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Abstract

We prove exponential expressivity with stable ReLU Neural Networks (ReLU NNs) inH1(Ω) for
weighted analytic function classes in certain polytopal domains Ω, in space dimension d = 2, 3. Func-
tions in these classes are locally analytic on open subdomainsD ⊂ Ω, but may exhibit isolated point
singularities in the interior of Ω or corner and edge singularities at the boundary ∂Ω. The exponential
expression rate bounds proved here imply uniform exponential expressivity by ReLU NNs of solution
families for several elliptic boundary and eigenvalue problems with analytic data. The exponential ap-
proximation rates are shown to hold in space dimension d = 2 on Lipschitz polygons with straight sides,
and in space dimension d = 3 on Fichera-type polyhedral domains with plane faces. The constructive
proofs indicate in particular that NN depth and size increase poly-logarithmically with respect to the
target NN approximation accuracy ε > 0 inH1(Ω). The results cover in particular solution sets of linear,
second order elliptic PDEs with analytic data and certain nonlinear elliptic eigenvalue problems with
analytic nonlinearities and singular, weighted analytic potentials as arise in electron structure models.
In the latter case, the functions correspond to electron densities that exhibit isolated point singularities
at the positions of the nuclei. Our findings provide in particular mathematical foundation of recently
reported, successful uses of deep neural networks in variational electron structure algorithms.
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email: {carlo.marcati, joost.opschoor, christoph.schwab}@sam.math.ethz.ch

†Faculty of Mathematics and Research Platform Data Science @ Uni Vienna, University of Vienna, 1090, Vienna, Austria,
email: Philipp.Petersen@univie.ac.at

1



5 Exponential expression rates for solution classes of PDEs 14
5.1 Nonlinear eigenvalue problems with isolated point singularities . . . . . . . . . . . . . . 14
5.2 Elliptic PDEs in polygonal domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Elliptic PDEs in Fichera-type polyhedral domains . . . . . . . . . . . . . . . . . . . . . . 21

6 Conclusions and extensions 24
6.1 Principal mathematical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Extensions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A Tensor product hp approximation 25
A.1 Product geometric mesh and tensor product hp space . . . . . . . . . . . . . . . . . . . . 25
A.2 Local projector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
A.3 Global projectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
A.4 Preliminary estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
A.5 Interior estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
A.6 Estimates on elements along an edge in three dimensions . . . . . . . . . . . . . . . . . 36
A.7 Estimates at the corner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.8 Exponential convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.9 Explicit representation of the approximant in terms of continuous basis functions . . . . 39
A.10 Combination of multiple patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

B Proofs of Section 5 46
B.1 Proof of Lemma 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
B.2 Proof of Lemma 5.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1 Introduction

The application of neural networks (NNs) as approximation architecture in numerical solution methods
of partial differential equations (PDEs), possibly on high-dimensional parameter- and state-spaces, has
attracted significant and increasing attention in recent years. We mention only [47, 6, 38, 39, 45] and the
references therein. In these works, the solution of elliptic and parabolic boundary value problems is
approximated by NNs which are found by minimization of a residual of the NN in the PDE.

A necessary condition for the performance of the mentioned NN-based numerical approximation
methods is a high rate of approximation which is to hold uniformly over the solution set associated
with the PDE under consideration. For elliptic boundary and eigenvalue problems, the function classes
that weak solutions of the problems belong to are well known. Moreover, in many cases, representation
systems such as splines or polynomials that achieve optimal linear or nonlinear approximation rates for
functions belonging to these function classes have been identified. For functions belonging to a Sobolev
or Besov type smoothness space of finite differentiation order such as continuously differentiable or
Sobolev-regular functions on a bounded domain, upper bounds for the approximation rate by NNs
were established for example in [50, 11, 51, 25, 48]. Here, we only mentioned results that use the ReLU
activation function. Besides, for PDEs, the solutions of which have a particular structure, approximation
rates of the solution that go beyond classical smoothness-based results can be achieved, such as in
[7, 44, 22, 2, 19]. Again, we confine the list to publications with approximation rates for NNs with the
ReLU activation function (referred to as ReLU NNs below).

In the present paper, we analyze approximation rates provided by ReLU NNs for solution classes of
linear and nonlinear elliptic source and eigenvalue problems on polygonal and polyhedral domains.
Mathematical results on weighted analytic regularity [13, 14, 12, 1, 3, 15, 32, 5, 28, 31] imply that these
classes consist of functions that are analytic with possible corner, edge, and corner-edge singularities.

Our analysis provides, for the aforementioned functions, approximation errors in Sobolev norms
that decay exponentially in terms of the number of parametersM of the ReLU NNs.

1.1 Contribution

The principal contribution of this work is threefold:

1. We prove, in Theorem 4.3, a general result on the approximation by ReLUNNs of weighted analytic
function classes on Q := (0, 1)d, where d = 2, 3. The analytic regularity of solutions is quantified
via countably normed, analytic classes, based on weighted Sobolev spaces of Kondrat’ev type
in Q, which admit corner and, in space dimension d = 3, also edge singularities. Such classes
were introduced, e.g., in [3, 1, 12, 13, 14, 5] and in the references there. We prove exponential
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expression rates by ReLU NNs in the sense that for a numberM of free parameters of the NNs, the
approximation error is bounded, in theH1-norm, by C exp(−bM1/(2d+1)) for constants b, C > 0.

2. Based on the ReLU NN approximation rate bound of Theorem 4.3, we establish, in Section 5,
approximation results for solutions of different types of PDEs by NNs with ReLU activation.
Concretely, in Section 5.1.1, we study the reapproximation of solutions of nonlinear Schrödinger
equations with singular potentials in space dimension d = 2, 3. We prove that for solutions which
are contained in weighted, analytic classes in Ω, ReLU NNs (whose realizations are continuous,
piecewise affine) with at mostM free parameters yield an approximation with accuracy of the
order exp(−bM1/(2d+1)) for some b > 0. Importantly, this convergence is in the H1(Ω)-norm.
In Section 5.1.2, we establish the same exponential approximation rates for the eigenstates of
the Hartree-Fock model with singular potential in R3. This result constitutes the first, to our
knowledge, mathematical underpinning of the recently reported, high efficiency of various NN-
based approaches in variational electron structure computations, e.g., [37, 18, 16].

In Section 5.2, we demonstrate the same approximation rates also for elliptic boundary value
problems with analytic coefficients and analytic right-hand sides, in plane, polygonal domains
Ω. The approximation error of the NNs is, again, bound in the H1(Ω)-norm. We also infer an
exponential NN expression rate bound for corresponding traces, in H1/2(∂Ω) and for viscous,
incompressible flow.

