qhu‖H1(Ω−) ≤ cS ‖u‖H1(Ω−) , for all u ∈ H1(Ω−), (69)

‖u−Qhu‖L2(Ω−) ≤ c1h|u|H1(Ω−), (70)

where cS, c1 depend only on the shape-regularity and quasi-uniformity measure of Th, but not on
the parameter h. Similarly, we can define Qã

h : H1(Ω−) → Vh as

〈Qã
hu,wh〉ã = 〈u,wh〉ã, for all wh ∈ Vh.

First, we show that Qã
h also satisfies properties similar to (69) and (70). Note that

∥∥∥u−Qã
hu
∥∥∥

ã
≤
∥∥∥u−Qhu+ (Qhu−Qã

hu)
∥∥∥

ã

≤ ‖u−Qhu‖ã +
∥∥∥(Qhu−Qã

hu)
∥∥∥

ã

≤ ‖u−Qhu‖ã +
∥∥∥Qã

h(Qhu− u)
∥∥∥

ã

≤ 2 ‖u−Qhu‖ã ≤ 2ãmax ‖u−Qhu‖L2(Ω−) ≤ c̃1h|u|H1(Ω−),

for all u ∈ H1(Ω−), with c̃1 > 0. Now, we can show that with c̃S > 0
∥∥∥Qã

hu
∥∥∥

H1(Ω−)
≤
∥∥∥Qhu+ (Qã

hu−Qhu)
∥∥∥

H1(Ω−)

≤ ‖Qhu‖H1(Ω−) +
∥∥∥(Qã

hu−Qhu)
∥∥∥

H1(Ω−)

≤ ‖Qhu‖H1(Ω−) +
∥∥∥Qh(Qã

hu− u)
∥∥∥

H1(Ω−)

≤ cS ‖u‖H1(Ω−) + cGh
−1
∥∥∥Qh(Qã

hu− u)
∥∥∥

L2(Ω−)

≤ cS ‖u‖H1(Ω−) + cGh
−1
∥∥∥Qã

hu− u
∥∥∥

L2(Ω−)
≤ c̃S ‖u‖H1(Ω−) ,

appealing to global quasi-uniformity of the mesh for the inverse inequality. We proceed to show
the main result. Using the adjoint projection operator (Qã

h)∗ : H̃−1(Ω−) → Vh, and definition of the
dual norm:

cmin ‖uh‖H1(Ω−) ≤ ‖ãuh‖H1(Ω−) = sup
0 6=v∈H̃−1(Ω−)

〈v, ãuh〉Ω−

‖v‖
H̃−1(Ω−)

= sup
0 6=v∈H̃−1(Ω−)

〈v, uh〉ã

‖v‖
H̃−1(Ω−)

= sup
0 6=v∈H̃−1(Ω−)

〈(Qã
h)∗v + (v − (Qã

h)∗v), uh〉ã

‖v‖
H̃−1(Ω−)

= sup
0 6=v∈H̃−1(Ω−)

〈(Qã
h)∗v, uh〉ã

‖v‖
H̃−1(Ω−)

≤ c̃S sup
0 6=v∈H̃−1(Ω−)

〈(Qã
h)∗v, uh〉ã

‖(Qã
h)∗v‖

H̃−1(Ω−)

≤ c̃S sup
0 6=vh∈Vh

〈vh, uh〉ã

‖vh‖
H̃−1(Ω−)

which completes the proof with c̃d :=
cmin

c̃S

.
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Now, we are able to establish the main result on the Galerkin discretization of Problem 3.1.

Theorem 4.2. Provided that Assumption 3.7 holds, there is h0 > 0 and a constant cqo > 0
independent of h such that there exists a unique Galerkin solution (ϕh, uh) ∈ (Uh × Wh) × Vh of
Problem 3.1 for all h < h0. The solution satisfies

‖(ϕ − ϕh, u− uh)‖ ≤ cqo inf
λh∈Uh×Wh,

wh∈Vh

‖(ϕ − λh, u− wh)‖ .

