
Graph-Coupled Oscillator Networks

T. K. Rusch and B. P. Chamberlain and J. Rowbottom and S. Mishra and

M. M. Bronstein

Research Report No. 2022-04

February 2022

Latest revision: June 2022

Seminar für Angewandte Mathematik

Eidgenössische Technische Hochschule

CH-8092 Zürich

Switzerland

__

Funding ERC: 770880 COMANFLO

Graph-Coupled Oscillator Networks

T. Konstantin Rusch 1 2 Benjamin P. Chamberlain 3 James Rowbottom 3 Siddhartha Mishra 1 2

Michael M. Bronstein 4 3

Abstract

We propose Graph-Coupled Oscillator Networks

(GraphCON), a novel framework for deep learn-

ing on graphs. It is based on discretizations of a

second-order system of ordinary differential equa-

tions (ODEs), which model a network of nonlin-

ear controlled and damped oscillators, coupled via

the adjacency structure of the underlying graph.

The flexibility of our framework permits any basic

GNN layer (e.g. convolutional or attentional) as

the coupling function, from which a multi-layer

deep neural network is built up via the dynamics

of the proposed ODEs. We relate the oversmooth-

ing problem, commonly encountered in GNNs,

to the stability of steady states of the underlying

ODE and show that zero-Dirichlet energy steady

states are not stable for our proposed ODEs. This

demonstrates that the proposed framework miti-

gates the oversmoothing problem. Moreover, we

prove that GraphCON mitigates the exploding and

vanishing gradients problem to facilitate training

of deep multi-layer GNNs. Finally, we show that

our approach offers competitive performance with

respect to the state-of-the-art on a variety of graph-

based learning tasks.

1. Introduction

Graph Neural Networks (GNNs) (Sperduti, 1994; Goller

& Kuchler, 1996; Sperduti & Starita, 1997; Frasconi et al.,

1998; Gori et al., 2005; Scarselli et al., 2008; Bruna et al.,

2014; Defferrard et al., 2016; Kipf & Welling, 2017; Monti

et al., 2017; Gilmer et al., 2017) are a widely-used class

of models for learning on relations and interaction data.

These models have recently been successfully applied in a

1Seminar for Applied Mathematics (SAM), D-MATH, ETH
Zürich, Switzerland 2ETH AI Center, ETH Zürich 3Twitter Inc.,
London, UK 4Department of Computer Science, University of
Oxford, UK. Correspondence to: T. Konstantin Rusch <kon-
stantin.rusch@sam.math.ethz.ch>.

Proceedings of the 39
th International Conference on Machine

Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

variety of tasks such as computer vision and graphics (Monti

et al., 2017), recommender systems (Ying et al., 2018),

transportation (Derrow-Pinion et al., 2021), computational

chemistry (Gilmer et al., 2017), drug discovery (Gaudelet

et al., 2021), physics (Shlomi et al., 2020), and analysis

of social networks (see Zhou et al. (2019); Bronstein et al.

(2021) for additional applications).

Several recent works proposed Graph ML models based on

differential equations coming from physics (Avelar et al.,

2019; Poli et al., 2019b; Zhuang et al., 2020; Xhonneux

et al., 2020b), including diffusion (Chamberlain et al.,

2021b) and wave (Eliasof et al., 2021) equations and geomet-

ric equations such as Beltrami (Chamberlain et al., 2021a)

and Ricci (Topping et al., 2021) flows. Such approaches

allow not only to recover popular GNN models as discretiza-

tion schemes for the underling differential equations, but

also, in some cases, can address problems encountered in

traditional GNNs such as oversmoothing (Nt & Maehara,

2019; Oono & Suzuki, 2020) and bottlenecks (Alon & Ya-

hav, 2021).

In this paper, we propose a novel physically-inspired ap-

proach to learning on graphs. Our framework, termed

GraphCON (Graph-Coupled Oscillator Network) builds

upon suitable time-discretizations of a specific class of ordi-

nary differential equations (ODEs) that model the dynamics

of a network of non-linear controlled and damped oscilla-

tors, which are coupled via the adjacency structure of the

underlying graph. Graph-coupled oscillators are often en-

countered in mechanical, electronic, and biological systems,

and have been studied extensively (Strogatz, 2015), with

a prominent example being functional circuits in the brain

such as cortical columns (Stiefel & Ermentrout, 2016). In

these circuits, each neuron oscillates with periodic firing

and spiking of the action potential. The network of neurons

is coupled in the form of a graph, with neurons representing

nodes and edges corresponding to synapses linking neurons.

Main Contributions. In the subsequent sections, we will

demonstrate the following features of GraphCON:

• GraphCON is flexible enough to accommodate any

standard GNN layer (such as GAT or GCN) as its

coupling function. As timesteps of our discretized

Graph-Coupled Oscillator Networks

ODE can be interpreted as layers of a deep neural

network (Chen et al., 2018; Haber & Ruthotto, 2018;

Chamberlain et al., 2021b), one can view GraphCON

as a wrapper around any underlying basic GNN layer

allowing to build deep GNNs. Moreover, we will show

that standard GNNs can be recovered as steady states

of the underlying class of ODEs, whereas GraphCON

utilizes their dynamic behavior to sample a richer set

of states, which leads to better expressive power.

• We mathematically formulate the frequently encoun-

tered oversmoothing problem for GNNs (Nt & Mae-

hara, 2019; Oono & Suzuki, 2020) in terms of the

stability of zero-Dirichlet energy steady states of the

underlying equations. By a careful analysis of the dy-

namics of the proposed ODEs, we demonstrate that

any zero-Dirichlet energy steady states are not (ex-

ponentially) stable. Consequently, we show that the

oversmoothing problem for GraphCON is mitigated by

construction.

• We rigorously prove that GraphCON mitigates the so-

called exploding and vanishing gradients problem for

the resulting GNN. Hence, GraphCON can greatly

improve the trainability of deep multi-layer GNNs.

• We provide an extensive empirical evaluation of Graph-

CON on a wide variety of graph learning tasks such

as transductive and inductive node classification and

graph regression and classification, demonstrating that

GraphCON achieves competitive performance.

2. GraphCON

Let G = (V, E ⊆ V × V) be an undirected graph with

|V| = v nodes and |E| = e edges consisting of unordered

pairs of nodes {i, j} and denoted i ∼ j. We will label

nodes by the index i ∈ V = {1, 2, . . . , v}. For any i ∈ V ,

we denote its 1-neighborhood as Ni = {j ∈ V : i ∼ j}.

Furthermore, let X ∈ R
v×m be given by X = {Xi} for

i ∈ V , denoting the m-dimensional feature vector at each

node i.

Central to our framework is a graph dynamical system rep-

resented by the following nonlinear system of ODEs:

X
′′ = σ(Fθ(X, t))− γX− αX′. (1)

Here, X(t) denotes the time-dependent v ×m-matrix of

node features, σ is the activation function, Fθ is a general

learnable (possibly time-dependent) 1-neighborhood cou-

pling function of the form

(Fθ(X, t))i = Fθ (Xi(t),Xj(t), t) ∀i ∼ j, (2)

parametrized with a set of learnable parameters θ.

By introducing the auxiliary velocity variable Y(t) =
X

′(t) ∈ R
v×m, we can rewrite the second-order ODEs

(1) as a first-order system:

Y
′ = σ(Fθ(X, t))− γX− αY,

X
′ = Y.

(3)

The key idea of our framework is, given the input node

features X(0) as an initial condition, to use the solution

X(T) at some time T as the output (more generally, one can

also apply (linear) transformations (embeddings) to X(0)
and X(T)). As will be shown in the following section, the

space of solutions of our system is a rich class of functions

that can solve many learning tasks on a graph.

The system (3) must be solved by an iterative numerical

solver using a suitable time-discretization. It is highly desir-

able for a time-discretization to preserve the structure of the

underlying ODEs (3) (Hairer et al., 1987). In this paper, we

use the following IMEX (implicit-explicit) time-stepping

scheme, which extends the symplectic Euler method (Hairer

et al., 1987) to systems with an additional damping term,

Y
n = Y

n−1 +∆t[σ(Fθ(X
n−1, tn−1))

− γXn−1 − αYn−1],

X
n = X

n−1 +∆tYn,

(4)

for n = 1, . . . , N , where ∆t > 0 is a fixed time-step and

Y
n,Xn denote the hidden node features at time tn = n∆t.

The iterative scheme (4) can be interpreted as an N -layer

graph neural network (with potential additional linear input

and readout layers, omitted here for simplicity), which we

refer to as GraphCON (see section 3 for the motivation

of this nomenclature). The coupling function Fθ plays

the role of a message passing mechanism (Gilmer et al.

(2017), also referred to, in various contexts, as ‘diffusion’

or ‘neighborhood aggregation’) in traditional GNNs.

Choice of the coupling function Fθ. Our framework al-

lows for any learnable 1-neighborhood coupling to be used

as Fθ, including instances of message passing mechanisms

commonly used in the Graph ML literature such as Graph-

SAGE (Hamilton et al., 2017), Graph Attention (Velickovic

et al., 2018), Graph Convolution (Defferrard et al., 2016;

Kipf & Welling, 2017), SplineCNN (Fey et al., 2018), or

MoNet (Monti et al., 2017)). In this paper, we focus on two

particularly popular choices:

Attentional message passing of Velickovic et al. (2018):

Fθ(X
n, tn) = A

n(Xn)Xn
W

n,

with learnable weight matrices Wn ∈ R
m×m and attention

matrices An ∈ R
n×n following the adjacency structure of

the graph G, i.e., (An(Xn))ij = 0 if j /∈ Ni and

(An(Xn))ij =

exp(LeakyReLU(a⊤[Wn
X

n
i ||Wn

X
n
j]))

∑

k∈Ni

exp(LeakyReLU(a⊤[WnXn
i ||WnXn

k]))
,

Graph-Coupled Oscillator Networks

otherwise (here X
n
i denotes the i-th row of X

n and

a ∈ R
2m). We refer to (4) based on this attentional 1-

neighborhood coupling as GraphCON-GAT.