Finally, in Section 5.3, we obtain the same asymptotic exponential rates for the approximation
of solutions to elliptic boundary value problems, with analytic data, on so-called Fichera-type
domains ΩF ⊂ R3 (being, roughly speaking, finite unions of tensorized hexahedra). These
solutions exhibit corner, edge and corner-edge singularities.

3. The exponential approximation rates of the ReLUNNs established here are based on emulating cor-
responding variable grid and degree (“hp”) piecewise polynomial approximations. In particular,
our construction comprises tensor product hp-approximations on Cartesian products of geometric
partitions of intervals. In Theorem A.25, we establish novel tensor product hp-approximation results
for weighted analytic functions on Q of the form ‖u− uhp‖H1(Q) ≤ C exp(−b 2d

√
N) for d = 1, 2, 3,

where N is the number of degrees of freedom in the representation of uhp and C, b > 0 are inde-
pendent ofN (but depend on u). The geometric partitions employed inQ and the architectures of
the constructed ReLU NNs are of tensor product structure, and generalize to space dimension
d > 3.

We note that hp-approximations based on non-tensor-product, geometric partitions of Q into
hexahedra have been studied before e.g. in [40, 41] in space dimension d = 3. There, the rate of
‖u− uhp‖H1(Q) . exp(−b 5

√
N)was found. Being based on tensorization, the present construction

of exponentially convergent, tensorized hp-approximations in Appendix A does not invoke the
rather involved polynomial trace liftings in [40, 41], and is interesting in its own right: the geometric
and mathematical simplification comes at the expense of a slightly smaller (still exponential) rate
of approximation. Moreover, we expect that this construction of uhp will allow a rather direct
derivation of rank bounds for tensor structured function approximation of u in Q, generalizing
results in [20, 21] and extending [30] from point to edge and corner-edge singularities.

1.2 Neural network approximation of weighted analytic function classes

The proof strategy that yields the main result, Theorem 4.3, is as follows. We first establish exponential
approximation rates in the Sobolev spaceH1 for tensor-product, so-calledhp-finite elements forweighted
analytic functions. Then, we re-approximate the corresponding quasi-interpolants by ReLU NNs.

The emulation of hp-finite element approximation by ReLU NNs is fundamentally based on the
approximate multiplication network formalized in [50]. Based on the approximate multiplication
operation and an extension thereof to errors measured with respect to W 1,q-norms, for q ∈ [1,∞],
we established already in [34] a reapproximation theorem of univariate splines of order p ∈ N on
arbitrary meshes with N ∈ N cells. There, we observed that there exists a NN that reapproximates
a variable-order, free-knot spline u in the H1-norm up to an error of ε > 0 with a number of free
parameters that scales logarithmically in ε and |u|H1 , linearly inN and quadratically in p. We recall this
result in Proposition 3.7 below.

From this, it is apparent by the triangle inequality that, in univariate approximation problems
where hp-finite elements yield exponential approximation rates, also ReLU NNs achieve exponential
approximation rates, (albeit with a possibly smaller exponent, because of the quadratic dependence on
p, see [34, Theorem 5.12]).

The extension of this result to higher dimensions for high-order finite elements that are built from
univariate finite elements by tensorization is based on the underlying compositionality of NNs. Because
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of that, it is possible to compose a NN implementing a multiplication of d inputs with d approximations
of univariate finite elements. We introduce a formal framework describing these operations in Section 3.

We remark that for high-dimensional functions with a radial structure, of which the univariate radial
profile allows an exponentially convergent hp-approximation, exponential convergence was obtained
in [34, Section 6] by composing ReLU approximations of univariate splines with an exponentially
convergent approximation of the Euclidean norm, obtaining exponential convergence without the curse
of dimensionality.

1.3 Outline

The manuscript is structured as follows: in Section 2, in particular Section 2.2, we review the weighted
function spaces which will be used to describe the weighted analytic function classes in polytopesΩ that
underlie our approximation results. In Section 2.3, we present an approximation result by tensor-product
hp-finite elements for functions from the weighted analytic class. A proof of this result is provided
in Appendix A. In Section 3 we review definitions of NNs and a “ReLU calculus” from [7, 36] whose
operations will be required in the ensuing NN approximation results.

In Section 4, we state and prove the key results of the present paper. In Section 5, we illustrate our
results by deducing novel NN expression rate bounds for solution classes of several concrete examples
of elliptic boundary-value and eigenvalue problems where solutions belong to the weighted analytic
function classes introduced in Section 2. Some of the more technical proofs of Section 5 are deferred to
Appendix B. In Section 6, we briefly recapitulate the principal mathematical results of this paper and
indicate possible consequences and further directions.

2 Setting and functional spaces

We start by recalling some general notation that will be used throughout the paper. We also introduce
some tools that are required to describe two and three dimensional domains as well as the associated
weighted Sobolev spaces.

2.1 Notation

For α ∈ Nd0 , define |α| := α1 + · · ·+ αd and |α|∞ := max{α1, . . . , αd}. When we indicate a relation on
|α| or |α|∞ in the subscript of a sum, we mean the sum over all multi-indices that fulfill that relation:
e.g., for a k ∈ N0 ∑

|α|≤k
=

∑

α∈Nd
0
:|α|≤k

.

For a domain Ω ⊂ Rd, k ∈ N0 and for 1 ≤ p ≤ ∞, we indicate byW k,p(Ω) the classical Lp(Ω)-based
Sobolev space of order k. We writeHk(Ω) =W k,2(Ω). We introduce the norms ‖ · ‖

W
1,p
mix

(Ω)
as

‖v‖p
W

1,p
mix

(Ω)
:=

∑

|α|∞≤1

‖∂αv‖pLp(Ω),

with associated spaces

W 1,p
mix(Ω) :=

{
v ∈ Lp(Ω) : ‖v‖

W
1,p
mix

(Ω)
<∞

}
.

We denote H1
mix(Ω) = W 1,2

mix(Ω). For Ω = I1 × · · · × Id, with bounded intervals Ij ⊂ R, j = 1, . . . , d,
H1

mix(Ω) = H1(I1)⊗· · ·⊗H1(Id)with Hilbertian tensor products. Throughout, C will denote a generic
positive constant whose value may change at each appearance, even within an equation.