Proof. We need to show that our system satisfies Assumption A.1. By Assumption 3.7 we have
injectivity. By Propositions 3.3, 3.4, and 4.1 we can comply with the inf-sup condition for the
principal part given in Proposition A.4. Then, by Proposition A.5 we obtain the result.

If the solution (ϕ, ψ, u) of Problem (3.1) enjoys some extra regularity, we can use best approxi-
mation estimates for finite elements and boundary elements [22, Section 4] to predict convergence
rates for the Galerkin discretization. Let k ∈ N be the polynomial degree of approximation in the
finite/boundary element spaces, then

inf
ηh∈Uh

‖ϕh − ηh‖H1/2(Γ) ≤ cba
1 h

min{s− 1

2
,k} ‖ϕ‖Hs(Γ) , ∀ϕ ∈ Hs(Γ),

inf
τh∈Wh

‖ψh − τh‖H−1/2(Γ) ≤ cba
2 h

min{s+ 1

2
,k} ‖ψ‖Hs(Γ) , ∀ψ ∈ Hs(Γ),

inf
wh∈Vh

‖uh − wh‖H1(Ω−) ≤ cba
3 h

min{s−1,k} ‖u‖Hs(Ω−) , ∀u ∈ Hs(Ω).

5 Numerical Experiments in 2D

In this section we will show numerical experiments for different cases. The parameters a1, κ1 will be
chosen as

a1 = aΓ :=
∫

Γ

a(x)dsx, κ1 = κΓ :=
∫

Γ

κ(x)dsx. (71)

This particular choice reduces problems with constant coefficients to boundary integral equation
formulations. Moreover, it reduces to a minimum the support of functions α, β in our examples.

We refer to multiple formulations in our experiments1 . In particular, the Lippman-Schwinger
equation [17] is denoted as LS; Costabel’s coupled formulation [13] is denoted as CVIE; Johnson-
Nédélec FEM-BEM coupling [16, 23] is denoted as FEM-BEM; Problem 3.1 is denoted as STF-VIE,
while Problem 3.2 is denoted as 2STF-VIE.

1Finite element and boundary element implementation were done based on Gypsilab [2]. Regularization for
volume integral operators was implemented using semi-analytic formulas. The matlab code is available in the Github
repository www.github.com/ilabarca/stf-vie
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5.1 Case α ≡ 0: Constant Coefficient a in Ω−

We are interested to solve the transmission problem (5) with a(x) ≡ 1 for all x ∈ R2. The incident
field uinc is given by

uinc(x) := exp(iκ0x · d), d := (cos(θ), sin(θ)), θ ∈ [−π, π].

5.1.1 Validation: Artificial Domain

We consider a domain Ω− ⊂ R2 consisting of a: (a) unit disk centered at the origin; (b) square of
length 2 centered at the origin. The wavenumber κ = 4 is the same for both interior and exterior
domains. The solution for the interior field corresponds to u(x) = uinc(x).
Figure 1 shows convergence results. We observe expected convergence rates for the Galerkin
discretization.
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Figure 1: Plots of error norms vs. meshwidth h: plane-wave solution. (a) Unit disk; (b) Square
[−1, 1] × [−1, 1].

5.1.2 Scattering at a Unit Disk

This section considers a problem in a domain Ω− ⊂ R2 consisting of a unit disk centered at the
origin. The smoothly spatially varying wavenumber is defined as

κ(x) :=





4, x /∈ Ω−,

8 + 2η(s|x|), x ∈ Ω−,
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where s = 1.5 and

η(t) :=





exp

(
−

t2

1 − t2

)
, |t| < 1

0, |t| > 1.

We solve Problem 3.1 and measure errors in the H1(Ω−) norm using the numerical solution on a
mesh obtained by one additional refinement step as reference. The results are shown in Figure 2.
We observe expected convergence rates for the Galerkin discretization.
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Figure 2: Scattering at a disk: problem in Section 5.1.2. Real part of the interior field solution and
plot of error norms vs meshwidth.

