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Abstract

The design of recurrent neural networks (RNNs) to accurately process sequential inputs with
long-time dependencies is very challenging on account of the exploding and vanishing gradient problem.
To overcome this, we propose a novel RNN architecture which is based on a structure preserving
discretization of a Hamiltonian system of second-order ordinary differential equations that models
networks of oscillators. The resulting RNN is fast, invertible (in time), memory efficient and we derive
rigorous bounds on the hidden state gradients to prove the mitigation of the exploding and vanishing
gradient problem. A suite of experiments are presented to demonstrate that the proposed RNN
provides state of the art performance on a variety of learning tasks with (very) long time-dependencies.

1 Introduction

Recurrent Neural Networks (RNNs) have been very successful in solving a diverse set of learning tasks
involving sequential inputs [30]. These include text and speech recognition, time-series analysis and
natural language processing. However, the well-known Ezploding and Vanishing Gradient Problem (EVGP)
[38] and references therein, impedes the efficiency of RNNs on tasks that require processing (very) long
sequential inputs. The EVGP arises from the fact that the backpropagation through time (BPTT)
algorithm for training RNNs entails computing products of hidden state gradients over a large number of
steps and this product can either be exponentially small or large as the number of recurrent interactions
increases.

Different approaches to solve the EVGP has been suggested in recent years. These include the use
of gating mechanisms, such as in LSTMs [23] and GRUs [12], where the additive structure of the gates
mitigates the vanishing gradient problem. However, gradients might still explode, impeding the efficiency
of LSTMs and GRUs on problems with very long time dependencies (LTDs) [32]. The EVGP can also
be mitigated by constraining the structure of the recurrent weight matrices, for instance requiring them
to be orthogonal or unitary [22, 2, 46, 25]. Constraining recurrent weight matrices may lead to a loss of
expressivity of the resulting RNN, reducing its efficiency in handling realistic learning tasks [25]. Finally,
restricting weights of the RNN to lie within some prespecified bounds might lead to control over the norms
of the recurrent weight matrices and alleviate the EVGP. Such an approach has been suggested in the
context of independent neurons in each layer in [32], and using a coupled system of damped oscillators in
[41], among others. However, ensuring that weights remain within a pre-defined range during training
might be difficult. Furthermore, weight clipping could also reduce expressivity of the resulting RNN.

In addition to EVGP, the learning of sequential tasks with very long time dependencies can require
significant computational resources, for training and evaluating the RNN. Moreover, as the BPTT training
algorithms entail storing all hidden states at every time step, the overall memory requirements can be
prohibitive. Thus, the design of a fast and memory efficient RNN architecture that can mitigate the EVGP
is highly desirable for the effective use of RNNs in realistic learning tasks with very long time dependencies.
The main objective of this article is to propose, analyze and test such an architecture.

The basis of our proposed RNN is the observation that a large class of dynamical systems in physics
and engineering, the so-called Hamiltonian systems [3], allow for very precise control on the underlying
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states. Moreover, the fact that the phase space volume is preserved by the trajectories of a Hamiltonian
system, makes such systems invertible and allows one to significantly reduce the storage requirements.
Furthermore, if the resulting hidden state gradients also evolve according to a Hamiltonian dynamical
system, one can obtain precise bounds on the hidden state gradients and alleviate the EVGP. We combine
and extend these ideas into an RNN architecture that will allow us to prove rigorous bounds on the
hidden states and their gradients, mitigating the EVGP. Moreover, our RNN architecture results in a fast
implementation that attains state of the art performance on a variety of learning tasks with very long
time dependencies.

2 The proposed RNN

Our proposed RNN is based on the time-discretization of the following system of second-order ordinary
differential equations (ODEs),
y" =—[c(woy+ Vu+b)+ay]. (1)

Here, t € [0,1] is the (continuous) time variable, u = u(r) € R is the time-dependent input signal,
y = y(t) € R is the hidden state of the RNN with w € R” is a weight vector, V € R a weight matrix,
b € R™ is the bias vector and @ > 0 is a control parameter. The operation © is the Hadamard product
and the function o : R — R is the activation function and is applied component wise. For the rest of this
paper, we set o(u) = tanh(u).
By introducing the auxiliary variable z = y’, we can rewrite the second order ODE (1) as a first order
ODE system:
y' =2z, z'=-[c(wWOy+Vu+b)+ay]. (2)

Assuming that w; # 0, for all 1 <i < m, it is easy to see that the ODE system (2) is a Hamiltonian
system,

, 0H , 0H

= -, = —-—, 3
y 0z 2 ay )
with the time-dependent Hamiltonian,
I I |
H(y.z.1) = Sllyl* + 5 ll2ll® + 3 — log(cosh(wiy; + (Va(o)); + b)) (4)
o1 Wi

with ||x||? = (x,x) denoting the Euclidean norm of the vector x € R™ and (-,-) the corresponding inner
product.

The next step is to find a discretization of the ODE system (2). Given that it is highly desirable to
ensure that the discretization respects the Hamiltonian structure of the underlying continuous ODE, the
simplest such structure preserving discretization is the symplectic Euler method [42, 19]. Applying the
symplectic Euler method to the ODE (2) results in the following discrete dynamical system,

Yn = Yn-1 + Atzy,
Zp =1Zp-1 — At[O’ (W OYn-1+ Vu, + b) + CYYn—ﬂ,

(5)

for 1 <n < N. Here, 0 < At < 1 is the time-step and u, =~ u(t,), with #, = nAt, is the input signal. It is
common to initialize with yg = zg = 0.

We see from the structure of the discrete dynamical system (5) that there is no interaction between
the neurons in the hidden layer of (5). Such an RNN will have very limited expressivity. Hence, we stack
more hidden layers to propose the following deep or multilayer RNN,

¢ ¢ Aol ¢
Yn =Y,q +Ato(c’) Oz, ©)

zfl = zfl_l —At(Hofowl o Yfz—l + V‘)yf;_1 +b) + ayﬁ_l].

Here yﬁl,zfl € R™ are hidden states and w?, V¢, b’ are weights and biases, corresponding to layer £ = 1,..., L.
We set y9 = u, in the multilayer RNN (6).



Observe that we use the same step-size At for every layer, while multiplying a trainable parameter
vector ¢ € R™ to the time step. The action of ¢ is modulated with the sigmoidal activation function
0 (u) = 0.5 + 0.5 tanh(u/2), which ensures that the time-step Ar is multiplied by a value between 0 and 1.
We remark that the presence of this trainable vector ¢ allows us to incorporate multi-scale behavior in
the proposed RNN; as the effective time-step is learned during training and can be significantly different
from the nominal time-step Ar. It is essential to point out that including this multi-scale time stepping
is only possible, as each neuron (within the same hidden layer) is independent of the others and can be
integrated with a different effective time step. Finally, we also share the control hyperparameter @ across
the different layers, which results in a memory unit of L layers with a total of only 2 hyperparameters.

2.1 Motivation and background

The ODE system (2) is a model for a nonlinear system of uncoupled driven oscillators [18]. To see this,
we denote y;(¢) as the displacement and z;(z) as the velocity. Then, the dynamics of the i-th oscillator
is determined by the frequency @ and also by the forcing or driving term in the second equation of (2),
where the forcing acts through the input signal u and is modulated by the weight V and bias b. Finally,
the weight w modulates the frequency @ and allows each neuron to oscillate with its own frequency,
rather than the common frequency a of the system. The structure of w implies that each neuron is
independent of the others. A key element of the oscillator system (2) is the absence of any damping
or friction term. This allows the system to possess a Hamiltonian structure, with desirable long time
behavior. Thus, we term the resulting RNN (6), based on the ODE system (2) as Undamped Independent
Controlled Oscillatory RNN or UnICORNN. We remark that networks of oscillators are very common
in science and engineering [18, 43] with prominent examples being pendulums in mechanics, electrical
circuits in engineering, business cycles in economics and functional brain circuits such as cortical columns
in neurobiology.

2.2 Comparison with related work.

UnICORNN lies firmly in the class of ODE-based or ODE-inspired RNNs, which have received considerable
amount of attention in the machine learning literature in recent years. Neural ODEs, first proposed in
[10], are a prominent example of using ODEs to construct neural networks. In this architecture, the
continuous ODE serves as the learning model and gradients are computed from a sensitivity equation,
which allows one to trade accuracy with computing time. Moreover, it is argued that these neural ODEs
are invertible and hence, memory efficient. However, it is unclear if a general neural ODE, without any
additional structure, can be invertible. Other RNN architectures that are based on discretized ODEs
include those proposed in [14] and [8], where the authors proposed an anti-symmetric RNN, based on the
discretization of a stable ODE resulting from a skew-symmetric hidden weight matrix, thus constraining
the gradient dynamics.

