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Abstract

It was recently shown in [10] that functions in L*([~B, B]) can be
uniquely recovered up to a global phase factor from the absolute values
of their Gabor transform sampled on a rectangular lattice. We prove that
this remains true if one replaces L*([-B, B]) by LP([-B, B]), for p €
[2,00]. To do so, we adapt the original proof and use sampling results in
Bernstein spaces with general integrability parameters. Furthermore, we
present some modifications of a result of Miintz—Szasz type first presented
in [17]. Finally, we consider the implications of our results for more general
function spaces obtained by applying the fractional Fourier transform to
L?([—B, B]) and for more general non-uniform sampling sets.

Keywords Phase retrieval, Gabor transform, Sampling theory, Time-
frequency analysis, Miintz—Szdsz type results
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1 Introduction

In this paper, we consider the Gabor transform of functions f € L?(R) given by
Gf(z,w):= 21/4/ f(t)e_”(t_“)ze_%it“’ dt, (z,w) € R?,
R

and try to understand if one can recover f from measurements of the absolute
value |G f| on discrete sets S C R?. This so-called sampled Gabor phase retrieval
problem has recently been studied extensively [1, 2, 10, 11]. It is an elegant
mathematical problem in the sense that it is rather easy to state while, at the
same time, being less easy to solve. Moreover, it is connected to certain audio
processing applications such as the phase vocoder [6, 15], for example.

A hallmark of all phase retrieval problems is that signals cannot be fully
recovered from phaseless measurements. For the sampled Gabor phase retrieval
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problem, we can see that the functions f € L?(R) and e'®f, where a € R,
generate the same measurements

G f)| = |G f| = IGf].

Hence, we are not able to distinguish between f and e'®f on the basis of their
sampled Gabor transform magnitudes. We will work around this fact by con-
sidering the equivalence relation ~ on L?(R) defined by

fr~g:eJaceR: f=e. (1)

With the help of this relation, we can introduce the phase retrieval operator
A: X/ ~—[0,00)%, where X is a subspace of L2(R), by

AN, w) = [Gf(z,w)],  (z,0) €S,

for f € X/ ~. The sampled Gabor phase retrieval problem is the problem of
inverting A when S C R? is discrete.

It has long been known that one can invert A for X = L?(R) and when
S = R? is the entire time-frequency plane.

Lemma 1. The following are equivalent for f,g € L*(R).
1. f =¢€l%g for some a € R,

2. 1Gfl =169l

In applications, one does typically not have access to measurements of the
Gabor transform magnitude on the entire time-frequency plane, however, and
one is therefore naturally led to consider the sampled Gabor phase retrieval
problem. While it is known that one may invert 4 for § = R?, much less
was known about the inversion of A for discrete sets S. Recently, however,
a series of breakthroughs was presented in the papers [1, 2, 10, 11]. For the
genesis of this paper, the work in [10] was most important. The authors of [10]
showed that sampled Gabor phase retrieval is unique with X = L*([-B, B])
and S =Z x (4B)7'Z.

Lemma 2 (Theorem 3.1 on p. 9 of [10]). Let B > 0. Then, the following are
equivalent for f,g € L*([~B, B)).

1. f =e%g for some a € R,
2. |Gfl =1Gg| on Z x (4B)~'Z.

What is curious about the result above is the use of the space L*([- B, B]). In
particular, we find it most interesting to ask whether one may extend Lemma 2
to spaces with more general integrability conditions and notably to L?([—B, B]).
In this paper, we want to answer the prior questions positively by modifying and
generalising the original proof of Lemma 2. In this way, we obtain the following
result.



Theorem 3 (Cf. Theorem 28). Let B > 0, b € (0, {5) and p € [2,00]. Then,

the following are equivalent for f,g € LP([—B, B]).
1. f =¢€l%g for some a € R,
2. 1Gf] =1Gg| on N x bZ.

We observe that the above theorem is almost optimal in view of the results
presented in [1]. There, for any lattice S C R? in the time-frequency plane,
explicit examples f, g € L?(R) were constructed which do not agree up to global
phase but which satisfy that

‘gf(x,w” = |(]g(x,w)| ) (1',60) €s.

In particular, it is necessary to restrict the Gabor phase retrieval problem to a
proper subspace X of L2(RR) in order to obtain a uniqueness result from samples.
In this sense and in view of the famous WSK sampling theorem, Theorem 3
seems to be the most natural result which one can arrive at.

It may not surprise the reader that one may further generalise Theorem 3 in
multiple ways to include more function spaces — obtained by taking fractional
Fourier transforms of elements in L?([—B, B]) — or more general nonuniform
sampling sets. Both of these generalisation had already been suggested in [10]
and we adapt them here.

Finally, we want to mention that our proof for Theorem 3 relies on a non-
trivial adaptation of a Miintz—Szasz type result. More precisely, we consider
certain modifications of a theorem by Zalik [17].

Outline In Section 2, we introduce some basic concepts needed for the further
understanding of this paper. Most importantly, we introduce the fractional
Fourier transform, the Paley—Wiener spaces and the Bernstein spaces along
with some of their most relevant properties.

Thereafter, in Section 3, we give a proof of Lemma 2. We believe that this is
merited for two reasons. First, the proof of Theorem 3 is an adaptation of the
proof of Lemma 2 such that it is instructive for the reader to know the direct
proof of Lemma 2. Moreover, the proof of Lemma 2 which we present in this
paper is slightly different from the original proof in [10]. In fact, it may be seen
as a 90 degree rotation (in the time-frequency plane) of the original proof.

In Section 4, we modify one of the Miintz—Szdsz type results presented in
[17]. There, it was shown that certain translates of Gaussians are complete in
L?([a,b]), for a < b. We extend this result to LP([a,b]), for p € [1,00), by
adapting the original proof from [17]. In addition, we note that translates of
Gaussians can never be complete in L*([a,b]) but that the annihilator of the
closed! linear hull of certain translates of Gaussians intersects L*([a, b]) trivially.

Finally, in Section 5, we apply the Miintz—Szdsz type results developed in
Section 4 in modifications of the proof of Lemma 2 presented in Section 3 to
generalise the result from [10]. In this way, we obtain Theorem 3. Thereafter,

Lwith respect to the L°-norm.



we consider certain generalisations with respect to the underlying subspace X C
L?(R) and the sampling lattice which are inspired by the original paper [10].

Notation Let us denote N = {1,2,3,...} as well as Ny = {0,1,2,...}. Fur-
thermore, we will denote the canonical inner product on L?(R) by (-,-) and the
open ball of radius R > 0 around the origin in C by

Br:={z€C||z|] < R}.
We will make use of the translation operators {T,}.cr given by
T. f(t) := f(t—=z), teR,
for z € R, as well as the modulation operators {M,, },cr given by
M, f(t) := f(t)e*™™,  teR,

for w € R, repeatedly. Both of these families of operators can be defined for
functions f : R — C and are unitary on L?(R). For sums, we will use notation
suggested in [14, 17]. To be precise, we will write

/
-1 ._ -1
domti=
n=1
Trn7#0

for (rp)nen € [0,00). Finally, we will often deal with trivial extensions of
functions F' : [-B, B] — C, where B > 0. To simplify the exposition, we will

denote |
Fo(€) == {F(ﬁ) if ¢ € [-B, B,

0 else,

in this case.

2 Definitions and basic notions
We will use the convention
Fi() = [ fmenitOa  gerr,
Rd
for the Fourier transform on L'(RY) N L2(R?), where d > 1. It is well-known
that the Fourier transform may be extended to L?(R¢) by Plancherel’s theorem

and a density argument. In addition, we note that the Fourier transform is a
unitary map on L?(R%) and that its inverse is therefore given by its adjoint

FlE(t) = / F(¢)e?™EY d¢ = FF(—t), teR?,
Rd

for F € L2(RY).



A property of the Fourier transform which we will use repeatedly is that it
relates complex conjugation to the involution

7)) = f(-t), teR.
Indeed, it holds that
F(Hy=FH*  feL'(R)UL*(R).

