
Change Point Detection in Time Series Data

using Autoencoders with a Time-Invariant

Representation

T. De Ryck and M. De Vos and A. Bertrand

Research Report No. 2021-15
June 2021

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

__

Funding ERC: 802895

Funding: Flemish Government (AI Research Program)

Accepted for publication in 'IEEE Transactions on Signal Processing'

1

Change Point Detection in Time Series Data using

Autoencoders with a Time-Invariant Representation
Tim De Ryck∗†, Maarten De Vos∗‡, Alexander Bertrand∗

∗ STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics,

Department of Electrical Engineering (ESAT), KU Leuven, Belgium
† Seminar for Applied Mathematics, Department of Mathematics, ETH Zürich, Switzerland

‡ Department of Development and Regeneration, KU Leuven, Belgium

Abstract—Change point detection (CPD) aims to locate abrupt
property changes in time series data. Recent CPD methods
demonstrated the potential of using deep learning techniques,
but often lack the ability to identify more subtle changes in the
autocorrelation statistics of the signal and suffer from a high false
alarm rate. To address these issues, we employ an autoencoder-
based methodology with a novel loss function, through which the
used autoencoders learn a partially time-invariant representation
that is tailored for CPD. The result is a flexible method that allows
the user to indicate whether change points should be sought in the
time domain, frequency domain or both. Detectable change points
include abrupt changes in the slope, mean, variance, autocorrela-
tion function and frequency spectrum. We demonstrate that our
proposed method is consistently highly competitive or superior to
baseline methods on diverse simulated and real-life benchmark
data sets. Finally, we mitigate the issue of false detection alarms
through the use of a postprocessing procedure that combines
a matched filter and a newly proposed change point score. We
show that this combination drastically improves the performance
of our method as well as all baseline methods.

Index Terms—change point detection, time series segmentation,
autoencoder, deep learning

I. INTRODUCTION

In the era of big data, where Internet of Things (IoT) devices

and other sensors provide endless data streams, the importance

of time series analysis techniques can hardly be overestimated.

One particular task, that has drawn attention from statistics

and data mining communities for decades [1]–[4], is change

point detection (CPD): the detection of abrupt changes in the

temporal evolution of time series data. Change point detection

can be a goal in itself or it can be used as a preprocessing tool

to segment a time series in homogeneous segments (which

can then be further analysed, clustered or classified). Real-life

applications of CPD include, but are not limited to, the analysis

of climate data [5], financial market data [6], [7], genetic data

[8] sensor network data [9], [10] and medical data [11], [12].

CPD methods can be categorized according to many differ-

ent criteria. It is common to make the distinction between on-

line CPD, which provides real-time detections, and retrospec-

tive (offline) CPD, which provides more robust detections at

the cost of needing more future data. In this paper, we focus on

This research received funding from the Flemish Government (AI Research
Program) and from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement
No 802895). All authors are affiliated to Leuven.AI - KU Leuven institute for
AI, B-3000, Leuven, Belgium.

the second category. Many CPD algorithms compare past and

future time series intervals by means of a dissimilarity mea-

sure. An alarm is issued when the two intervals are sufficiently

dissimilar. A first group of methods defines this dissimilarity

measure based on the difference in distribution of the two

intervals. CUSUM and related methods [4], [13] track changes

in the parameter of a chosen distribution, the generalized likeli-

hood ratio (GLR) procedure [14], [15] monitors the likelihood

that both intervals are generated from the same distribution,

and subspace methods [16], [17] measure the distance between

subspaces spanned by the columns of an observability matrix.

All these methods however strongly rely on the assumption

that the time series data is generated using some paramet-

ric probability distribution (CUSUM), autoregressive model

(GLR) or state-space model (subspace method). Bayesian

online CPD [18] is another notable algorithm that depends

on distributional assumptions. Unsurprisingly, the performance

of these parametric methods heavily depends on how well

the actual data follows the assumed model. Parameter-free

alternatives are kernel density estimation [2], [19], [20] and the

related density ratio estimation [21], [22]. A more complete

overview of CPD methods can be found in e.g. [23]–[26].

Following the successful application of deep learning tech-

niques in anomaly detection, a promising approach for CPD

was to base the dissimilarity measure on the distance between

features automatically learned by an autoencoder [27]. Main

advantages of this approach are the absence of distributional

assumptions and the ability of autoencoders to extract complex

features from data in a cost-efficient way. There are however

also some severe drawbacks. First, there are no guarantees

that the distance between consecutive features reflects the

actual dissimilarity of the intervals, i.e. features may vary

significantly even in the absence of a change point. Second,

the correlated nature of time series samples is not adequately

leveraged by vanilla autoencoders, which makes it challenging

to detect abrupt changes in the frequency domain. This is

not uncommon in CPD literature [4], [18], [20], [28]. Some

methods explicitly focus on abrupt changes in the spectrum

[29], [30], thereby often ignoring changes in the time domain.

Finally, the absence of a postprocessing procedure preceding

the detection of peaks in the dissimilarity measure often leads

to a high number of false positive detection alarms [31].

Building on [27], we propose a new autoencoder-based CPD

method using a partially time-invariant representation (TIRE)

2

that aims to overcome the aforementioned concerns. Our main

contributions can be summarized as follows.

• We propose a new CPD framework based on a novel

adaptation of the autoencoder with a loss function that

promotes time-invariant features. Through our choice

of loss function, we aim for the autoencoder to learn

a representation that is better suited for CPD. Based

on this encoding, we define a dissimilarity measure to

detect change points. We evaluate the performance of our

algorithm on diverse simulated and real-life benchmark

data sets and compare with other dissimilarity-measure-

based CPD algorithms.

• Whereas many change point algorithms assume the time

series data to consist of independent identically dis-

tributed (iid) samples, we explicitly focus on non-iid

data. We use the discrete Fourier transform to obtain

temporally localized spectral information and propose

an approach that combines time-domain and frequency-

domain information. When domain knowledge is avail-

able, our approach allows the user to only focus on the

time or frequency domain.

• Finally, we propose a way of identifying change points

from the dissimilarity measure data by applying the no-

tion of topographic prominence [32] to the CPD setting.

We emphasize the general importance of postprocessing

steps in CPD through numerous experiments.

II. PROBLEM FORMULATION

Let X be a d-channel time series of length T for which there

exist time stamps 0 = T0 < T1 < . . . < Tp = T such that

every subsequence of the form (X[Tk +1], . . . ,X[Tk+1]) is a

realisation of a discrete time weak-sense stationary stochastic

(WSS) process, whereas the union of two such consecutive

subsequences is not. The time stamps T1, T2, . . . are referred

to as change points. The goal of change point detection (CPD)

is to estimate these change points without any prior knowledge

on the number and the locations of the change points [31]. The

piecewise WSS assumption is not a strict prerequisite for the

algorithm to work, but it does accurately summarize the kind

of change points our proposed algorithm will be able to detect.

Examples of violations of the WSS conditions, and therefore

examples of change points we wish to detect, are changes in

mean, variance and autocorrelation. Note that changes in the

latter are also reflected in the frequency spectrum through the

Wiener-Khinchin theorem [33], [34].

We focus on CPD algorithms that are based on a dissimilar-

ity measure. Such methods calculate for every time stamp t the

dissimilarity between the windows (X[t − N + 1], . . . ,X[t])
and (X[t + 1], . . . ,X[t + N]), where N is a user-defined

window size. Our first main goal is to develop a CPD-tailored

feature embedding and a corresponding dissimilarity measure

Dt, which peaks when the WSS restriction is violated. The

nominal approach for identifying change points would then be

to determine all local maxima and label each local maximum

of which the height exceeds a user-defined detection threshold

τ as a change point [27], [35]. However, given a window

size N , the width of this peak will theoretically be 2N − 1

time stamps, making it likely that noise will cause multiple

detection alarms for each ground-truth change point [31]. Our

second objective is to mitigate the impact of this issue.