Our proposed RNN (6) is inspired by two recent RNN architectures. The first one is coRNN, proposed
recently in [41], where the underlying RNN architecture was also based on the use of a network of
oscillators. As long as a constraint on the underlying weights was satisfied, coRNN was shown to mitigate
the EVGP. In contrast to coRNN, our proposed RNN does not use a damping term. Moreover, each
neuron, for any hidden layer, in UnICORNN (6) is independent. This is very different from coRNN where
all the neurons were coupled together. Finally, UnICORNN is a multi-layer architecture whereas coRNN
used a single hidden layer. These innovations allow us to admit a Hamiltonian structure for UnICORNN
and facilitate a fast and memory efficient implementation.

Our proposed architecture was also partly inspired by IndRNN, proposed in [32, 33], where the neurons
in each hidden layers were independent of each other and interactions between neurons were mediated
by stacking multiple RNN layers, with output of each hidden layer passed on to the next hidden layer,
leading to a deep RNN. We clearly use this construction of independent neurons in each layer and stacking
multiple layers in UnICORNN (6). However in contrast to IndRNN, our proposed RNN is based on a
discretized Hamiltonian system and we will not require any constraints on the weights to mitigate the
EVGP.

Finally, we would like to point out that discrete Hamiltonian systems have already been used to
design RNNs, for instance in [17] and also in [11], where a symplectic time-integrator for a Hamiltonian



system was proposed as the RNN architecture. However, these approaches are based on underlying
time-independent Hamiltonians and are only relevant for mechanical systems as they cannot process
time-dependent inputs, which arise in most realistic learning tasks. Moreover, as these methods enforce
exact conservation of the Hamiltonian in time, they are not suitable for learning long-time dependencies,
see [35] for a discussion and experiment on that issue. Although we use a Hamiltonian system as the basis
of our proposed RNN (6), our underlying Hamiltonian (4) is time-dependent and the resulting RNN can
readily process any time-dependent input signal.

2.3 On the Memory Efficiency of UnICORNN

As mentioned in the introduction, the standard BPTT training algorithm for RNNs requires one to store
all the hidden states at every time step. To see this, we observe that for a standard multi-layer RNN with
L layers and a mini-batch size of b (for any mini-batch stochastic gradient descent algorithm), the storage
(in terms of floats) scales as O(Nbd + LbmN), with input and hidden sequences of length N. This memory
requirement can be very high. Note that we have ignored the storage of trainable weights and biases for
the RNN in the above calculation.

On the other hand, as argued before, our proposed RNN is a symplectic Euler discretization for a
Hamiltonian system. Hence, it is invertible. In fact, one can explicitly write the inverse of UnICORNN
(6) as,

yﬁl_l = yﬁl - Até’(cl) ® zfv

2, =2 +aa)olow oy + Vi + b)) vay ]

(7)
Thus, one can recover all the hidden states in a given hidden layer, only from the stored hidden state at
the final time step, for that layer. Moreover, only the input signal needs to be stored as the other hidden
states can be reconstructed from the formula (7). Hence, a straightforward calculation shows that the
storage for UnICORNN scales as O(Nbd + Lbm). As L << N, we conclude that UnICORNN allows for a
significant saving in terms of storage, when compared to a standard RNN.

3 Rigorous Analysis of UnICORNN

Properties of the ODE (2). In order to investigate the EVGP for the proposed RNN (6), we will first
explore the dynamics of the gradients of hidden states y,z (solutions of the ODE (2)) with respect to the

trainable parameters w,V and b. Denote any scalar parameter as 6 and fy = %, then differentiating the
ODE (2) with respect to 6 results in the ODE,

Yo =20, Zg=—0(A)O(WOYyg)—ays—0c'(A)oCQ) (8)

where A = w®y + Vu+b is the pre-activation and the coefficient C € R™ is given by C; = y; if 6 = w;,
C;=u;if 6 =V;; and C; = 1 if 8 = b;, with all other entries of the vector C being zero.

It is easy to check that the ODE system (8) is a Hamiltonian system of form (3), with the following
time-dependent Hamiltonian;

H(y0. 2.0 = Slyoll + Slall? + 5 3 o/ (AwilGra)? + Y o' (A)CH )30 ()
i=1 i=1

Thus, by the well-known Liouville’s theorem [42], we know that the phase space volume of (8) is preserved.
Hence, this system cannot have any asymptotically stable fixed points. This implies that {0,0} cannot be
a stable fixed point for the hidden state gradients (yg,z¢). Thus, we can expect that the hidden state
gradients with respect to the system of oscillators (2) do not remain near zero.

On the other hand, as the Hamiltonian (9) for the hidden state gradient system (8) is time-dependent,
we cannot directly infer that the gradients satisfy an upper bound. However, we prove (in Appendix C.2)
the following bounds,



Proposition 3.1. Let yq(t),zg(t) be the solutions of the ODE system (8) for hidden state gradients, at
any time t € [0,1]. Then for a > 0 and for all t € [0,1], the hidden state gradients are bounded by,

QI

Iye@II* < {lya(O)II* + —||Z9(0)||2 VeV

lze I < (@llya(O)II* + [120(0)|?) €¥ + Ce¥,

Q

(10)

2 J—
”ZH"",2 , and for some constant C that only depends on the dimension m and on the

with W = max{
constant U that bounds the input u.

A similar upper bound for @ = 0 is given in Appendix C.

On the Exploding Gradient Problem for UnICORNN. We train the RNN (6) to minimize the
loss function,

1 ¢ 1
=5 D & En=slyi ~alls (11)

with y being the underlying ground truth (training data). Note that the loss function (11) only involves
the output at the last hidden layer (we set the affine output layer to identity for the sake of simplicity).
During training, we compute gradients of the loss function (11) with respect to the trainable weights and
biases ® = [w!, VI, bl cf], forall 1< ¢ <L, ie.,

e 1 0¢,

— == —, VHe0o. 12

99~ N nzzl a9 © (12)
Given the upper bounds (10) on the hidden state gradients for the underlying ODE (2), it is reasonable to

expect that the gradient (12) is bounded. This is indeed the case and we have the following proposition,

Proposition 3.2. Let @ > 0,At < 1 in the RNN (6) and let y,2¢,, for 1 < € < L, be the hidden states
generated by the RNN (6). Then, the gradient of the loss function € (11) with respect to any parameter
0 € O is bounded as,

WL__
> — VY +F) (A + Ay), (13)

with Y = Jmax, I¥nllco, be a bound on the underlying training data and other quantities in (13) defined as,
<n<

‘ae 1 - (An)E

L
W' = max {2,[lwh e + @}, V=] [max{1,IV9]le},
q=1

2m L a— 1
= \/? (1 +22A7%) €@, @ = 967 max{1, Va}, (14)

Ay =2+ \2m (1 + 2aAr°) €7,

2 -
Ay =(2+ a)\/—m (1+20A8) €@
a

This proposition, proved in Appendix D.2, demonstrates that as long as the weights wl, V¢ are
bounded, there is a uniform bound on the hidden state gradients and the exploding gradient problem is
mitigated for UnICORNN.

On the Vanishing Gradient Problem for UnICORNN. By applying the chain rule repeatedly to
each term on the right-hand-side of (12), we obtain

n,L n,L
nael gl e, oxt 07X

;; ae o6 T oxL ox{ 96

£,1 tj ¢, tm L,
[yn ,Zy) ,...,ynj,znj,...,ynm, nm].

(15)
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Here, the notation refers to taking the partial derivative of Xi with respect to the parameter 8, while

(n,L)

keeping the other arguments constant. The quantity 5; denotes the contribution from the k-recurrent

step at the /-th hidden layer of the deep RNN (6) to the overall hidden state gradient at the step n. The

(n,L)
vanishing gradient problem [38] arises if | —3—|, defined in (15), — 0 exponentially fast in k, for k << n

(long-term dependencies). In that case, the RNN does not have long-term memory, as the contribution of
the k-th hidden state at the £-th layer to error at time step #, is infinitesimally small.

We have established that the hidden state gradients for the underlying continuous ODE (2) do not
vanish. As we use a symplectic Euler discretization, the phase space volume for the discrete dynamical
system (5) is also conserved [42, 19]. Hence, one can expect that the gradients of the multilayer RNN (6)
do not vanish. However, these heuristic considerations need to be formalized. Observe that the vanishing
gradient problem for RNNs focuses on the possible smallness of contributions of the gradient over a large
number of recurrent steps. As this behavior of the gradient is independent of the number of layers, we
focus on the vanishing gradient problem for a single hidden layer here, while presenting the multilayer
results in Appendix D.4. Also, for the sake of definiteness, we set the scalar parameter § = wb? for
some 1 < p < m. Similar results also hold for any other 8 € ®. We have following representation formula
(proved in Appendix D.3) for the hidden state gradients,

Proposition 3.3. Lety, be the hidden states generated by the RNN (6). Then the gradient for long-term
dependencies, i.e. k << n, satisfies the representation formula,
(n,1)
&}
owb-p

= —AG(E ) 0 (A (v - Fh) + O, (16)

Tt is clear from the representation formula (16) that there is no k-dependence for the gradient. In
particular, as long as all the weights are of O(1), the leading-order term in (16) is O(At). Hence, the
gradient can be small but is independent of the recurrent step k. Thus, we claim that the vanishing
gradient problem, with respect to recurrent connections, is mitigated for UnICORNN (6).