We note that f# is well-defined for f : R — C and one can directly show that
(-)# is an isometry on LP(R), for p € [1, o).

Let us now consider a function ¢ € L?(R). We can then define the short-time
Fourier transform with window ¢ of f € L?(R) by

Vo f(z,w) = /Rf(t)d)(t — x)e” M qt, (z,w) € R2.

One can show that V f is uniformly continuous and moreover that V, f € L?(R?)
(see Lemma 3.1.1 and Theorem 3.2.1 in [8]). Clearly, the Gabor transform — as
defined in the introduction — corresponds to the short-time Fourier transform
with window ¢ = ce’”(')2, where ¢ = 21/4.

It is notable that the short-time Fourier transform at a fixed time x € R
exactly corresponds to the Fourier transform of a short-time section of the signal
f- We will use this insight in some of our proofs, so let us be a bit more precise.
It holds that

Vof(@,w) =F (f Ty o) (), (z,w) € R%

Another way of rewriting the short-time Fourier transform which is useful at
times is

ng(x’w):(vawag), x,wER.

Throughout this paper, we will often refer to the fundamental identity of
time-frequency analysis, which is the fact that the Fourier transform corresponds
to a rotation by 90 degrees of the time-frequency plane (see e.g. Lemma 3.1.1
on p. 39 of [8]):

Vof(z,w) = e_%mWVf(z,}"f(w, —x), (x,w) € R2,

for f,¢ € L2(R).
The short-time Fourier transform phase retrieval problem can be stated in
terms of the phase retrieval operator A, : X/ ~— [0,00)* given by

A¢(f)(wi) = |V¢f(x,w)|, (x’w) €S,

for f € X/ ~. Here ~ is the equivalence relation introduced in equation (1), S is
a subset of R? and X is a subspace of L?(R). The short-time Fourier transform
phase retrieval problem then refers to the inversion of A. When S is discrete,
we call the corresponding short-time Fourier transform phase retrieval problem



sampled. Moreover, if ¢ = ce_’r(')z7 for ¢ = 21/4, we call the short-time Fourier
transform phase retrieval problem the Gabor transform phase retrieval problem.

Let us now quickly return to the classical uniqueness result for Gabor phase
retrieval. We may see Lemma 1 as an instance of a more general result for
short-time Fourier transform phase retrieval.

Lemma 4. Let ¢ € L*(R) be such that Vy¢ is non-zero almost everywhere.
Then, the following are equivalent for f,g € L*(R).

1. f=e%g for some a € R,
2. Vo fl = [Vogl-

Indeed, if ¢ = ce~™()°, with ¢ = 21/4, it is well-known that (see Lemma
1.5.2 on p. 18 of [8])

Vod(@,w) = (6, M, Ty §) = €274 (6, T, My, ¢) = e ™0 3 (7 +e)

for (z,w) € R?, such that the above result implies Lemma 1.

Finally, we want to point out that the proof of Lemma 4 — which can,
for instance, be found in [9] — can be seen as an application of the following
classical result on (radar) ambiguity functions.

Lemma 5 (Theorem 2.5 on p. 588 of [4]). Let f,g € L*(R) be such that

Vif =Vyg.
Then, it holds that there exists an o € R such that f = ei%g.

Notably, we will apply the above lemma in multiple proofs in the present
paper.

2.1 The fractional Fourier transform

The fundamental identity of time-frequency analysis which we introduced before
can be seen as a special case of a more general principle: the fractional Fourier
transform corresponds to a rotation of the time-frequency plane. This principle
is tremendously useful when generalising results in time-frequency analysis and
we will encounter it multiple times in this paper.

Let us define the fractional Fourier transform of a function f € L*(R)NL?(R)
by

]:Of(f) — cee”152 cot9/ f(t)eﬂ-itz cot@e—Qﬂ-i% dt, fE R,
R

for 0 € R\ 7Z, where ¢y € C is the square root of 1 — icotd with positive
real part, and by Forrf = f as well as Fiapy1)-f(§) = f(=E), for £ € R,
where k € Z. One can show that the fractional Fourier transform preserves the
canonical inner product on L?(R). To be precise, it holds that for all § € R and
f,g € LY(R) N L%(R), we have

(f,9) = (Fof, Fog)-



It follows that one may extend the fractional Fourier transform to a unitary
map on L?(R) by a classical density argument.

One important property which the fractional Fourier transform inherits from
the classical Fourier transform is that it leaves the Gaussian ¢ = ce*”(‘)Z7 with
¢ =24 invariant. More precisely, it holds that

Fod=¢, OeR.

One can prove this by a direct computation using the classical result which can,
for instance, be found on p. 17 of [8]. We have included the calculation in the
appendix for the convenience of the reader.

Finally, to state the fundamental principle that the fractional Fourier trans-
form corresponds to a rotation of the time-frequency plane, we will introduce
the operator Ry : RZ2 — R? by

Ro(z,w) := (xcosf —wsind, xsinf + wcos §), z,w € R.

One may see that Ry corresponds to a rotation by 6 of the time-frequency plane
R2. We can now state the following important identity.

Lemma 6 (Generalised fundamental identity of time-frequency analysis — see
[3, 13]). Let 8 € R and f,g € L?(R). It holds that
P 2 2 .
V]-'gg-/_'.@f(xy w) _ ng(RO (x, w))eﬂ'l sin 0((1 —w ) cos 0—2zw sin 9)7
for x,w e R.

Note that the texts [3, 13] do not contain the exact statement of the above
lemma but rather results from which the lemma might be deduced. For this
reason, we have decided to add a proof of the above result to the appendix of
the present paper.

2.2 The Paley—Wiener spaces

In the following, we will mostly work with bandlimited functions. To be precise,
we consider the Paley—Wiener spaces of bandlimited functions defined via

B
PW%, = {f:(C—)(C

3F € I?([-B,B])V2 € C: f(z) :/

F(§)e?me d&} :
-B

for B > 0 and p € [1,00]. One may see that the Paley-Wiener spaces as
defined above are nested. This is due to the nestedness of LP-spaces over closed
intervals. Since both of these facts will be used heavily in this paper, we state
them in the following.

Proposition 7. Let 1 <p < g < oo and B > 0. Then, we have LI(|—B, B]) C
Lp([_BvB])



Proof. The statement of the proposition is trivial if p = ¢q. Hence, we can assume
that p < ¢ in the following. Let f € LY([—B, B]) and note that there exists an

r € [p, 00) such that
1 1 1
4 =Z,
r q P
Let us denote the indicator of the interval [—
inequality, we can estimate

B, B] by x[-B,p). Using Hélder’s

||f||LP([—B,B]) = HX[fB,B] ’ fHLP([—B,B]) < HX[fB,B}‘ L7([-B,B]) ||f||Lq([fB,B])

= (2B)'/" 1l Lo -5,y < oo

Therefore, f € LP([-B, B]) and since f was arbitrary in LY([-B, B]), we can
conclude that LY([-B, B]) C LP([-B, B]). O

Corollary 8. Let 1 <p<g<oo and B> 0. Then, we have PWqB C PW%.

Proof. Let f € PW% be arbitrary. Then, by definition of the Paley—Wiener
space, there exists an F' € L([—B, B]) such that

B .
)= [ Foetea  sec

By Proposition 7, we find that F' € LP([—B, B]). Therefore, we can conclude
that f € PWL,. O

One of the core properties of the Paley—Wiener spaces is that their elements
correspond to entire functions of very specific growth. This is, in fact, the
message of the famous Paley—Wiener theorem:

Theorem 9 (Paley—Wiener theorem). Let B > 0. Then, the following are
equivalent:

1. f e PW%,
2. f is an entire function such that there exists a constant A > 0 for which

f) < AemPHL 2 e,

and

/u@ﬁw<m.
R

A proof of the above can be inferred from the proof of the Paley—Wiener
theorem in [16]. Another important property of bandlimited functions is that
one may recover them from samples on equidistant sets. This classical result is
commonly referred to as the Whitaker—Shannon—Kotelnikov (WSK) sampling
theorem.