The ℓp norm, 1 ≤ p ≤ ∞, on Rn is denoted by ‖x‖p. The number of nonzero entries of a vector or
matrix x is denoted by ‖x‖0.

Three dimensional domain. Let Ω ⊂ R3 be a bounded, polygonal/polyhedral domain. Let C
denote a set of isolated points, situated either at the corners of Ω or in the interior of Ω (that we refer to
as the singular corners in either case, for simplicity), and let E be a subset of the edges of Ω (the singular
edges). Furthermore, denote by Ec ⊂ E the set of singular edges abutting at a corner c. For each c ∈ C
and each e ∈ E , we introduce the following weights:

rc(x) := |x− c| = dist(x, c), re(x) := dist(x, e), ρce(x) :=
re(x)

rc(x)
for x ∈ Ω.
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For ε > 0, we define edge-, corner-, and corner-edge neighborhoods:

Ωεe :=

{
x ∈ Ω : re(x) < ε and rc(x) > ε, ∀c ∈ C

}
,Ωεc :=

{
x ∈ Ω : rc(x) < ε and ρce(x) > ε, ∀e ∈ E

}
,

Ωεce :=

{
x ∈ Ω : rc(x) < ε and ρce(x) < ε

}
.

We fix a value ε̂ > 0 small enough so thatΩε̂c ∩Ωε̂c′ = ∅ for all c 6= c′ ∈ C andQε̂ce∩Ωε̂ce′ = Ωε̂e∩Ωε̂e′ = ∅

for all singular edges e 6= e′. In the sequel, we omit the dependence of the subdomains on ε̂. Let also

ΩC :=
⋃

c∈C
Ωc, ΩE :=

⋃

e∈E
Ωe, ΩCE :=

⋃

c∈C

⋃

e∈Ec

Ωce,

and
Ω0 := Ω \ (ΩC ∪ ΩE ∪ ΩCE).

In each subdomain Ωce and Ωe, for any multi-index α ∈ N3
0, we denote by α‖ the multi-index whose

component in the coordinate direction parallel to e is equal to the component of α in the same direction,
and which is zero in every other component. Moreover, we set α⊥ := α− α‖.

Two dimensional domain. Let Ω ⊂ R2 be a polygon. We adopt the convention that E := ∅. For
c ∈ C, we define

Qεc :=

{
x ∈ Ω : rc(x) < ε

}
.

As in the three dimensional case, we fix a sufficiently small ε̂ > 0 so that Ωε̂c ∩ Ωε̂c′ = ∅ for c 6= c′ ∈ C
and write Ωc = Ωε̂c. Furthermore, ΩC is defined as for d = 3, and Ω0 := Ω \ ΩC .

2.2 Weighted spaces with nonhomogeneous norms

We introduce classes of weighted, analytic functions in space dimension d = 3, as arise in analytic
regularity theory for linear, elliptic boundary value problems in polyhedra, in the particular form
introduced in [5]. There, the structure of the weights is in terms of Cartesian coordinates which is
particularly suited for the presently adopted, tensorized approximation architectures.

The definition of the corresponding classes when d = 2 is analogous. For a weight exponent vector
γ = {γc, γe, c ∈ C, e ∈ E}, we introduce the nonhomogeneous, weighted Sobolev norms

‖v‖Jk
γ (Ω) :=

∑

|α|≤k
‖∂αv‖L2(Ω0)

+
∑

c∈C

∑

|α|≤k
‖r(|α|−γc)+c ∂αv‖L2(Ωc)

+
∑

e∈E

∑

|α|≤k
‖r(|α⊥|−γe)+
e ∂αv‖L2(Ωe)

+
∑

c∈C

∑

e∈Ec

∑

|α|≤k
‖r(|α|−γc)+c ρ

(|α⊥|−γe)+
ce ∂αv‖L2(Ωce)

where (x)+ = max{0, x}. Moreover, we define the associated function space by

J k
γ (Ω; C, E) :=

{
v ∈ L2(Ω) : ‖v‖Jk

γ (Ω) <∞
}
.

Furthermore,
J∞
γ (Ω; C, E) =

⋂

k∈N0

J k
γ (Ω; C, E).

For A,C > 0, we define the space of weighted analytic functions with nonhomogeneous norm as

J̟
γ (Ω; C, E ;C,A) :=

{
v ∈ J∞

γ (Ω; C, E) :
∑

|α|=k
‖∂αv‖L2(Ω0)

≤ CAkk!,

∑

|α|=k
‖r(|α|−γc)+c ∂αv‖L2(Ωc) ≤ CAkk! ∀c ∈ C,

∑

|α|=k
‖r(|α⊥|−γe)+
e ∂αv‖L2(Ωe) ≤ CAkk! ∀e ∈ E ,

∑

|α|=k
‖r(|α|−γc)+c ρ

(|α⊥|−γe)+
ce ∂αv‖L2(Ωce) ≤ CAkk!

∀c ∈ C and ∀e ∈ Ec, ∀k ∈ N0

}
.

(2.1)
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Finally, we denote

J̟
γ (Ω; C, E) :=

⋃

C,A>0

J̟
γ (Ω; C, E ;C,A).

2.3 Approximation of weighted analytic functions on tensor product geo-
metric meshes

The approximation result of weighted analytic functions via NNs that we present below is based on
emulating an approximation strategy of tensor product hp-finite elements. In this section, we present
this hp-finite element approximation. Let I ⊂ R be an interval. A partition of I into N ∈ N intervals is a
set G such that |G| = N , all elements of G are disjoint, connected, and open subsets of I , and

⋃

U∈G
U = I.

We denote, for all p ∈ N0, by Qp(G) the piecewise polynomials of degree p on G.
One specific partition of I = [0, 1] is given by the one dimensional geometrically graded grid, which for

σ ∈ (0, 1/2] and ℓ ∈ N, is given by

Gℓ1 :=
{
Jℓk, k = 0, . . . , ℓ

}
, where Jℓ0 := (0, σℓ) and Jℓk := (σℓ−k+1, σℓ−k), k = 1, . . . , ℓ. (2.2)

Theorem 2.1. Let d ∈ {2, 3} and Q := (0, 1)d. Let C = {c} where c is one of the corners of Q and let E = Ec
contain the edges adjacent to c when d = 3, E = ∅ when d = 2. Further assume given constants Cf , Af > 0,
and

γ = {γc : c ∈ C}, with γc > 1, for all c ∈ C if d = 2,

γ = {γc, γe : c ∈ C, e ∈ E}, with γc > 3/2 and γe > 1, for all c ∈ C and e ∈ E if d = 3.