III. AUTOENCODER-BASED CHANGE POINT DETECTION

A. Preprocessing

Let X be a d-channel time series of length T , where we

denote the i-th channel by Xi. We first divide each channel

into windows of size N ,

xi
t =

[

Xi[t−N + 1], . . . ,Xi[t]
]T ∈ R

N . (1)

We then combine for every t the corresponding windows of

each channel into a single vector,

yt =
[

(x1
t)

T , . . . , (xd
t)

T
]T ∈ R

Nd. (2)

Furthermore, we use the discrete Fourier transform (DFT)

on each window xi
t to obtain temporally localized spectral

information. The length of the transformed window is then

cropped to a predefined length M . Finally, the modulus of

the transformed window is computed. Bundling all these

transformations as a single mapping F : R
N → R

M , we

obtain the frequency-domain counterpart of yt:

zt =
[

F(x1
t)

T , . . . ,F(xd
t)

T
]T ∈ R

Md. (3)

B. Feature encoding

Building on [27], we use autoencoders (AEs) to extract

features for change point detection from the time-domain (TD)

windows {yt}t. We expand the approach in [27] by also

extracting features from the frequency-domain (FD) windows

{zt}t and through the proposal of a new loss function that

explicitly promotes time-invariance of the features in consec-

utive windows. The latter is a relevant property in order to

perform CPD based on a dissimilarity metric.

An autoencoder is a type of artificial neural network that

aims to learn a low-dimensional encoding (i.e. features) from

a higher-dimensional input by reconstructing the input from

the encoding as accurately as possible. It is often used as

a dimension reduction technique and can be seen as a non-

linear generalization of PCA [36]. In its simplest form, an

autoencoder consists of one hidden layer. The encoder maps

the input yt ∈ R
Nd (resp. zt) to its encoded form ht ∈ R

h as

ht = σ(Wyt + b), (4)

where W is the weight matrix, b is the bias vector and σ is

a non-linear activation function that is applied element-wise.

The decoder then maps the encoded representation back to the

original input space,

ỹt = σ′(W′ht + b′). (5)

We choose σ = σ′ to be the hyperbolic tangent function,

with as a consequence that each channel of the time series

should be rescaled to the interval [−1, 1]. We use individual

instead of joint rescaling to ensure that all channels have a

comparable magnitude. The goal of the AE is then to minimize

the difference between the input and the output, i.e. minimize

‖yt − ỹt‖, by optimizing the choice of W,W′,b,b′. In [27],

3

the learned features ht are then used for CPD by measuring

the dissimilarity between consecutive feature vectors (ht vs.

ht−1). However, the learned features ht will then unavoidably

also contain information that is not relevant for CPD (e.g.

phase shift or noise information), which may generate large

dissimilarities even when there is no actual change point.

We try to remedy this by introducing the notions of time-

invariant and instantaneous features. The idea is that features

learned from consecutive windows are only useful for CPD

when they are approximately equal to each other in the

absence of a change point (e.g. mean, amplitude and frequency

should not change much within a WSS segment). We will

refer to them as time-invariant features as they are aimed

to be invariant over time within a WSS segment. All other

information that is needed for a good reconstruction, but that

may differ for consecutive windows, is aimed to be encoded

in instantaneous features. This then gives

ht =
[

(st)
T , (ut)

T
]T

, (6)

where st ∈ R
s are the time-invariant features and ut ∈ R

h−s

are the instantaneous features. To obtain both a good recon-

struction and time-invariant features, we propose to minimize

the loss function
∑

t

(‖yt − ỹt‖2 + λ‖st − st−1‖2) , (7)

where λ > 0 control the amount of regularization of the

time-invariant features. Here we make the implicit assumption

that the number of terms in (7) that correspond to a window

containing a change point is very small compared to T .

It is very uncommon in machine learning to directly min-

imize the loss function (7), i.e. take all t into account for

every step of gradient descent. To improve convergence, it is

advisable to first randomly partition all time stamps t over

J smaller mini-batches Tj [37]. The mini-batch stochastic

gradient descent (SGD) version of minimizing (7) would then

consist of updating the network parameters by calculating the

gradient of
∑

t∈Tj

(‖yt − ỹt‖2 + λ‖st − st−1‖2) (8)

for some j, followed by performing one gradient descent

step and repeating this for all other mini-batches. Note that

formulation (8) would require to use time stamps from other

batches, i.e. t ∈ Tj does not generally imply that t− 1 ∈ Tj .

However, we choose to generalize (8), and minimize the

following loss function for each mini-batch,

∑

t∈Tj

(

‖yt − ỹt‖2 +
λ

K

K−1
∑

k=0

‖st−k − st−k−1‖2

)

, (9)

where K ∈ N. For K = 1 this equation reduces to (8).

For K > 1, this approach has the advantage that now

K + 1 consecutive features are jointly and simultaneously

considered during the computation of the gradient, resulting

in an additional smoothing effect of the stochastic gradient

in the direction of the minimization of the penalty term in

(7). Thereby further promoting the aimed time invariance of

X[t−N] X[t−N + 1] · · · X[t− 1] X[t]

utst

· · ·

· · ·

ut−1st−1

· · ·

· · ·

Fig. 1. Visualization of time-invariant feature encoding for K = 1. The
TD autoencoder is shown two times, once with input yt−1 and once with
input yt. The corresponding time-invariant features st−1 and st are forced to
be approximately equal because of the chosen loss function (9). Frequency-
domain time-invariant features are obtained analogously.

the features st. It may help to think of (9) as K + 1 parallel

autoencoders with identical weights and biases, where the k-th

autoencoder receives yt+k−K−1 as input and where a subset

of the latent variables (i.e. the time-invariant features) of the

parallel autoencoders are forced to be close together to obtain

a partially time-invariant representation (Figure 1). Note that

even though the difference in formulation between (7) and

(9) impacts the training of the autoencoder, the resulting loss

functions are essentially the same when summing over all t.
To avoid that the autoencoder encodes all information

in the unregularized instantaneous features, the number of

instantaneous features should be taken as small as possible.

Depending on the data, one might add additional regularization

terms to the loss function or use a more advanced type

of autoencoder (e.g. weight regularized, deep/stacked, tied-

weights, variational, recurrent autoencoder). In an entirely

similar fashion, we train a second autoencoder on {zt}t
with a similar loss function to obtain frequency-domain time-

invariant features. We will use the superscripts TD and FD to

distinguish between parameters and features corresponding to

the time and frequency domain, respectively.

C. Postprocessing and peak detection

In this section we first describe how to construct a dissim-

ilarity measure that complies with the needs formulated in

Section II based on the time-invariant features from the pre-

vious section. Next, we discuss multiple methods to suppress

the number of false positives when determining the detection

alarms.

1) Postprocessing: We first combine the TD and FD time-

invariant features into a single time-invariant features vector,

st =
[

α · (sTD
t)T , β · (sFD

t)T
]T

, (10)

where α, β > 0 are parameters that control the relative con-

tribution of the TD and FD time-invariant features. Next, we

use a zero-delay weighted moving average filter to smoothen

the time-invariant features, as small fluctuations in the features

will affect the performance of the method. The moving average

filtering operation can be described as follows,

s̃t[i] =

N−1
∑

k=−N+1

v[N − k] · st+k[i], (11)

4

with v[k] = v[2N − k] , k/N2 for 1 ≤ k ≤ N , where N
is the window size as defined in (1), resulting in a triangular

shaped weighting window. We use edge value padding in order

for the equation to be defined for all t. We then propose the

following definition for the dissimilarity measure D:

Dt = ‖s̃t − s̃t+N‖
2
, (12)

where N is the window size as defined in (1). In some

applications, domain-specific knowledge might suggest that

only TD (resp. FD) information is relevant for CPD. This

expert knowledge can be incorporated in the dissimilarity

measure by setting α = 1 and β = 0 (resp. α = 0 and β = 1)

in (10). We denote the obtained dissimilarity measure by DTD
t

(resp. DFD
t). Using DTD

t and DFD
t , we can also set α and β

automatically in such a way that the TD and FD time-invariant

features contribute in a comparable fashion to Dt. We let

α = Q({DFD
t }t, 0.95) and β = Q({DTD

t }t, 0.95), (13)

where Q is the quantile function, i.e. for a set of real numbers

A and 0 < p ≤ 1 it holds that Q(A, p) is the smallest number

such that p · 100% of the elements of the set A are smaller

than Q(A, p). We use the 95-percentile as a measure of the

heights of the peaks in the dissimilarity scores, where outliers

are ignored. By setting α and β in (10) according to (13), the

peaks in {DFD
t }t and {DTD

t }t contribute approximately equally

to {Dt}t. As all learned features lie in the interval [−1, 1],
the robustness of using a quantile-based fusion approach is

guaranteed.