Graph convolution operator of Kipf & Welling (2017):

Fθ(X
n, tn) = D̂

− 1

2 ÂD̂
− 1

2X
n
W

n, (5)

with Â = A + I denoting the adjacency matrix of G
with inserted self-loops, diagonal degree matrix D =
diag(

∑n
l=1 Âkl), and W

n
i ∈ R

m×m being learnable

weight matrices. We refer to (4) based on this convolutional

1-neighborhood coupling as GraphCON-GCN.

Steady States of GraphCON and relation to GNNs. It

is straightforward to see that the steady states X
∗,Y∗ of

the GraphCON dynamical system (4) with an autonomous

coupling function Fθ = Fθ(X) (as in GraphCON-GAT or

GraphCON-GCN) are given by Y
∗ ≡ 0 and

X
∗ =

∆t

γ
σ(Fθ(X

∗)). (6)

Using a simple fixed point iteration to find the steady states

(6) yields a multi-layer GNN of the form;

X
n =

∆t

γ
σ(Fθ(X

n−1)), for n = 1, 2, . . . , N. (7)

We observe that (up to a rescaling by the factor ∆t/γ) equa-

tion (7) corresponds to the update formula for any standard

N -layer message-passing GNN (Gilmer et al., 2017), in-

cluding such popular variants as GAT (Velickovic et al.,

2018) or GCN (Kipf & Welling, 2017).

Thus, this interpretation of GraphCON (4) clearly brings

out its relationship with standard GNNs. Unlike in standard

multi-layer GNNs of the generic form (7) that can be thought

of as steady states of the underlying ODEs (3), GraphCON

evolves the underlying node features dynamically in time.

Interpreting the multiple GNN layers as iterations at times

tn = n∆t in (4), we observe that the node features in Graph-

CON follow the trajectories of the corresponding dynamical

system and can explore a richer sampling of the underlying

latent feature space, leading to possibly greater expressive

power than standard GNNs (7), which might remain in the

vicinity of steady states.

Moreover, this interpretation also reveals that, in principle,

any GNN of the form (7) can be used within the Graph-

CON framework, offering a very flexible and broad class

of architectures. Hence, one can think of GraphCON as an

additional wrapper on top of any basic GNN layer allow-

ing for a principled and stable design of deep multi-layered

GNNs. In the following Section 3, we show that such an

approach has several key advantages over standard GNNs.

3. Properties of GraphCON

To gain some insight into the functioning of GraphCON (4),

we start by setting the hyperparameter γ = 1 and assuming

that the 1-neighborhood coupling Fθ is given by either the

GAT or GCN type coupling functions. In this case, the

underlying ODEs (3) takes the following node-wise form,

X
′
i = Yi,

Y
′
i = σ





∑

j∈Ni

AijXj



−Xi − αYi,
(8)

for all nodes i ∈ V , with Aij = A (Xi(t),Xj(t)) ∈ R

stemming from the attention or convolution operators. Fur-

thermore, the matrices are right stochastic i.e., the entries

satisfy,

0 ≤ Aij ≤ 1, ∀j ∈ Ni, ∀i ∈ V,
∑

j∈Ni

Aij = 1, ∀i ∈ V. (9)

Uncoupled case. The simplest case of (8), corresponds

to setting σ ≡ 0 and α = 0. In this case, all nodes are

uncoupled from each other and the solutions of the resulting

ODEs are of the form,

Xi(t) = Xi(0) cos(t) +Yi(0) sin(t). (10)

Thus, the dynamics of the ODEs (3) in this special case

correspond to a system of uncoupled oscillators, with each

node oscillating at unit frequency.

Coupled linear case. Next, we introduce coupling be-

tween the nodes that are adjacent on the underlying graph G
and assume identity activation function σ(x) = x. In this

case, (8) is a coupled linear system and an exact closed form

solution, such as (10) may not be possible. However, we can

describe the dynamics of (8) in the form of the following

proposition (proved in SM C.1),

Proposition 3.1. Let the node features X,Y evolve accord-

ing to the ODEs (8) with activation function σ = id and

time-independent matrix A (e.g. Aij = A(Xi(0),Xj(0))
using the initial features). Further assume that A is sym-

metric and α = 0. Then

∑

i∈V

‖Yi(t)‖2 +
∑

i∈V

∑

j∈Ni

Aij‖Xi(t)−Xj(t)‖2

=
∑

i∈V

‖Yi(0)‖2 +
∑

i∈V

∑

j∈Ni

Aij‖Xi(0)−Xj(0)‖2,

(11)

holds for all t > 0.

Thus, in this case, we have shown that the dynamics of the

Graph-Coupled Oscillator Networks

underlying ODEs (8) preserves the energy,

E (t) :=
∑

i∈V

‖Yi(t)‖2 +
∑

i∈V

∑

j∈Ni

Aij‖Xi(t)−Xj(t)‖2,

(12)

and the trajectories of (8) are constrained to lie on a man-

ifold of the node feature space, defined by the level sets

of the energy. In particular, energy (12) is not produced

or destroyed but simply redistributed among the nodes of

the underlying graph G. Thus, the dynamics of (3) in this

setting amounts to the motion of a linear system of coupled

oscillators.

General nonlinear case. In the general case, we have

(i) a nonlinear activation function σ; (ii) time-dependent

non-linear coefficients Aij = A(Xi(t),Xj(t)); and (iii)

possible unsymmetrical entries Aij 6= Aji. All these fac-

tors destroy the energy conservation property (11) and can

possibly lead to unbounded growth of the energy. Hence,

we need to add some damping to the system. To this end,

the damping term in (8) is activated by setting α > 0. More-

over, γ 6= 1 corresponds to controlling frequencies of the

nodes. Thus, the overall dynamics of the underlying ODEs

(3) amounts to the motion of a nonlinear system of cou-

pled, controlled and damped oscillators with the coupling

structure being that of the underlying graph. This explains

our choice of the name, Graph-Coupled Oscillatory Neural

Network or ‘GraphCON’ for short.

We illustrate the dynamics of GraphCON in Fig. 1, where

the model is applied to the graph of a molecule from the

ZINC database (Irwin et al., 2012), with features X denot-

ing the position of the nodes and they are propagated in

time through the action of GraphCON (4). The oscillatory

behavior of the node features, as well as their dependence

on the adjacency structure of the underlying graph can be

clearly observed in this figure.

Oversmoothing and GraphCON. One of the common

plights of GNN models such as GAT (Velickovic et al.,

2018), GCN (Kipf & Welling, 2017) and their variants

is oversmoothing (Nt & Maehara, 2019; Oono & Suzuki,

2020), a phenomenon where all node features in a deep

GNN converge to the same constant value as the number of

hidden layers is increased. Consequently, one often must re-

sort to shallow GNNs at the expense of expressive power (Nt

& Maehara, 2019; Oono & Suzuki, 2020). Many attempts

have been made in recent years to mitigate the oversmooth-

ing problem for GNNs, including regularization procedures

such as DropEdge (Rong et al., 2020), using intermediate

representations (Xu et al., 2018b), or adding residual con-

nections (Chen et al., 2020).

We will show that GraphCON allows to mitigate this prob-

lem by construction, and set off by formulating this problem

time

Figure 1. Illustration of GraphCON dynamics on a ZINC molecu-

lar graph. The initial positions of GraphCON (X0 in (4)) are repre-

sented by the 2-dimensional positions of the nodes, while the initial

velocities (Y0 in (4)) are set to the initial positions. The positions

are propagated forward in time (‘layers’) using GraphCON-GCN

with random weights. The molecular graph is plotted at initial time

t = 0 as well as at t = 20.

in precise mathematical terms and to this end, we recall

the Dirichlet energy, defined on the node features X of an

undirected graph G as,

E(X) =
1

v

∑

i∈V

∑

j∈Ni

‖Xi −Xj‖2. (13)

Next, we define oversmoothing as follows:

Definition 3.2. Let Xn denote the hidden features of the nth

layer of an N -layer GNN, with n = 0, . . . , N . We define

oversmoothing as the exponential convergence to zero of

the layer-wise Dirichlet energy as a function of n, i.e.,

E(Xn) ≤ C1e
−C2n, (14)

with some constants C1, C2 > 0.

In other words, oversmoothing happens when the graph

gradients vanish quickly (see for instance the illustration in

Fig. 2) in the number of hidden layers of the GNN. As a

result, the feature vectors across all nodes rapidly (exponen-

tially) converge to the same constant value. This behavior is

commonly observed in GNNs and is identified as one of the

reasons for the difficulty in designing deep GNNs.

GraphCON behaves rather differently and allows to mitigate

the oversmoothing problem in the sense of definition 3.2. To

see this, we focus on the underlying ODEs (3). It is trivial

to extend the definition of oversmoothing from the discrete

case to the continuous one by requiring that oversmoothing

happens for the ODEs (3) if the Dirichlet energy behaves as,

E(X(t)) ≤ C1e
−C2t, ∀t > 0, (15)

for some C1,2 > 0.

We have the following simple proposition (proved in SM

C.2) that characterizes the oversmoothing problem for the

Graph-Coupled Oscillator Networks

underlying ODEs in the standard terminology of dynamical

systems (Wiggins, 2003),

Proposition 3.3. The oversmoothing problem occurs for the

ODEs (3) if and only if the hidden states (X∗,Y∗) = (c,0)
are exponentially stable steady states (fixed points) of the

ODE (3), for some c ∈ R
m and 0 being the m-dimensional

vector with zeroes for all its entries.

In other words, all the trajectories of the ODE (3), that

start within the corresponding basin of attraction, have to

converge exponentially fast in time (satisfy (15)) to the

corresponding steady state (c,0) for the oversmoothing

problem to occur for this system. Note that the basins of

attraction will be different for different values of c.

Given this characterization, the key questions are a) whether

(c,0) are fixed points for the ODE (3), and b) whether

these fixed points are exponentially stable. We answer these

questions for the ODEs (8) in the following

Proposition 3.4. Assume that the activation function σ in

the ODEs (8) is ReLU. Then, for any c ∈ R
m such that each

entry of the vector cℓ ≥ 0, for all 1 ≤ ℓ ≤ m, the hidden

state (c,0) is a steady state for the ODEs (8). However

under the additional assumption of α ≥ 1
2 , this fixed point

is not exponentially stable.