5.1.3 Scattering at a Square (Case α|Γ ≡ 0)

The wavenumber is defined as

κ(x) :=





2, x /∈ Ω−,

4 + 2η(s|x|), x ∈ Ω−,

where s = 1.5 and

a(x) :=





1, x /∈ Ω−,

2 +
1

2
η(x)η(y), x ∈ Ω−.

Note that for this experiment a(x) ≡ aΓ > 0 for all x ∈ Γ. The results are shown in Figure 3. We
observe the expected convergence rates.
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Figure 3: Scattering at a square: problem of Section 5.1.3. Error norms as functions of h.

5.1.4 Scattering at a Square (Case α|Γ 6= 0)

The wavenumber is defined as

κ(x) :=





2, x /∈ Ω−,

4 − 2η(x)η(y), x ∈ Ω−,

and

a(x) :=





1, x /∈ Ω−,

1 −
1

4
(x2 + y2), x ∈ Ω−.

Note that for this experiment α|Γ 6= 0. The results are shown in Figure 4. We observe that expected
convergence rates are obtained after a preasymptotic regime.

6 Conclusion

We derived new coupled VIE-BIE formulations for the acoustic transmission problem in frequency
domain, relying on new representation formulas and volume integral operators. In particular, first
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Figure 4: Scattering at a square: problem of Section 5.1.4. Error norms as functions of h.

and second-kind single-trace formulations are coupled with a volume integral operator, similar
to the ones studied in the Lippmann-Schwinger equation. Well-posedness of the continuous and
discrete problem is established, provided that an assumption on uniqueness of solutions of a special
transmission problem holds. Verifying this assumption remains as an open problem.

Galerkin discretizations of the formulations were studied, with a result on the quasi-optimality
of solutions. Numerical experiments in two dimensions demonstrate that the theoretical predictions
are sharp. Convergence rates are obtained according to our theoretical results.

Future work has to address the efficiency of the proposed method. Compression and acceleration
techniques become even more important when the volume integral operators are involved, especially
for 3D problems. Spectral methods for volume integrals are also worth considering.

Extending the methodology to electromagnetic scattering is work in progress. Although the idea
seems straightforward to apply, there are particular challenges related to the theory of boundary
integral equations for electromagnetic problems.
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A Block Operators

A.1 Fredholm Equation

Let X,Π be Hilbert spaces and X ′,Π′ their duals. Consider the operators

A : X → X ′, B : Π → X ′,

C : X → Π′, D : Π → Π′.

All of them linear bounded operators. We study the system

A B

C D




u
p


 =


f

0


 . (72)

Assumption A.1. The operator

T =


A B

C D


 : X × Π → X ′ × Π′

is injective. Moreover, A and D are coercive operators. B is a compact operator.

Proposition A.2. Under assumption A.1, there exists a unique solution (u⋆, p⋆) ∈ X × Π to the
system in (72). Moreover, the solution satisfies

‖u⋆‖X + ‖p⋆‖Π ≤ C ‖f‖X′ .

Proof. This is a consequence of A and D being coercive, B being compact and the Fredholm
Alternative. We know there exist compact operators

TA : X → X ′, TD : Π → Π′,

such that A = A0 + TA, D = D0 + TD, with A0 and D0 elliptic operators. We can write (72) as

A0 0

C D0


+


TA B

0 TD


 =


f

0


 .

We denote

A :=


A0 0

C D0


 , K :=


TA B

0 TD


 , f =


f

0


 .