Then, there exist Cp > 0, CL > 0 such that, for every 0 < ε < 1, there exist p, L ∈ N with

p ≤ Cp(1 + |log(ε)|), L ≤ CL(1 + |log(ε)|),

so that there exist piecewise polynomials

vi ∈ Qp(GL1 ) ∩H1(I), i = 1, . . . , N1d,

withN1d = (L+1)p+1, and, for all f ∈ J̟
γ (Q; C, E ;Cf , Af ) there exists a d-dimensional array of coefficients

c =
{
ci1...id : (i1, . . . , id) ∈ {1, . . . , N1d}d

}

such that

1. For every i = 1, . . . N1d, supp(vi) intersects either a single interval or two neighboring subintervals of GL1 .
Furthermore, there exist constants Cv , bv depending only on Cf , Af , σ such that

‖vi‖∞ ≤ 1, ‖vi‖H1(I) ≤ Cvε
−bv , ∀i = 1, . . . , N1d. (2.3)

2. There holds

‖f −
N1d∑

i1,...,id=1

ci1...idφi1...id‖H1(Q) ≤ ε with φi1...id =

d⊗

j=1

vij , ∀i1, . . . , id = 1, . . . , N1d.

(2.4)

3. ‖c‖∞ ≤ C2(1 + |log(ε)|)d and ‖c‖1 ≤ Cc(1 + |log(ε)|)2d, for C2, Cc > 0 independent of p, L, ε.

Wepresent the proof in SubsectionA.9.3 after developing an appropriate framework ofhp-approximation
in Section A.
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3 Basic ReLU neural network calculus

In the sequel, we distinguish between a neural network, as a collection of weights, and the associated
realization of the NN. This is a function that is determined through the weights and an activation function.
In this paper, we only consider the so-called ReLU activation:

̺ : R → R : x 7→ max{0, x}.

Definition 3.1 ([36, Definition 2.1]). Let d, L ∈ N. A neural network Φwith input dimension d and L
layers is a sequence of matrix-vector tuples

Φ =
(
(A1, b1), (A2, b2), . . . , (AL, bL)

)
,

where N0 := d and N1, . . . , NL ∈ N, and where Aℓ ∈ RNℓ×Nℓ−1 and bℓ ∈ RNℓ for ℓ = 1, ..., L.
For a NN Φ, we define the associated realization of the NN Φ as

R(Φ) : Rd → R
NL : x 7→ xL =: R(Φ)(x),

where the output xL ∈ RNL results from

x0 := x,

xℓ := ̺(Aℓ xℓ−1 + bℓ) for ℓ = 1, . . . , L− 1,

xL := AL xL−1 + bL.

Here ̺ is understood to act component-wise on vector-valued inputs, i.e., for y = (y1, . . . , ym) ∈ Rm, ̺(y) :=
(̺(y1), . . . , ̺(ym)). We call N(Φ) := d +

∑L
j=1Nj the number of neurons of the NN Φ, L(Φ) := L the

number of layers or depth, Mj(Φ) := ‖Aj‖0 + ‖bj‖0 the number of nonzero weights in the j-th layer,
andM(Φ) :=

∑L
j=1 Mj(Φ) the number of nonzero weights of Φ, also referred to as its size. We refer to NL

as the dimension of the output layer of Φ.

3.1 Concatenation, parallelization, emulation of identity

An essential component in the ensuing proofs is to construct NNs out of simpler building blocks. For
instance, given two NNs, we would like to identify another NN so that the realization of it equals the
sum or the composition of the first two NNs. To describe these operations precisely, we introduce a
formalism of operations on NNs below. The first of these operations is the concatenation.

Proposition 3.2 (NN concatenation, [36, Remark 2.6]). Let L1, L2 ∈ N, and let Φ1,Φ2 be two NNs of
respective depths L1 and L2 such that N1

0 = N2
L2

=: d, i.e., the input layer of Φ1 has the same dimension as the
output layer of Φ2.

Then, there exists a NN Φ1 ⊙ Φ2, called the sparse concatenation of Φ1 and Φ2, such that Φ1 ⊙ Φ2 has
L1 + L2 layers, R(Φ1 ⊙ Φ2) = R(Φ1) ◦ R(Φ2) andM

(
Φ1 ⊙ Φ2

)
≤ 2M

(
Φ1
)
+ 2M

(
Φ2
)
.

The second fundamental operation on NNs is parallelization, achieved with the following construc-
tion.

Proposition 3.3 (NN parallelization, [36, Definition 2.7]). Let L, d ∈ N and let Φ1,Φ2 be two NNs with L
layers and with d-dimensional input each. Then there exists a NN P(Φ1,Φ2) with d-dimensional input and L
layers, which we call the parallelization of Φ1 and Φ2, such that

R
(
P
(
Φ1,Φ2)) (x) =

(
R
(
Φ1) (x),R

(
Φ2) (x)

)
, for all x ∈ R

d

andM(P(Φ1,Φ2)) = M(Φ1) +M(Φ2).

Proposition 3.3 requires two NNs to have the same depth. If two NNs have different depth, then
we can artificially enlarge one of them by concatenating with a NN that implements the identity. One
possible construction of such a NN is presented next.

Proposition 3.4 (NN emulation of Id, [36, Remark 2.4]). For every d, L ∈ N there exists a NN ΦId
d,L with

L(ΦId
d,L) = L andM(ΦId

d,L) ≤ 2dL, such that R(ΦId
d,L) = IdRd .

Finally, we sometimes require a parallelization of NNs that do not share inputs.
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Proposition 3.5 (Full parallelization of NNs with distinct inputs, [7, Setting 5.2]). Let L ∈ N and let

Φ1 =
((
A1

1, b
1
1

)
, . . . ,

(
A1
L, b

1
L

))
, Φ2 =

((
A2

1, b
2
1

)
, . . . ,

(
A2
L, b

2
L

))

be two NNs with L layers each and with input dimensions N1
0 = d1 and N2

0 = d2, respectively.
Then there exists a NN, denoted by FP(Φ1,Φ2), with d-dimensional input where d = (d1 + d2) and L layers,

which we call the full parallelization of Φ1 and Φ2, such that for all x = (x1, x2) ∈ Rd with xi ∈ Rdi , i = 1, 2

R
(
FP
(
Φ1,Φ2)) (x1, x2) =

(
R
(
Φ1) (x1),R

(
Φ2) (x2)

)

andM(FP(Φ1,Φ2)) = M(Φ1) +M(Φ2).