The fact that (c,0) is a steady state of (8), for any positive

c is straightforward to see from the structure of (8) and the

definition of the ReLU activation function. We can already

observe from the energy identity (11) for the simplified

symmetric linear system that the energy (12) for the small

perturbations around the steady state (c,0) is conserved

in time. Hence, these small perturbations do not decay at

all, let alone, exponentially fast in time. Thus, these steady

states are not exponentially stable.

An extension of this analysis to the nonlinear time-

dependent, possibly non-symmetric system (8) is more sub-

tle and the proof relies on the identity (28) (expressed in

Proposition C.1 in SM C.3) that describes how a suitably de-

fined energy of the general system (8) evolves around small

perturbations of the steady state (c,0). A careful analysis

of this identity reveals that these small perturbations can

grow polynomially in time (at least for short time periods)

and do not decay exponentially. Consequently, the fixed

point (c,0) is not stable. This shows that the oversmooth-

ing problem, in the sense of definition 3.2, is mitigated for

the ODEs (3) and structure preserving time-discretizations

of it such as (4), from which, in simple words it follows that

GraphCON mitigates oversmoothing by construction.

This analysis also illustrates the rich dynamics of (3) as

we show that even if the trajectories reach a steady state of

the form (c,0), very small perturbations will grow and the

trajectory will veer away from this steady state, possibly to-

wards other constant steady states which are also not stable.

Thus, the trajectories can sample large parts of the latent

space, contributing to the expressive power of the model.

We remark here that the use of ReLU activation function in

proposition C.1 is purely for definiteness. Any other widely

used activation function can be used in σ, with correspond-

ing zero Dirichlet energy steady states being specified by the

roots of the algebraic equation σ(c) = c and an analogous

result can be derived. For instance, the zero-Dirichlet energy

steady state corresponding to the Tanh activation function is

given by (0,0).

On the exploding and vanishing gradients problem.

The mitigation of oversmoothing by GraphCON has a great

bearing on increasing the expressivity of the resulting deep

GNN. In addition, it turns out that using graph-coupled os-

cillators can also facilitate training of the underlying GNNs.

To see this, we will consider a concrete example of the

coupling function in (4) to be GCN (5). Other coupling

functions such as GAT can be considered analogously. For

simplicity of exposition and without any loss of generality,

we consider scalar node features by setting m = 1. We

also set α, γ = 1. With these assumptions, a N -layer deep

GraphCON-GCN reduces to the following explicit (node-

wise) form,

Y
n
i = (1−∆t)Yn−1

i +∆tσ
(

C
n−1
i

)

−∆tXn−1
i ,

C
n−1
i =

w
n
i

di
X

n−1
i +

∑

j∈Ni

w
n
j X

n−1
j

√

didj
,

X
n
i = X

n−1
i +∆tYn

i , ∀1 ≤ n ≤ N, ∀1 ≤ i ≤ v.
(16)

Here, di = deg(i), denoting the degree of a node i ∈ V and

w
n ∈ R

v , denoting the learnable weight vector.

Moreover, we are in a setting where the learning task is for

the GNN to approximate the ground truth vector X ∈ R
v.

Consequently, we set up the following loss-function,

J(w) :=
1

2v

∑

i∈V

|XN
i −Xi|2, (17)

with w = [w1,w2, · · · ,wN] denoting the concatenated

learnable weights in (16). During training, one computes

an approximate minimizer of the loss-function (17) with a

(stochastic) gradient descent (SGD) procedure. At every

step of gradient descent, we need to compute the gradient

∂wJ. For definiteness, we fix node k ∈ V and layer 1 ≤ ℓ ≤
N and consider the learnable weight wℓ

k. Thus, in a SGD

step, one needs to compute gradient, ∂J
∂wℓ

k

. By chain rule,

one readily proves the following identity (see for instance

(Pascanu et al., 2013)),

∂J

∂wℓ
k

=
∂J

∂ZN

∂ZN

∂Zℓ

∂Zℓ

∂wℓ
k

. (18)

Graph-Coupled Oscillator Networks

Here,

Zn = [Xn
1 ,Y

n
1 ,X

n
2 ,Y

n
2 , · · · ,Xn

i ,Y
n
i , · · · ,Xn

v ,Y
n
v] ,

is the concatenated node-feature vector at the layer 1 ≤ n ≤
N .

Furthermore, by using the product rule, we see that,

∂ZN

∂Zℓ
=

N
∏

n=ℓ+1

∂Zn

∂Zn−1
. (19)

In other words, the gradient ∂J
∂wℓ

k

measures the contribution

made by the node k in the ℓ-th hidden layer to the learning

process.

If we assume that the partial gradient behaves as ∂Zn

∂Zn−1 ∼ λ,

for all n, then, the long-product structure of (19) implies that
∂ZN

∂Zℓ ∼ λN−ℓ. If on average, λ > 1, then we observe that

the total gradient (18) can grow exponentially in the number

of layers, leading to the exploding gradients problem. Simi-

larly, if on average, λ < 1, then the total gradient (18) can

decay exponentially in the number of layers, leading to the

vanishing gradients problem. Either of these situations can

lead to failure of training as the gradient step either blows

up or does not change at all. Hence, for very deep GNN

architectures, it is essential to investigate if the exploding

and vanishing gradients problem can be mitigated. We start

by showing the following upper bound (proved in SM C.4)

on the gradients,

Proposition 3.5. Let Xn,Yn be the node features, gener-

ated by Graphcon-GCN (16). We assume that ∆t << 1 is

chosen to be sufficiently small. Then, the gradient of the

loss function J (17) with respect to any learnable weight

parameter w
ℓ
k, for some 1 ≤ k ≤ v and 1 ≤ ℓ ≤ N is

bounded as

∣

∣

∣

∣

∂J

∂wℓ
k

∣

∣

∣

∣

≤ β′D̂∆t(1 + ΓN∆t)

v

(

max
1≤i≤v

(|X0
i |+ |Y0

i |)
)

+
β′D̂∆t(1 + ΓN∆t)

v

(

max
1≤i≤v

|Xi|+ β
√
N∆t

)2

.

(20)

Here,

β = max
x

|σ(x)|, β′ = max
x

|σ′(x)|,

D̂ = max
i,j∈V

1
√

didj
, Γ := 6 + 4β′D̂ max

1≤n≤N
‖wn‖1.

(21)

The upper bound (20) clearly shows that the total gradient

is globally bounded, independent of the number of layers

N , if ∆t ∼ N−1, thus mitigating the exploding gradients

problem. Even if the small parameter ∆t is chosen inde-

pendently of the number of layers N , the total gradient in

(20) only grows, at most quadratically in the number of

layers, thus preventing exponential blowup of gradients and

mitigating the exploding gradients problem. However, this

upper bound (20) does not necessarily rule out the vanish-

ing gradients problem. To this end, we derive the following

formula (in SM C.4) for the gradients,

Proposition 3.6. For 1 ≤ n ≤ N , let Xn be the node

features generated by GraphCON-GCN (16), Then for suf-

ficiently small ∆t << 1, the gradient ∂J
∂wℓ

k

, for any ℓ, k

satisfies the following expression,

∂J

∂wℓ
k

=
2∆t2

v

∑

j∈Nk

σ′(Cℓ−1
j)Xℓ−1

j

(

X
N
j −Xj

)

√

djdk

+O(∆t3),

(22)

with the order notation being defined in SM Eqn. (54).

One readily observes from the formula (22), that to lead-

ing order in the small parameter ∆t, the gradient ∂J
∂wℓ

k

is

independent of the number of layers N of the underlying

GNN. Thus, although the gradient can be small (due to small

∆t), it will not vanish by increasing the number of layers,

mitigating the vanishing gradient problem.

4. Related Work

Differential equations have historically played a role in de-

signing and interpreting various algorithms in machine learn-

ing, including non-linear dimensionality reduction methods

(Belkin & Niyogi, 2003; Coifman & Lafon, 2006) and rank-

ing (Page et al., 1999; Chakrabarti, 2007) (all of which

are related to closed-form solutions of diffusion PDEs). In

the context of Deep Learning, differential equations have

been used to derive various types of neural networks in-

cluding Neural ODEs and their variants, that have been

used to design and interpret residual (Chen et al., 2018) and

convolutional (Haber & Ruthotto, 2018) neural networks.

These approaches have recently gained traction in Graph

ML, e.g. with ODE-based models for learning on graphs

(Avelar et al., 2019; Poli et al., 2019b; Zhuang et al., 2020;

Xhonneux et al., 2020b).

Chamberlain et al. (2021b) used parabolic diffusion-type

PDEs to design GNNs using graph gradient and diver-

gence operators as the spatial differential operator, a trans-

former type-attention as a learnable diffusivity function (‘1-

neighborhood coupling’ in our terminology), and a vari-

ety of time stepping schemes to discretize the temporal

dimension in this framework. Chamberlain et al. (2021a)

applied a non-euclidean diffusion equation (‘Beltrami flow’)

to a joint positional-feature space, yielding a scheme with

adaptive spatial derivatives (‘graph rewiring’), and Topping

et al. (2021) studied a discrete geometric PDE similar to

Ricci flow to improve information propagation in GNNs.

Graph-Coupled Oscillator Networks

We can see the contrast between the diffusion-based meth-

ods of Chamberlain et al. (2021b;a) and GraphCON in the

simple case of identity activation σ(x) = x. Then, under

the further assumption that the second-order time deriva-

tive X
′′ is removed from (1) and α = γ = 1, we recover

the graph diffusion-PDEs of (Chamberlain et al., 2021b).

Hence, the presence of the temporal second-order derivative

distinguishes this approach from diffusion-based PDEs.

Eliasof et al. (2021) proposed a GNN framework arising

from a mixture of parabolic (diffusion) and hyperbolic

(wave) PDEs on graphs with convolutional coupling op-

erators, which describe dissipative wave propagation. We

point out that a particular instance of their model (damped

wave equation, also called as the Telegrapher’s equation)

can be obtained as a special case of our model (1) with the

identity activation function. This is not surprising as the

zero grid-size limit of oscillators on a regular grid yields a

wave equation. However, given that we use a nonlinear acti-

vation function and the specific placement of the activation

layer in (3), a local PDE interpretation of the general form

of our underlying ODEs (1) does not appear to be feasible.