2) Peak detection: If the time-invariant features are indeed

similar across successive windows within a WSS segment,

the dissimilarity measure Dt, as defined in (12), will peak

at or near a change point. Determining reasonable detection

alarms from these peaks is an often neglected task in current

literature. In some cases, the problem is avoided by focusing

on time series containing only one change point [35]. In

other cases all local maxima of the dissimilarity measure are

considered to be detection alarms [27], leading to unreasonably

many false positives. Liu et al. [22] propose to reduce the

number of false positives by deleting detections that are too

close to the previous detection. As their method might also

delete correct detections, it is clearly not optimal. Recently,

the use of a matched filter was investigated as a way to

improve detection and localization of change points [28], [31].

It is however difficult to automatically select a representative

peak to base the matched filter on [28], nor is it possible to

unambiguously derive an asymptotically matched filter [31]

for our dissimilarity measure. We therefore propose to reuse

the impulse response v from the moving average filtering (11)

as it is has a comparable effect to that of a matched filter, as

a consequence of its width and shape. This then leads to

D̃t =

N−1
∑

k=−N+1

v[N − k] · Dt+k. (14)

The detection alarms then correspond to all local maxima of

the series (D̃N , D̃N+1, . . . , D̃T−N) [28], [31].

Aiming to further improve detection accuracy, we propose to

use a different, parameter-free approach for peak detection. In

topography, the prominence of a peak is the minimum height

that one needs to descend in order to be able to ascend to

a higher peak [32]. The idea is that even though every peak

in the dissimilarity measure might consist of multiple local

maxima that all have a large height, only one of these maxima

will have a large prominence. This measure has previously

been successfully applied in the analysis of population data

[38], super-resolution microscopy data [39] and neural signals

[40]. Given that Dt is a local maximum, we first define the

two closest time stamps left and right of t for which the

dissimilarity measure is larger than Dt, and denote them by

tL and tR respectively, i.e.,

tL = max {sup{t∗ | Dt∗ > Dt and t∗ < t}, N} , (15)

tR = min{inf{t∗ | Dt∗ > Dt and t∗ > t}, T −N}, (16)

where the max and min operators ensure that tL and tR stay

at a distance N from the boundaries of the time series. We

then define the prominence P(Dt) of local maximum Dt by

P(Dt) = Dt −max

{

min
tL<t∗<t

Dt∗ , min
t<t∗<tR

Dt∗

}

. (17)

If Dt is not a local maximum we set P(Dt) = 0 by definition.

We propose to combine the matched filter (14) and the

prominence measure (17), i.e. by calculating the prominences

for {D̃}t instead of {D}t. A change point is then detected if

the prominence P(D̃t) is above a predefined threshold τ .

D. Summary: the TIRE method

Finally, we summarize all the steps of the proposed

Time-Invariant REpresentation (TIRE) change point detection

method. If only time-domain or frequency-domain information

is used, we will refer to the method using the acronym TIRE-

TD or TIRE-FD, respectively.

1) Construct time-domain windows {yt}t (2) and

frequency-domain windows {zt}t (3) from a time

series X.

2) Using these windows as training data sets, train two

autoencoders by minimizing loss function (9).

3) Use (13) to determine α and β or set one of them to zero

based on domain knowledge. Construct the combined

time-invariant features according to (10).

4) Smoothen the time-invariant features according to (11).

5) Calculate the dissimilarity measures for all t using (12).

6) Apply a matched filter on the dissimilarity measures

following (14) and compute the prominence of all local

maxima using (17).

7) If the prominence (17) of a local maximum is higher than

some user-defined detection threshold τ , a change point

has been detected.

An implementation of our TIRE methods has been made

available at https://github.com/deryckt/TIRE.

IV. EXPERIMENTS

A. Evaluation measure

In our setting, the goal of a CPD algorithm is to identify

the location of change points as accurately as possible. Given

https://github.com/deryckt/TIRE

5

a toleration distance δ we say that a ground-truth change point

a is correctly detected by a detection alarm b if the following

three conditions are satisfied [27]:

1) No other ground-truth change point is closer to b than a.

2) The time distance between a and b is smaller than the

toleration distance, i.e. |a− b| ≤ δ.

3) Every detection alarm can only contribute to the correct

detection of at most one ground-truth change point.

To evaluate the performance of our method, we will con-

struct receiver operating characteristic (ROC) curves and use

the area under this curve (AUC) as a performance metric, as

is common practice. Following [20]–[22], [27], we define the

true positive rate (TPR) and false positive rate (FPR) of our

detection algorithm as

TPR =
NCR

NGT

and FPR =
NAL −NCR

NAL

, (18)

where NGT denotes the number of ground-truth change points,

NAL denotes the number of all detection alarms by the algo-

rithm and NCR is the number of times a ground-truth change

point is correctly detected. We obtain the ROC curve by

varying the detection threshold τ . Unlike in the binary classifi-

cation setting, the ROC curve is not necessarily monotonously

increasing, as the FPR does not need to be a monotonous

function of τ . Nevertheless, it still holds that 0 ≤ AUC ≤ 1.

Moreover, note that a TPR of 1.0 can be obtained by setting

the detection threshold to zero τ = 0 (i.e. all time stamps

are detection alarms), though the FPR will always be strictly

smaller than 1.0 for τ = 0 when at least one change point

is present. We therefore extend the ROC curve by manually

adding the point (FPR,TPR) = (1.0, 1.0). This ensures that a

perfect performance corresponds to an AUC of 1.

B. Data sets

We demonstrate the performance of our method on four

simulated and three real-life benchmark data sets, of which six

are typical benchmark data sets in CPD literature. A summary

of their properties can be found in Table I.

1) Simulated data: We consider the one-dimensional au-

toregressive (AR) model y(t) = a1y(t− 1) + a2y(t− 2) + ǫt
where ǫt ∼ N (µt, σ

2
t) and y(1) = y(2) = 0. We generate 50

random change points tn with t0 = 0, tn = tn−1 + ⌊τn⌋ and

τn ∼ N (100, 10). Following the parameter choices of [20]–

[22], [41], we create the following data sets, each consisting

of ten randomly generated time series.

Jumping mean (JM). For this data set, let a1 = 0.6, a2 =
−0.5 and σt = 1.5. We set the noise mean as

µt =

{

0 1 ≤ t ≤ t1

µtn−1
+ n/16 tn−1 + 1 ≤ t ≤ tn.

(19)

Scaling variance (SV). For this data set, let a1 = 0.6,

a2 = −0.5 and µt = 0. We set the noise standard deviation

as

σt =

{

1 tn−1 + 1 ≤ t ≤ tn and n odd

ln(e+ n/4) tn−1 + 1 ≤ t ≤ tn and n even.
(20)

Changing coefficients (CC). We set a2 = 0, µt = 0
and σt = 1.5. To take the burn-in time into account, we set

τn ∼ N (1000, 100). For every segment, the coefficient a1
is alternatively sampled from U([0, 0.5]) and U([0.8, 0.95]),
leading to clear differences in autocorrelation and frequency

content between consecutive segments.