4 Experiments

The details of the training procedure for each experiment can be found in Appendix A. Code to replicate
the experiments can be found at https://github.com/tk-rusch/unicornn.

Implementation The structure of UnICORNN (6) enables us to achieve a very fast implementation.
First, the transformation of the input (i.e. Vfy¢=! for all 7 = 1,...,L), which is the most computationally
expensive part of UnICORNN, does not have a sequential structure and can thus be computed in parallel
over time. Second, as the underlying ODEs of the UnICORNN are uncoupled for each neuron, the
remaining recurrent part of UnICORNN is solved independently for each component. Hence, inspired by
the implementation of Simple Recurrent Units (SRU) [31] and IndRNN, we present in Appendix B, the
details of an efficient CUDA implementation, where the input transformation is computed in parallel and
the dynamical system corresponding to each component of (6) is an independent CUDA thread.

We benchmark the training speed of UnICORNN with L = 2 layers, against the fastest available
RNN implementations, namely the cuDNN implementation [1] of LSTM (with 1 hidden layer), SRU and
IndRNN (both with L = 2 layers and with batch normalization). Fig. 1 shows the computational time
(measured on a GeForce RTX 2080 Ti GPU) of the combined forward and backward pass for each network,
averaged over 100 batches with each of size 128, for two different sequence lengths, i.e. N = 1000,2000. We
can see that while the cuDNN LSTM is relatively slow, the SRU, IndRNN and the UnICORNN perform
similarly fast. Moreover, we also observe that UnICORNN is about 30 — 40 times faster per combined
forward and backward pass, when compared to recently developed RNNs such as expRNN [7] and coRNN
[41]. We thus conclude that the UnICORNN is among the fastest available RNN architectures.


https://github.com/tk-rusch/unicornn
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Figure 1: Measured computing time for the com- Figure 2: Test accuracy (mean and standard devia-

bined forward and backward pass for the Unl- tion) for the UnICORNN on EigenWorms for two

CORNN as well as for three of the fastest available types of sub-sampling approaches, i.e. using the last

RNN implementations. entries of the sequences as well as using a random
subset of the entries. Both are shown for increas-
ing number of entries used in each corresponding
sub-sampling routine.

Permuted sequential MNIST A well-established benchmark for testing RNNs on input sequences
with long time-dependencies is the permuted sequential MNIST (psMNIST) task [28]. Based on the
classical MNIST data set [29], the flattened grey-scale matrices are randomly permuted (based on a
fixed random permutation) and processed sequentially by the RNN. This makes the learning task more
challenging than sequential MNIST, where one only flattens the MNIST matrices without permuting them.
In order to make different methods comparable, we use the same fixed seed for the random permutation,
as in [7, 6, 21]. Table 1 shows the results for UnICORNN with 3 layers, together with other recently
proposed RNNs, which were explicitly designed to learn LTDs as well as two gated baselines. We see that
UnICORNN clearly outperforms the other methods.

Table 1: Test accuracies on permuted sequential MNIST together with number of hidden units as well as
total number of parameters for each network. All other results are taken from the corresponding original
publication, cited in the main text, except that we are using the results of [9] for GRU and of [21] for
LSTM.

Model test accuracy # units  # params
LSTM 92.9% 256 270k
GRU 94.1% 256 200k
expRNN 96.6% 512 127k
coRNN 97.3% 256 134k
IndRNN (L=6) 96.0% 128 86k
dense-IndRNN (L=6) 97.2% 128 257k
UnICORNN (L=3) 97.8% 128 35k
UnICORNN (L=3) 98.4% 256 135k

Noise padded CIFAR-10 A more challenging test for the ability of RNNs to learn LTDs is provided
by the recently proposed noise padded CIFAR-10 experiment [8]. In it, the CIFAR-10 data points [26]
are fed to the RNN row-wise and flattened along the channels resulting in sequences of length 32. To
test long term memory, entries of uniform random numbers are added such that the resulting sequences



have a length of 1000, i.e. the last 968 entries of each sequences are only noise to distract the RNNs.
Table 2 shows the result of the UnICORNN with 3 layers together with the results of other recently
proposed RNNs, namely for the LSTM, anti.sym. RNN and gated anti.sym. RNN [8], Lipschitz RNN
[15], Incremental RNN [24], FastRNN [27] and coRNN [41]. We conclude that the proposed RNN readily
outperforms all other methods on this experiment.

Table 2: Test accuracies on noise padded CIFAR-10 together with number of hidden units as well as total
number of parameters for each network. All other results are taken from literature, specified in the main
text.

Model test accuracy # units  # params
LSTM 11.6% 128 64k
Incremental RNN 54.5% 128 12k
Lipschitz RNN 55.8% 256 158k
FastRNN 45.8% 128 16k
anti.sym. RNN 48.3% 256 36k

gated anti.sym. RNN  54.7% 256 37k
coRNN 59.0% 128 46k
UnICORNN (L=3) 62.4% 128 47k

EigenWorms The EigenWorms data set [4] is a collecting of 259 very long sequences, i.e. length of
17984, describing the motion of a worm. The task is, based on the 6-dimensional motion sequences, to
classify a worm as either wild-type or one of four mutant types. We use the same train/valid/test split as
in [36], i.e. 70%/15%/15%. As the length of the input sequences is extremely long for this test case, we
benchmark UnICORNN against three sub-sampling based baselines. These include the results of [36],
which is based on signature sub-sampling routine for neural controlled differential equations. Additionally
after a hyperparameter fine-tuning procedure, we perform a random sub-sampling as well as truncated
back-propagation through time (BPTT) routine using LSTMs, where the random sub-sampling is based
on 200 randomly selected time points of the sequences as well as the BPTT is truncated after the last 500
time points of the sequences. Furthermore, we compare UnICORNN with three leading RNN architectures
for solving LTD tasks, namely expRNN, IndRNN and coRNN, which are all applied to the full-length
sequences. The results, presented in Table 3, show that while sub-sampling approaches yield moderate
test accuracies, expRNN as well as the IndRNN yield very poor accuracies. In contrast, coRNN performs
very well. However, the best results are obtained for UnICORNN as it reaches a test accuracy of more
than 90%, while at the same time yielding a relatively low standard deviation, further underlining the
robustness of the proposed RNN.

Table 3: Test accuracies on EigenWorms using 5 re-trainings of each best performing network (based on
the validation set) together with number of hidden units as well as total number of parameters for each
network.

Model test accuracy  # units  # params
t-BPTT LSTM 57.9%+7.0% 32 5.3k
sub-samp. LSTM 69.2%+8.3% 32 5.3k
sign.-NCDE 77.8%+5.9% 32 35k
expRNN 40.0%+10.1% 64 2.8k
IndRNN (L=2) 49.7%+4.8% 32 1.6k
coRNN 86.7%+3.0% 32 2.4k
UnICORNN (L=2) 90.3%+3.0% 32 1.5k

As this data set has only recently been proposed as a test for RNNs in learning LTDs, it is unclear
if the input sequences truly exhibit very long time-dependencies. To investigate this further, we train



UnICORNN on a subset of the entries of the sequences. To this end, we consider using only the last entries
as well as using a random subset of the entries. Fig. 2 shows the distributional results (10 re-trainings of
the best performing UnICORNN) for the number of entries used in each sub-sampling routine, ranging
from only using 1000 entries to using the full sequences for training. We can see that in order to reach
a test accuracy of 80% when training on the last entries of the sequences, at least the last 10k entries
are needed. Moreover, for both sub-sampling methods the test accuracy increases monotonically as the
number of entries for training is increased. On the other hand, using a random subset of the entries
increases the test accuracy significantly when compared to using only the last entries of the sequences.
This indicates that the important entries of the sequences, i.e. information needed in order to classify them
correctly, are uniformly distributed throughout the full sequence. We thus conclude that the EigenWorms
data set indeed exhibits very long time-dependencies.