Theorem 10 (WSK sampling theorem). Let B > 0 and f € PW%. Then, we
have n
=37 (@) sinc(2Bt —n),  teR,

nez

where the series converges unconditionally in L*(R).

A proof of the above may be found by adapting the classical Shannon sam-
pling theorem in [12].

In the following, we will often refer to the short-time Fourier transform of
a function in a Paley—Wiener space. This is a slight abuse of notation since
the short-time Fourier transform is not explicitly defined for functions whose
domain is C. The notation V,f in this case is to be interpreted as V4(f|r),
where f|g : R — C is understood to be the restriction of f : C — C to the real
numbers. In this setting, the short-time Fourier transform of a function f in
the Paley—Wiener space PW?%,, with B > 0, is well-defined as long as p € [2, oc].
Indeed, we may remember that the Paley—Wiener spaces are nested and that
therefore PW, ¢ PW7%. Tt follows that f € PW% such that the Paley-Wiener
theorem implies that f|g € L?(R). Therefore, the short-time Fourier transform
of f is uniformly continuous, an element of the Hilbert space L?(R?) and, in
particular, well-defined.

A final fact about functions f € PW?%, which we will use very often is that
their Fourier transforms F(f|g) are in LP(R).

Lemma 11. Let 2 < p < 0o, B > 0 and f € PW%. Then, we have that
F(flz) € LP(R) and supp F(f[r) C [-B, B].

Proof. By the definition of the Paley—Wiener spaces, we find that there exists
a function F € L?([-B, B]) € L?(|-B, B]) (the inclusion follows from Proposi-
tion 7 and p > 2) such that

B .
f(z) = / F(£)e®™8= d¢, zeC.

—B

Using the notation Fy for the trivial extension of F' to R (as introduced in the
paragraph “Notation”), we find that Fy € L*(R) N LP(R) and we might write
flr = F~1F,. Therefore, we have F(f|r) = Fy and the lemma follows. O

2.3 The Bernstein spaces

For our proof of Theorem 3, the vanilla WSK sampling result is not powerful
enough. We will instead need to use more general sampling results in the so-
called Bernstein spaces which we will introduce in the following.

Let p € [1,00] and o > 0. We define the Bernstein space BE to be the space
of entire functions f of exponential type o > 0, i.e. for every € > 0 there exist
constants A, R > 0 such that

[f(2)] < Ae@FIL 2 € C\ By,



whose restriction to R is in LP(R). When p = 2, it follows from the classical
Paley-Wiener theorem that PW% C B2 5. We are mostly interested in the
following inclusions.

Lemma 12. Let p € [1,2] and denote by q € [2,00] its Holder conjugate. Let
moreover B > 0. Then, it holds that PW%, C B2 .

As the proof of this lemma has no further relevance to the present paper,
we postpone it to the appendix. In the Bernstein spaces B? for p € [1,00), a
general sampling theorem holds.

Theorem 13 (Cf. Theorem 2.2 on p. 26 of [18]). Let p € [1,00), 0 > 0 and
f € B2. Then, it holds that

f(t)sz(T)sinc(f:—k>7 t e R,

keZ
where the series converges absolutely and uniformly on every compact subset.

We emphasise that the above result does not continue to hold in the same
form for p = oo. This is notable because BJ° is exactly the space which we
need to consider when generalising Lemma 2 from L*([-B, B]) to L*([-B, B)).
Luckily, the following result can be used in its stead.

Theorem 14 (Cf. Theorem 2.3 on p. 29 of [18]). Let o > 0 and f € BY. Then,
it holds that

f(z)sz(Tj)sinc(f—k), z € C,

keZ

for a’ > o, where the series converges uniformly on every compact subset of the
complex plane.

3 The sampling result from [10] reimagined

One may see Lemma 2 (cf. Theorem 3.1 on p. 9 of [10]) as an amalgam of two
core insights. The first insight is that the square of the magnitude of the short-
time Fourier transform of a bandlimited function is bandlimited itself. The
second insight is that certain translates of Gaussians are complete in L?([a, b]),
when a < b. We note that the first insight allows for the application of the
WSK sampling theorem in the time axis of the time-frequency plane while the
second insight takes care of the sampling in the frequency axis. It is therefore
interesting to think of the proof of Lemma 2 as a two step approach. First, time
is discretised. Secondly, frequency is discretised.

We will start by showing that the square of the magnitude of the short-time
Fourier transform of a bandlimited function is bandlimited itself. We note that
this first insight holds for general windows ¢ € L?(R).

10



Lemma 15. Let p € [2,00] and suppose that g € [1,2] is chosen such that
1 1 1

g 2 p
Furthermore, let B > 0, ¢ € L*(R), and f € PW%. For all wy € R it holds that
1. Myy Vs f(-,wo) is the restriction of a function in PW% to R,

2. |V¢f(-,w0)\2 is the restriction of a function in PVVQJ/B2 to R.

Proof. We remember that the assumption p € [2,00] ascertains that f|g €
L?(R) and that thereby the short-time Fourier transform of f is a well-defined
uniformly continuous function. Let us now fix wy € R arbitrary for this proof.

1. We start by considering the function

for ¢ € [-B, B]. Since f € PWY, it follows from Lemma 11 that F(f|r) €
LP(R). Moreover, the assumption that ¢ € L?(R) implies by Plancherel’s
theorem that F¢ € L?(R). Since translations are isometries of L?(R), we
find that Ty, F¢ € L%(R). Hence, it follows from Holder’s inequality that

F(flz) - Ty Fé € LU(R)

and thus H,, € LI([—B, B]).
We will now define h,,, € PW% by

B .
R, (2) = /_B H,, (&)e*™ed¢, zeC.

Let € R and note that by definition

B
sy (1) = / PR FE e e

According to Lemma 11, it holds that supp F(f|g) C [-B, B]. Therefore,
B - .
o) = [ () OF €~ an)e™e g
-B

- /RF (fl2) () F (€ — wo)e®™€” de
= Vre (F(fIr)) (wo, —x)

holds and we can use the fundamental identity of time-frequency analysis
to obtain

By (2) = VEg (F(fIR)) (wo, =) = ™70V, f(z,wo).
It follows that M, Vs f(-,wo) is the restriction of h,,, € PW% to R.

11



2. We denote the trivial extension of H,, € L%([-B,B]) to R by H,,.0 €
L%(R), as mentioned in the paragraph “Notation”. Then, we define the
function

Fuo(€) i= (Hugo+ B o) (6), €€ [-2B,2B].
Notably, Young’s convolution inequality implies that
Hego x HE o € LP?(R)

as Hoy0, HY: o € L9(R) and

w

1 1 2
S+ =1+4-=.
qa q p

Therefore, F,,, is a well-defined function in LP/?([-2B,2B]).
It is also notable that

supp H.0 * sz;o C [-2B,2B].

One may see this by using that H,,,.0 and Hji;o are supported in the
interval [—B, B] and that the support of a convolution is given by the
sumset of the support of the involved functions. Finally, we remark that
H,, € LY([-B, B]) C L'([-B, B]) by Proposition 7 and ¢ > 1. It follows
that H,,.o and Hji;o are in L*(R).

We may now define f,, € PW’Q)J/; via
2B '
fu@i= [ Ra©F"Cd zec
—2B

As in the proof of item 1, we may consider z € R arbitrary but fixed and
note that our reflection on the support of H.o* H Z‘;’; .o above implies that

— /R (HwO;O * Hji;o) (€)e2mE ge.

fuo () = /222 (HWU;O * Hji);o) (5)627ri§x d¢

We had noted before that H,, .o, Hﬁ,;o € L'(R) such that we may apply
the Fourier convolution theorem to see that

fuwo () = /R (Hwo;o * Hj/;;o) (5)6277151; d§=F (Hwo;O * Hﬁ);o) (—z)
= FHayo(—0)F (Hl o) (=2) = FHoyo(~2)F (o) (—7)

= |]:HWO;0(_33)|2-

12



It follows from the considerations in the proof of item 1 that
Fuo (@) = |[FHogo(—2)[* = |huy ()7 = [V f (2, 00)|*.
Hence, |V¢f(',w0)|2 is the restriction of f,, € PW’;J/; to R.