Gaussian mixtures (GM). Here we abandon the AR model

and instead simulate a piecewise iid sequence alternatively

sampled between the Gaussian mixtures 0.5N (−1, 0.52) +
0.5N (1, 0.52) and 0.8N (−1, 1.02) + 0.2N (1, 0.12). Change

points are generated using the same mechanism as for JM and

SV.

2) Real-life data sets: Bee dance [42] is an often used data

set to evaluate CPD algorithms [20], [25], [31], [43], [44].

It consists of six three-dimensional time series of the bees

position (location in 2D plane and angle differences) while it

performs a three-stage waggle dance, which is of interest to

ethnologists.

HASC-2011 is a subset of the HASC Challenge 2011

dataset [45], which provides human activity data from portable

three-axis accelerometers. The six activities carried out are

staying still, walking, jogging, skipping, taking the stairs up

or down. Following respectively [28] and [22], we use the data

from person 671 and convert the data to a 1D time series by

taking the l2-norm of the three-dimensional samples. Human

activity recognition data is commonly used in CPD literature

[20]–[22], [28], [31], [35], [45].

Well log [46] consists of nuclear magnetic resonance mea-

surements taken from a drill while drilling a well. Changes

in the mean of the time series correspond to changes in rock

stratification, outliers should be ignored [47]. Other results on

this data set in the context of CPD evaluation include [18],

[25], [44], [46]–[48].

TABLE I
OVERVIEW OF DATA SETS. FOR DATA SETS CONSISTING OF MULTIPLE

TIME SERIES, MEAN AND STANDARD DEVIATION ARE REPORTED. Q10,
Q50 AND Q90 DENOTE THE 10%, 50% AND 90% QUANTILE, RESP.

CP distances
Data set Length #series #CPs Q10 Q50 Q90

JM, SV, GM 4900± 22 10 48 96 100 104
CC 49000± 70 10 48 987 1000 1013

Bee dance 827± 202 6 20± 4 28 39 56
HASC-2011 39397 1 39 69 427 2509

Well log 4050 1 9 55 170 390

C. Parameter settings and baseline methods

For TIRE, we report the results for two different parameter

settings. Parameter setting a corresponds to the case without

instantaneous features: in both time and frequency domain

the autoencoder learns only 1 (time-invariant) feature (i.e.

hTD = sTD = hFD = sFD = 1). Furthermore we set K = 2,

λTD = 1 and λFD = 1. Parameter setting b corresponds to

the case with 1 instantaneous and 2 time-invariant features in

the time domain (i.e. hTD = 3, sTD = 2) and furthermore

we set hFD = sFD = 1, K = 2, λTD = 1 and λFD = 1.

For TIRE-TD we set α = 1 and β = 0 in (10), and

6

vice versa for TIRE-FD. For the combined approach, we

set α and β following (13). We train all networks for 200

epochs using the Adam optimizer [49] with default settings.

For both parameter settings, we choose window sizes and

toleration distances based on domain knowledge and sampling

frequency. We set N = 20 and δ = 15 for JM, SC and

GM; N = 200 and δ = 150 for CC; N = 10 and δ = 15
for bee dance; N = 100 and δ = 300 for HASC-2011 and

N = 75 and δ = 50 for well log. The influence of these

parameter settings will be discussed in Section V-E. In terms

of postprocessing, we use a matched filter and calculate our

proposed prominence score (cf. Section III). The advantageous

effect of this postprocessing stage is analyzed in Section V-C.

In order to obtain a fair comparison, we also apply these

postprocessing steps to all undermentioned baseline methods

which do not explicitly define such a procedure.

The first baseline method we use is the generalized like-

lihood ratio (GLR) procedure [14], [15], which has been

shown to have a good performance for detecting changes in

the autocorrelation function or the frequency spectrum [50].

A conceptually similar method is described in [51]. We use

a sliding window approach, where an AR(2)-model is fit

on every two neighbouring windows as well as their union.

A generalized log-likelihood ratio is used as dissimilarity

measure. For a fair comparison, we use the same window sizes

and postprocessing steps as for TIRE.

Second, we consider a density-ratio estimation method

called relative unconstrained least-squares importance fit-

ting (RuLSIF) that has been applied to CPD [22]. Like

with the closely related uLSIF [21], the idea is to estimate

and compare the density ratio of two neighbouring windows

instead of the individual densities. Because the validation data

sets in [22] largely overlap with ours, we adopt the same

parameter choices and postprocessing steps as described in

the original paper.

Next, kernel learning CPD (KL-CPD) [20] is a recently

proposed kernel learning framework for time series CPD

that optimizes a lower bound of test power via an auxiliary

generative model. Features are learned using a recurrent neu-

ral network and the dissimilarity measure is based on the

maximum mean discrepancy. Given the large overlap in used

benchmark data sets, we use the original default parameter

settings in [20] without adaptation (e.g. window size of 25).

We train the networks for 200 epochs, as longer training did

not result in improved results. For a fair comparison, we

use the same postprocessing steps as for TIRE as none were

proposed in [20].

Finally, we compare with the autoencoder-based break-

point detection procedure (ABD) [27]. ABD only uses time-

domain information and does not include any regularization

to promote time-invariant features. We set parameters using

the parameter guidelines in the original paper. This leads to a

window size of 96 for JM, SV and GM; 995 for CC; 26 for

bee dance; 158 for HASC-2011 and 155 for well log.

V. RESULTS

A. Performance results

In Table II, the performances of all versions of TIRE and

the baseline methods are listed. For all data sets, we report the

mean AUC and its standard error. All data sets, methods and

abbreviations are described in Section IV-C. The highest mean

AUC for each data set can be found in bold. In the following,

we discuss some important observations.

The GLR procedure gives very good results on the sim-

ulated data sets, but its performance degrades on the real-

life data sets. This confirms the common observation that the

performance of model-based CPD procedures heavily relies on

how well the actual data can be described using the chosen

model. In this case, both the simulated data and the GLR

procedure are based on a second-order autoregressive model,

which is why GLR performs well on this data. RuLSIF and

KL-CPD do not perform well on data sets in which the change

points manifest themselves in the frequency domain, since

they do not leverage the sequential nature of the time series

data, i.e. they assume the data samples to be iid. Note that

AUC values for KL-CPD differ from those in [20] as CPD is

there interpreted as a binary classification problem. Next, ABD

generally does not give good results, which can by explained

by ABD’s inability to detect changes in the frequency domain

and the often noisy features (cf. Figure 2). In addition, ABD’s

normalized dissimilarity measure (eq. (10) in [27]), given by,

DABD
t = ‖ht − ht+N‖

2
/
√

‖ht‖2 · ‖ht+N‖
2
, (21)

where ht is the vector of learned time-domain features, is not

invariant to a shift of the features (i.e. adding a constant to

all features); it even diverges when the norm of one of the

features vanishes, which is not reasonable.

For all data sets and both parameter settings a and b, either

TIRE-TD or TIRE-FD outperforms (almost) all other baseline

methods or has an AUC higher than 0.90. In many real-life

cases, it is a priori clear whether TD (e.g. well log) or FD (e.g.

HAR data, audio, . . .) information should be used. Moreover,

our framework for combining the time-invariant features from

the time and frequency domain still gives consistently good

results even when in one of the two domains no change point

information is present. This means that the combined TD-FD

approach can always be selected as a safe choice when it is

unclear in which domain the change points mainly manifest

themselves. Finally, the different parameter settings seem have

no significant influence on the performance of TIRE. The

sensitivity of the proposed method to parameter choices will

be further discussed in Section V-E.

B. Insight in encoded features and reconstruction

To gain insight into the working of the TIRE method, we

investigate how the (partially) time-invariant representation

and the corresponding reconstructions look like. We do this

by conducting a case study on the jumping mean and bee

dance data set.

First, we demonstrate the effect of our proposed penalty in

the autoencoder loss function (9). In Figure 2 we show the

7

TABLE II
COMPARISON OF THE AUC OF THE PROPOSED TIME-INVARIANT REPRESENTATION CPD METHODS (TIRE) WITH BASELINE METHODS.