Proof. Set FP
(
Φ1,Φ2

)
:=
((
A3

1, b
3
1

)
, . . . ,

(
A3
L, b

3
L

))
where, for j = 1, . . . , L, we define

A3
j :=

(
A1
j 0
0 A2

j

)
and b3j :=

(
b1j
b2j

)
.

All properties of FP
(
Φ1,Φ2

)
claimed in the statement of the proposition follow immediately from the

construction.

3.2 Emulation of multiplication and piecewise polynomials

In addition to the basic operations above, we use two types of functions that we can approximate
especially efficiently with NNs. These are high dimensional multiplication functions and univariate
piecewise polynomials. We first give the result of an emulation of amultiplication in arbitrary dimension.

Proposition 3.6 ([11, Lemma C.5], [35, Proposition 2.6]). There exists a constant C > 0 such that, for every
0 < ε < 1, d ∈ N andM ≥ 1 there is a NN Πdε,M with d-dimensional input- and one-dimensional output, so
that
∣∣∣∣∣

d∏

ℓ=1

xℓ − R(Πdε,M )(x)

∣∣∣∣∣ ≤ ε, for all x = (x1, . . . , xd) ∈ [−M,M ]d,

∣∣∣∣∣
∂

∂xj

d∏

ℓ=1

xℓ − ∂

∂xj
R(Πdε,M )(x)

∣∣∣∣∣ ≤ ε, for almost every x = (x1, . . . , xd) ∈ [−M,M ]d and all j = 1, . . . , d,

and R(Πdε,M )(x) = 0 if
∏d
ℓ=1 xℓ = 0, for all x = (x1, . . . , xd) ∈ Rd. Additionally, Πdε,M satisfies

max
{
L
(
Πdε,M

)
,M
(
Πdε,M

)}
≤ C

(
1 + d log(dMd/ε)

)
.

In addition to the high-dimensional multiplication, we can efficiently approximate univariate contin-
uous, piecewise polynomial functions by realizations of NNs with the ReLU activation function.

Proposition 3.7 ([34, Proposition 5.1]). There exists a constantC > 0 such that, for allp = (pi)i∈{1,...,Nint} ⊂
N, for all partitions T of I = (0, 1) into Nint open, disjoint, connected subintervals Ii, i = 1, . . . , Nint, for all
v ∈ Sp(I, T ) := {v ∈ H1(I) : v|Ii ∈ Ppi(Ii), i = 1, . . . , Nint}, and for every 0 < ε < 1, there exist NNs
{Φv,T ,pε }ε∈(0,1) such that for all 1 ≤ q′ ≤ ∞ it holds that

∥∥∥v − R
(
Φv,T ,pε

)∥∥∥
W1,q′ (I)

≤ ε |v|W1,q′ (I) ,

L
(
Φv,T ,pε

)
≤C(1 + log(pmax)) (pmax + |log ε|) ,

M
(
Φv,T ,pε

)
≤CNint(1 + log(pmax)) (pmax + |log ε|) + C

Nint∑

i=1

pi (pi + | log ε|) ,

where pmax := max{pi : i = 1, . . . , Nint}. In addition, R
(
Φv,T ,pε

)
(xj) = v(xj) for all j ∈ {0, . . . , Nint},

where {xj}Nint

j=0 are the nodes of T .

Remark 3.8. It is not hard to see that the result holds also for I = (a, b), where a, b ∈ R, with C > 0 depending
on (b − a). Indeed, for any v ∈ H1((a, b)) the concatenation of v with the invertible, affine map T : x 7→
(x− a)/(b− a) is inH1((0, 1)). Applying Proposition 3.7 yields NNs {Φv,T ,pε }ε∈(0,1) approximating v ◦ T to
an appropriate accuracy. Concatenating these networks with the 1-layer NN (A1, b1), where A1x+ b1 = T−1x
yields the result. The explicit dependence of C > 0 on (b− a) can be deduced from the error bounds in (0, 1) by
affine transformation.

8



4 Exponential approximation rates by realizations of NNs

We now establish several technical results on the exponentially consistent approximation by realizations
of NNs with ReLU activation of univariate and multivariate tensorized polynomials. These results will
be used to establish Theorem 4.3, which yields exponential approximation rates of NNs for functions in
the weighted, analytic classes introduced in Section 2.2. They are of independent interest, as they imply
that spectral and pseudospectral methods can, in principle, be emulated by realizations of NNs with
ReLU activation.

4.1 NN-based approximation of univariate, piecewise polynomial func-
tions

We start with the following corollary to Proposition 3.7. It quantifies stability and consistency of
realizations of NNs with ReLU activation for the emulation of the univariate, piecewise polynomial
basis functions in Theorem 2.1.

Corollary 4.1. Let I = (a, b) ⊂ R be a bounded interval. Fix Cp > 0, Cv > 0, and bv > 0. Let 0 < εhp < 1
and p,N1d, Nint ∈ N be such that p ≤ Cp(1 + |log εhp|) and let G1d be a partition of I into Nint open, disjoint,
connected subintervals and, for i ∈ {1, . . . , N1d}, let vi ∈ Qp(G1d) ∩H1(I) be such that supp(vi) intersects
either a single interval or two adjacent intervals in G1d and ‖vi‖H1(I) ≤ Cvε

−bv
hp , for all i ∈ {1, . . . , N1d}.

Then, for every 0 < ε1 ≤ εhp, and for every i ∈ {1, . . . , N1d}, there exists a NN Φviε1 such that

‖vi − R(Φviε1)‖H1(I)
≤ ε1|vi|H1(I), (4.1)

L (Φviε1) ≤ C4(1 + |log(ε1)|)(1 + log(1 + |log(ε1)|)), (4.2)

M(Φviε1) ≤ C5(1 + |log(ε1)|2), (4.3)

for constants C4, C5 > 0 depending on Cp > 0, Cv > 0, bv > 0 and (b− a) only. In addition, R(Φviε1) (xj) =

vi(xj) for all i ∈ {1, . . . , N1d} and j ∈ {0, . . . , Nint}, where {xj}Nint

j=0 are the nodes of G1d.

Proof. Let i = 1, . . . , N1d. For vi as in the assumption of the corollary, we have that either supp(vi) = J
for a unique J ∈ G1d or supp(vi) = J ∪ J ′ for two neighboring intervals J, J ′ ∈ G1d. Hence, there exists
a partition Ti of I of at most four subintervals so that vi ∈ Sp(I, Ti), where p = (p)i∈{1,...,4}.