O

Next, we note that certain translates of Gaussians are complete in L?([a, b]),
when a < b. This Miintz—Szdsz type result was proven in [17] (Theorem 4 on
p. 302).

Theorem 16 (Zalik’s theorem). Let —oo < a < b < 00, ¢, € R\ {0} and let
(cn)nen € R be a sequence of distinct numbers. Then,

{e‘cf('_c”)Z ‘n € N}

is complete in L?([a,b]) if and only if

! -1
> lenl

diverges.

Zalik’s theorem together with Lemma 15 allows us to prove the following
result.

Proposition 17 (C.f. Proposition 3.4 on p. 11 of [10]). Let B > 0 and b €
(0, 75]. Then, the following are equivalent for f,g € PW%:

1. f =¢el%g, for some a € R,
2. |Gf] =1Gg| on bZ x N.

Proof. First, note that if f = e!®g, for some « € R, then it follows immediately
that |Gf| = |Gg|. Secondly, suppose that |Gf| = |Gg| on bZ x N. If k € N
is arbitrary but fixed, it follows directly from Lemma 15 that |Gf(-, k)|* and
|Gg(-, k)| are restrictions of functions in PW2, C PVV%/(%) to R. Therefore,
the WSK sampling theorem implies that

‘gf(ch)‘z = |gg(x,k)|2, z €R. (2)

To apply Theorem 16, we need to reformulate the equation above. For this
purpose, we remember that f € PW% € PW% (Corollary 8) and that the
Paley—Wiener theorem does therefore imply that f|gr € L?(R). Using that the
Gaussian is invariant under the Fourier transform as well as the fundamental
identity of time-frequency analysis, we can compute that

Gf (2. k)* = |G (F(fIr)) (k, =) = G (F(fIr)) (k, —2)G (F(f]r)) (k, —=).

13



As the short-time Fourier transform corresponds to the Fourier transform of the
short-time sections of the underlying function, we find that

Gf (. k)|* = G (F(fI»)) (k, —2)G (F(fl&)) (k, —)
F(fr) - Tr ¢) (=) F (F(f|r) - Tr ¢) (=)
—)-

F((F(fl=) - Two)*) (=),

We note that F(f|g)- Tk ¢ is in L*(R) because f|g, ¢ € L?(R). As the involution
()% is an isometry of L'(R), we may apply the Fourier convolution theorem to
the above equation. In this way, we obtain that

91 (@, ) = F (F(flz) - T d) (2) - F (F(fe) - Te ) (—2)
= F ((FUfle) - T @)+ (F(fl) - T )" ) (~2).

We may also note that F(f|g) - Tx ¢ is in L*3(R). To see this, we can use
Holder’s inequality together with the facts that Ty ¢ € L*(R) and F(f|r) €
L3(R). The prior follows from translations being isometries of L*(R) and ¢ €
L*(R). Since the involution (-)# is an isometry of L*/3(R), it follows from
Young’s convolution inequality that

(F(flr) - Te 8) * (F(flr) - T 6)" € L*(R).
Therefore, we find that for almost every £ € R it holds that

F(195C0I17) ) = ((F(Fle) - T 6) + (F(fl) - T 6)* ) (&)
= [ FUf1) - Tu0) @) (F(fla) - Tt (6 =)o

= [ F1) - T0) @) TR Trd) (o =€) do

= [ 1)) Tiote) - FTRIG =€) - Ta bl — s
= [ FUR)w) - dlo ~ ) FRw =8 ol =€ — k) do

= [ PR TR =8 - ol = oo =€ = ) d

We may now use that ¢ = ce=™)*, with ¢ = 21/4, and compute
F(19£1P) © = [ FUlR)@FTRE =8 - 6w = kol — € = k) d

:f/R; AR @) F TR @ =8 - o-m—B—n(o-e-0? g,
= V2 [ FUR TR = - b8 g,

14



by completing the square in the exponent. By Lemma 11, we know that
supp F(f|r) C [~B, B] and thus

S

Con(w—k—£
F (19 R)P) ©) /f F12) @) F(fl)(w = €) - e 274 =5)" dw
=V / F(f12) @) FFR)w — &) - e +5)" du,
Of course, the exact same can be shown for ¢ € PW% and therefore it follows

from equation (2) that

B

Vo FURE@F (R =8 o2 (#=h5)" qu

2

=2 5 / Flglp) (@) F(gla) (@ — &) - e 2m(«k=5)" gy,

holds for almost every £ € R. Hence, we have

B
/ (FUR@FTIRE =8 - Flol) @ Fl) e - 0)
ek =5) dw =0, (3)

for almost every ¢ € R. According to Lemma 11, F(f|r), F(g|r) € L*(R) and
thus

he = F(flz) - Te F(fIz) — Flgl) - Te Flgle) € LA(R),

for every £ € R. It follows that he|_p p] is orthogonal to e 2
L*([-B, B)), for almost every £ € R.

Let us fix £ € R arbitrary in a set of full measure in which equation (3)
holds. We can then apply Zalik’s theorem with a = —B, b = B, ¢, = V27 as
well as ¢, =n+£/2, for n € N, since

S nte/2!

{ef%(‘*"*%)z ’n € N}

is complete in L?([—B, B]). Since k € N was arbitrary in our computations
above, this together with equation (3) implies that h¢|;_p ) = 0 and thus that

diverges. Therefore,

F(fIr) - Te F(flr) = F(glr) - Te F(glr) (4)

as functions in L?([-B, B]). By Lemma 11, we furthermore have that

supp F(f|r),supp F(g|r) C [-B, B

15



such that equation (4) continues to hold in L?(R).
Since £ was chosen arbitrarily in a set of full measure, we may take the
Fourier transform of equation (4) to obtain that

Ve F (FIR) = VEge) F(glr)-

Hence, by fundamental identity of time-frequency analysis,

Vi = Vlu9-

Finally, Lemma 5 implies that there exists an o € R such that f|g = el“g|g. As
both f and g are entire, this equality extends to f = e'®g. O

We may use the fractional Fourier transform to rotate the above result in the
time-frequency plane and thus obtain Lemma 2 as a corollary. More generally,
we actually obtain a result for functions in the spaces

FoL*([-B,B)) :={f:R—=C|3F € L*([-B,B]): f = FoFo},

for 6 € R and B > 0, where Fy is defined as in the paragraph “Notation”.
We should note that the Gabor transform of elements in FoL*([—B, B]) is well-
defined since L*([-B, B]) C L*(|-B, B]) according to Proposition 7 and thus
Fy € L?(R). The unitarity of the fractional Fourier transform does therefore
imply that 7y L*([-B, B]) C L3(R).

Proposition 18 (C.f. Proposition 3.4 on p. 11 of [10]). Let B >0, b € (0, /5]
and 0 € R. Then, the following are equivalent for f, g € F_oL*([~B, B]):

1. f =el%g, for some a € R,
2. |1Gf] =1Gg| on Re(N x bZ).

Proof. 1t is obvious that item 1 implies item 2. Let us therefore assume that
|Gf] =1Gg| on Rp(N x bZ), i.e.