Finally, the explicit use of networks of coupled, controlled

oscillators to design machine learning models was proposed

in context of recurrent neural networks (RNNs) by Rusch &

Mishra (2021a;b).

5. Experimental results

We present a detailed experimental evaluation of the pro-

posed framework on a variety of graph learning tasks. We

test two settings of GraphCON: GraphCON-GCN (using

graph convolution as the 1-neighborhood coupling in (4))

and GraphCON-GAT (using the attentional coupling). Since

in most experiments, these two configurations already out-

perform the state-of-the-art (SOTA), we only apply Graph-

CON with more involved coupling functions in a few partic-

ular tasks. All code to reproduce our results can be found at

https://github.com/tk-rusch/GraphCON.

5.1. Evolution of Dirichlet Energy.

We start by illustrating the dynamics of the Dirichlet energy

(13) of GraphCON for an undirected graph representing a

2-dimensional 10× 10 regular grid with 4-neighbor connec-

tivity. The node features X are randomly sampled from

U([0, 1]) and then propagated through 100-layer GNNs

(with random weights): GAT, GCN, and their GraphCON-

stacked versions (GraphCON-GAT and GraphCON-GCN)

for two different values of the damping parameter α = 0, 0.5
in (4) and with fixed γ = 1. In Fig. 2, we plot the (logarithm

of) Dirichlet energy of each layer’s output with respect to

(logarithm) of the layer number. It can clearly be seen that

GAT and GCN suffer from the oversmoothing problem as

the Dirichlet energy converges exponentially fast to zero,

indicating that the node features become constant, while

GraphCON is devoid of this behavior. This holds true even

for non-zero value of the damping parameter α, where the

Dirichlet energy stabilizes after an initial decay.

1 10 100
Layer n

10−39

10−30

10−21

10−12

10−3

E
(X

n
)

GAT

GCN

GraphCON-GAT (α = 0)

GraphCON-GAT (α = 0.5)

GraphCON-GCN (α = 0)

GraphCON-GCN (α = 0.5)

Figure 2. Dirichlet energy E(Xn) of layer-wise node features Xn

propagated through a GAT and GCN as well as their GraphCON-

stacked versions (GraphCon-GAT and GraphCON-GCN) for two

different values of α = 0, 0.5 in (4) and fixed γ = 1.

5.2. Transductive node classification

We evaluate GraphCON on both homophilic and het-

erophilic datasets, where high homophily implies that the

features in a node are similar to those of its neighbors. The

homophily level reported in Table 1 and Table 2 is the mea-

sure proposed by Pei et al. (2020).

Homophilic datasets. We consider three widely used

node classification tasks, based on the citation networks

Cora (McCallum et al., 2000), Citeseer (Sen et al., 2008)

and Pubmed (Namata et al., 2012). We follow the evaluation

protocols and training, validation, and test splits of Shchur

et al. (2018); Chamberlain et al. (2021b), using only on the

largest connected component in each network.

Table 1 compares GraphCON with standard GNN baselines:

GCN (Kipf & Welling, 2017), GAT (Velickovic et al., 2018),

MoNet (Monti et al., 2017), GraphSAGE (GS) (Hamilton

et al., 2017), CGNN (Xhonneux et al., 2020a), GDE (Poli

et al., 2019a), and GRAND (Chamberlain et al., 2021b). We

observe that GraphCON-GCN and GraphCON-GAT outper-

form pure GCN and GAT consistently. We also provide re-

sults for GraphCON based on the propagation layer used in

GRAND i.e., transformer (Vaswani et al., 2017) based graph

attention, referred to as GraphCON-Tran, which also out-

performs the basic underlying model. Overall, GraphCON

models show the best performance on all these datasets.

Heterophilic datasets. We also evaluate GraphCON on the

Graph-Coupled Oscillator Networks

Table 1. Transductive node classification test accuracy (MAP in %)

on homophilic datasets. Mean and standard deviation are obtained

using 20 random initializations on 5 random splits each. The

three best performing methods are highlighted in red (First), blue

(Second), and violet (Third).

Cora Citeseer Pubmed
Homophily level 0.81 0.74 0.80

GAT-ppr 81.6± 0.3 68.5± 0.2 76.7± 0.3
MoNet 81.3± 1.3 71.2± 2.0 78.6± 2.3
GraphSage-mean 79.2± 7.7 71.6± 1.9 77.4± 2.2
GraphSage-maxpool 76.6± 1.9 67.5± 2.3 76.1± 2.3
CGNN 81.4± 1.6 66.9± 1.8 66.6± 4.4
GDE 78.7± 2.2 71.8± 1.1 73.9± 3.7

GCN 81.5± 1.3 71.9± 1.9 77.8± 2.9
GraphCON-GCN 81.9± 1.7 72.9± 2.1 78.8± 2.6

GAT 81.8± 1.3 71.4± 1.9 78.7± 2.3
GraphCON-GAT 83.2± 1.4 73.2± 1.8 79.5± 1.8

GRAND 83.6± 1.0 73.4± 0.5 78.8± 1.7
GraphCON-Tran 84.2± 1.3 74.2± 1.7 79.4± 1.3

heterophilic graphs; Cornell, Texas and Wisconsin from the

WebKB dataset1. Here, the assumption on neighbor feature

similarity does not hold. Many GNN models were shown to

struggle in this settings as can be seen by the poor perfor-

mance of baseline GCN and GAT in Table 2. On the other

hand, we see from Table 2 that not only do GraphCON-

GCN and GraphCON-GAT dramatically outperform the

underlying GCN and GAT models (e.g. for the most het-

erophilic Texas graph, GraphCON-GCN and GraphCON-

GAT have mean accuracies of 85.4% and 82.2%, compared

to accuracies of 55.1% and 52.2% for GCN and GAT), the

GraphCON models also provide the best performance, out-

performing recent baselines that are specifically designed

for heterophilic graphs.

5.3. Inductive node classification

In this experiment, we consider the Protein-Protein-

Interaction (PPI) dataset of Zitnik & Leskovec (2017), using

the protocol of Hamilton et al. (2017). Table 3 shows the

test performance (micro-average F1) of GraphCON and sev-

eral standard GNN baselines. We can see that GraphCON

significantly improves the performance of the underling

models (GAT from 97.4% to 99.4% and GCN from 98.5%
to 99.6%, which is the top result on this benchmark).

5.4. Molecular graph property regression

We reproduce the benchmark proposed in Dwivedi et al.

(2020), regressing the constrained solubulity of 12K molec-

ular graphs from the ZINC dataset (Irwin et al., 2012). We

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-
11/www/wwkb/

Table 2. Transductive node classification test accuracy (MAP in

%) on heterophilic datasets. All results represent the average

performance of the respective model over 10 fixed train/val/test

splits, which are taken from Pei et al. (2020).

Texas Wisconsin Cornell
Homophily level 0.11 0.21 0.30

GPRGNN 78.4± 4.4 82.9± 4.2 80.3± 8.1
H2GCN 84.9± 7.2 87.7± 5.0 82.7± 5.3
GCNII 77.6± 3.8 80.4± 3.4 77.9± 3.8
Geom-GCN 66.8± 2.7 64.5± 3.7 60.5± 3.7
PairNorm 60.3± 4.3 48.4± 6.1 58.9± 3.2
GraphSAGE 82.4± 6.1 81.2± 5.6 76.0± 5.0
MLP 80.8± 4.8 85.3± 3.3 81.9± 6.4

GAT 52.2± 6.6 49.4± 4.1 61.9± 5.1
GraphCON-GAT 82.2± 4.7 85.7± 3.6 83.2± 7.0

GCN 55.1± 5.2 51.8± 3.1 60.5± 5.3
GraphCON-GCN 85.4± 4.2 87.8± 3.3 84.3± 4.8

Table 3. Test micro-averaged F1 score on Protein-Protein Interac-

tions (PPI) data set.

Model Micro-averaged F1

VR-GCN (Chen et al., 2017) 97.8
GraphSAGE (Hamilton et al., 2017) 61.2
PDE-GCN (Eliasof et al., 2021) 99.2
GCNII (Chen et al., 2020) 99.5
Cluster-GCN (Chiang et al., 2019) 99.4
GeniePath (Liu et al., 2019) 98.5
JKNet (Xu et al., 2018b) 97.6

GAT (Velickovic et al., 2018) 97.3
GraphCON-GAT 99.4

GCN (Kipf & Welling, 2017) 98.5
GraphCON-GCN 99.6

follow verbatim the settings of Dwivedi et al. (2020); Beani

et al. (2021): make no use of edge features and constrain the

network sizes to ∼100K parameters. Table 4 summarizes

the performance of GraphCON and standard GNN baselines.

Both GraphCON-GAT and GraphCON-GCN outperform

GAT and GCN respectively, by a factor of 2. Moreover,

the performance of GraphCON-GCN is on par with the re-

cent state-of-the-art method DGN (Beani et al., 2021) with

significantly lower standard deviation. Given these results,

it is instructive to ask why GraphCON models outperform

their underlying base GNN models such as GCN. A part of

the answer can be seen from SM Table 6, where the MAE

for GCN and GraphCON-GCN for this task is shown for

increasing number of layers. We observe from this table

that while the MAE with GCN increases with the number

of layers, the MAE for GraphCON-GCN decreases mono-

tonically with increasing layers, allowing for the use of very

deep GraphCON models with increased expressive power.

Graph-Coupled Oscillator Networks

Table 4. Test mean absolute error (MAE, averaged over 4 runs on

different initializations) on ZINC (without edge features, small

12k version) restricted to small network sizes of ∼ 100k parame-

ters. Baseline results are taken from Beani et al. (2021).

Model Test MAE

GIN (Xu et al., 2018a) 0.41± 0.008
GatedGCN (Bresson & Laurent, 2017) 0.42± 0.006
GraphSAGE (Hamilton et al., 2017) 0.41± 0.005
MoNet (Monti et al., 2017) 0.41± 0.007
PNA (Corso et al., 2020) 0.32± 0.032
DGN (Beani et al., 2021) 0.22± 0.010

GCN (Kipf & Welling, 2017) 0.47± 0.002
GraphCON-GCN 0.22± 0.004

GAT (Velickovic et al., 2018) 0.46± 0.002
GraphCON-GAT 0.23± 0.004

5.5. MNIST Superpixel graph classification

This experiment, first suggested by Monti et al. (2017), is

based on the MNIST dataset (LeCun et al., 1998), where

the grey-scale images are transformed into irregular graphs,

as follows: the vertices in the graphs represent superpixels

(large blobs of similar color), while the edges represent their

spatial adjacency. Each graph has a fixed number of 75

superpixels (vertices). We use the standard splitting of using

55K-5K-10K for training, validation, and testing.