Then, A has a bounded inverse, K is a compact operator and T = A + K is injective. By the
Fredholm Alternative we know that

(A + K)u = f ,

has a unique solution u⋆ = (u⋆, p⋆) ∈ X × Π with

‖u⋆‖X + ‖p⋆‖Π ≤ c ‖f‖X′ .
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A.2 Galerkin Discretization

Next, we consider the Galerkin discretization of (72). Choose finite dimensional subspaces Xh ⊂ X
and Πh ⊂ Π. We study the following variational problem: find (uh, ph) ∈ Xh × Πh such that

〈Auh, vh〉X + 〈Bph, vh〉X = 〈f, vh〉, for all vh ∈ Xh,

〈Cuh, qh〉Π + 〈Dph, qh〉Π = 0, for all qh ∈ Πh,

which can be rewritten as

t ((uh, ph), (vh, qh)) = 〈f, vh〉, for all vh ∈ Xh, qh ∈ Πh, (73)

where
t ((uh, ph), (vh, qh)) = 〈Auh, vh〉X + 〈Bph, vh〉X + 〈Cuh, qh〉Π + 〈Dph, qh〉Π. (74)

Proposition A.3 (inf-sup condition). The bilinear form t0 : (X × Π) × (X × Π) → C given by

t0((u, p), (v, q)) = 〈A0u, v〉X + 〈Cu, q〉Π + 〈D0p, q〉Π

satisfies the h−uniform discrete inf-sup condition

ct0

1 ≤ inf
0 6=(uh,ph)∈Xh×Πh

sup
0 6=(vh,qh)∈Xh×Πh

Re{t0((uh, ph), (vh, qh))}

‖(uh, ph)‖X×Π ‖(vh, qh)‖X×Π

, for all h > 0. (75)

Proof. For any arbitrary (uh, ph) ∈ Xh × Πh, we write

sup
0 6=(vh,qh)∈Xh×Πh

Re{t0((uh, ph), (vh, qh))}

‖(vh, qh)‖X×Π

≥
Re{t0((uh, ph), (v⋆

h, q
⋆
h))}

‖(v⋆
h, q

⋆
h)‖X×Π

(76)

for some (v⋆
h, q

⋆
h) ∈ Xh × Πh. We choose conveniently


v

⋆
h

q⋆
h


 =


uh + wh

ph


 (77)

where wh ∈ Xh satisfies the variational problem:

〈A0w
′
h, wh〉X = −〈Cw′

h, ph〉 for all w′
h ∈ Xh, (78)

which is well-posed by the Lax-Milgram lemma:

‖wh‖X ≤
cC

2

cA0

1

‖ph‖Π , (79)
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where cC
2 > 0 is the continuity constant of the operator C, and cA0

1 is the ellipticity constant of A0.
Using (79) we also know that

‖(v⋆
h, q

⋆
h)‖ ≤

(
1 +

cC
2

cA0

1

)
‖(uh, ph)‖X×Π . (80)

Now, we compute

t0((uh, ph), (v⋆
h, q

⋆
h)) =

〈
A


uh

ph


 ,


uh + wh

ph



〉

= 〈A0uh, uh + wh〉X + 〈Cuh, ph〉Π + 〈D0ph, ph〉Π

= 〈A0uh, uh〉X + 〈A0uh, wh〉X + 〈Cuh, ph〉Π + 〈D0ph, ph〉Π

= 〈A0uh, uh〉X − 〈Cuh, ph〉Π + 〈Cuh, ph〉Π + 〈D0ph, ph〉Π

= 〈A0uh, uh〉X + 〈D0ph, ph〉Π.

Therefore, by the ellipticity of A0 and D0 we obtain

Re{t0((uh, ph), (v⋆
h, q

⋆
h))} ≥ min(cA0

1 , cD0

1 ) ‖(uh, ph)‖2
X×Π . (81)

We conclude by combining (80) and (81) into (76) and taking the infimum over (uh, ph) ∈ Xh×Πh.

For the sake of simplicity we have stated Proposition A.3 assuming coercive operators A and D.
However, in Section 4 we face the situation that D merely satisfies an inf-sup condition. This case is
addressed by the following extended version of Proposition A.3.