GF(Ro(k,bn))| = [Gg(Ro(k,bn))[, k€N, neZ

Now, note that, by definition, there exist F,G € L*([-B, B]) such that f =
F_9Fpy and g = F_yG, respectively. According to the generalised fundamental
identity of time-frequency analysis (Lemma 6), the fact that the Gaussian is
invariant under the fractional Fourier transform, and R_yRy = id, we thus find
that

|GFo(k,bn)| = |GGo(k, bn)|, keN, neZ. (5)

Let us next define the functions

B B
hy(z) ::/ F(£)e?™i¢= 4, hy(2) == /_B G(g)EQWi.fz de,

—-B
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for = € C. Since F,G € L*([~B, B]), it holds that h;,h, € PW%. By the
definition of Fyy and Gy, we find that hylg = F~1Fy as well as hy|lr = F Gy
and thus equation (5) implies

|GF (hy|r)(k,bn)| = |GF (hglr)(k,bn)|,  k€eN, neZ.
According to the fundamental identity of time-frequency analysis, we find that
|Ghi(—bn, k)| = |Ghy(—bn, k)|, keN, neZ.

Therefore, it follows from Proposition 17 that there exists an a € R such that
hy = €®h, which immediately implies that f = e/®g by the relations hlg =
F1Ey = F 1 Fyf as well as hylgp = F1Go = F 1 Fpg. O

4 Two modifications of Zalik’s theorem

In order for the proof of Proposition 17 to become applicable to PW%, with
p € [2,00], we need to modify Zalik’s theorem. The reason for this is quite
simply that if p € [2,4), then one may show that

he := F(flr) - Te F(flr) = F(glr) - Te Fglr) € LP/*(R),

for £ € R. Since p/2 < 2, we note that he & L?(R), in general, and therefore
we cannot say that its restriction to [—B, B] orthogonal to certain translates
of Gaussians. We can, however, say that the action on h¢ of the translated
Gaussians — when we view them as elements of the dual of LP/?([— B, B]) which
is isometrically isomorphic to LP/(?=2) ([~ B, B]), when p > 2 — is trivial. It is
therefore sufficient to deduce that certain translates of Gaussians are complete
in LP/(*=2)([-B, B]), when p > 2, to conclude that h¢|[_p 5 = 0.
We therefore propose the following extension of Zalik’s theorem.

Theorem 19 (Generalised Zalik’s theorem). Let p € [1,00), —00 < a < b < 00,
¢, € R\ {0} and let (¢p)nen € R be a sequence of distinct numbers. Then,

{efczc—cn)z ’n c N}

is complete in LP([a,b]) if and only if

! -1
> lenl

diverges.

We will prove the result above by modifying the original proof in [17] slightly.
We should also note that, in doing so, we will strongly rely on two theorems
proven in [14]. The first one is the following Miintz—Szdsz type result.

17



Theorem 20 (Theorem 6.1 on p. 30 of [14]). Let p € [1,00), 0 < a < b < o0,
and let (dy)nen € C be a sequence of distinct numbers such that there exists a
6 >0 and an Ny € N with

[Red,| > 0 |dy|, n > Np.

Then,
()% [n )

is complete in LP([a,b]) and C([a,b]) if and only if

S (!

diverges.

The second one is an interesting construction of an entire function of expo-
nential type which can be seen as the extension of the Fourier transform of a
smooth function to C.

Theorem 21 (Theorem 5.2 on p. 30 of [14]). Let m € Ny, —co < a < b < o0,
and let (dy)nen € C\ {0} be an arbitrary sequence of numbers such that

! -1
Z |dn|™" < 0.

Then, there exists g € C*°(R) with supp g C [a,b] such that the function

b
G(z) = / g(t)e = dt, zeC,

can be factored as

2
G(2) = cz™e 177 H (1 — ;—2

neN n

) [[cos(exz), zec,

keN

where ¢ € C\ {0}, the sequence (ex)ken € (0,00) is such that

T:ZEk<OO

keN
ando=a+717=b—1.

Proof of Theorem 19. if. Let q¢ € (1,00] be the Holder conjugate of p. Then,
L%([a, b]) is isometrically isomorphic to the dual of LP([a,b]). We will therefore
consider f € L%([a,b]) such that

b
/ Ft)e =(=en)” gt = 0, neN,

18



and show that f = 0 in order to prove that {e_ci('_cn)2 |n € N} is complete in
L?([a,b]). By expanding the square in the exponent of the above integrand, we
find that

b
/ Ft)e =t e2%entdt =0, neN. (6)

With the notation

loga —lesi= > 2
g(x) =~ Vaf ( e 4 a = e, by o= e2eb,

2¢2
for x € [a/, V'], and the substitution z = chft, we obtain
% e2c3b o2
/ g(z)zen P Az = / zYaf log z o 1 genl/p
a’ e2c%a QCZ
2¢2p

e logx\ —c2los2e 1 7
=2¢2 . e "tz .gfn. de (7
7 /e2cga f( 2¢2 2c2x
b
=2c2- f(t)efcit2 ce2ent gt = 0,
a

for n € N, by equation (6). Since (¢, )nen € R, it follows that |Re(c, — 1/p)| =
|en, — 1/p|. Tt is also true that the numbers (¢, — 1/p)nen are distinet and that
0 < a’ <V < oo. Finally, one may show that the divergence of

! -1
> leal
is equivalent to the divergence of
/ —
> len—1/p7"

It follows from Theorem 20 that {x¢~1/? ’ n € N} is complete in LP([a’,V]).
Moreover, it holds that
log x
7(5)

4 210g2ax 1
¢, —ya
"z

c2p

b’ e%¢z
q _ q _ —1
90 sy = [, lo@* dz= [

e2c2b
_ 92 f log
“ e2c2a 202

b
242
= 202/ [F(#)Te79%" dt < 2¢2 ||quL‘1([a,b]) < 0.
a

q _qlog2 T
Alcz2 d.T

2
2c;x

It therefore follows from equation (7) that ¢ = 0 and thus also f = 0.
only if. We may assume that

ZI len] ™! < 0.
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If the sequence (cp,)nen contains zero, then we set m = 1 and let (dp,)neny € C
be the sequence obtained from removing zero from (Qicgcn)neN. If (¢ )nen does
not contain zero, we set m = 0 and let (d,,)nen = (2ic2¢, )nen. In any case, we

find that ,
> da| ™t < o0

such that Theorem 21 implies that there exists a g € C*°(R) with suppg C [a, ]
and such that

b
G(z) == / g(t)e = dt, z €C,

vanishes at the points (d,,)n,en and zero in case the sequence (¢, )nen contains
zero. Note also that g is non-trivial. Indeed, if g was trivial, so would be G
which contradicts its factorisation in Theorem 21. So let us define

F(t) = g1, te[ab],
such that

2 2
£l ooy < (0= )7 sup [f()] < (b—a)!/aec mxtab b max |g(t)] < oo,
te€(a,b] te(a,b]

where we used that continuous functions attain their maxima on compact in-
tervals. We therefore have that f € L9([a,b]) is non-trivial and it holds that

b b
./ Jc(t)efci’52 L e2crent gy — / g(t)e*it(zi&c") dt = G(2ic%c,) = 0,

for n € N. By simply multiplying by e*czci, we obtain that

/b f(t)e‘ci(t_c")2 dt =0, n €N,
and we have proven that
fese? [ e)
is not complete in LP([a, b]). O

What is very notable in the generalised Zalik’s theorem is that the case
p = oo is excluded. This is relevant to us since in the proof of Theorem 3 for
the case PW%, we will encounter

he = F(flz) - Te F(/Tr) ~ Flgle) - Te Flgle) € L'(R),

for £ € R, and that the action of certain translated Gaussians on h¢ is trivial.
Here, the translated Gaussians are to be seen as elements of the dual of L!([a, b])
which is isometrically isomorphic to L*([a,b]). It is, however, not hard to see

that
—c2(-—cn)?
{e » ’n € N}
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cannot be complete in L*([a,b]). Indeed, consider that e~ (—en)” g smooth,
for all n € N, and that uniform limits of continuous functions are continuous.
Therefore,

sp {e=2(—e)? [ € N}Lm([mb]) C C([a, b))

and thus our translated Gaussians cannot be complete in L>({a, b]).
It seems like we need to change the proof strategy at this point and so let
us make three remarks. First, it might be tempting to show that

{e‘cf('_c’“”)2 ‘n € N}

is complete in C([a,b]). While this may be true, it does not seem possible to
show it by a simple adaptation of the proof of Zalik’s theorem since the dual of
C([a, b]) is the space of Radon measures and it is not clear how the steps of the
proof would work in this setup.