Mean Variance Coefficient Gaussian Bee dance HASC-2011 Well log Average

GLR [14], [15] 0.73± 0.02 0.81± 0.02 1.00 ± 0.01 0.989 ± 0.004 0.55± 0.06 0.6431 0.2109 0.71± 0.01

RuLSIF [22] 0.708± 0.008 0.65± 0.02 0.36± 0.02 0.874± 0.007 0.47± 0.06 0.3162 0.798 0.597± 0.009

KL-CPD [20] 0.872± 0.007 0.23± 0.02 0.11± 0.01 0.84± 0.07 0.56± 0.07 0.343 0.4247 0.48± 0.01

ABD [27] 0.22± 0.02 0.17± 0.02 0.08± 0.02 0.18± 0.02 0.20± 0.04 0.2487 0.477 0.224± 0.008

TIRE-TD-a 0.86± 0.01 0.25± 0.01 0.26± 0.01 0.958± 0.009 0.36± 0.05 0.4166 0.8002 0.558± 0.007

TIRE-FD-a 0.86± 0.01 0.85 ± 0.01 0.96± 0.01 0.83± 0.04 0.70 ± 0.10 0.6504 0.6278 0.78 ± 0.02

TIRE-a 0.86± 0.01 0.85 ± 0.01 0.74± 0.05 0.92± 0.02 0.65± 0.09 0.6172 0.7656 0.77± 0.02

TIRE-TD-b 0.882± 0.009 0.26± 0.02 0.26± 0.02 0.965± 0.006 0.42± 0.06 0.4284 0.8151 0.58± 0.01

TIRE-FD-b 0.86± 0.01 0.84± 0.02 0.95± 0.02 0.74± 0.03 0.69± 0.10 0.6261 0.200 0.70± 0.02

TIRE-b 0.877± 0.009 0.83± 0.02 0.76± 0.05 0.89± 0.02 0.60± 0.09 0.6258 0.8134 0.77± 0.01

0 250 500
time stamp

0.3

0.2

0.1

0.0

0.1

0.2

0.3

en
co

de
d

fe
at

ur
es

0 250 500
time stamp

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Fig. 2. Example of the three-dimensional learned representation on a part
of the jumping mean data set for ABD (left) and TIRE-TD (right) with two
time-invariant features (in red) and one instantaneous feature (in green). The
features were vertically shifted (but not rescaled) for clarity. Blue vertical
lines indicate the locations of ground-truth change points.

non-smoothed encoded features (i.e. without applying (11))

for a part of the jumping mean data set for both ABD and

TIRE-TD. For both methods, we use three features, of which

two are time-invariant in the case of TIRE. Other parameter

settings are as in parameter setting b of Section IV-C. Whereas

the features learned by ABD are very variable and noisy, the

time-invariant features of TIRE-TD are approximately constant

within each segment. For TIRE, the only significant variations

in the features are near the ground-truth change points. These

observations match exactly with the intention of our proposed

loss function.

Second, we conduct a case study on the reconstruction of

both TD and FD windows. Since the number of features we

propose to use is very small, these reconstructions might be

lossy and deviate from the original windows. We train TD

and FD autoencoders with only one (time-invariant) feature

following parameter setting a (cf. Section IV-C) for jumping

mean and bee dance data. We select four distinct windows and

their reconstruction for each data set. The results are shown in

Figure 3 in different colours. In case of the jumping mean data

set, the autoencoder unsurprisingly reconstructs the mean of

each interval, ignoring all noise. In the frequency domain, the

mean manifests itself in the DC component (first frequency

bin). The values of most other frequency bins seem to be

encoded in the weights and biases. Next, we consider the

bee dance data set. In the time domain, we use one location

coordinate of the bee. As the bee moves back and forth in its

0 5 10 15
time stamp

0.6

0.4

0.2

0.0

Ti
m

e
do

m
ai

n

Jumping mean

0 2 4 6 8
time stamp

0.15

0.10

0.05

0.00

0.05

0.10

0.15
Bee dance

0 5 10 15
frequency bin

1.0

0.5

0.0

0.5

1.0

Fr
eq

ue
nc

y
do

m
ai

n

0 5 10 15
frequency bin

1.0

0.8

0.6

0.4

0.2

0.0

0.2

Fig. 3. Examples of time-domain and frequency-domain windows (dashed
lines) and their reconstructions by the autoencoder used in our proposed
method (full lines). In the jumping mean data set, the change points consist of
abrupt changes in mean. For bee dance, the goal is to detect abrupt changes
in slope (upper right) and amplitude (lower right).

waggle dance, the location coordinate resembles a triangular

wave. The autoencoder can track the bees location through

the variation in the slope of the location coordinate windows.

The reconstruction in Figure 3 indeed shows approximately

straight lines with varying slope. In the frequency domain,

we only consider the angle of the head of the bee in this

case study. As the bee shakes its head in some parts of the

waggle dance, the goal is to pick up the presence of high-

frequency oscillations. Indeed, the reconstruction only varies

notably in the bins corresponding to higher frequencies. As

we use only one latent variable, the decoded reconstruction

does not fully capture all variations in the frequency spectrum,

yet it captures the slope of the upward trend towards higher

frequencies. We conclude that autoencoders can automatically

identify and construct CPD-relevant features, in contrast to

CPD methods based on parametric models where the relevant

parameters need to be chosen in advance.

8

0 50 100
time stamp

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
di

ss
im

ila
rit

y

0 50 100
time stamp

Fig. 4. Example of the peak in our proposed dissimilarity measure (black
line) near a ground-truth change point (red vertical line) both without (left)
and with (right) the use of a matched filter. Black dots correspond to local
maxima (i.e. detection alarms), our proposed prominence measure is shown
in blue. The matched filter drastically reduces the number of false positive
detection alarms, whereas the prominence measure makes sure that there is
only one detection alarm with a large change point score. The example was
generated using KL-CPD on the Gaussian mixture data set.

TABLE III
COMPARISON OF THE AUC OF DIFFERENT POSTPROCESSING TECHNIQUES

ON DISSIMILARITY-MEASURE-BASED CPD METHODS.

Height Height+MF Prominence Prom.+MF

GLR 0.42± 0.05 0.67± 0.04 0.58± 0.04 0.71 ± 0.04

RuLSIF 0.37± 0.07 0.63± 0.05 0.60± 0.07 0.64 ± 0.05

KL-CPD 0.28± 0.10 0.46± 0.08 0.44± 0.10 0.48 ± 0.07

TIRE 0.40± 0.08 0.67± 0.10 0.56± 0.08 0.79 ± 0.07

C. Importance of postprocessing

In Section III, we conjectured the importance of suitable

postprocessing steps to mitigate the effect of false positive de-

tection alarms. An example of the effect of our postprocessing

steps can be found in Figure 4. The use of the prominence as a

change point score allows us to automatically retain only one

significant detection alarm per peak, whereas a height-based

dissimilarity score would lead to a false positive detection

alarm even if the detection threshold is set high. Furthermore,

the matched filter automatically removes most false positive

detections. The use of our proposed prominence score then

ensures that the remaining false positive detections have a

negligible change point score.

Next, we quantitatively compare peak height and peak

prominence (17) as change point score and investigate the

effect of applying a matched filter (14). We report the average

and standard deviation of the AUC on all seven data sets for

the GLR procedure, RuLSIF, KL-CPD and TIRE in Table III.

Both the matched filter and the use of the peak prominence

result in an increase in the average AUC, with best results

for when both postprocessing techniques are combined. Most

notably, our proposed postprocessing approach almost leads

to a doubling of the average AUC compared to naive peak

detection for all methods.