Because of this, an application of Proposition 3.7 with q′ = 2 and Remark 3.8 yields that for every
0 < ε1 ≤ εhp < 1 there exists a NN Φviε1 := Φvi,Ti,p

ε1 such that (4.1) holds. In addition, by invoking
p . 1 + |log(εhp)| ≤ 1 + |log(ε1)|, we observe that

L (Φviε1) ≤ C(1 + log(p)) (p+ |log (ε1)|) . 1 + |log(ε1)| (1 + log(1 + |log(ε1)|)).

Therefore, there exists C4 > 0 such that (4.2) holds. Furthermore,

M(Φviε1) ≤ 4C(1 + log(p)) (p+ |log (ε1)|) + C
4∑

i=1

p(p+ |log (ε1)|)

. p2 + |log (ε1)| p+ (1 + log(p)) (p+ |log (ε1)|) .

We use p . 1 + |log(ε1)| and obtain that there exists C5 > 0 such that (4.3) holds.

4.2 Emulation of functions with singularities in cubic domains by NNs

Below we state a result describing the efficiency of re-approximating continuous, piecewise tensor
product polynomial functions in a cubic domain, as introduced in Theorem 2.1, by realizations of NNs
with the ReLU activation function.

Theorem 4.2. Let d ∈ {2, 3}, let I = (a, b) ⊂ R be a bounded interval, and letQ = Id. Suppose that there exist
constantsCp > 0,CN1d

> 0,Cv > 0,Cc > 0, bv > 0, and, for 0 < ε ≤ 1, assume there exist p,N1d, Nint ∈ N,
and c ∈ RN1d×...N1d , such that

N1d ≤ CN1d
(1 + |log ε|2), ‖c‖1 ≤ Cc(1 + |log ε|2d), p ≤ Cp(1 + |log ε|).

Further, let G1d be a partition of I intoNint open, disjoint, connected subintervals and let, for all i ∈ {1, . . . , N1d},
vi ∈ Qp(G1d) ∩H1(I) be such that supp(vi) intersects either a single interval or two neighboring subintervals
of G1d and

‖vi‖H1(I) ≤ Cvε
−bv , ‖vi‖L∞(I) ≤ 1, ∀i ∈ {1, . . . , N1d}.
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Then, there exists a NN Φε,c such that

∥∥∥∥∥∥

N1d∑

i1,...,id=1

ci1...id

d⊗

j=1

vij − R(Φε,c)

∥∥∥∥∥∥
H1(Q)

≤ ε. (4.4)

Furthermore, there holds

‖R(Φε,c)‖L∞(Q) ≤ (2d+1)Cc(1+|log ε|2d), M(Φε,c) ≤ C(1+|log ε|2d+1),L(Φε,c) ≤ C(1+|log ε| log(|log ε|)),

where C > 0 depends on Cp, CN1d
, Cv , Cc, bv , d, and (b− a) only.

Proof. Assume I 6= ∅ as otherwise there is nothing to show. LetCI ≥ 1 be such thatC−1
I ≤ (b−a) ≤ CI .

Let cv,max := max{‖vi‖H1(I) : i ∈ {1, . . . , N1d}} ≤ Cvε
−bv , let ε1 := min{ε/(2 · d · (cv,max + 1)d ·

‖c‖1), 1/2, C−1/2
I C−1

v εbv}, and let ε2 := min{ε/(2 · (
√
d+ 1) · (cv,max + 1) · ‖c‖1), 1/2}.

Construction of the neural network. Invoking Corollary 4.1 we choose, for i = 1, . . . , N1d, NNs
Φviε1 so that

‖R(Φviε1)− vi‖H1(I)
≤ Cvε1ε

−bv ≤ 1.

It follows that for all i ∈ {1, . . . , N1d}

‖R(Φviε1)‖H1(I)
≤‖R(Φviε1)− vi‖H1(I)

+ ‖vi‖H1(I) ≤ 1 + cv,max (4.5)

and that, by Sobolev imbedding,

‖R(Φviε1)‖∞ ≤ ‖R(Φviε1)− vi‖∞ + ‖vi‖∞ ≤ C
1/2
I ‖R(Φviε1)− vi‖H1(I)

+ 1

≤ C
1/2
I Cvε1ε

−bv + 1 ≤ 2.
(4.6)

Then, let Φbasis be the NN defined as

Φbasis := FP
(
P(Φv1ε1 , . . . ,Φ

vN1d
ε1 ), . . . ,P(Φv1ε1 , . . . ,Φ

vN1d
ε1 )

)
, (4.7)

where the full parallelization is of d copies of P(Φv1ε1 , . . . ,Φ
vN1d
ε1 ). Note that Φbasis is a NN with

d-dimensional input and dN1d-dimensional output. Subsequently, we introduce the Nd
1d matrices

E(i1,...,id) ∈ {0, 1}d×dN1d such that, for all (i1, . . . , id) ∈ {1, . . . , N1d}d,

E(i1,...,id)a = {a(j−1)N1d+ij : j = 1, . . . , d} for all a = (a1, . . . , adN1d
) ∈ R

dN1d .

Note that, for all (i1, . . . , id) ∈ {1, . . . , N1d}d,

R((E(i1,...,id), 0)⊙ Φbasis) : (x1, . . . , xd) 7→
{
R(Φ

vij
ε1 )(xj) : j = 1, . . . , d

}
.

Then, we set

Φε := P
(
Πdε2,2 ⊙ (E(i1,...,id), 0) : (i1, . . . , id) ∈ {1, . . . , N1d}d

)
⊙ Φbasis, (4.8)

where Πdε2,2 is according to Proposition 3.6. Note that, by (4.6), the inputs of Πdε2,2 are bounded in
absolute value by 2. Finally, we define

Φε,c := ((vec(c)⊤, 0))⊙ Φε,

where vec(c) ∈ RN
d
1d is the reshaping such that, for all (i1, . . . , id) ∈ {1, . . . , N1d}d

(vec(c))i = ci1...id , with i = 1 +
d∑

j=1

(ij − 1)N j−1
1d . (4.9)

See Figure 1 for a schematic representation of the NN Φε,c.
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Figure 1: Schematic representation of the neural network Φε,c, for the case d = 2 constructed in the proof
of Theorem 4.2. The circles represent subnetworks (i.e., the neural networksΦvi

ε1
,Πd

ε2,2, and ((vec(c)⊤, 0))).

Along some branches, we indicate Φi,k(x1, x2) = R
(
Π2

ε2,2 ⊙ ((E(i,k), 0))⊙ Φbasis

)
(x1, x2).