Secondly, we observe that it is not necessary to show that

fomsttmenr [ e )

is complete in C([a, b]). In fact, it suffices to show that if the functions e (—en)?
act trivially on an element f € L'([a,b]), then f = 0. We will express this idea
using a standard definition.

Definition 22 (Annihilator). Let V' be a normed space with (continuous) dual
space V'. Let furthermore W C 'V be a closed linear subspace. The annihilator
of W is given by

Wh={pecV'|W Ckerg¢}.

Note that we want to consider the normed space L>([a,b]) in which the
underlying measure space is given by ([a, b], B([a,b]), A|5((a,5))), Where B([a,b])
denotes the Borel o-algebra on [a, b] and A denotes the Lebesgue measure. In this
setup, the dual of L*([a,b]) can be identified with the space ba([a,b],.A, | 4)
(see Theorem 16 on p. 196 of [5]), where

A:{AC [a,b]|§|Bo,Bl 68([&,“)130 C AC By and )\(Bl\Bo) :0}

is the set of Lebesgue measurable subsets of [a,b]. Here, ba([a,b], A, A|.4) de-
notes the space of all bounded, finitely additive signed measures on A which
are absolutely continuous with respect to A equipped with the total variation
norm. In this setting, the space L!([a,b]) can be identified as a subspace of
ba([a,b], A, A| 4) through the definition

w(A) = /Afd)\, Ae A

Using the annihilator notation, we may thus see that realising our second remark
amounts to proving that

L ([a,b -
(Sp {e=ci(=en)* | n € N} ( D) N L*([a,b]) = {0}.
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Thirdly, approximating continuous functions with linear combinations of el-

ements of
{() In € N}

is sufficient for the above purpose because the Fourier characters y,, = 2™«
are continuous for all w € R.
We may now state and prove the following theorem.

Theorem 23. Let —co < a < b < 00, ¢, € R\ {0} and let (¢,)neny € R be a
sequence of distinct numbers. Then, it holds that

L>([a,b +
(e Toeny ) e - (o)

if and only if

! -1
> lenl

diverges.

Proof. if. Let us consider f € L'([a,b]) such that

b
/ F)e =0 qt =0,  neNl.

Our goal is to show that f = 0. As in the proof of the generalised Zalik theorem,
the notation

logz\ —lezZe > 2
g(x) = 1f < 53 e 4c2 , a/ = chZa7 b/ = chZb’
Z

for x € [d’, V'], and the substitution x = 2t allows us to compute that

b/
/ g(x)zdz =0, n €N, (8)

and that g € L'([a/,b']). Moreover, Theorem 20 implies that {(-)» |n € N} is
complete in C([a/,]). So, let us consider £ € R arbitrary but fixed and note
that there exists a sequence s € C([a’,b']) of the form

N (k)
sk(z) = Z A (k)ze z € [a, V],
n=1

where (N(k))ken € N and (A, (k))n ken € C, such that
1
sup |xe(x) — s (2)| < 7
z€la’ b/ ¢ k- ||g||L1([a',b/])
for k € N. Tt follows from the linearity of the integral and equation (8) that

N(k)

v v
/ g(x)sk(x)de = Z )\n(k)/ g(x)zt dz =0, ke N.

’ a’
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Hence, we may estimate

b’ b’
[ stamela)da| =| [ o) (xela) = o) + su(2)) o

<

’
[ 9(a) (eela) = suo) do

<9l oy S0P ) = sele)] <K

z€la’,
for k € N. Therefore,

b’ b’

Fgo(—=¢) = // g(av)ezﬂi‘775 dr = / g(x)xe(z)dz =0

(l/
and since ¢ € R was arbitrary, we conclude that Fgy = 0. Finally, this implies

that go = 0 and thus that ¢ = 0 which shows that f = 0.
only if. We may assume that

ZI len] ™! < 0.

As in the proof of the generalised Zalik’s theorem, we may find a non-trivial
function f € L!([a,b]) such that

b
/ fe “t=e)®qt =0,  neN.

Therefore,

L% ([a,b])

L
(sp {e=ci(=en)® |n e N} ) N L' ([a,b]) # {0}

O

5 Generalisation of the sampling result: step by
step

As mentioned in the introduction, it is remarkable that the sampling result in
[10] which we have illuminated in Section 3 (Proposition 18) is only stated and
proven in FpL*([-B, B]), for B > 0 and § € R. This immediately raises the
question whether a similar result continues to hold if we replace FyL*([—B, B])
by the more general spaces

FoLlP([-B,B]):={f:R—C|3F € L’([-B,B]) : f = FoFo},

for 6 € R, p € [2,00], and B > 0. In particular, the case p = 2 seems interesting
as Gabor phase retrieval is usually stated with respect to the Hilbert space
L?(R). We should note that just as the LP-spaces on closed intervals and the
Paley—Wiener spaces, the spaces FyL?([—B, B]) are nested.
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Proposition 24. Let 1 < p < g < o0, B >0, and 8 € R. Then, we have
FoL4([-B, B]) C FoLP([-B, B]).

Proof. Let f € FgLi([—B, B]) be arbitrary. Then, by definition, there exists
an F' € L([-B, B]) such that f = FgFy. By Proposition 7, we find that
F € LP(|-B, B]) and thus that f € FpLP([-B, B]). O

Therefore, the most general case which we will be considering is the one in
which f,g € FyL?([-B, B]). Notably, the difficulty of generalising Proposition
18 to FyL?([—B, B]) can already be understood from considering Lemma 15.
Indeed, the case FpL*([—B, B]) is in some sense particularly easy to deal with
since f € PW% implies that |Gf|> € PW2, which is exactly the space for which
we can apply the WSK sampling theorem and, eventually,

he = F(flx) - Te F(fle) — Flglr) - Te Flgle) € L*(R), € €R,

allows for the application of Zalik’s theorem. If f € PW%, then |Gf|> € PWig,
however, and we need to replace the use of the WSK sampling theorem by the
use of a slightly more complicated sampling theorem in a Bernstein space. In
addition, as we have discussed in the prior section, we cannot apply Zalik’s
theorem and will instead need to make use of Theorem 23.

As advertised in the title of the present section, we will generalise Proposition
18 step by step. To be precise, we will prove that Proposition 18 will continue
to hold if we replace FpL*([—B, B]) by FoLP([—B, B]), for general p € [2, o0].
We will do this in three steps which are naturally ordered by difficulty: first, we
consider p > 4, then we consider p € (2,4) and finally we consider p = 2.

51 p>4

Let us start with the case p > 4. In this case, we obtain the following result as
a direct corollary to Proposition 17.

Corollary 25. Let p € [4,00], B> 0 and b € (0, [55]. Then, the following are
equivalent for f,g € PWh:

1. f =él%g, for some o € R,

2. 1Gf] =1Gg| on bZ x N.

Proof. According to Corollary 8, it holds that PW% ¢ PWY, for p € [4,00].
Therefore, f,g € PW%, satisfy that f,g € PW‘}B and thus the equivalence of
item 1 and item 2 follows immediately from Proposition 17. O

52 pe€ (2,4)

Next, we can consider p € (2,4). In this case, we will need to make use of a
generalised version of the WSK sampling theorem. To be precise, we may apply
Lemma 12 to see that PW%, C B ., where ¢ € (2, 00) is the Holder conjugate
of p, and then utilise Theorem 13. In addition, we will apply the generalised
Zalik’s theorem.
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Proposition 26. Let p € (2,4), B > 0 and b € (0, ;5]. Then, the following
are equivalent for f,g € PWh:

1. f =¢el%g, for some a € R,
2. |Gf] =1Gg| on bZ x N.