D. Run time

We compare the run times of the different methods on the

jumping mean data set by reporting the mean and standard

deviation of run times under 10 random seeds. The GLR proce-

dure takes (6.6±0.4)s, RuLSIF needs (69.6±1.5)s, KL-CPD

needs (390±5)s for 200 epochs and TIRE takes (32.5±0.2)s
for 200 epochs. The run times of all methods scale linearly

with the length of the time series. Unsurprisingly, the very

simple GLR procedure is by far the fastest method. KL-CPD,

which involves the training of a generative adversarial network

and a recurrent neural network, is the slowest. Comparing the

run times for 200 epochs, we see that TIRE is faster than KL-

CPD. Note that the comparison between TIRE and KL-CPD is

difficult, as both are iterative methods and convergence rates

may differ. In the code accompanying [20], a stop criterion

for KL-CPD is provided, but this criterion was never satisfied

sooner than 200 epochs on the used data sets. We conclude

that TIRE has a very reasonable run time compared to other

methods, albeit not the best.

E. Sensitivity analysis

We investigate to which extent the performance of the

proposed method depends on the parameters chosen in Section

IV-C. Ideally, each parameter can either be set following some

general guidelines, or the method should not be sensitive to

the exact parameter value.

First, we examine how the performance depends on the

chosen window size. It is clear that a constant window size

would in general be an unreasonable demand: when a time

series is down- or upsampled, the window size should change

accordingly. Some attempts to provide guidelines on how to

choose a window size have been made [27], but these often

give rise to unreasonable choices and poor performance (see

ABD in Table II). Moreover, one can even argue that a good

window size is inherently dependent on the interpretation and

goals of the practitioner, and can not be deduced from the data

alone. For example, this would be the case for a superposition

of two CC time series (cf. Section IV-B) with frequencies

at two distinct scales, of which only one is of interest to

the practitioner. Following amongst others [31], we therefore

advise to set the window size based on domain knowledge

(cf. Section IV-C). To inspect the sensitivity of TIRE to these

choices, we show in Figure 5 the mean AUC and its standard

error for all seven data sets for window sizes that are 0.25,

1/2
√
2, 0.5, 1/

√
2, 1,

√
2, 2, 2

√
2 and 4 times the domain-

knowledge-based window size as defined in Section IV-C.

Furthermore we let again K = 2, λTD = 1 and λFD = 1. The

larger standard error for the bee dance data set in Figure 5 is

primarily caused by the large variation in difficulty between

the different time series, and not by the method. For most data

sets only limited variations in AUC are present in the interval

[0.5, 2], such that a small to moderate change in window

size would not affect the positioning of the performance of

the proposed TIRE method compared to the results of the

considered baseline methods. For the changing coefficients

(CC) data set and the well log data set, the variations in AUC

are more substantial. The AUC for CC increases steadily as the

window size grows since the DFT can better capture the long-

range dependences in the data set, but also decreases sharply

when the window size is large compared to the distance

9

0.25 0.5 1 2 4
relative window size

0.0

0.2

0.4

0.6

0.8

1.0
AU

C
Mean
Variance
Coefficient
Gaussian
Bee dance
HASC-2011
Well log

Fig. 5. Influence of the window size to the performance of TIRE. We report
the mean AUC and its standard error for window sizes ranging between one
quarter to four times the window size chosen in Section IV-C.

2 4 6 8
number of (TD/FD) features

0.4

0.5

0.6

0.7

0.8

0.9

AU
C

TIRE (TD)
TIRE (FD)
TIRE = 0 (TD)

Fig. 6. Sensitivity of performance of TIRE to the total number of TD features
hTD and FD features hFD of the used autoencoder. The average AUC over
all data sets and its standard deviation is shown. We also compare to the
dependence of TIREλ=0 on the latent dimension. Whereas TIRE (with λ = 1)
seems on average robust to the number of TD features, the AUC for TIREλ=0

decreases.

between the change points. In the well log case, the difficulty is

that some change points are very close to each other. When the

window size grows large, two nearby peaks in the dissimilarity

measure will not be resolved anymore. In this case, the use

of a matched filter is thus even disadvantageous. This also

explains why the AUC decreases sharply for all data sets when

an unreasonably large window size is chosen.

Second, we investigate the influence of the latent dimension

of the used autoencoder. We let the total number of time-

domain features hTD vary from 1 to 10 and set the number of

time-invariant features to sTD = max{hTD−1, 1}. Furthermore

we let sFD = hFD = 1, K = 2, λTD = 1 and λFD = 1 (cf.

parameter settings a and b). We use at most one instantaneous

feature to avoid that the autoencoder would leak valuable

CPD-relevant information into the instantaneous features (cf.

Section III). We also let the number of frequency-domain

features vary analogously and investigate the advantage of

using time-invariant features. We do the latter by comparing

to TIREλ=0, a version of TIRE with λ = 0 in the loss

function (9) (i.e. no time-invariant features) and without the

smoothing as in (11), as this is not necessarily a meaningful

operation in this case. The average AUCs over all data sets are

shown in Figure 6. The large standard deviation stems from

2 4 6 8 10
K

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

AU
C

Mean
Variance
Coefficient
Gaussian
Bee dance
HASC-2011
Well log

Fig. 7. Sensitivity of performance of TIRE to the parameter K in the TIRE
training loss (9). We report for each data set the mean AUC and its standard
error for K between 1 and 10.

the diversity of the different data sets. For TIRE, the average

AUC remains very stable when the number of TD features is

varied. Furthermore, the performance of TIRE seems optimal

for 1 time-invariant FD feature, the average AUC when two

or more FD feature are used is lower but does not further

decrease with the number of FD features. Furthermore, we can

observe that the performance of TIRE with λ = 1 is clearly

superior over TIREλ=0. The increase in AUC is more distinct

for higher numbers of TD features. This is unsurprising, as a

larger latent dimension allows an autoencoder without time-

invariant features to encode the feature more freely, making

the positive effect of adding the time-invariant feature term to

the loss function (9) all the more pronounced.

Next, we determine how sensitive TIRE is to the parameter

K in the training loss (9). We let K vary from 1 to 10, with

other parameters as in previous experiments, and present the

result in Figure 7. For most data sets the performance is stable

with respect to changes in K, only for CC and bee dance a

decrease in AUC is observed for large K. As also the runtime

increases with K, we advise to set K rather small, e.g. K ∈
[1, 5].

Finally, we investigate the sensitivity of TIRE with respect

to the change magnitude at the change points (relative to the

noise level). We do this by varying the standard deviation of

the noise in the jumping mean data set (cf. Section IV-B),

leaving the change magnitudes unchanged. The jumps in the

mean are of magnitude 1/16, 2/16, . . . , 3 and we let the

standard deviation of the noise vary from 0.5 to 3. Figure 8

shows a decrease of the AUC that is roughly proportionate to

the fraction of change points for which the change magnitude

is larger than the noise standard deviation. This is in line with

expectations.

In general, we can conclude that the performance of TIRE

does not depend critically on the exact value of the window

size N , the number of features h and the parameter K.

VI. DISCUSSION

In this section, we discuss some algorithmic design choices

and mention potential limitations of the proposed method.

First, the combination of time-domain and frequency-

domain information is extensively studied in the field of multi-

view learning [52] and its applications. One approach is to

10

0.5 1.0 1.5 2.0 2.5 3.0
Noise standard deviation (NSD)

0.0

0.2

0.4

0.6

0.8

1.0
AU

C

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

of
 C

Ps
 la

rg
er

 th
an

 N
SD

Fig. 8. Sensitivity of performance of TIRE to the standard deviation of the
noise in the jumping mean data set. The average AUC over ten realizations
and its standard deviation is shown together with the fraction of change points
for which the change magnitude is larger than the noise standard deviation.

simply concatenate separately learned TD and FD features, e.g.

[53]. Another approach is to find a joint representation, which

needs to take both views into account in an effective way. This

can for instance be achieved using adaptive gradient blending

[54]. In the context of CPD, it is however a priori unclear how

to optimize this joint representation during training. We there-

fore choose to train the TD and FD autoencoders separately

and use a CPD-tailored data-driven weighted concatenation to

fuse both views into one representation. From Table II, it is

clear that the AUC of TIRE (i.e. with TD and FD combined) is

in general only slightly lower than the maximum of the AUCs

of TIRE-TD and TIRE-FD, illustrating the good performance

of our fusion approach.