Healthcare application: Vital signs prediction We apply UnICORNN on two real-world data sets
in health care, aiming to predict the vital signs of a patient, based on PPG and ECG signals. The data
sets are part of the TSR archive [44] and are based on clinical data from the Beth Israel Deaconess Medical
Center. The PPG and ECG signals are sampled with a frequency of 125Hz for 8 minutes each. The
resulting two-dimensional sequences have a length of 4000. The goal is to predict a patient’s respiratory
rate (RR) and heart rate (HR) based on these signals. We compare UnICORNN to 3 leading RNN
architectures for solving LTDs, i.e. expRNN, IndRNN and coRNN. Additionally, we present two baselines
using the LSTM as well as the recently proposed sub-sampling method of computing signatures for neural
controlled differential equations (NCDE) [36]. Following [36], we split the 7949 sequences in a training set,
validation set and testing set, using a 70%/15%/15% split. Table 4 shows the distributional results of all
networks using 5 re-trainings of the best performing RNN. We observe that while the LSTM does not
reach a low L2 testing error in both experiments, the other RNNs approximate the vital signs reasonably
well. However, UnICORNN clearly outperforms all other methods on both benchmarks. We emphasize
that UnICORNN significantly outperforms all other state-of-the-art methods on estimating the RR, which
is of major importance in modern healthcare applications for monitoring hospital in-patients as well as for
mobile health applications, as special invasive equipment (for instance capnometry or measurement of gas
flow) is normally needed to do so [40].

Table 4: L? test error on vital sign prediction using 5 re-trainings of each best performing network (based
on the validation set), where the respiratory rate (RR) and heart rate (HR) is estimated based on PPG
and ECG data.

Model RR HR
sign.-NCDE 1.51+0.08 2.97+0.45
LSTM 2.28+0.25 10.7+£2.0
expRNN 1.57+0.16 1.87+0.19
IndRNN (L=3) 1.47+0.09 2.1+0.2
coRNN 1.45+0.23 1.71+0.1

UnICORNN (L=3) 1.06+0.03 1.39+0.09

Sentiment analysis: IMDB As a final experiment, we test the proposed UnICORNN on the widely
used NLP benchmark data set IMDB [34], which consists of 50k online movie reviews with 25k reviews
used for training and 25k reviews used for testing. This denotes a classical sentiment analysis task, where
the model has to decide whether a movie review is positive or negative. We use 30% of the training set
(i.e. 7.5k reviews) as the validation set and restrict the dictionary to 25k words. We choose an embedding
size of 100 and initialize it with the pretrained 100d GloVe [39] vectors.

Table 5 shows the results for UnICORNN with 2 layers together with other recently proposed RNN
architectures and gated baselines (which are known to perform very well on these tasks). The result of
ReLU GRU is taken from [13], of coRNN from [41] and all other results are taken from [5]. We can see
that UnICORNN outperforms the other methods while requiring significantly less parameters. We thus



Table 5: Test accuracies on IMDB together with number of hidden units as well as total number of
parameters (without embedding) for each network. All other results are taken from literature, specified in
the main text.

Model test accuracy # units  # params
LSTM 86.8% 128 220k

skip LSTM 86.6% 128 220k

GRU 85.2% 128 99k

ReLU GRU 84.8% 128 99k

skip GRU 86.6% 128 165k
coRNN 87.4 % 128 46k
UnICORNN (L=2) 88.4% 128 30k

conclude, that the UnICORNN can also be successfully applied to problems, which do not necessarily
exhibit long term-dependencies.

5 Discussion

The design of RNNs that can accurately handle sequential inputs with long-time dependencies is very
challenging. This is largely on account of the exploding and vanishing gradient problem (EVGP). Moreover,
there is a significant increase in both computational time as well as memory requirements when LTD tasks
have to be processed. Our main aim in this article was to present a novel RNN architecture which is fast,
memory efficient, invertible and mitigates the EVGP. To this end, we proposed UnICORNN (6), an RNN
based on the symplectic Euler discretization of a Hamiltonian system of second-order ODEs (2) modeling
a network of independent, undamped, controlled and driven oscillators. In order to gain expressivity, we
stack layers of RNNs and also endow this construction with a multi-scale feature by training the effective
time step in (6).

Given the Hamiltonian structure of our continuous and discrete dynamical system, invertibility and
volume preservation in phase space are guaranteed. Invertibility enables the proposed RNN to be memory
efficient. The independence of neurons within each hidden layer allows us to build a highly efficient CUDA
implementation of UnICORNN that is as fast as the fastest available RNN architectures. Motivated by
the fact that the underlying ODE (1) as well as the ODE (8), governing the evolution of hidden state
gradient possess a time-dependent Hamiltonian, we prove rigorous upper bounds (13) on the gradients and
show that the exploding gradient problem is mitigated for UnICORNN. Moreover, we derive an explicit
representation formula (16) for the gradients of (6), which shows that the vanishing gradient problem
is also mitigated. Finally, we have tested UnICORNN on a suite of benchmarks that includes both
synthetic as well as realistic learning tasks, designed to test the ability of an RNN to deal with long-time
dependencies. In all the experiments, UnICORNN was able to show state of the art performance.

It is instructive to compare UnICORNN with two recently proposed RNN architectures, with which it
shares some essential features. First, the use of coupled oscillators to design RNNs was already explored
in the case of coRNN [41]. In contrast to coRNN, neurons in UnICORNN are independent (uncoupled)
and as there is no damping, UnICORNN possesses a Hamiltonian structure. This paves the way for
invertibility as well as for mitigating the EVGP without any assumptions on the weights whereas the
mitigation of EVGP with coRNN was conditional on restrictions on weights. Finally, UnICORNN provides
even better performance on benchmarks than coRNN, while being significantly faster. While we also
use independent neurons in each hidden layer and stack RNN layers together as in IndRNN [32], our
design principle is completely different as it is based on Hamiltonian ODEs. Consequently, we do not
impose weight restrictions, which are necessary for IndRNN to mitigate the EVGP. Moreover, in contrast
to IndRNNs, our architecture is invertible and hence, memory efficient.

This work can be extended in different directions. First, UnICORNN is a very flexible architecture
in terms of stacking layers of RNNs together. We have used a fully connected stacking in (6) but other
possibilities can be readily explored. See Appendix D.5 for a discussion on the use of residual connections
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in stacking layers of UnICORNN. Second, the invertibility of UnICORNN can be leveraged in the context
of normalizing flows [37], where the objective is to parametrize a flow such that the resulting Jacobian is
readily computable. Finally, our focus in this article was on testing UnICORNN on learning tasks with
long-time dependencies. Given that the underlying ODE (2) models oscillators, one can envisage that
UnICORNN will be very competitive with respect to processing different time series data that arise in
healthcare Al such as EEG and EMG data, as well as seismic time series from the geosciences.
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Supplementary Material for:
UnICORNN: A recurrent model for learning very long time dependencies

A Training details

All experiments were run on GPU, namely NVIDIA GeForce GTX 1080 Ti and NVIDIA GeForce RTX
2080 Ti. The hidden weights w of the UnICORNN are initialized according to U(0,1), while all biases
are set to zero. The trained vector c is initialized according to U(—0.1,0.1). The input weights V are
initialized according to the Kaiming uniform initialization [20] based on the input dimension mode and
the negative slope of the rectifier set to a = 8.

The hyperparameters of the UnICORNN are selected using a random search algorithm based on a
validation set. The hyperparameters of the best performing Un[CORNN can be seen in Table 6. The value
for At and « is shared across all layers, except for the IMDB task and FEigenWorms task, where we use a
different At value for the first layer and the corresponding At value in Table 6 for all subsequent layers, i.e.
we use At = 6.6 x 1073 for IMDB and At = 2.81 x 10~ for EigenWorms in the first layer. Additionally, the
dropout column corresponds to variational dropout [16], which is applied after each consecutive layer.
Note that for the IMDB task also an embedding dropout with p = 0.65 is used.

We train the UnICORNN for a total of 50 epochs on the IMDB task and for a total of 250 epochs
on the FigenWorms task. Moreover, we train UnI[CORNN for 650 epochs on psMNIST, after which we
decrease the learning rate by a factor of 10 and proceed training for 3 times the amount of epochs used
before reducing the learning rate. On all other tasks, UnICORNN is trained for 250 epochs, after which we
decrease the learning rate by a factor of 10 and proceed training for additional 250 epochs. The resulting
best performing networks are selected based on a validation set.

Table 6: Hyperparameters of the best performing UnICORNN architecture (based on a validation set) for
each experiment.