Proof. First, note that if f = el®g, for some a € R, then it follows immediately
that |Gf| = |Gg|. Secondly, suppose that |Gf| = |Gg| on VZ x N. If k € N
is arbitrary but fixed, it follows directly from the Lemmata 12 and 15 that
IGf(-.k)|* and |Gg(-, k)|* are restrictions of functions in

2 —2 -2
PV C B B

to R. Therefore, Theorem 13 implies
Gf(x, k) = |Gg(z, k), z €R. (9)

To apply the generalised Zalik theorem, we need to reformulate the equation
above. For this purpose, we remember that f € PWJ C PW23 by p > 2
(Corollary 8). We may now exactly follow the calculations in the proof of
Proposition 17 to see that

B
/ (FURE@FRE =8 - Flgl) @) Fll e - )

e 2@k =5) qw =0 (10)

holds, for almost every £ € R. By Lemma 11, we have F(f|r), F(g9r) € L?(R)
and thus

he := F(flr) - Te F(flr) — Flglr) - Te Fglr) € LP/*(R),

for ¢ € R. The dual of LP/?(R) is isometrically isomorphic to LP/(P=2)(R) and
since p/(p — 2) € [2,00), we may apply the generalised Zalik’s theorem.

Let us fix £ € R arbitrary in a set of full measure in which equation (10)
holds and set a = —B, b= B, ¢, = /27 as well as ¢, = n+&/2, forn € N. As

St es2f

diverges, the generalised Zalik’s theorem implies that
{efw(‘*"*%)z ’n € N}

is complete in LP/?=2) ([~ B, B]). Since k € N was arbitrary in our computations
above, this together with equation (10) implies that he|[—p ) = 0 and thus that

F(fle) - Te F(flr) = F(glr) - Te F(glr)

as functions in LP/?([—~B, B]). By the support properties of F(f|r) and F(g|r)
this equation extends to LP/2(R). As in the proof of Proposition 17, we may
now deduce that there exists an o € R such that f = e'*g. O
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53 p=2

Finally, we may consider the most general case p = 2. As before, we may
see that it follows from Lemma 12 that PW% C BS°;. We can therefore use
Theorem 14 to take care of the sampling in time. We observe, however, that
Theorem 14 does not guarantee unique recovery from samples at the critical
rate in contrast to the WSK sampling theorem and Theorem 13. Additionally,
we make use of Theorem 23 to take care fo the sampling in frequency.

Proposition 27. Let B > 0 and b € (0, é). Then, the following are equivalent
for f,g € PW2B:

1. f =el%g, for some a € R,
2. |Gf] =1Gg| on bZ x N.

Proof. First, note that if f = e'®g, for some a € R, then it follows immediately
that |Gf| = |Gg|. Secondly, suppose that |Gf| = |Gg| on VZ x N. If k € N
is arbitrary but fixed, it follows directly from the Lemmata 12 and 15 that
IGf (-, k)* and |Gg(-, k)|* are restrictions of functions in

PWj; C By
to R. Therefore, Theorem 14 implies
Gf (@ k)I” =Gg(x. k)", zeR. (11)

We may now exactly follow the calculations in the proof of Proposition 17
to see that

B —
/ (FURE@FTRE =8 - Flol) @ Fl - 0)
et 5)  qu =0 (12)

holds, for almost every & € R. By Lemma 11, we have F(f|r), F(g|r) € L*(R)
and thus

he := F(fIr) - Te F(flz) — F(gle) - Te Fgle) € L' (R),

for ¢ € R. The dual of L}(R) is isometrically isomorphic to L>(R) such that
we may apply Theorem 23.

Let us fix £ € R arbitrary in a set of full measure in which equation (10)
holds and set a = —B, b= B, ¢, = /27 as well as ¢, = n+&/2, for n € N. As

S g2l

diverges, Theorem 23 implies that

L ([a,b -
(Sp {e=ci(=en)* | n € N} ( D) N L*([a,b]) = {0}.
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Since k € N was arbitrary in our computations above, this together with equa-
tion (12) implies h¢|—p ) = 0 and thus

F(flr) - Te F(flr) = F(glr) - Te F(g|r)

as functions in L'([-B, B]). By the support properties of F(f|z) and F(g|g)
this equation extends to L!(R). As in the proof of Proposition 17, we may now
deduce that there exists an o € R such that f = e'®g. O

5.4 Main results

We may now use the fractional Fourier transform to rotate our results in the
time-frequency plane. In this way, we might unifyingly state the following the-
orem.

Theorem 28 (Main theorem). Let p € [2,00], B > 0 and § € R. Let b €
(0,75), ifp =2, and b € (0,75], if p € (2,00]. Then, the following are
equivalent for f,g € F_gLP(|—B, B]):

1. f =¢€l%g, for some o € R,
2. |Gf] =1Gg| on Ry(N x bZ).

Proof. The proof is exactly the same as that of Proposition 18 with the use of
Proposition 17 replaced by the use of Corollary 25 or the Propositions 27 or 26
depending on the parameter p € [2, o0]. O

It is clear from the proofs presented in this paper that the main theorem
continues to hold for more general non-uniform sampling lattices. In particular,
N may be replaced by any sequence (¢, )nen of distinct real numbers such that

! -1
> lenl

diverges, and bZ may be replaced by any sequence (¢, ),z of real numbers which
satisfies that f(¢,) = 0 implies f =0, for all f € B 5. According to Theorem
3.2 on p. 44 of [18], the condition

b
sup [t, — bn| < (13)

R
nez 4

with 0 < b < é, is sufficient to guarantee this and therefore the following
holds.

Theorem 29. Letp € [2,00], B > 0 and 0 € R. Let (¢y)nen € R be a sequence
of distinct numbers such that
/
D leal™

diverges and let (t,)nez € R be a sequence which satisfies condition (13). Then,
the following are equivalent for f,g € F_oLP([-B, B]):

1. f =él%g, for some a € R,
2. |gf| = |gg| on RG({Cn}nEN X {tn}nEZ)-
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A Properties of the fractional Fourier transform
Lemma 30. Let § € R and ¢ = ce_”(')Q, for ¢ = 2%, Then, it holds that

Fodp = ¢.

Proof. Let us start by considering that

Foknd = b, Fors1)9(§) = ¢(=€) = ¢(),

for ¢ € R, where we have used that ¢ is even. We may therefore consider
0 € R\ 27Z and compute

2 422 o tE
‘F@(b(g) —_ Ccee‘n'lf cot 6 / e 7t e-rrlt cotF)e 2migry dt
R

o2 1 2 o o £
:cCOeﬂ'lf cot@/e m(l—icot 0)t e 2mit 52 dt,
R

for £ € R arbitrary but fixed. The above corresponds to the classical Fourier
transform of the Gaussian

ga(t) — effr(lficot 0)t2’ te R,

which according to Lemma 1.5.1 on p. 17 of [8] and the paragraph thereafter is
given by
s 2
Folg) = e,

It follows that

Fod(§) = ceoe™e Cow/

_ . 2 g4 & g2 f
e w(l1—icot 0)t e 2mit 525 dt ccaem§ COtGF < >
R

sin 6

o2 2 ; N B WS-
= ce’“E COtee_m(siée) = CeW(ICOta (1—icot 0) sin? 9)5 .

Finally, we may compute

Ccotf — 1 _ lcosf 1
(1—icotf)sin?0  sinf  (sinf —icos)sind

icosf(sinf —icosf) —1

(sind —icosf)sinf
icosfsinf + cos? 0 — 1

(sinf — icos @) sin

icosfsinf — sin? 6

~ (sinf —icos ) sin -
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such that

Fod(€) = Ce’r(i cot 0= T oy e 9)52 — e = 6(€).
O

Lemma 31 (Generalised fundamental identity of time-frequency analysis —
see [3, 13]). Let 0 € R and f,g € L*(R). It holds that

Vr, g Fof (@, w) = Vof (Ro(z,w))e™ sin 0( (2 —w?) cos 6—2zw sme)7
for x,w e R.
Proof. Let x,w € R be arbitrary but fixed and let us start by considering that
VsngFokn f(2,0) =V, f (2, 0)
as well as
VEansnmal @k f (T, w) = /R]:(Qk—&-l)ﬁf(t)f(Qk-ﬁ—l)wg(t — x)e 2T dt
— [ st-tgt e ar
R

= [ reata e as
=V, f(—z, —w).