Table 5 shows that GraphCON-GCN dramatically improves

the performance of a pure GCN (test accuracy of 88.89%
vs 98.70%). We stress that both models share the param-

eters over all layers, i.e. GraphCON-GCN does not have

more parameters despite being a deeper model. Thus, the

better performance of GraphCON-GCN over GCN can be

attributed to the use of more ‘layers’ (iterations) and not to a

higher number of parameters (see SM Table 7 for accuracy

vs. number of layers for this testcase). Finally, Table 5 also

shows that GraphCON-GAT outperforms all other methods,

including the recently proposed PNCNN (Finzi et al., 2021),

reaching a nearly-perfect test accuracy of 98.91%.

6. Conclusions

In conclusion, we proposed a novel framework for design-

ing deep Graph Neural Networks called GraphCON, based

on suitable time discretizations of ODEs (1) that model the

dynamics of a network of controlled and damped oscilla-

tors. The coupling between the nodes is conditioned on the

structure of the underlying graph.

One can readily interpret GraphCON as a framework to

propagate information through multiple layers of a deep

GNN, where each hidden layer has the same structure as

standard GNNs such as GAT, GCN etc. Unlike in canonical

constructions of deep GNNs, which stack hidden layers in

Table 5. Test accuracy in % on MNIST Superpixel 75.

Model Test accuracy

ChebNet (Defferrard et al., 2016) 75.62
MoNet (Monti et al., 2017) 91.11
PNCNN (Finzi et al., 2021) 98.76
SplineCNN (Fey et al., 2018) 95.22

GIN (Xu et al., 2018a) 97.23
GraphCON-GIN 98.53

GatedGCN (Bresson & Laurent, 2017) 97.95
GraphCON-GatedGCN 98.27

GCN (Kipf & Welling, 2017) 88.89
GraphCON-GCN 98.68

GAT (Velickovic et al., 2018) 96.19
GraphCON-GAT 98.91

a straightforward iterative fashion (7), GraphCON stacks

them in a more involved manner using the dynamics of

the ODE (3). Hence, in principle, any GNN hidden layer

can serve as the coupling function Fθ in GraphCON (4),

offering it as an attractive framework for constructing very

deep GNNs.

The well-known oversmoothing problem for GNNs was

described mathematically in terms of the stability of zero

Dirichlet energy steady states of the underlying ODE (3).

We showed that such zero Dirichlet energy steady states

of (3), which lead to constant node features, are not (ex-

ponentially) stable. Even if a trajectory reaches a feature

vector that is constant across all nodes, very small pertur-

bations will nudge it away and the resulting node features

will deviate from each other. Thus, by construction, we

demonstrated that the oversmoothing problem, in the sense

of definition 3.2, is mitigated for GraphCON.

In addition to increasing expressivity by mitigating the over-

smoothing problem, GraphCON was rigorously shown to

mitigate the exploding and vanishing gradients problem.

Consequently, using coupled oscillators also facilitates effi-

cient training of the resulting GNNs.

Finally, we extensively test GraphCON on a variety of node-

and graph-classification and regression tasks, including het-

erophilic datasets known to be challenging for standard

GNN models. From these experiments, we observed that (i)

GraphCON models significantly outperform the underlying

base GNN such as GCN or GAT and (ii) GraphCON models

are either on par with or outperform state-of-the-art models

on these tasks. This shows that ours is a novel, flexible,

easy to use framework for constructing deep GNNs with

theoretical guarantees and solid empirical performance.

Graph-Coupled Oscillator Networks

References

Alon, U. and Yahav, E. On the bottleneck of graph neural

networks and its practical implications. In ICML, 2021.

Avelar, P. H. C., Tavares, A. R., , Gori, M., and Lamb,

L. C. Discrete and continuous deep residual learning over

graphs. arXiv preprint, 2019.

Beani, D., Passaro, S., Létourneau, V., Hamilton, W., Corso,

G., and Liò, P. Directional graph networks. In ICML.

PMLR, 2021.

Belkin, M. and Niyogi, P. Laplacian eigenmaps for di-

mensionality reduction and data representation. Neural

Computation, 15(6):1373–1396, 2003.

Bresson, X. and Laurent, T. Residual gated graph convnets.

arXiv:1711.07553, 2017.

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković,

P. Geometric deep learning: Grids, groups, graphs,

geodesics, and gauges. arXiv:2104.13478, 2021.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral

networks and locally connected networks on graphs. In

2nd International Conference on Learning Representa-

tions, ICLR 2014, 2014.

Chakrabarti, S. Dynamic personalized pagerank in entity-

relation graphs. In WWW, 2007.

Chamberlain, B., Rowbottom, J., Eynard, D., Di Giovanni,

F., Dong, X., and Bronstein, M. Beltrami flow and neural

diffusion on graphs. In NeurIPS, 2021a.

Chamberlain, B., Rowbottom, J., Gorinova, M. I., Bron-

stein, M. M., Webb, S., and Rossi, E. GRAND: graph

neural diffusion. In Proceedings of the 38th International

Conference on Machine Learning, ICML, volume 139 of

Proceedings of Machine Learning Research, pp. 1407–

1418. PMLR, 2021b.

Chen, J., Zhu, J., and Song, L. Stochastic training of

graph convolutional networks with variance reduction.

arXiv:1710.10568, 2017.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple

and deep graph convolutional networks. In ICML. PMLR,

2020.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,

D. K. Neural ordinary differential equations. In NeurIPS,

2018.

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh,

C.-J. Cluster-gcn: An efficient algorithm for training

deep and large graph convolutional networks. In KDD,

2019.

Coifman, R. R. and Lafon, S. Diffusion maps. Applied and

computational harmonic analysis, 21(1):5–30, 2006.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković,

P. Principal neighbourhood aggregation for graph nets.

arXiv:2004.05718, 2020.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-

volutional neural networks on graphs with fast localized

spectral filtering. Advances in neural information pro-

cessing systems, 29:3844–3852, 2016.

Derrow-Pinion, A., She, J., Wong, D., Lange, O., Hester,

T., Perez, L., Nunkesser, M., Lee, S., Guo, X., Battaglia,

P. W., Gupta, V., Li, A., Xu, Z., Sanchez-Gonzalez, A.,

Li, Y., and Veličković, P. Traffic Prediction with Graph

Neural Networks in Google Maps. 2021.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y.,

and Bresson, X. Benchmarking graph neural networks.

arXiv:2003.00982, 2020.

Eliasof, M., Haber, E., and Treister, E. Pde-gcn: Novel ar-

chitectures for graph neural networks motivated by partial

differential equations. In NeurIPS, 2021.

Fey, M., Lenssen, J. E., Weichert, F., and Müller, H.

Splinecnn: Fast geometric deep learning with continuous

b-spline kernels. In CVPR, 2018.

Finzi, M. A., Bondesan, R., and Welling, M. Probabilistic

numeric convolutional neural networks. In 9th Interna-

tional Conference on Learning Representations, ICLR,

2021.

Frasconi, P., Gori, M., and Sperduti, A. A general frame-

work for adaptive processing of data structures. IEEE

Trans. Neural Networks, 9(5):768–786, 1998.

Gaudelet, T., Day, B., Jamasb, A. R., Soman, J., Regep,

C., Liu, G., Hayter, J. B., Vickers, R., Roberts, C., Tang,

J., et al. Utilizing graph machine learning within drug

discovery and development. Briefings in Bioinformatics,

22(6), 2021.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and

Dahl, G. E. Neural message passing for quantum chem-

istry. In ICML, 2017.

Goller, C. and Kuchler, A. Learning task-dependent

distributed representations by backpropagation through

structure. In ICNN, 1996.

Gori, M., Monfardini, G., and Scarselli, F. A new model for

learning in graph domains. In IJCNN, 2005.

Haber, E. and Ruthotto, L. Stable architectures for deep

neural networks. Inverse Problems, 34, 2018.

Graph-Coupled Oscillator Networks

Hairer, E., Norsett, S. P., and Wanner, G. Solving ordinary

differential equations I. Springer, 1987.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive rep-

resentation learning on large graphs. In NeurIPS, 2017.

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., and

Coleman, R. G. Zinc: a free tool to discover chemistry for

biology. Journal of chemical information and modeling,

52(7):1757–1768, 2012.

Kipf, T. N. and Welling, M. Semi-supervised classification

with graph convolutional networks. In ICLR, 2017.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-

based learning applied to document recognition. Proc.

IEEE, 86(11):2278–2324, 1998.

Liu, Z., Chen, C., Li, L., Zhou, J., Li, X., Song, L., and

Qi, Y. Geniepath: Graph neural networks with adaptive

receptive paths. In AAAI, 2019.

McCallum, A. K., Nigam, K., Rennie, J., and Seymore,

K. Automating the construction of internet portals with

machine learning. Information Retrieval, 3(2):127–163,

2000.

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J.,

and Bronstein, M. M. Geometric deep learning on graphs

and manifolds using mixture model cnns. In CVPR, 2017.

Namata, G., London, B., Getoor, L., Huang, B., and EDU, U.

Query-driven active surveying for collective classification.

In 10th International Workshop on Mining and Learning

with Graphs, volume 8, pp. 1, 2012.

Nt, H. and Maehara, T. Revisiting graph neural networks:

all we have is low pass filters. arXiv:1812.08434v4, 2019.

Oono, K. and Suzuki, T. Graph neural networks exponen-

tially lose expressive power for node classification. In

ICLR, 2020.

Page, L., Brin, S., Motwani, R., and Winograd, T. The

pagerank citation ranking: Bringing order to the web.

Technical report, 1999.

Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty of

training recurrent neural networks. In Proceedings of the

30th International Conference on Machine Learning, vol-

ume 28 of ICML’13, pp. III–1310–III–1318. JMLR.org,

2013.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B.