Second, in this paper we focused on time series with only

few channels. In this setting, we showed that the latent dimen-

sion of the autoencoder has little influence on the performance.

Our method deliberately targets a lossy reconstruction due to

a compressed representation in order to only learn the most

important time-invariant properties of the time series segment.

For high-dimensional time series data, e.g. supervisory con-

trol and data acquisition (SCADA) or electroencephalography

(EEG) data, the choice of latent dimension might need further

investigation. Alternatively, relevant channels can be selected

using an application-specific method, e.g. [55].

We demonstrated the performance of TIRE using the AUC,

but practitioners need to choose a suitable value of τ (cf.

Section III-D) in order to use the method. As τ critically

depends on domain knowledge and the needs of the practioner

(e.g. their willingness to make a type I, resp. type II, error),

we do not provide explicit guidelines. The tuning of τ can

be facilitated if some prior knowledge is available, e.g. when

part of the data is labelled or when an estimate of the number

of change points is available. In case such information is not

available and in case of doubt, we advise to underestimate τ
as our proposed post-processing procedure effectively reduces

the number of false positives.

It is also worth noting that TIRE can be interpreted as

a nonlinear parametric CPD method that learns the relevant

parameters from the data. Whereas classical parametric meth-

ods are often able to provide an (asymptotically correct)

significance level for change point probabilities [13], [23],

[31], [51], the interpretation of our change point score is rather

limited. These theoretical guarantees for classical parametric

methods however only hold under very specific assumptions

on the data distribution, which are often not satisfied when

real life data is used.

Finally, we showed that the use of filters to both smoothen

the features itself (11) and the dissimilarity measure (14)

generally leads to a significant improvement in AUC (see

Table III). Care should however be taken when the peaks in

the unfiltered dissimarity measure are either skewed or very

close to each other. In the first case, the peak location might

shift, leading to a false negative when the toleration distance is

set too small. In the second case, the two peaks might either

be joined to one peak, or one of the two peaks will have

a very low prominence-based change point score. Given the

good performance of TIRE (Table II), it is however clear that

these are only minor concerns.

VII. CONCLUSION

We have proposed a novel distribution-free change point

detection method based on autoencoders that learn a partially

time-invariant representation that complies with the needs

of CPD. Change points are calculated using a dissimilarity

measure based on the Euclidean distance between the features

learned from consecutive windows. We have mitigated the

effect of false positive detections by proposing a postpro-

cessing procedure using a matched filter and a prominence-

based change point score. Furthermore, we have explicitly

focused on non-iid time series by including temporally lo-

calized spectral information in the input of the autoencoder.

The resulting method is very flexible, as it allows the user

to indicate whether change points should be sought in the

frequency domain, time domain or both. Examples of change

points that can be detected are abrupt changes in the slope,

mean, variance, autocorrelation function and frequency spec-

trum. Finally, we have showed that the performance of TIRE

is consistently superior or highly competitive compared to

baseline methods on benchmark data sets. A sensitivity anal-

ysis reveals that this good performance does not critically

depend on the window size, nor on the latent dimension of

the autoencoder. This robustness, together with the lack of

distributional assumptions, make TIRE an easy-to-use change

point detection method, whilst still offering a great deal of

flexibility.

REFERENCES

[1] A. Wald, Sequential analysis. Courier Corporation, 2004.
[2] E. Brodsky and B. S. Darkhovsky, Nonparametric methods in change

point problems. Springer Science & Business Media, 2013, vol. 243.
[3] F. Gustafsson and F. Gustafsson, Adaptive filtering and change detection.

Citeseer, 2000, vol. 1.
[4] M. Basseville, I. V. Nikiforov et al., Detection of abrupt changes: theory

and application. prentice Hall Englewood Cliffs, 1993, vol. 104.
[5] J. Reeves, J. Chen, X. L. Wang, R. Lund, and Q. Q. Lu, “A review

and comparison of changepoint detection techniques for climate data,”
Journal of Applied Meteorology and Climatology, vol. 46, no. 6, p.
900–915, 2007.

[6] A. Pepelyshev and A. S. Polunchenko, “Real-time financial surveillance
via quickest change-point detection methods,” Statistics and Its Inter-

face, vol. 10, no. 1, p. 93–106, 2017.
[7] D. A. Hsu, “A bayesian robust detection of shift in the risk structure of

stock market returns,” Journal of the American Statistical Association,
vol. 77, no. 377, p. 29–39, 1982.

11

[8] Y. Wang, C. Wu, Z. Ji, B. Wang, and Y. Liang, “Non-parametric change-
point method for differential gene expression detection,” PLoS ONE,
vol. 6, no. 5, 2011.

[9] A. G. Tartakovsky and V. V. Veeravalli, “Quickest change detection
in distributed sensor systems,” in Proceedings of the 6th International

Conference on Information Fusion, 2003, pp. 756–763.
[10] ——, “Asymptotically optimal quickest change detection in distributed

sensor systems,” Sequential Analysis, vol. 27, no. 4, pp. 441–475, 2008.
[11] D. Michael and J. Houchin, “Automatic eeg analysis: a segmentation

procedure based on the autocorrelation function,” Electroencephalogra-

phy and clinical neurophysiology, vol. 46, no. 2, pp. 232–235, 1979.
[12] R. Malladi, G. P. Kalamangalam, and B. Aazhang, “Online bayesian

change point detection algorithms for segmentation of epileptic activity,”
in 2013 Asilomar Conference on Signals, Systems and Computers.
IEEE, 2013, pp. 1833–1837.

[13] X. Shao and X. Zhang, “Testing for change points in time series,”
Journal of the American Statistical Association, vol. 105, no. 491, pp.
1228–1240, 2010.

[14] A. Brandt, “Detecting and estimating parameter jumps using ladder
algorithms and likelihood ratio tests,” ICASSP 83. IEEE International

Conference on Acoustics, Speech, and Signal Processing.
[15] U. Appel and A. V. Brandt, “Adaptive sequential segmentation of

piecewise stationary time series,” Information Sciences, vol. 29, no. 1,
p. 27–56, 1983.

[16] T. Idé and K. Tsuda, “Change-point detection using krylov subspace
learning,” in Proceedings of the 2007 SIAM International Conference

on Data Mining. SIAM, 2007, pp. 515–520.
[17] Y. Kawahara, T. Yairi, and K. Machida, “Change-point detection in

time-series data based on subspace identification,” in Seventh IEEE

International Conference on Data Mining (ICDM 2007). IEEE, 2007,
pp. 559–564.

[18] R. P. Adams and D. J. C. MacKay, “Bayesian Online Changepoint
Detection,” 2007. [Online]. Available: http://arxiv.org/abs/0710.3742

[19] M. Csörgő and L. Horvath, “20 nonparametric methods for changepoint
problems,” Handbook of statistics, vol. 7, pp. 403–425, 1988.

[20] W. C. Chang, C. L. Li, Y. Yang, and B. Póczos, “Kernel change-
point detection with auxiliary deep generative models,” 7th International

Conference on Learning Representations, ICLR 2019, pp. 1–14, 2019.
[21] Y. Kawahara and M. Sugiyama, “Sequential change-point detection

based on direct density-ratio estimation,” Statistical Analysis and Data

Mining, vol. 5, no. 2, pp. 114–127, 2012.
[22] S. Liu, M. Yamada, N. Collier, and M. Sugiyama, “Change-point

detection in time-series data by relative density-ratio estimation,” Neural

Networks, vol. 43, pp. 72–83, 2013.
[23] C. Truong, L. Oudre, and N. Vayatis, “Selective review of offline change

point detection methods,” Signal Processing, vol. 167, p. 107299, 2020.
[Online]. Available: https://doi.org/10.1016/j.sigpro.2019.107299

[24] B. Namoano, A. Starr, C. Emmanouilidis, and R. C. Cristobal, “Online
change detection techniques in time series: An overview,” in IEEE

International Conference on Prognostics and Health Management, 2019.
[25] G. J. J. v. d. Burg and C. K. I. Williams, “An Evaluation of Change

Point Detection Algorithms,” pp. 1–33, 2020. [Online]. Available:
http://arxiv.org/abs/2003.06222

[26] S. Aminikhanghahi and D. J. Cook, “A survey of methods for time series
change point detection,” Knowledge and Information Systems, vol. 51,
no. 2, pp. 339–367, 2017.