Experiment learning rate dropout batch size At a
noise padded CIFAR-10 3.14x 1072 1.0x 1071 30 1.26 x 107t 13.0
psMNIST (#units = 128) 1.14x 1073 1.0x 107t 64 4.82x1071 1253
psMNIST (#units = 256) 2.51x 1073 1.0x 1071 32 1.9x 1071 30.65
IMDB 1.67x 1074 6.1x1071 32 2.05x 1071 0.0
EigenWorms 8.59 x 1073 0.0 8 3.43x1072 0.0
Healthcare: RR 3.98x 1073 1.0x 107t 32 1.1x1072 9.0
Healthcare: HR 2.88x 1073 1.0x 107t 32 4.6 x1072 10.0

B Implementation details

As already described in the implementation details of the main paper, we can speed up the computation
of the forward and backward pass, by parallelizing the input transformation and computing the recurrent
part for each independent dimension in an independent CUDA thread. While the forward/backward pass
for the input transformation is simply that of an affine transformation, we discuss only the recurrent part.
Since we compute the gradients of each dimension of the UnICORNN independently and add them up
afterwards to get the full gradient, we will simplify to the following one-dimensional system:

Zn = Zn-1 — Ato(c)[o (Wyn-1 + Xn) + @Yn-1],
Yn =Yn-1+ A[&(C)Zn,
where x,, = (Vu,); is the transformed input corresponding to the respective dimension j = 1,...,m.
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Since we wish to train the UnICORNN on some given objective

N
= > €O, (17)
n=1

where & is some loss function taking the hidden states y, as inputs, for instance mean-square distance of
(possibly transformed) hidden states y, to some ground truth. During training, we compute gradients of
the loss function (17) with respect to the following quantities @ = [w, At, x,], i.e.

9E _ X 0E(m)
90 90

Voe0. (18)

We can work out a recursion formula to compute the gradients in (18). We will exemplarily provide
the formula for the gradient with respect to the hidden weight w. The computation of the gradients with
respect to the other quantities follow similarly. Thus

67 =67 + 6, Atd(c), (19)
8, =6, | =6 Ao () o' (Wyn—k + XN—ks1)W + ] + j}fk, (20)
with initial values 6y W and 6§ = 0. The gradient can then be computed as
e : .
Fr Z ag, with a; = —6I§At0'(c)o"(wy1v_k + XN_k+1)YN—k- (21)

Note that this recursive formula is a direct formulation of the back-propagation through time algorithm
[45] for the UnICORNN.
We can verify formula (19)-(21) by explicitly calculating the gradient in (18):

N-1 . s
08 _ 0 0EQn) _ N 0€Qn) | OE |Oynar © dzn- AL () (Wyn g + xN)
ow — Ow P ow oyn | ow ow
Oyn-1 dyn—1 & 9E(yn) dzn-1 Oyn-1
_ = 52 &
(n-1+w ow J+a ow )] nZ:; aw AT, TGy,

N-2
Y- ayaN‘2 + (Y At6(c) + 67) (ag’V‘Q — At6(e) (0 (Wyn-2 + Xn-1)
=i w w

N-

Oyn— 0
(Yn—a + W YN 2) yN 2 )

3
(9 yn) yayN—Z
e + Z_: ap + 6 6 + 65 .

ow ow

n=1

Iterating the same reformulation yields the desired formula (19)-(21).

C Bounds on the ODE (2) of the main text.
Rewriting the ODE (2) of the main text as,
2/ =—[c(A)+ay], yy=2z, A=woOy+Vu+b, (22)

together with the initial data yg = z¢ = 0.
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C.1 Energy bounds.
We have the following energy bounds on the solutions of the ODE (22),

Proposition C.1. Let y(t),z(t) be the solutions of the ODE system (22) at any time t € [0,1] and the
initial data for (22) is given by,
y(0) = 2(0) = 0.

Then for a > 0, the solutions of (22) are bounded by,
YOI < ==, la)l* < me, Vi€ (0.1] (23)

and for @ = 0, the solutions of (22) are bounded by,
lyOI* < me®,  ||z(0)]I> < me?, Vi€ (0,T]. (24)

Here ||x]|? = (x,x), denotes the Euclidean norm of the vector x € R™ and (-,-), the corresponding inner
product.

Proof. To prove the bound (23), we take an inner product of the first equation in (22) with @y and an
inner product of the second equation in (22) with z and add the result to obtain,

d (allyll? + |lz||?
=t " | == A
5 (o(4)2)
A 2 2
< —”0—(2 i + —”Z2” (Cauchy’s inequality)
m lz|?  allyl?
— <1).
<3 + 5 + 5 (o] £ 1)

Applying the Gronwall’s inequality to the above differential inequality directly leads to,
allyOI” + [lz()]1> < mze' < me,

as t <1 and (23) follows as a direct consequence.
To proof (24), we set @ = 0 in (22) and take an inner product of the first equation in (22) with y and
an inner product of the second equation in (22) with z and add the result to obtain,

d (1Iyl® + Izl
= (T) = (.2) = (0 (A).2)
lo@I? | vli2
2 2
S+l 2l (ol < D).

+||z]|> (Cauchy’s inequality)

IA

The bound (24) follows as a direct consequence of the Gronwall’s inequality. ]

C.2 Hidden state gradients and Proof of proposition 3.1 of main text.

We recall that the ODE (8) in the main text for the hidden state gradients with respect to any trainable

parameter 6 € © is,
Yo =20, 2y =-0"(A)O(WOye) - ays—c'(A) o C), (25)

with the coefficient C € R given by,

[0,0,...,yi,...O], if0=w,»,
C=1[0,0,...,u,...0], if 6=V, (26)
[0,0,...,1,...0], if @=Dh,.
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Note that only the i-th entry of C is non-zero and all the remaining entries are zero. It is clear from the
bounds (23) and (24) that as long as we consider bounded inputs i.e., [[u(?)||? < ¢, for some constants
¢ > 0 and for all time ¢ € [0, 1], the coefficient C(¢) is bounded in the following sense,

ICOI2 <C, Vi elo1], (27)
for some constant C that only depends on the dimension m and on the constant ¢ that bounds the input.

We restate Proposition 3.1 of the main text that provides an upper bound on the hidden state gradients,

Proposition C.2. Let yg(2),z(t) be the solutions of the ODE system (25) for hidden state gradients, at
any time t € [0,1]. Then for @ > 0 and for all t € [0,1], the hidden state gradients are bounded by,

Al

1 _ _

2 2 2 W W

HiI* < ol +— 0 + —e",
lyo @l 1Yo (DI + — 2o (O} | ™ + —e (28)

lzo(0)II* < (allye(0)l|* + [|z6(0)[|?) e¥ + Ce,
with W = max {%,2}.
For a =0, the hidden state gradients are bounded by,

max (|lye()I1% 1120 ())II*) < (llye(O)II* + l|zg(0)[|*) e* + Ce, (29)

with w = max {1 + [|w||2,3}.

Proof. To prove the bound (28), we take an inner product of the first equation in (25) with ayy and an
inner product of the second equation in (22) with zg and add the result to obtain,

d (allyell2 + llzoll?

dt 2 ) = —(0'(A) © (W O yo).20) — (0'(A) © C,2p)

a (Cauchy’s inequality and |o’| < 1)

2 2 2

w C

< || ”oo ||y9” +||Z9||2+ || ”
@ 2 2

d _ — .. —
= (allyoll® + l1zell*) < W (ellyoll® + llzol|*) + C  (by definition of W and (27)).

Applying the Gronwall’s inequality to the above differential inequality directly leads to the bound,
(@llyo@II* + llzo())]1%) < (allya(O)II* + ll2o(0)]|?) €¥ + Ce*. (30)

This bound in turn, readily implies (28). The proof of the bound (29) is completely analogous. m]

D Rigorous bounds on UnICORNN

We rewrite UnICORNN (Eqn. (6) in the main text) in the following form: for all 1 < £ < L and for all
1<i<m ) . L,
yoi = yfl’_‘l + Ator(chyal
2l =2t - Ao () (ALT) - aAta (L (31)
, . i ,
Afl’_ll = WE”yf;’_ll + (V(')yﬁ_l) +bor
Here, we have denoted the i-th component of a vector x as x'.
We follow standard practice and set yg = zg =0,forall1<¢<L.

17



D.1 Energy Bounds.
We have the following bounds on the discrete hidden states,

Proposition D.1. Let y,,z, be the hidden states at the n-th time level t,, for UnICORNN (31), then
under the assumption that the time step At <1 and @ > 0, these hidden states are bounded as,

2mT
IvaI? < % (1+20A%) ™, ||Z)2 < 2mT (1 + 20Ar%) &7, VnV 1< <L, (32)

with the constant )
@ = 967 max{1, Var}.