Geom-gcn: Geometric graph convolutional networks.

arXiv:2002.05287, 2020.

Poli, M., Massaroli, S., Park, J., Yamashita, A., Asama, H.,

and Park, J. Graph neural ordinary differential equations.

arXiv:1911.07532, 2019a.

Poli, M., Massaroli, S., Park, J., Yamashita, A., Asama, H.,

and Park, J. Graph neural ordinary differential equations.

pp. 6571–6583, 2019b.

Rong, Y., Huang, W., Xu, T., and Huang, J. Towards deep

graph convolutional networks on node classification. In

ICLR, 2020.

Rusch, T. K. and Mishra, S. Coupled oscillatory recurrent

neural network (cornn): An accurate and (gradient) stable

architecture for learning long time dependencies. In ICLR,

2021a.

Rusch, T. K. and Mishra, S. Unicornn: A recurrent model

for learning very long time dependencies. In ICML,

2021b.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and

Monfardini, G. The graph neural network model. IEEE

Trans. Neural Networks, 20(1):61–80, 2008.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,

and Eliassi-Rad, T. Collective classification in network

data. AI Magazine, 29(3):93–93, 2008.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,

S. Pitfalls of graph neural network evaluation.

arXiv:1811.05868, 2018.

Shlomi, J., Battaglia, P., and Vlimant, J.-R. Graph neural

networks in particle physics. Machine Learning: Science

and Technology, 2(2):021001, 2020.

Sperduti, A. Encoding labeled graphs by labeling RAAM.

In NIPS, 1994.

Sperduti, A. and Starita, A. Supervised neural networks

for the classification of structures. IEEE Trans. Neural

Networks, 8(3):714–735, 1997.

Stiefel, K. M. and Ermentrout, G. B. Neurons as oscillators.

Journal of Neurophysiology, 116:2950–2960, 2016.

Strogatz, S. Nonlinear Dynamics and Chaos. Westview,

Boulder CO, 2015.

Topping, J., Di Giovanni, F., Chamberlain, B. P., Dong, X.,

and Bronstein, M. M. Understanding over-squashing and

bottlenecks on graphs via curvature. arXiv:2111.14522,

2021.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,

L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention

is all you need. In NeurIPS, 2017.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A.,

Liò, P., and Bengio, Y. Graph attention networks. In 6th

International Conference on Learning Representations,

ICLR, 2018.

Graph-Coupled Oscillator Networks

Wiggins, S. Introduction to nonlinear dynamical systems

and chaos. Springer, 2003.

Xhonneux, L.-P., Qu, M., and Tang, J. Continuous graph

neural networks. In ICML. PMLR, 2020a.

Xhonneux, L.-p. A. C., Qu, M., and Tang, J. Continuous

graph neural networks. In ICML, 2020b.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful

are graph neural networks? arXiv:1810.00826, 2018a.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i.,

and Jegelka, S. Representation learning on graphs with

jumping knowledge networks. In ICML. PMLR, 2018b.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton,

W. L., and Leskovec, J. Graph convolutional neural net-

works for web-scale recommender systems. In KDD,

2018.

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., ,

Li, C., and Sun, M. Graph neural networks: a review of

methods and applications. arXiv:1812.08434v4, 2019.

Zhuang, J., Dvornek, N., Li, X., and Duncan, J. S. Ordi-

nary differential equations on graph networks. Technical

Report, 2020.

Zitnik, M. and Leskovec, J. Predicting multicellular function

through multi-layer tissue networks. Bioinformatics, 33

(14):i190–i198, 2017.

Supplementary Material for ”Graph-Coupled Oscillator Networks”

Supplementary Material for:

Graph-Coupled Oscillator Networks

A. Further experimental results

A.1. Performance of GraphCON with respect to number of layers

As we have argued in the main text, GraphCON is designed to be a deep GNN architecture with many layers. Depth could

enhance the expressive power of GraphCON and we investigate this issue in three of the datasets, presented in Section 5

of the main text. In the first two experiments, we will focus on the GraphCON-GCN model and compare and contrast its

performance, with respect to increasing depth, with the baseline GCN model.

We start with the molecular graph property regression example for the ZINC dataset of Irwin et al. (2012). In Table 6, we

present the mean absolute error (MAE) of the model on the test set with respect to increasing number of layers (up to 20
layers) of the respective GNNs. As observed from this table, the MAE with standard GCN increases with depth. On the

other hand, the MAE with GraphCON decreases as more layers are added.

Table 6. Test mean absolute errors of GraphCON-GCN as well as its baseline model GCN on the ZINC task for different number of layers

N = 5, 10, 15, 20.

Model
Layers

5 10 15 20

GraphCON-GCN 0.241 0.233 0.228 0.214
GCN 0.442 0.463 0.478 0.489

Next, we consider the MNIST Superpixel graph classification task and present the test accuracy with increasing depth

(number of layers) for both GCN and GraphCON-GCN. As in the previous example, we observe that increasing depth leads

to worsening of the test accuracy for GCN. On the other hand, the test accuracy for GraphCON-GCN increases as more

layers (up to 32 layers) are added to the model.

Table 7. Test accuracies in % of GraphCON-GCN as well as its baseline model GCN on the MNIST Superpixel 75 task for different

number of layers N = 4, 8, 16, 32.

Model
Layers

4 8 16 32

GraphCON-GCN 97.78 98.51 98.55 98.68
GCN 88.09 87.26 86.78 85.67

Additionally, we compare the performance of GraphCON-GCN to GCN with EdgeDrop (Rong et al., 2020)

(GCN+EdgeDrop), which has been specifically designed to mitigate the oversmoothing phenomenon for deeper GNN models.

We consider the Cora node-based classification task in the semi-supervised setting, where we compare GraphCON-GCN to

GCN+DropEdge for increasing number of layers N = 2, 4, 8, 16, 32, 64. We observe in Table 8 that GraphCON improves

(or retains) performance for a large increase in the number of layers, in contrast to plain GCN+DropEdge on this task. Thus,

all three experiments demonstrate that GraphCON leverages more depth to improve performance.

A.2. Sensitivity of performance of GraphCON to hyperparameters α and γ

We recall that GraphCON, (4) of the main text, has two additional hyperparameters, namely the damping parameter α ≥ 0
and the frequency control parameter γ > 0. In Table 9, we present the values of α, γ that led to the best performance of the

resulting GraphCON models. It is natural to ask how sensitive the performance of GraphCON is to the variation of these

hyperparameters. To this end, we choose the MNIST Superpixel graph classification task and perform a sensitivity study of

the GraphCON-GCN model with respect to these hyperparameters. First, we fix a value of γ = 0.76 (corresponding to the

Supplementary Material for ”Graph-Coupled Oscillator Networks”

Table 8. Test accuracies in % of GraphCON-GCN as well as of GCN+DropEdge on cora (semi-supervised setting) for different number of

layers N = 2, 4, 8, 16, 32, 64. The GCN+DropEdge results are taken from https://github.com/DropEdge/DropEdge

Model
Layers

2 4 8 16 32 64

GraphCON-GCN 82.20 82.78 83.53 84.85 82.95 82.12
GCN+DropEdge 82.80 82.00 75.80 75.70 62.50 49.50

best results in Table 9) and vary α in the range of α ∈ [0, 2]. The results are plotted in Fig. 3 and show that the accuracy is

extremely robust to a very large parameter range in α. Only for large values α > 1.6, we see that the accuracy deteriorates

when the damping is too high.

Next for this model and task, we fix α = 1 (which provides the best performance as reported in Table 9) and vary γ ∈ [0, 2].
Again, for a large range of values corresponding to γ ∈ [0.2, 2], the accuracy is very robust. However, for very small values

of γ, the accuracy falls significantly. This is to be expected as the model loses its interpretation as system of oscillators for

γ ≈ 0.

Thus, these sensitivity results demonstrate that GraphCON performs very robustly with respect to variations of the parameters

α, γ, within a reasonable range.

0.0 0.5 1.0 1.5 2.0
Varying value of α or γ

20

40

60

80

100

T
es
t
ac
cu
ra
cy

in
%

Fixed α = 1.0

Fixed γ = 0.76

Figure 3. Sensitivity (measured as test accuracy) plot for α and γ hyperparameters of GraphCON-GCN (with 32 layers) trained on MNIST

superpixel 75 experiment. First, α = 1.0 is fixed and γ is varied in [0, 2]. Second, γ = 0.76 is fixed and α is varied in [0, 2]. The fixed

α, γ are taken from the best performing GraphCON-GCN on the MNIST superpixel 75 task (Table 9)

B. Training details

All experiments were run on NVIDIA GeForce GTX 1080 Ti, RTX 2080 Ti as well as RTX 2080 Ti GPUs. The tuning

of the hyperparameters was done using a standard random search algorithm. We fix the time-step ∆t in (4) to 1 in all

experiments. The damping parameter α as well as the frequency control parameter γ are set to 1 for all Cora, Citeseer and

Pubmed experiments, while we set them to 0 for all experiments based on the Texas, Cornell and Wisconsin network graphs.

For all other experiments we include α and γ to the hyperparameter search-space. The tuned values can be found in Table 9.

Supplementary Material for ”Graph-Coupled Oscillator Networks”

Table 9. Hyperparameters α and γ of GraphCON (4) for each best performing GraphCON model (based on a validation set).

Model Experiment α γ

GraphCON-GCN
PPI

0.242 1.0
GraphCON-GAT 0.785 1.0

GraphCON-GCN
ZINC

0.215 1.115
GraphCON-GAT 1.475 1.324

GraphCON-GCN
MNIST (superpixel)

1.0 0.76
GraphCON-GAT 0.76 0.105

C. Mathematical details for Section 3 of main text

In this section, we provide details for the mathematical results in section 3 of the main text. We start with,

C.1. Proof of Proposition 3.1

Proof. We multiply Y
⊤
i to the second equation of (8) and obtain,

Y
⊤
i

dYi

dt
=
∑

j∈Ni

AijY
⊤
i (Xj −Xi) ,



as
∑

j∈Ni

Aij = 1





Summing over i ∈ V and using the symmetry condition Aij = Aji in the above expression yields,

d

dt

∑

i∈V

‖Yi‖2
2

= −
∑

i∈V

∑

j∈Ni

Aij (Yj −Yi)
⊤
(Xj −Xi) ,

= −
∑

i∈V

∑

j∈Ni

Aij

(

d(Xj −Xi)

dt

)⊤

(Xj −Xi)

⇒1

2

d

dt





∑

i∈V

‖Yi‖2 +
∑

i∈V

∑

j∈Ni

Aij‖Xj −Xi‖2


 = 0.