[27] W.-H. Lee, J. Ortiz, B. Ko, and R. Lee, “Time Series Segmentation
through Automatic Feature Learning,” 2018. [Online]. Available:
http://arxiv.org/abs/1801.05394

[28] K. C. Cheng, S. Aeron, M. C. Hughes, E. Hussey, and E. L. Miller,
“Optimal transport based change point detection and time series segment
clustering,” in ICASSP 2020-2020 IEEE International Conference on

Acoustics, Speech and Signal Processing. IEEE, 2020, pp. 6034–6038.
[29] V. Moskvina, “Change-point detection algorithm based on the singular-

spectrum analysis,” Communications in Statistics: Simulation and Com-

putation, vol. 32, pp. 319–352, 2003.
[30] G. Chen, G. Lu, W. Shang, and Z. Xie, “Automated Change-Point

Detection of EEG Signals Based on Structural Time-Series Analysis,”
IEEE Access, vol. 7, pp. 180 168–180 180, 2019.

[31] K. C. Cheng, S. Aeron, M. C. Hughes, and E. L. Miller, “On Matched
Filtering for Statistical Change Point Detection,” pp. 1–13, 2020.
[Online]. Available: http://arxiv.org/abs/2006.05539

[32] M. Llobera, “Building past landscape perception with gis: Understanding
topographic prominence,” Journal of Archaeological Science, vol. 28,
no. 9, p. 1005–1014, 2001.

[33] N. Wiener, “Generalized harmonic analysis,” Acta Mathematica, vol. 55,
p. 117–258, 1930.

[34] A. Khintchine, “Korrelationstheorie der stationären stochastischen
prozesse,” Mathematische Annalen, vol. 109, no. 1, p. 604–615, 1934.

[35] S. Li, Y. Xie, H. Dai, and L. Song, “M-statistic
for kernel change-point detection,” in Advances in Neural

Information Processing Systems 28. Curran Associates, Inc.,
2015, pp. 3366–3374. [Online]. Available: http://papers.nips.cc/paper/
5684-m-statistic-for-kernel-change-point-detection.pdf

[36] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[37] D. Masters and C. Luschi, “Revisiting small batch training for deep
neural networks,” 2018.

[38] G. D. Nelson and R. Mckeon, “Peaks of people: Using topographic
prominence as a method for determining the ranked significance of
population centers,” The Professional Geographer, vol. 71, no. 2, p.
342–354, 2019.

[39] J. Griffié, L. Boelen, G. Burn, A. P. Cope, and D. M. Owen, “To-
pographic prominence as a method for cluster identification in single-
molecule localisation data,” Journal of Biophotonics, vol. 8, no. 11-12,
p. 925–934, 2015.

[40] M.-H. Choi, J. Ahn, D. J. Park, S. M. Lee, K. Kim, D.-I. D. Cho,
S. S. Senok, K.-I. Koo, and Y. S. Goo, “Topographic prominence
discriminator for the detection of short-latency spikes of retinal ganglion
cells,” Journal of Neural Engineering, vol. 14, no. 1, p. 016017, 2017.

[41] J. I. Takeuchi and K. Yamanishi, “A unifying framework for detecting
outliers and change points from time series,” IEEE Transactions on

Knowledge and Data Engineering, vol. 18, no. 4, pp. 482–492, 2006.
[42] S. M. Oh, J. M. Rehg, T. Balch, and F. Dellaert, “Learning and inferring

motion patterns using parametric segmental switching linear dynamic
systems,” International Journal of Computer Vision, vol. 77, no. 1-3,
pp. 103–124, 2008.

[43] X. Xuan and K. Murphy, “Modeling changing dependency structure
in multivariate time series,” ACM International Conference Proceeding

Series, vol. 227, pp. 1055–1062, 2007.
[44] R. D. Turner, “Gaussian Processes for State Space Models and Change

Point Detection,” Learning, 2011.
[45] N. Kawaguchi, Y. Yang, T. Yang, N. Ogawa, Y. Iwasaki, K. Kaji,

T. Terada, K. Murao, S. Inoue, Y. Kawahara, Y. Sumi, and N. Nishio,
“HASC2011corpus: Towards the common ground of human activity
recognition,” UbiComp’11 - Proceedings of the 2011 ACM Conference

on Ubiquitous Computing, no. October 2014, pp. 571–572, 2011.
[46] T. O. Sort, J. J. O Ruanaidh, W. J. Fitzgerald, and K. J. Pope, “Recursive

Bayesian location of a discontinuity in time series,” in Proceedings of

ICASSP ’94. IEEE International Conference on Acoustics, Speech and

Signal Processing, vol. iv, 4 1994, pp. IV/513–IV/516 vol.4.
[47] J. Knoblauch, J. Jewson, and T. Damoulas, “Doubly robust Bayesian

inference for non-stationary streaming data with β-divergences,” Ad-

vances in Neural Information Processing Systems, vol. 2018-Decem,
no. NeurIPS 2018, pp. 64–75, 2018.

[48] P. Fearnhead and P. Clifford, “On-line inference for hidden Markov
models via particle filters,” Journal of the Royal Statistical Society:

Series B (Statistical Methodology), vol. 65, no. 4, pp. 887–899, 2003.
[Online]. Available: https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/
1467-9868.00421

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014.

[50] U. Appel and A. v. Brandt, “A comparative study of three sequential
time series segmentation algorithms,” Signal Processing, vol. 6, no. 1,
pp. 45–60, 1984.

[51] R. A. Davis, D. Huang, and Y.-C. Yao, “Testing for a change in the
parameter values and order of an autoregressive model,” The Annals of

Statistics, pp. 282–304, 1995.
[52] J. Zhao, X. Xie, X. Xu, and S. Sun, “Multi-view learning overview:

Recent progress and new challenges,” Information Fusion, vol. 38, pp.
43–54, 2017.

[53] Y. Yuan, G. Xun, K. Jia, and A. Zhang, “A multi-view deep learning
method for epileptic seizure detection using short-time fourier trans-
form,” in Proceedings of the 8th ACM International Conference on

Bioinformatics, Computational Biology, and Health Informatics, 2017,
pp. 213–222.

[54] H. Phan, O. Y. Chén, P. Koch, A. Mertins, and M. De Vos, “Xsleepnet:
Multi-view sequential model for automatic sleep staging,” arXiv preprint

arXiv:2007.05492, 2020.
[55] A. M. Narayanan and A. Bertrand, “Analysis of miniaturization effects

and channel selection strategies for eeg sensor networks with application
to auditory attention detection,” IEEE Transactions on Biomedical

Engineering, vol. 67, no. 1, pp. 234–244, 2020.

http://arxiv.org/abs/0710.3742
https://doi.org/10.1016/j.sigpro.2019.107299
http://arxiv.org/abs/2003.06222
http://arxiv.org/abs/1801.05394
http://arxiv.org/abs/2006.05539
http://papers.nips.cc/paper/5684-m-statistic-for-kernel-change-point-detection.pdf
http://papers.nips.cc/paper/5684-m-statistic-for-kernel-change-point-detection.pdf
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00421
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00421

	Introduction
	Problem formulation
	Autoencoder-based change point detection
	Preprocessing
	Feature encoding
	Postprocessing and peak detection
	Postprocessing
	Peak detection

	Summary: the TIRE method

	Experiments
	Evaluation measure
	Data sets
	Simulated data
	Real-life data sets

	Parameter settings and baseline methods

	Results
	Performance results
	Insight in encoded features and reconstruction
	Importance of postprocessing
	Run time
	Sensitivity analysis

	Discussion
	Conclusion
	References