If @ =0 and At < 1/2, the hidden states satisfy the bound,
Ilynll? < 2mTe. (33)

Proof. We fix £,n and multiply the first equation in (31) with ayf;’_i , and use the elementary identity

a? b» o1 9

b(a—b)— ?—?—i(tl—b) N
to obtain . i
H2 oyt .
a'(yn ) — (yn—l) + g(yﬁ,l )2 +a’AtO’(C€l)y \Z ”l,
2 2 2 = (34)
a(y )2 aAt?
=—0 t—5 (0l CO) (25" + anta (e )yl 2k

Next, we multiply the second equation in (31) with 2% and use the elementary identity

a2 2 1
—b)= — ——+ Z(a-b)>
a(a—b) 5 5 + 2(61 )
to obtain i 5
(Zn’t)2 (Z ) L ovi  ti2 L, 4, o4
- —l §(Zn -z ) = Ato(c")o (A 1)( zZ,_ 1) (35)
- Ao (") (Ay )zt - a2

Adding (34) and (35) and using Cauchy’s inequality yields,

oy, | @' _ e, 1+ An@)?
2 2 2 2
Al Lo i At—1 i i
(D (A ) A+ = — (2 = 2,")

- I et Pl

= a(yy)? + (2h")? < eyl ) + (1L + Azl ))? + 208 + A (2,

where the last inequality follows from the fact that |o|,|07| < 1 and At < 1. Using the elementary inequality,
(a+b+c)? <4a® +4b* + 2¢2,

and substituting for z5 from the second equation of (31) in the last inequality leads to,

a(yiH? + (257 < 1+ 4a®Arh)a(yl ) + (1 + At + 2aAr?)(25" )% + 241 + daAr™.

Denoting H, = a(yf;’i)2 + (zﬁ’i)2 and
G =1+ At + 20A1* + 4a®At?,

yields the following inequality,

H, < GH,_1 + 2At + 4aAt*, (36)
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Using the Taylor expansion for the exponential and the definition of @, it is straightforward to check that,
G < ¢

Thus, we have from (36) that, B
H, < ™ H,_; + 2At + 4aAt*. (37)

Tterating (37) n-times and using the fact that the initial data is such that Hy = 0 we obtain,

n-1
H, < (2At + daAt?) Z ™A < (2A1 + daAt*) ne™ M
<ty (2 + 4aAr?) e
< 2T (1 +2aA¢%) &7,
as ty, < T. The bound (32) follows directly from the definition of H,,.
The proof of (33) follows analogously. m|

D.2 On the exploding gradient problem for UnICORNN and Proof of propo-
sition 3.2 of the main text.

We train the RNN (31) to minimize the loss function,

1

N
— _ 1 L S 12
€= ) m &=y~ all, (39)

n=1

with ¥ being the underlying ground truth (training data). Note that the loss function (39) only involves
the output at the last hidden layer (we set the affine output layer to identity for the sake of simplicity).
During training, we compute gradients of the loss function (39) with respect to the trainable weights and
biases ® = [wf,Vf,bf,c[], forall1<¢<Lie.

e 1 5 0¢,

We have the following bound on the gradient (40),

Proposition D.2. Let @ > 0,At < 1 in the RNN (31) and let y,2%, for 1 <€ < L, be the hidden states
generated by the RNN (31). Then, the gradient of the loss function & (39) with respect to any parameter
6 € © is bounded as,

0&

_ L
9€| _ 1-(Ar)
00

wiTNr (v
S T T Ay TeV 'V +F)A, (41)

with Y = Jmax, I¥nllco, be a bound on the underlying training data and other quantities in (41) defined as,
<n<

wl = max {2, W |0 + a} ,

L
V= 1—[ max{1, ]|V |-},
q=1

Y (1 +22Ar?) €T,
@

A=2+ \/ZmT (1+22Af%) T + (2 + a)\/Qm—T (1 + 2aAf?) €T,
a

Proof. For any 1 <n < N and 1 <€ <L, let X{ € R?™ be the augmented hidden state vector defined by,

¢ _ [ 61 01 Ci i tom Lm
X, = [yn MRS SAL LTI Sl ] (43)
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For any 6 € ©, we can apply the chain rule repeatedly to obtain the following extension of the formula of
[38] to a deep RNN,

e i 3 2 O e (44)
- L axt :
L = 0Xy X, 06
—,———
ae(,(’f’[L)
06
P o . . o . .
Here, the notation —5* refers to taking the partial derivative of Xi with respect to the parameter 6, while
keeping the other arguments constant.
(n,L)
k,l

We remark that the quantity denotes the contribution from the k-recurrent step at the I-th
hidden layer of the deep RNN (31) to the overall hidden state gradient at the step n.
It is straightforward to calculate that,
o0&,
oxk
Repeated application of the chain and product rules yields,

= [yEt - 90,0, Ly ¥ 0,y =y 0] (45)

) CHERCE > ) ¢

_naxL 1_[

(46)

‘ -1
0Xk Jj=k+1 j=1 g=t+1 6XZ
For any j, a straightforward calculation using the form of the RNN (31) leads to the following representation
L
formula for the matrix -~ € R2m x R2m:
-1
B 0 ... 0
L2
axf 0 Bj e 0
x| o e | (47)
Jj-1 -
L.m
0 0 Bj
with the block matrices Bf’i € R?*2 given by,
P R G (whio' (kD) +a)  otetDar "
o= 48
J (oLt L,i s AL
_ir(cl)Ar (w /(AL + a) 1
q
Similarly for any ¢, the matrix ai)‘ik’l € R?™<2m can be readily computed as,
k
-k Kk & 7
D'lllk 0 D‘llzk 0 ... .. Df{nfc 0
g, g, 4,
N L I
k
axa L | ... (49)
k q.k a.k g,k
Dk o DIk o DLk 0
EZY 0 EZY 0 ... ... ELN 0]
with entries given by,
q.k _ 20~ 0 @i\2 7 [ A q q.k _ s (odaiy s [ ADE q
DY = —A2 (G (et (Ak_l)vi{, S = —Atir(ct)or (Ak_l)vif. (50)
A direct calculation with (48) leads to,
IBX o < max (1 + A+ (IWET + AR T+ (Jwhi] + a)At)
2 At2 (51)

<1+ max (2, |whi| + a) At + (max (2, |whi| + a)) -
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Using the definition of the L* norm of a matrix, we use (51) to the derive the following bound from (47),

IXt 2 Ar?
7 <1+ max (2,||WL||OO +a) At + (max (2,||WL||00 +a)) —
Xt | 2 (52)
< eWLAt’
with W defined in (42).
As At < 1, it is easy to see that,
q
k
< |V || At. 53
axI™H| (59)
Combining (52) and (53) , we obtain from (46)
L L q
X} < ﬁ 0X; l—[ Xy
)l = L -1
X |l j=k+1 6Xj—1 00 q=C+1 (9XZ o0
L f (54)
< AtL—f l_[ ”Vq”me(n—k)wLAt
q=C+1
< VAL LT,
where the last inequality follows from the fact that #, = nAr < T and the definition of V in (42).
Next, we observe that for any 6 € ©
o'X{ o'y oy Iy 9t oy ot | (55)
00 a0 > 80 T 860 7 a0 T 88 7 06
For any 1 <i < m, a direct calculation with the RNN (31) yields,
+. .l Ci + L0
Yk o 09 ~ o in? 2k
= At ! o+ At ! ,
a0 T ) g a + AT ) 5y (56)
a+alt 9t . . - 9AL 9t
k ~re L0 .1 ~ o L0 ’ .1 k-1 ~re Lo i
50 —Atd'(c )WO'(A](_I) —Ata(c™)o'(A) 50 alto'(c )Wyk_l.

i

o . i 0A . . .
Next, we have to compute explicitly 63; and —* in order to complete the expressions (56). To this

end, we need to consider explicit forms of the parameter 6 and obtain,
If = w?P, for some 1 < g <L and 1 < p < m, then,

£, P . .
a‘Ak—ll — Y]iil’ if q= €9p =1 (57)
00 0, if otherwise.
If 6 =b? P, for some 1 < g < L and 1 < p < m, then,
oA (1, if g=tp=i
o | (58)
00 0, if otherwise.
If 6 =V7 _ forsome 1 < ¢ <Land1<p,p<m, then,
t,i -1.5 . .
GAk_ll _ yk P, if q= f,p =1, (59)
00 0, if otherwise.
If 6 =c?Pforany 1 < g < L and 1 < p < m, then,
AAL!
k-1
=0. 60
560 (60)
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Similarly, if § = w9” or § = b%P forsome 1 < g < Land1<p <m,orIf=V?

5 forsome 1 <g <L
and 1 < p,p < m, then

dcht
00
On the other hand, if 8 = ¢?"Pfor any 1 < ¢ < L and 1 < p < m, then

0. (61)

et 1, if g=¢p=i,
¢ _{ i1 gq p=1i (62)

a9 0, if otherwise.