Approximation accuracy. Let us now analyze if Φε,c has the asserted approximation accuracy.
Define, for all (i1, . . . , id) ∈ {1, . . . , N1d}d

φi1...id =

d⊗

j=1

vij ,

Furthermore, for each (i1, . . . , id) ∈ {1, . . . , N1d}d, let Φi1...id denote the NNs

Φi1...id = Πdε2,2 ⊙ ((E(i1,...,id), 0))⊙ Φbasis.

We estimate by the triangle inequality that
∥∥∥∥∥∥

N1d∑

i1,...,id=1

ci1...idφi1...id − R(Φε,c)

∥∥∥∥∥∥
H1(Q)

=

∥∥∥∥∥∥

N1d∑

i1,...,id=1

ci1...idφi1...id −
N1d∑

i1,...,id=1

ci1...id R(Φi1...id)

∥∥∥∥∥∥
H1(Q)

≤
N1d∑

i1,...,id=1

|ci1...id | ‖φi1...id − R(Φi1...id)‖H1(Q) .

(4.10)
We have that

‖φi1...id − R(Φi1...id)‖H1(Q) =

∥∥∥∥∥

d⊗

j=1

vij − R
(
Πdε2,2

)
◦
[
R
(
Φ
vi1
ε1

)
, . . . ,R

(
Φ
vid
ε1

)]∥∥∥∥∥
H1(Q)

and, by another application of the triangle inequality, we have that

‖φi1...id − R(Φi1...id)‖H1(Q) ≤
∥∥∥∥∥

d⊗

j=1

vij −
d⊗

j=1

R
(
Φ
vij
ε1

)∥∥∥∥∥
H1(Q)

+

∥∥∥∥∥

d⊗

j=1

R
(
Φ
vij
ε1

)
− R

(
Πdε2,2

)
◦
[
R
(
Φ
vi1
ε1

)
, . . . ,R

(
Φ
vid
ε1

)]∥∥∥∥∥
H1(Q)

≤
∥∥∥∥∥

d⊗

j=1

vij −
d⊗

j=1

R
(
Φ
vij
ε1

)∥∥∥∥∥
H1(Q)

+ (
√
d+ 1)ε2(cv,max + 1), (4.11)
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where the last estimate follows from Proposition 3.6 and the chain rule:
∥∥∥∥∥

d⊗

j=1

R
(
Φ
vij
ε1

)
− R

(
Πdε2,2

)
◦
[
R
(
Φ
vi1
ε1

)
, . . . ,R

(
Φ
vid
ε1

)]∥∥∥∥∥
L2(Q)

≤ ε2

and
∣∣∣∣∣

d⊗

j=1

R
(
Φ
vij
ε1

)
− R

(
Πdε2,2

)
◦
[
R
(
Φ
vi1
ε1

)
, . . . ,R

(
Φ
vid
ε1

)]∣∣∣∣∣

2

H1(Q)

=

d∑

k=1

∥∥∥∥∥
∂

∂xk

d⊗

j=1

R
(
Φ
vij
ε1

)
− ∂

∂xk
R
(
Πdε2,2

)
◦
[
R
(
Φ
vi1
ε1

)
, . . . ,R

(
Φ
vid
ε1

)]∥∥∥∥∥

2

L2(Q)

=
d∑

k=1

∥∥∥∥∥∥∥∥




d⊗

j=1
j 6=k

R
(
Φ
vij
ε1

)
−
(

∂

∂xk
R
(
Πdε2,2

))
◦
[
R
(
Φ
vi1
ε1

)
, . . . ,R

(
Φ
vid
ε1

)]


(
∂

∂x
R
(
Φ
vik
ε1

))
∥∥∥∥∥∥∥∥

2

L2(Q)

≤
d∑

k=1

ε22

∥∥∥∥
∂

∂x
R
(
Φ
vik
ε1

)∥∥∥∥
2

L2(I)

≤ dε22(cv,max + 1)2,

where we used (4.5). We now use (4.6) to bound the first term in (4.11): for d = 3, we have that, for all
(i1, . . . , id) ∈ {1, . . . , N1d}d,

∥∥∥∥∥

d⊗

j=1

vij −
d⊗

j=1

R
(
Φ
vij
ε1

)∥∥∥∥∥
H1(Q)

≤
∥∥∥∥∥(vi1 − R(Φ

vi1
ε1 ))⊗

d⊗

j=2

vij

∥∥∥∥∥
H1(Q)

+
∥∥∥R
(
Φ
vij
ε1

)
⊗
(
vi2 − R

(
Φ
vi2
ε1

))
⊗ vid

∥∥∥
H1(Q)

+

∥∥∥∥∥

d−1⊗

j=1

R(Φ
vij
ε1 )⊗ (vid − R(Φ

vid
ε1 ))

∥∥∥∥∥
H1(Q)

=: (I).

For d = 2, we end up with a similar estimate with only two terms. By the tensor product structure, it is
clear that (I) ≤ dε1(cv,max + 1)d. We have from (4.10) and the considerations above that
∥∥∥∥∥∥

N1d∑

i1,...,id=1

ci1...idφi1...id − R(Φε,c)

∥∥∥∥∥∥
H1(Q)

≤ ‖c‖1 ·
(
d · ε1 · (cv,max + 1)d + (

√
d+ 1) · ε2 · (cv,max + 1)

)
≤ ε.

This yields (4.12).

Bound on the L∞ norm of the neural network. As we have already shown, ‖R(Φviε1)‖∞ ≤ 2.

Therefore, by Proposition 3.6, ‖R(Φε)‖∞ ≤ 2d + ε2. It follows that

‖R(Φε,c)‖∞ ≤ ‖c‖1
(
2d + ε2

)
≤ (2d + 1)Cc(1 + |log ε|2d).

Size of the neural network. Bounds on the size and depth of Φε,c follow from Proposition 3.6 and
Corollary 4.1. Specifically, we start by remarking that there exists a constant C1 > 0 depending on Cv ,
bv , CI and d only, such that |log(ε1)| ≤ C1(1 + |log ε|). Then, by Corollary 4.1, there exist constants C4,
C5 > 0 depending on Cp, Cv, bv, (b− a), and d only such that for all i = 1, . . . , N1d,

L (Φviε1) ≤ C4(1 + |log ε|)(1 + log(1 + |log ε|)) and M(Φviε1) ≤ C5(1 + |log ε|2).