Integrating the last line in the above expression over time [0, t] yields the desired identity (11)

C.2. Proof of Proposition 3.3

Proof. By the definition of the Dirichlet energy (13), (15) implies that,

lim
t→∞

Xi(t) ≡ c, ∀i ∈ V, (23)

for some c ∈ R
m. In other words, all the hidden node features converge to the same feature vector c as time increases.

Moreover, by (15), this convergence is exponentially fast.

Plugging in (23) in to the first equation of the ODE (3), we obtain that,

lim
t→∞

Yi(t) ≡ 0, ∀i ∈ G, (24)

with 0 being the m vector with zeroes for all its entries. Thus, oversmoothing in the sense of definition 3.2, amounts to

(c,0) being an exponentially stable fixed point (steady state) for the dynamics of (8)

On the other hand, if (c,0) is an exponentially stable steady state of (8), then the trajectories converge to this state

exponentially fast satisfying (15). Consequently, by the definition of the Dirichlet energy (13), we readily observe that the

oversmoothing problem, in the sense of definition 3.2, occurs in this case.

Supplementary Material for ”Graph-Coupled Oscillator Networks”

C.3. Proof of Proposition 3.4

The main aim of the section is to show that steady states of (8), of the form (c,0) are not exponentially stable.

To this end, we fix c and start by considering small perturbations around the fixed point (c,0). We define,

X̂i = Xi − c, Ŷi = Yi,

and evolve these perturbations by the linearized ODE,

X̂
′
i = Ŷi,

Ŷi

′
= σ′(c)

∑

j∈Ni

Âi,jX̂j − X̂i − αŶi,
(25)

As σ(x) = max(x, 0) and c ≥ 0, we have that σ′(c) = ID and linearized system (26) reduces to,

X̂
′
i = Ŷi,

Ŷi

′
=
∑

j∈Ni

ÂijX̂j − X̂i − αŶi,
(26)

with
Âij = Aij(c, c), ∀j ∈ Ni, ∀i ∈ G,

0 ≤ Âij ≤ 1,
∑

j∈Ni

Âij = 1. (27)

We have the following proposition on the dynamics of linearized system (26) with respect to perturbations of the fixed point

(c,0),

Proposition C.1. Perturbations X̂(t), Ŷ(t) of the fixed point (c,0), which evolve according to (26) satisfy the following

identity,

1

v





∑

i∈V

‖ ˆYi(t)‖2 +
∑

i∈V

∑

j∈Ni

Âij + Âji

2

(

‖X̂j(t)− X̂i(t)‖2
)



 = T1(t) + T2(t) + T3(t),

T1(t) =
1

v

∑

i∈V

(

‖ ˆYi(0)‖2
)

e−2αt +
1

v

∑

i∈V

∑

j∈Ni

Âij + Âji

2

(

‖X̂j(0)− X̂i(0)‖2
)

e−2αt

T2(t) =
α

v

∑

i∈V

∑

j∈Ni

(

Âij + Âji

)

t
∫

0

‖X̂j(s)− X̂i(s)‖2e2α(s−t)ds

T3(t) =
1

v

∑

i∈V

∑

j∈Ni

(

Âij − Âji

)

t
∫

0

(

Ŷi(s) + Ŷj(s)
)⊤ (

X̂j(s)− X̂i(s)
)

e2α(s−t)ds

(28)

Proof. Multiplying the second equation in (26) with Ŷ
⊤
i and using the fact that

∑

j∈Ni

Âij = 1, we obtain,

d

dt

‖Ŷi‖2
2

+ α‖Ŷi‖2 =
∑

j∈Ni

ÂijŶ
⊤
i

(

X̂j − X̂i

)

,

=
∑

j∈Ni

Âij

(

Ŷi + Ŷj

)⊤

2

(

X̂j − X̂i

)

−
∑

j∈Ni

Âij

(

Ŷj − Ŷi

)⊤

2

(

X̂j − X̂i

)

,

=
∑

j∈Ni

Âij

(

Ŷi + Ŷj

)⊤

2

(

X̂j − X̂i

)

−
∑

j∈Ni

Âij

2

d

dt

(

X̂j − X̂i

)⊤ (

X̂j − X̂i

)

,

(29)

Supplementary Material for ”Graph-Coupled Oscillator Networks”

where we have used the first equation of (26) in the last line of (29). Consequently, we have for all i ∈ V ,

d

dt

‖Ŷi‖2
2

+ α‖Ŷi‖2 +
d

dt

∑

j∈Ni

Âij

2

‖X̂j − X̂i‖2
2

=
∑

j∈Ni

Âij

(

Ŷi + Ŷj

)⊤

2

(

X̂j − X̂i

)

(30)

Summing (30) over all nodes i ∈ V yields,

d

dt

∑

i∈V

‖Ŷi‖2
2

+ α
∑

i∈V

‖Ŷi‖2 +
d

dt

∑

i∈V

∑

j∈Ni

Âij + Âji

2

‖X̂j − X̂i‖2
2

=
∑

i∈V

∑

j∈Ni

Âij − Âji

2

(

Ŷi + Ŷj

)⊤ (

X̂j − X̂i

)

(31)

Multiplying e2αt to both sides of (31) and using the chain rule, we readily obtain,

d

dt

∑

i∈V

e2αt





‖Ŷi‖2
2

+
∑

j∈Ni

Âij + Âji

2

‖X̂j − X̂i‖2
2





= αe2αt
∑

i∈V

∑

j∈Ni

Âij + Âji

2
‖X̂j − X̂i‖2

+ e2αt
∑

i∈V

∑

j∈Ni

Âij − Âji

2

(

Ŷi + Ŷj

)⊤ (

X̂j − X̂i

)

(32)

Integrating (32) over the time interval [0, t] yields,

∑

i∈V

(

‖ ˆYi(t)‖2
2

)

e2αt +
∑

i∈V

∑

j∈Ni

Âij + Âji

2

(

‖X̂j(t)− X̂i(t)‖2
2

)

e2αt

=
∑

i∈V

(

‖ ˆYi(0)‖2
2

)

+
∑

i∈V

∑

j∈Ni

Âij + Âji

2

(

‖X̂j(0)− X̂i(0)‖2
2

)

+ α
∑

i∈V

∑

j∈Ni

Âij + Âji

2

t
∫

0

‖X̂j(s)− X̂i(s)‖2e2αsds

+
∑

i∈V

∑

j∈Ni

Âij − Âji

2

t
∫

0

(

Ŷi(s) + Ŷj(s)
)⊤ (

X̂j(s)− X̂i(s)
)

e2αsds

(33)

We readily obtain the desired identity (28) from (33).

Next, we observe that the right-hand side of the nonlinear ODEs (8) is globally Lipschitz. Therefore, solutions exist for all

time t > 0, are unique and depend continuously on the data.

We assume that the initial perturbations around the steady state (c,0) are small i.e., they satisfy

‖X̂i(0)− X̂j(0)‖ ≤ ǫ, ∀j ∈ Ni, ∀i ∈ V,
‖Ŷi(0)‖ ≤ ǫ, ∀i ∈ V,

for some 0 < ǫ << 1.

Supplementary Material for ”Graph-Coupled Oscillator Networks”

Hence, there exists a small time τ > 0 such that the time-evolution of these perturbations can be approximated to arbitrary

accuracy by solutions of the linearized system (26).

Next, we see from the identity (28) that the evolution of the perturbations X̂, Ŷ from the fixed point (c,0) for the linearized

system (26) is balanced by three terms T1,2,3. The term T1 is clearly a dissipative term and says that the initial perturbations

are damped exponentially fast in time.

On the other hand, the term T2, which has a positive sign, is a production term and says that the initial perturbations will

grow with time t. Given the continuous dependence of the dynamics evolved by the ODE (26), there exists a time, still

called τ by choosing it even smaller than the τ encountered before, such that

‖X̂i(t)− X̂j(t)‖ ∼ O(ǫ), ∀j ∈ Ni, ∀i ∈ V, ∀t ∈ [0, τ],

‖Ŷi(t)‖ ∼ O(ǫ), ∀i ∈ V, ∀t ∈ [0, τ].
(34)

Plugging the above expression into the term T2 in (28) and using the right-stochasticity of the matrix Â, we obtain that,

T2(t) ∼ O(ǫ2)
(

1− e−2αt
)

, ∀t ≤ τ (35)

Thus, the leading term in T2 grows algebraically with respect to the initial perturbations.

Next we turn our attention to the term T3 in (28). This term is proportional to the asymmetry in the graph-coupling

matrix Â = A(c, c). If this matrix were symmetric, then T3 vanishes. On the other hand, for many 1-neighborhood

couplings considered in this article, the matrix Â is not symmetric. In fact, one can explicitly compute that for the GAT and

Transformers attention and GCN-couplings, we have,

Âij =
1

deg(i)
, ∀j ∈ Ni, ∀i ∈ V. (36)

Here, deg refers to the degree of the node, with possibly inserted self-loops.

As the ordering of nodes of the graph G is arbitrary, we can order them in such a manner that Âij > Âji. Even with this

ordering, as long as the matrix Â is not symmetric, the term T3 is of indefinite sign. If it is positive, then we have additional

growth with respect to time in (28). On the other hand, if T3 is negative, it will have a dissipative effect. The rate of this

dissipation can be readily calculated for a short time t ≤ τ under the assumption (34) to be,

|T3(t)| ∼
D −D

DD

(

1− e−2αt

2α

)

O(ǫ2). (37)

Here, we define,

D = max
i∈V

deg(i), D = min
i∈V

deg(i) (38)

Thus by combining (35) with (37), we obtain,

T2 + T3 ∼
(

1− D −D

2αDD

)

(

1− e−2αt
)

O(ǫ2) (39)

In particular for α ≥ 1/2, we see from (39), that the overall balance (28) leads to an algebraic growth, rather than exponential

decay, of the initial perturbations of the fixed point (c,0). Thus, we have shown that this steady state is not exponentially

stable and small perturbations will take the trajectories of the ODE (26) away from this fixed point, completing the proof of

Proposition 3.4.