We may therefore focus on 6 € R\ 27Z from here on out. We consider

VrpgFof(x,w) = (Fof, M, Ty Fog) .

To progress, we need to understand how modulations and translations act on
the fractional Fourier transform. Let us start by considering the action of trans-
lations through the following calculation:

Lt(r—x)

Trc .Fgg(T) —_ feg(’r o J}) — Ceefri(‘rfx)2 cot@/g(t)eﬂit2 cot06727r1 o dt
R

tx

o (2,2 : 2 o tr
= cye 27iTx cot Oeﬂl(r +z ) cot 6 / g(t)e27r1—sm 5 . emt cot Ge 27y dt
R

_ Coewi(TQJr:L’Q)cotG / g(t)eQﬂiSf‘% . eTrit2 cot96727ri(si£9+xcot0)7 dt
R

2, 2 s i 2 o (t+zcosO)T
_ Cae7r1(‘r +z )cote / g(t)e%ITne . emt cot Ge M dt
R

— Ceeﬂi(Tz—i-xz) cot 6

(s—zcos )z

: e 2 oo i st
. / g(S — xcos 9)62771 e . em(s z cos ) CotGe 2mi £ ds
R
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— Cgefri(fz—zz) cot 0

. sw oo 2 o i_sT
. / g(S — xcos 9)627”7:&:;9 . e7r1(s z cos )~ cot Oe 2mi T ds
R

.2 22 2
29—1
CQGT”T cot Qeﬂ'w (cos 6 ) cot 6

i 1 __ is? — i —ST_
/g(s — xcos 9)62msac(sin9 cos 6 cot 9) . oTis cotGe 2T ds
R

.2 2 .
— COeTrU' cot@e iz~ sin 0 cos 6

isx si is? Qi ST
X / g(S o xcose)e%nsa:bma . TS Cot@e 2migTy ds
R

.2 .
=e sin 6 cos 0 ']:9 stiné’ TaccosG.g(T)'

Next, we may consider the action of modulations. For this purpose, we consider
h € L*(R) and compute

tT

M., Foh(r) = Foh(r)e*™™ = COeZﬂiTwe‘n'iTz cot@/ h(t)e”itz cot 0, —2mitry 44
R

t

_ C‘gewiT2 cot 0 / h(t)eﬂitZ cot Ge—2ﬂ'i( T —UJ)T dt
R

 (t—wsin 0)T

.2 2 _
_ Caeﬂm‘ cot 0 / h(t)eﬂlt cot Qe 27i @ dt
R

2 . : o2 oo i_sT
— Caeﬂ-” cot 6 / h(S + wsin a)eﬂl(s+w sin )< cot 08 2mi 2T ds
R

. 92 2 s )
_ Ceemr cot Oemw sin 6 cos 6

. is (2 o sT
. / h(8+w81n9)627r15wc039 . eTls cotée 2T, ds
R

.2 .
= miw sinfcost, FoMucoso T—wsino h(T)
The action of a translation followed by a modulation is therefore given by
Mw T, -7:99(7—) = eiﬂ—in sinfcosd -FO Mr sing Lz coso g(T)egﬂTw

i(w?—2?)sin 0 cos 0
=e" (w ) ! 'J:QMwCOSGT—wsiHGMmsineTwCOSQQ(T)

_ eﬂ'i(wzf‘rQ) sin 6 cos 9627rizw sinZ 0

: -FO Mm sin O+w cos 6 Tz cos 0—wsin O g(T)
— eﬂ'i sin 9((w2—w2) cos 0+2zw sin 9)

. f@ M:r sin +w cos @ T:E cos —w sin 6 9(7)7

where we have used that
Ty Mg =e 2MEM Ty,  t,€€R.

It does therefore follow from the unitarity of the fractional Fourier transform
that

V]'—egf9f(x7w) = (]:af, M, T, -7:99)
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. e—ﬂ'i sin 0((w2—x2) cos 0+2zw sin 9)

: (]:Gfa Fo Mg sin 0+w cos O Ty cos 0—wsin o g)
— efﬂ'i sin 9((0.)27‘%2) cos 0+2zw sin 0)
: (fa Mm sin 0+w cos 0 Tm cos 0—wsin 0 9)
— e—‘n’i sin 9((w2—x2) cos 0+2zxw sin 9)

Vg f(xcosh —wsinb, xsinf + wcos h).

B Paley—Wiener spaces and Bernstein spaces

Lemma 32. Let p € [1,2] and denote by q € [2,00] its Holder conjugate. Let
moreover B > 0. Then, it holds that PW%, C B2 .

Proof. Let us denote x.(£) := e*™¢* for ¢ € R and z € C, throughout this
proof. Moreover, we will drop the interval [—B, B] in the notation of the L"-
nors |-, = 1 o i for v € [1, o]

Let f € PW%,. By definition, there exists an F' € L?([—B, B]) such that

B .
f6)= [ Feemea  sec

—-B

Based on the above formula, we may show that f : C — C is continuous. Indeed,
consider zp,z € C arbitrary and apply the triangle inequality and Holder’s
inequality multiple times to obtain

If(z) = f(z0)] = '/_B F(g) (ezﬂifz _ engzo) de
§ B

< / 1P (:6) X0 (O)] ¢

<IFN, Ixe = Xaolly < @B)7 IFI [1x: = Xeolloo
= (2B)7 |IFll, lIxz0 (Xa—20 — D)lloc

< 2B) | Fl, Ixzoll oo Ixa—s0 — 1l
< (2B)5e®™ P10l | F||[lxazy — 1
= (2B)

2B) 1> |||, - sup
£ER

e27ri§(z—zo) _ 1‘ ,

where we have used that x4, = X2 Xz, for z,2" € C. We may now assume that
|z — 20| < (47B)~1, expand the exponential function and estimate

1 2nBlz mi&(z—z
|£(2) = f(20)| < (2B) 7> °‘||F||,,-§£\e2 |
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(QB) 27TBIZo\”F” Supiw

cR =1 ]f'
k
271'B|z | (27TB |Z _ ZOD
< @pyheaial ), . 30 CrBlE )"
k=1
. o
< @2B)ae*™Pl || -y " (@2n Bz - )
k=1
27 B |z — 2|

_ (2B)5027TB|ZO‘ ||F||p . m

< 92+1/a, Bl4+1/q,27Blz0| Wl -1z — 20],
= P

where we have used the convergence of the geometric series which holds due to
2B |z — zp| < 1/2 < 1. It follows that f : C — C is continuous.

Next, we can apply Morera’s theorem to see that f is, in fact, entire. Indeed,
we might consider a closed, piecewise C! curve « in C and compute

Lf(z) dz = L/Z F(&)e?™8* dedz = /i F(g)Ae2”iﬁz dzd¢ =0,

where we used Fubini’s theorem to exchange integration and applied Morera’s
theorem to see that the contour integral of z — e2™¢% vanishes, for all £ € R
— which works because z +— e?™i¢? is entire, for all £ € R. It therefore follows
from Morera’s theorem that f is entire.

We can finally estimate

B
o= ‘/ e dg < [ IPE-O)] d < P, I,

< @2B)Y1|F|l, lIx:llo < @BV F, e* P,

for z € C. It follows that f is of exponential type 2nrB. Additionally, it fol-
lows from the classical Hausdorff-Young inequality (see for instance Proposition
2.2.16 on p. 114 of [7]) that f|g € LI(R), where ¢ is the Holder conjugate of
p. O
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