For any 0 € O, by substituting (57) to (62) into (56) and doing some simple algebra with norms, leads to
the following inequalities,

a2l . : .
1< A (1 alyf, |+ max (g, Ly, 71 1)), (63)
and,
+. .0,
| < Al + A2 (1+ alyp |+ max (v Ly, 1)) (64)

for any 1 < p < m.
By the definition of L™ of a vector and some straightforward calculations with (64) yields,

14
9 X!
a9

< A (24 12l + (1 + @Iy o + Dy Mo - (65)

(o]

From the energy bounds (32), we can directly bound the above inequality further as,

l
a*X!
a6

< At (2 + \/2mT (14 22A%) T + (2 + a)\/% (1+ 2aAf?) eaT) . (66)
a

By (45) and the definition of ¥ as well as the bound (32) on the hidden states, it is straightforward to
obtain that,

omT -
<Y+ \/i (1 +2aAr3) 7 | (67)
[07

9En
oXk
From the definition in (44) and the identity (44), we have

0o

(n,L)
i | [0 ] 0Xi| 5K, (68)
90 |~ l0XF . || 0X¢ a6
Substituting (67), (66) and (52) into (68) yields,
ngcnz’L) L—t+1 wW'Tx7 v
S| < ATV 4 F)A, (69)
with F and A defined in (42).
Therefore, from the fact that Ar < 1,1, = nAr < T and (44), we obtain
&, 1- (AI)L wIT=
< ——>Te" Y+ F)A.
'89 < ——x Te VY +F) (70)

By the definition of the loss function (39) and the fact that the right-hand-side of (70) is independent of
n leads to the desired bound (41).
O
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D.3 On the Vanishing gradient problem for UnICORNN and Proof of Propo-
sition 3.3 of the main text.

By applying the chain rule repeatedly to the each term on the right-hand-side of (40), we obtain

_ZL:zn: ag(n ,L) ae(n L). e, 6X’l£ 3+X£ (71)
B a6 a0  9xXfox¢ 06 -

(=1 k=1

L ¢ . . N~ . .
Here, the notation —5* refers to taking the partial derivative of Xi with respect to the parameter 8, while
(n,L)

keeping the other arguments constant. The quantity (%f denotes the contribution from the k-recurrent
step at the I-th hidden layer of the deep RNN (31) to the overall hidden state gradient at the step n. The

1)
vanishing gradient problem [38] arises if |—5—/|, defined in (71), — 0 exponentially fast in k, for k << n

(long-term dependencies). In that case, the RNN does not have long-term memory, as the contribution of
the k-th hidden state at the £-th layer to error at time step ¢, is infinitesimally small.

As argued in the main text, the vanishing gradient problem for RNNs focuses on the possible smallness
of contributions of the gradient over a large number of recurrent steps. As this behavior of the gradient
is independent of the number of layers, we start with a result on the vanishing gradient problem for
a single hidden layer here. Also, for the sake of definiteness, we set the scalar parameter § = w'? for
some 1 < p < m. Similar results also hold for any other 8 € ®. Moreover, we introduce the following
order-notation,

B =0(y), for y, € R, if there exists constants C,C such that Cy < 8 < Cy.
M = O(y), for M € R¥*% 5 ¢ R, if there exists constant C such that ||[M]|| < Cy.

(72)

We restate Proposition 3.3 of the main text,

Proposition D.3. Lety, be the hidden states generated by the RNN (31). Then the gradient for long-term
dependencies, i.e. k << n, satisfies the representation formula,

(n.1)
68k 1

S = A () e (A (v - T0) + O, (73)

Proof. Following the definition (71) and as L = 1 and 6 = w'? we have,
aem 1 9+xX1

k1 0&, X, X

owlr " 9X} 9X1 dwlr’

(74)

We will explicitly compute all three expressions on the right-hand-side of (74). To start with, using (55),
(56) and (57), we obtain,

X! a+y1’p 8z P !
- k= > 9-..9-..,—ka—k,-.-,...,0,0 5
owlp owlP’ gwl.p
9 X1 oy, "
6w1»;<7 6w1k,17 - _At2(0'(cl’p))20'/(A )yk 1 (75)
2p-1
a*X! 0tz "
k _ ko _ Aol 10 A LP 1P
owbr | T gwbp —Ar (e Yo (ALY,
2p

Using the product rule (46) we have,
oX1t no 9X;
aXl [ X (76)

k  j=k+1 d Jj-1
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Observing from the expressions (47) and (48) and using the order-notation (72), we obtain that,
1

0X;

6le._1

= Lomxam + MCj + O(Ar®), (77)

with Ixxx is the k X k Identity matrix and the matrix C/l. defined by,

c' 0 ... 0
' 1,2
a);% 0 (b e 0
IxL S I (78)
Jj-1 . cee e .
1,m
0 ... 0 Cj
with the block matrices le.’i € R?*2 given by,
. 0 a(chh)
1,i _ . . .
Cj = —6’((31’1) (Wl’lO"(Ajl-’_ll) + (Z) 0 . (79)
By a straightforward calculation and the use of induction, we claim that
no 9X!
]—[ axlj = Lomxam + AIC' + O(AF?), (80)
j=k+1 Jj-1
with
ctl o0 0
0 C-2 0
c'= , (81)
0 0 cbtm
with the block matrices C1/ € R?*? given by,
0 (n — kK)o (c™)
Li _ . . . n .
clt = —(I’l _ k)aé'(cl”) _ &(Cl,l)wl,l Z 0_/(A14;11) 0 . (82)
Jj=k+1 J
By the assumption that k << n and using the fact that t, = nAf, we have that,
0 tpo(chh)
1,i _ . X . n .
MO = 0o — s whiar S oAby 0 | (83)
Jj=k+1

Hence, the non-zero entries in the block matrices can be O(1). Therefore, the product formula (80) is
modified to,

11[ oxX!
J
=C+ O(Ar), (84)
1
J=k+1 axj—1
with the 2m X 2m matrix C defined as,
cl o0 0
0 C? 0
C= , (85)
0 o c¢cm
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and, .
1 a0 (ch)

ad (e - (e whiar S /(A 1 |- (86)
j=k+1

Thus by taking the product of (84) with (75), we obtain that,

C' =

n ox! atX! a+yLP 9tz LP a+yLP 3+ZLP T
] k _ k p p k k 2
j:k]—ll a1 i = 0.0,y 4 Oy O i 4 oL 0.0] +0(ar%), (87)

with C%,,CL, are the off-diagonal entries of the corresponding block matrix, defined in (86). Note that
the O(At?) remainder term arises from the At-dependence in (75).
From (45), we have that,

9,
oX}1

= [yt =¥ 0y = Y0,y = V0] (88)

Therefore, taking the products of (88) and (87) and substituting the explicit expressions in (75), we obtain
the desired identity (73). o

D.4 On the vanishing gradient problem for the multilayer version of Unl-
CORNN.

The explicit representation formula (73) holds for 1 hidden layer in (31). What happens when additional
hidden layers are stacked together as in UnICORNN (31)? To answer this question, we consider the
concrete case of L = 3 layers as this is the largest number of layers that we have used in the context of
UnICORNN with fully connected stacked layers. As before, we set the scalar parameter 6 = w'? for some
1 < p < m. Similar results also hold for any other 8 € @. We have the following representation formula for
the gradient in this case,

Proposition D.4. Lety, be the hidden states generated by the RNN (31). the gradient for long-term
dependencies satisfies the representation formula,

k.1 Aol N i i 6
Jwir Ar"o(c p)fn le -1,2p-1 ( - y’) +O(Ar), (89)
with the coefficients given by,
+,1.P
0 _ At (e )0 (AL )y
owl-p k-1’
(90)

m
Goi1zp1= ) GHGL,, V1s<ism G, =—(@()’c (AL) Vi, q=2.3

j=1
Proof. Following the definition (71) and as L = 3 and 6 = w'?, we have,

08 08, 0X5 07K
owlr " 9X3 oX} owhr

(91)

We will explicitly compute all three expressions on the right-hand-side of (91).
n (75), we have already explicitly computed the right most expression in the RHS of (91). Using the
product rule (46) we have,

X3 4X3ox2 4 I0X]

1 2 1 1
oX;  0X; X, L1 9X)

(92)
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L ox}
Note that we have already obtained an explicit representation formula for [] = in (84).