Remark C.2. We see from the above proof, the condition α ≥ 1
2 is only a sufficient condition for the proof of Proposition

3.4, we can readily replace it by,

α ≥ D −D

2DD

Supplementary Material for ”Graph-Coupled Oscillator Networks”

C.4. Proofs of Propositions 3.5 and 3.6

As a first step in proving the gradient bounds in Proposition 3.5, we will prove the following upper bound on the hidden

node features of the following general form of GraphCON (4), written node-wise as,

C
n−1
i = (Fθ(X

n−1))i,

Y
n
i = Y

n−1
i +∆tσ(Cn−1

i)− γ∆tXn−1
i − α∆tYn−1

i ,

X
n
i = X

n−1
i +∆tYn

i .

(40)

We derive following upper bound on the resulting hidden node features,

Proposition C.3. For all n, let tn = n∆t and the time step ∆t satisfy,

∆t < min

(

α

γ
,
1

α

)

Let Xn
i denote the hidden state vector at any node i ∈ V which evolves according to GraphCON (40), then the hidden states

satisfy the following bound,

‖Xn
i ‖2 ≤ ‖X0

i ‖2 +
1

γ
‖Y0

i ‖2

+
mβ2tn

2γ(α− γ∆t)

(41)

where β is the global bound on the underlying activation function σ (21).

Proof. We multiply γ(Xn−1
i)⊤ to the third equation of (40) and (Yn

i)
⊤ to the second equation of (40) and repeatedly use

the following elementary identities,

a
⊤(a− b) =

‖a‖2
2

− ‖b‖2
2

+
1

2
‖a− b‖2,

b
⊤(a− b) =

‖a‖2
2

− ‖b‖2
2

− 1

2
‖a− b‖2,

to obtain,

γ
‖Xn

i ‖2
2

+
‖Yn

i ‖2
2

= γ
‖Xn−1

i ‖2
2

+
‖Yn−1

i ‖2
2

+ ∆t(Yn
i)

⊤σ(Cn−1
i)

+ ∆t

(

γ∆t

2
− α+

α

2

)

‖Yn
i ‖2

− α∆t

2
‖Yn−1

i ‖2

+

(

α∆t− 1

2

)

‖Yn
i −Y

n−1
i ‖2

As we have assumed that the time step ∆t is chosen such that

∆t < min

(

α

γ
,
1

α

)

we obtain from the above inequality that,

γ
‖Xn

i ‖2
2

+
‖Yn

i ‖2
2

≤ γ
‖Xn−1

i ‖2
2

+
‖Yn−1

i ‖2
2

+ ∆t(Yn
i)

⊤σ(Cn−1
i)

−∆t

(

α− γ∆t

2

)

‖Yn
i ‖2

Supplementary Material for ”Graph-Coupled Oscillator Networks”

Next we use the elementary identity

a
⊤
b ≤ ǫ‖a‖2

2
+

‖b‖2
2ǫ

,

with ǫ = α− γ∆t in the above inequality to obtain,

γ
‖Xn

i ‖2
2

+
‖Yn

i ‖2
2

≤ γ
‖Xn−1

i ‖2
2

+
‖Yn−1

i ‖2
2

+
∆t

2(α− γ∆t)
‖σ(Cn−1

i)‖2
(42)

Now from the bound (21) on the activation function, we obtain from (42) that,

γ
‖Xn

i ‖2
2

+
‖Yn

i ‖2
2

≤ γ
‖Xn−1

i ‖2
2

+
‖Yn−1

i ‖2
2

+
m∆tβ2

2(α− γ∆t)

(43)

Iterating (43) over n yields,

γ‖Xn
i ‖2 + ‖Yn

i ‖2 ≤ γ‖X0
i ‖2 + ‖Y0

i ‖2

+
mn∆tβ2

2(α− γ∆t)
,

(44)

which readily yields the desired inequality (41).

C.4.1. PROOF OF PROPOSITION 3.5

Proof. For any ℓ ≤ n ≤ N , a tedious yet straightforward computation yields the following representation formula,

∂Zn

∂Zn−1
= I2v×2v +∆tEn,n−1 +∆t2Fn,n−1. (45)

Here E
n,n−1 ∈ R

2v×2v is a matrix whose entries are given below. For any 1 ≤ i ≤ v, we have,

E
n,n−1
2i−1,2i = 1,

E
n,n−1
2i−1,j = 0, ∀j 6= 2i,

E
n,n−1
2i,2i = −1,

E
n,n−1
2i,2i−1 = −1 +

σ′(Cn−1
i)wn

i

di
,

E
n,n−1
2i,2j = 0, ∀1 ≤ j ≤ v, and j 6= i,

E
n,n−1
2i,2j−1 =

σ′(Cn−1
j)wn

j
√

didj
, ∀j ∈ Ni,

E
n,n−1
2i,2j−1 = 0, ∀j /∈ Ni and j 6= i.

Similarly, Fn,n−1 ∈ R
2v×2v is a matrix whose entries are given below. For any 1 ≤ i ≤ v, we have,

F
n,n−1
2i,j = 0, ∀j,

F
n,n−1
2i−1,2i−1 = −1 +

σ′(Cn−1
i)wn

i

di
,

F
n,n−1
2i−1,2j−1 =

σ′(Cn−1
j)wn

j
√

didj
, ∀j ∈ Ni,

F
n,n−1
2i−1,2j−1 = 0, ∀j /∈ Ni and j 6= i.

Supplementary Material for ”Graph-Coupled Oscillator Networks”

Using (21), it is straightforward to compute that,

‖En,n−1‖∞ ≤ 2 + β′D̂‖wn‖1,
‖Fn,n−1‖∞ ≤ 1 + β′D̂‖wn‖1,

(46)

Then using ∆t ≤ 1 and definition (21), we have from (45) that,

∥

∥

∥

∥

∂Zn

∂Zn−1

∥

∥

∥

∥

∞

≤ 1 +
Γ

2
∆t, ∀n.

Therefore, from the identity (19), we obtain,

∥

∥

∥

∥

∂ZN

∂Zℓ

∥

∥

∥

∥

∞

≤
(

1 +
Γ

2
∆t

)N−ℓ

.

Now choosing ∆t << 1 small enough such that the following inequality holds,

(

1 +
Γ

2
∆t

)N−ℓ

≤ 1 + (N − ℓ)Γ∆t, (47)

leads to the following bound,
∥

∥

∥

∥

∂ZN

∂Zℓ

∥

∥

∥

∥

∞

≤ 1 + (N − ℓ)Γ∆t ≤ 1 +NΓ∆t (48)

A straight-forward differentiation of the loss function (17) yields,

∂J

∂ZN
=

1

v

[

X
N
1 −X1, 0,X

N
2 −X2, 0, · · · ,XN

v −Xv, 0
]

. (49)

Hence,
∥

∥

∥

∥

∂J

∂ZN

∥

∥

∥

∥

∞

≤ 1

v

(

max
1≤i≤v

|XN
i |+ max

1≤i≤v
|Xi|

)

(50)

Applying the pointwise upper bound (41) to (50), we obtain,

∥

∥

∥

∥

∂J

∂ZN

∥

∥

∥

∥

∞

≤ 1

v

(

max
1≤i≤v

(|X0
i |+ |Y0

i |) + max
1≤i≤v

|Xi|+ β
√
N∆t

)

(51)

Finally, a direct calculation provides the following characterization of the vector ∂Zℓ

∂wℓ

k

∈ R
2v ,

(

∂Zℓ

∂wℓ
k

)

2j

= ∆t
σ′(Cℓ

j)X
ℓ−1
j

√

dkdj
, j ∈ Nk,

(

∂Zℓ

∂wℓ
k

)

2j−1

= ∆t2
σ′(Cℓ

j)X
ℓ−1
j

√

dkdj
, j ∈ Nk,

(

∂Zℓ

∂wℓ
k

)

j

≡ 0, otherwise.

(52)

Therefore using the pointwise bound (41), one can readily calculate that,

∥

∥

∥

∥

∂Zℓ

∂wℓ
k

∥

∥

∥

∥

∞

≤ ∆tβ′D̂

(

max
1≤i≤v

(|X0
i |+ |Y0

i |) + β
√
ℓ∆t

)

≤ ∆tβ′D̂

(

max
1≤i≤v

(|X0
i |+ |Y0

i |) + max
1≤i≤v

|Xi|+ β
√
N∆t

)
(53)

Multiplying (48), (51) and (53) and using the product rule (19) yields the desired upper bound (20),

Supplementary Material for ”Graph-Coupled Oscillator Networks”

C.4.2. PROOF OF PROPOSITION 3.6

To investigate how small the gradients in (18) can be, we will need the following order notation:

β = O(α), for α, β ∈ R+ if there exists constants C,C such that Cα ≤ β ≤ Cα.

M = O(α), for M ∈ R
d1×d2 , α ∈ R+ if there exists constant C such that ‖M‖ ≤ Cα.

(54)

Equipped with this notation, we proceed to prove Proposition 3.6 below,

Proof. The key ingredient in the proof is the following representation formula,

∂ZN

∂Zℓ
= I2v×2v +∆t

N
∑

n=ℓ+1

E
n,n−1 +O(∆t2), (55)

the proof of which follows directly from the identity (45) and the boundedness of the matrices E,F in (45).

Then, (22) follows from a multiplication of (49), (55) and (52) and a straightforward rearrangement of the terms,

One readily observes from the formula (22), that to leading order in the small parameter ∆t, the gradient ∂J
∂wℓ

k

is independent

of the number of layers N of the underlying GNN. Thus, although the gradient can be small (due to small ∆t), it will not

vanish by increasing the number of layers, mitigating the vanishing gradient problem. Even if small parameter ∆t depends

on the number of layers, as long as this dependence is polynomial i.e., ∆t ∼ N−s, for some s, the gradient cannot decay

exponentially in N , alleviating the vanishing gradients problem in this case too.