Proposition A.4 (inf-sup condition, weakened assumptions). Let Π̃ be another Hilbert space and
Π̃h ⊂ Π̃ a finite dimensional subspace. Let C : X → Π̃′ be bounded and let D0 : Π → Π̃′ be a bounded
operator that satisfies an h−uniform discrete inf-sup condition

cd0

1 ≤ inf
0 6=ph∈Πh

sup
0 6=qh∈Π̃h

Re{〈D0ph, qh〉
Π̃

}

‖ph‖Π ‖qh‖
Π̃

for all h > 0. (82)

Then, the bilinear form t0 : (X × Π) × (X × Π̃) → C given by

t0((u, p), (v, q)) = 〈A0u, v〉X + 〈Cu, q〉
Π̃

+ 〈D0p, q〉Π̃

satisfies the h−uniform discrete inf-sup condition

ct0

1 ≤ inf
0 6=(uh,ph)∈Xh×Πh

sup
0 6=(vh,qh)∈Xh×Π̃h

Re{t0((uh, ph), (vh, qh))}

‖(uh, ph)‖X×Π ‖(vh, qh)‖
X×Π̃

, for all h > 0. (83)
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Proof. The proof runs largely parallel to that of Proposition A.3. The main modification is the
choice of the candidate q⋆

h. The h−uniform discrete inf-sup condition is equivalent to uniform
Th−coercivity ([9, Theorem 2]): there exists c̃d0

1 > 0 and a family of uniformly bounded operators
Th : Πh → Π̃h, h > 0, such that

Re{〈D0ph, Thph〉} ≥ c̃d0

1 ‖ph‖2
Π , for all h > 0. (84)

Therefore, the proof of Proposition A.3 can me modified by choosing the candidate q⋆
h in equation

(77) as Thph. Consequently, equation (78) is now

〈A0w
′
h, wh〉X = −〈Cw′

h, Thph〉
Π̃

for all w′
h ∈ Xh, (85)

and
t0((uh, ph), (v⋆

h, q
⋆
h)) = 〈A0uh, uh〉X + 〈D0ph, Thph〉

Π̃
, (86)

where the result follows from the ellipticity of A0 and (84).

Proposition A.5 (Asymptotic quasi-optimality). Provided that Assumption A.1 holds, there is
h0 > 0 and a constant cqo > 0 independent of h such that there exists a unique Galerkin solution
(uh, ph) ∈ Xh × Πh of (73) for all h < h0. The solution satisfies

‖(u, p) − (uh, ph)‖X×Π ≤ cqo inf
(ηh,τh)∈Xh×Πh

‖(u, p) − (ηh, τh)‖X×Π . (87)

Proof. The result follows from Proposition A.3 and t = t0 + tK, with tK being the bilinear form
associated to the compact operator K.

B Neumann Trace of Volume Integral Operators

In this section we show how to compute the duality pairing

bN(u, η) = 〈∂ndivÑ1(u∇α), η〉, u ∈ H1(Ω−), η ∈ H1/2(Γ). (88)

This is important for the variational formulations presented in Problem 3.1 and Problem 3.2.
Let us denote w := Ñ1(u∇α). This is a solution of

−∆w −
κ2

1

a1

w = u∇α,

which can be rewritten as

curl2w − ∇divw −
κ2

1

a1

w = u∇α. (89)
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By using (89), we obtain

∇divÑ1(u∇α) = curl2w −
κ2

1

a1

w − u∇α.

Therefore, we have the following expression for (88)

bN(u, η) = 〈n · {curl2w −
κ2

1

a1
w − u∇α}|Γ, η〉

= 〈γncurl2w, η〉 −
κ2

1

a1
〈γnw, η〉 − 〈(n · ∇ã)γ−u, η〉

= 〈divΓ{γtcurlw}, η〉 −
κ2

1

a1
〈γnw, η〉 − 〈(n · ∇ã)γ−u, η〉

= 〈γtcurlw,∇Γη〉 −
κ2

1

a1
〈γnw, η〉 − 〈(n · ∇ã)γ−u, η〉,

(90)

which contains only weakly singular kernels. Note that the last term in the right hand side of (90)
cancels with the operator TΓ in (38).
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