Jj=k+1 Jj-1
Next we consider the matrices ax% and ax% . By the representation formula (49), we have the following
X2 X1
decomposition for any 1 < g < n,
6XZ 2 n n
e = Ar*GP" + AtH?", (93)
n
with,
GH" 0 GY 0 ... ... @Y 0
0 0 0 0o ... ... 0 0
Gor=| G = @) (AT VE(0)
an’f 0 Grqn’; 0 ... ... GE' 0
0 0 0 0o ... ... 0 0
and
0 0 0 0o ... ... 0 0
s sn Sn
HY" 0 HY' 0 ... ... HI" 0
O | = e (AT V. (99)
0 0 0 0o ... ... 0 0
HO' 0 HYY 0 ... ... HYM 0

It is straightforward to see from (95) and (94) that,
HS’nH2’n = 02m><2ma G3,nH2,n = 02mx2m, (96)

and the entries of the 2m x 2m matrix G = G3>"G2" are given by,

Jss’

m

s 3.nr2,n ~ O _ _

Goro1,25-1 = Z GG Goro1,2s = Gop25-1 = Gor 2 =0, V1<rs<m, (97)
J=1

while the entries of the 2m x 2m matrix H = H>"G?" are given by

m
Ho, 21 = ZnyGJZ:l, Ho 1951 =Hor19s =Hpr 2, =0, V1<rs<m (98)
j=1
Hence we have,
X3 9X2 _ _
1 - APHG + A TH). (99)
X2 oX}

Taking the matrix-vector product of (99) with (87), we obtain

oX; 0%y 4 *y,” 7"\ -17 A -1q T 6
X, owh-p - Jwlp +Cll72(9w—1’1’ [G1,2p-1. A Ho 0y, ., Gomet 2p-1, At T Hom op-1] + O(AL°)
9+ Lp ~ ~ ~ ~ .
= At4011326w—f”’ [G1,2p—1’At_1H2,2p—ls- . -,G2m—1,2p—1,Al_1H2m,2p—1] +O0(At°),

(100)
+,1.p
where the last identify follows from the fact that Z;’l’ﬁp = O(A?).
Therefore, taking the products of (88) and (100), we obtain the desired identity (89).
o

An inspection of the representation formula (89) shows that as long as the weights are O(1) and from
the energy bounds (28), we know that y ~ O(1), the gradient
(n,3)
€l

i O(Ar),
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where the additional Ar stems from the Az-term in (75). Thus the gradient does not depend on the
recurrent step k. Hence, there is no vanishing gradient problem with respect to the number of recurrent
connections, even in the multi-layer case.

However, it is clear from the representation formulas (73) and (89), as well as the proof of proposition
D.4 that for L-hidden layers in UnICORNN (31), we have,

(n,L)
681(’1

owl.p

~0 (At2L—1) . (101)

Thus, the gradient can become very small if too many layers are stacked together. This is not at all
surprising as such a behavior occurs even if there are no recurrent connections in UnICORNN (31). In
that case, we simply have a fully connected deep neural network and it is well-known that the gradient
can vanish as the number of layers increases, making it harder to train deep networks.

D.5 Residual stacking of layers in UnICORNN.

Given the above considerations, it makes imminent sense to modify the fully-connected stacking of layers
in UnICORNN (31) if a moderately large number of layers (L > 4) are used. It is natural to modify the
fully-connected stacking with a residual stacking, see [33]. We use the following form of residual stacking,

vl =yl |+ Aro(ch) o2, (102)

2l =2" | -~ Ao oo (W[ oy\_ +xi+ bl) +ay’_,l, (103)

where the input x¢ corresponds to a residual connection skipping S layers, i.e.

¢ Alyl=S-1 4 Viyl-1 for 1> §
Xn = Vye -1 :
Veyi forl <S§

The number of skipped layers is 2 < § and A € R is a trainable matrix.

The main advantages of using a residual staking such as (102) is to alleviate the vanishing gradient
problem that arises from stacking multiple layers together and obtain a better scaling of the gradient than
(101). To see this, we can readily follow the proof of proposition D.4, in particular the product,

OXL 2 gXL-G-US LS pxe Lop gl
ox; = | o L o o (104
n s=1 k =2 n =1 k
with,
L1, if L modS #0,
Lo [il if LmodS 2 (105)
[E] -1, if L mod S=0.

Here [x] € N is the largest natural number less than or equal to x € R.
Given the additive structure in the product of gradients and using induction over matrix products as
in (96) and (97), we can compute that,

oXL
09X}

= 0 (A0S 4 0 (A2ED). (106)

By choosing S large enough, we clearly obtain that v + L —vS —1 < L — 1. Hence by repeating the
arguments of the proof of proposition D.4, we obtain that to leading order, the gradient of the residual
stacked version of UnICORNN scales like,

(n,L)
9& ]

owl.p

) (At2v+2L—2VS—1) ' (107)

Note that (107) is far more favorable scaling for the gradient than the scaling (101) for a fully connected
stacking. As a concrete example, let us consider L = 7 i.e., a network of 7 stacked layers of UniCORNN.
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From (101), we see that the gradient scales like O(At'®) in this case. Even for a very moderate values of
At < 1, this gradient will be very small and will ensure that the first layer will have very little, if any,
influence on the loss function gradients. On the other hand, for the same number of layers L = 7, let us
consider the residual stacking (102) with S = 3 skipped connections. In this case v = 2 and one directly
concludes from (107) that the gradient scales like O(A#®), which is significantly larger than the gradient for
the fully connected version of UnICORNN. In fact, it is exactly the same as the gradient scaling for fully
connected UnICORNN (31) with 3 hidden layers (89). Thus, introducing skipped connections enabled the
gradient to behave like a shallower fully-connected network, while possibly showing the expressivity of a
deeper network.

E Further experimental results

As we compare the results of the UnICORNN to the results of other recent RNN architecture, where
only the best results of each RNN were published for the psMNIST, noise padded CIFAR-10 and IMDB
task, we as well show the best (based on a validation set) obtained results for the UnICORNN in the
main paper. However, distributional results, i.e. statistics of several re-trainings of the best performing
UnICORNN based on different random initialization of the trainable parameters, provide additional
insights into the performance. Table 7 shows the mean and standard deviation of 10 re-trainings of the
best performing UnICORNN for the psMNIST, noise padded CIFAR-10 and IMDB task. We can see
that in all experiments the standard deviation of the re-trainings are relatively low, which underlines the
robustness of our presented results.

Table 7: Distributional information (mean and standard deviation) on the results for the classification
experiment presented in the paper, where only the best results is shown, based on 10 re-trainings of the
best performing Un[CORNN using different random seeds.

Experiment Mean Standard deviation

psMNIST (128 units)  97.7%  0.09%
psMNIST (256 units) 98.2% 0.22%
Noise padded CIFAR-10 61.5% 0.52%
IMDB 88.1% 0.19%

As emphasized in the main paper and in the last section, naively stacking of many layers for the
UnICORNN might result in a vanishing gradient for the deep multi-layer model, due to the vanishing
gradient problem of stacking many (not necessarily recurrent) layers. Following section D.5, one can use
skipped residual connections and we see that the estimate on the gradients scale preferably when using
residual connections compared to a naively stacking, when using many layers. To test this also numerically,
we train a standard UnICORNN (31) as well as a residual UnICORNN (res-UnICORNN) (102), with
S = 2 skipping layers, on the noise padded CIFAR-10 task. Fig. 3 shows the test accuracy (mean and
standard deviation) of the best resulting model for different number of network layers L = 3,...,6, for
the standard UnICORNN and res-UnICORNN. We can see that while both models seem to perform
comparably for using only few layers, i.e. L = 3,4, the res-UnlCORNN with § = 2 skipping connections
outperforms the standard UnICORNN when using more layers, i.e. L = 5,6. In particular, we can see
that the standard UnICORNN is not able to significantly improve the test accuracy when using more
layers, while the res-UnICORNN seems to obtain higher test accuracies when using more layers.

Moreover, Fig. 3 also shows the test accuracy for a UnICORNN with an untrained time-step vector c,
resulting in a Un[CORNN without the multi-scale property generated by the time-step. We can see that
the UnICORNN without the multi-scale feature is inferior in performance, to the standard UnICORNN
as well as its residual counterpart.

Finally, we recall that the estimate (41) on the gradients for UnICORNN (31) needs the weights to be
bounded, see (42). One always initializes the training with bounded weights. However, it might happen
that the weights explode during training. To check this issue, in Fig. 4, we plot the mean and standard
deviation of the norms of the hidden weights w! for / = 1,2,3 during training based on 10 re-trainings
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Figure 3: Test accuracies (mean and standard devia- Figure 4: Norms (mean and standard deviation of
tion of 10 re-trainings of the best performing model) 10 re-trainings) of the hidden weights ||w!||., for
of the standard UnICORNN, res-UnICORNN and [ =1,2,3, of the UnICORNN during training.
UnICORNN without multi-scale behavior on the

noise padded CIFAR-10 experiment for different

number of layers L.

of the best performing UnICORNN on the noise padded CIFAR-10 experiment. We can see that none
of the norms of the weights explode during training. In fact the weight norms seem to saturate, mostly
on account of reducing the learning rate after 250 epochs. Thus, the upper bound (41) can be explicitly
computed and it is finite, even after training has concluded.
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