Hence, by Propositions 3.5 and 3.3, there exist C6, C7 > 0 depending on Cp, Cv, bv, (b− a), and d only
such that

L(Φbasis) ≤ C6(1 + |log ε|)(1 + log(1 + |log ε|)) and M(Φbasis) ≤ C7dN1d(1 + |log ε|2).

Then, remarking that for all (i1, . . . , id) ∈ {1, . . . , N1d}d there holds ‖E(i1,...,id)‖0 = d and, by Proposi-
tions 3.2, 3.6, and 3.3, we have

L(Φε) ≤ C8(1 + |log ε|)(1 + log(1 + |log ε|)), M(Φε) ≤ C9

(
Nd

1d(1 + |log ε|) +M(Φbasis)
)
.
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For C8, C9 > 0 depending on Cp, Cv, bv, (b− a), d and Cc only. Finally, we conclude that there exists a
constant C10 > 0 depending on Cp, Cv, bv, (b− a), d and Cc only such that

L(Φε,c) ≤ C10(1 + |log ε|)(1 + log(1 + |log ε|)).
Using also the fact that N1d ≤ C(1 + |log ε|2) for C > 0 independent of ε and since d ≥ 2,

M(Φε,c) ≤ C11(1 + |log ε|)2d+1,

for a constant C11 > 0 depending on Cp, Cv, bv, (b− a), d and Cc only.

Next, we state our main approximation result, which describes the approximation of singular
functions in (0, 1)d by realizations of NNs.

Theorem 4.3. Let d ∈ {2, 3} and Q := (0, 1)d. Let C = {c} where c is one of the corners of Q and let E = Ec
contain the edges adjacent to c when d = 3, E = ∅ when d = 2. Assume furthermore that Cf , Af > 0, and

γ = {γc : c ∈ C}, with γc > 1, for all c ∈ C if d = 2,

γ = {γc, γe : c ∈ C, e ∈ E}, with γc > 3/2 and γe > 1, for all c ∈ C and e ∈ E if d = 3.

Then, for every f ∈ J̟
γ (Q; C, E ;Cf , Af ) and every 0 < ε < 1, there exists a NN Φε,f so that

‖f − R(Φε,f )‖H1(Q) ≤ ε. (4.12)

In addition, ‖R(Φε,f ) ‖L∞(Q) = O(|log ε|2d) for ε → 0. Also, M(Φε,f ) = O(|log ε|2d+1) and L(Φε,f ) =
O(|log ε| log(|log ε|)), for ε→ 0.

Proof. Denote I := (0, 1) and let f ∈ J̟
γ (Q; C, E ;Cf , Af ) and 0 < ε < 1. Then, by Theorem 2.1 (applied

with ε/2 instead of ε) there exists N1d ∈ N so that N1d = O((1 + |log ε|)2), c ∈ RN1d×···×N1d with
‖c‖1 ≤ Cc(1 + |log ε|2d), and, for all (i1, . . . , id) ∈ {1, . . . , N1d}d,

φi1...id =
d⊗

j=1

vij ,

such that the hypotheses of Theorem 4.2 are met, and
∥∥∥∥∥∥
f −

N1d∑

i1,...id=1

ci1...idφi1...id

∥∥∥∥∥∥
H1(Q)

≤ ε

2
.

We have, by Theorem 2.1 and the triangle inequality, that for Φε,f := Φε/2,c

‖f − R(Φε,f )‖H1(Q) ≤
ε

2
+

∥∥∥∥∥∥

N1d∑

i1,...,id=1

ci1...idφi1...id − R(Φε/2,c)

∥∥∥∥∥∥
H1(Q)

.

Then, the application of Theorem 4.2 (with ε/2 instead of ε) concludes the proof of (4.12). Finally, the
bounds on L(Φε,f ) = L(Φε/2,c), M(Φε,f ) = M(Φε/2,c), and on ‖R(Φε,f )‖L∞(Q) = ‖R(Φε/2,c)‖L∞(Q)

follow from the corresponding estimates of Theorem 4.2.

Theorem 4.3 admits a straightforward generalization to functions with multivariate output, so
that each coordinate is a weighted analytic function with the same regularity. Here, we denote for
a NN Φ with N -dimensional output, N ∈ N, by R(Φ)n the n-th component of the output (where
n ∈ {1, . . . , N}).
Corollary 4.4. Let d ∈ {2, 3} and Q := (0, 1)d. Let C = {c} where c is one of the corners of Q and let E = Ec
contain the edges adjacent to c when d = 3; E = ∅ when d = 2. Let Nf ∈ N. Further assume that Cf , Af > 0,
and

γ = {γc : c ∈ C}, with γc > 1, for all c ∈ C if d = 2,

γ = {γc, γe : c ∈ C, e ∈ E}, with γc > 3/2 and γe > 1, for all c ∈ C and e ∈ E if d = 3.

Then, for all f = (f1, . . . , fNf ) ∈
[
J̟
γ (Q; C, E ;Cf , Af )

]Nf

and every 0 < ε < 1, there exists a NN Φε,f

with d-dimensional input and Nf -dimensional output such that, for all n = 1, . . . , Nf ,
∥∥fn − R(Φε,f )n

∥∥
H1(Q)

≤ ε. (4.13)

In addition, ‖R(Φε,f )n‖L∞(Q) = O(|log ε|2d) for every n = {1, . . . , Nf}, M(Φε,f ) = O(|log ε|2d+1 +

Nf |log ε|2d) and L(Φε,f ) = O(|log ε| log(|log ε|)), for ε→ 0.
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Proof. Let Φε be as in (4.8) and let c(n) ∈ RN1d×···×N1d , n = 1, . . . , Nf be the matrices of coefficients
such that, in the notation of the proof of Theorems 4.2 and 4.3, for all n ∈ {1, . . . , Nf},

∥∥∥∥∥∥
fn −

N1d∑

i1,...id=1

c
(n)
i1...id

φi1...id

∥∥∥∥∥∥
H1(Q)

≤ ε

2
.

We define, for vec as defined in (4.9), the NN Φε,f as

Φε,f := P
(
((vec(c(1))⊤, 0)), . . . , ((vec(c(Nf ))⊤, 0))

)
⊙ Φε.

The estimate (4.13) and the L∞-bound then follow from Theorem 4.2. The bound on L(Φε,f ) follows
directly from Theorem 4.2 and Proposition 3.2. Finally, the bound on M(Φε,f ) follows by Theorem 4.2
and Proposition 3.2, as well as, from the observation that

M
(
P
(
((vec(c(1))⊤, 0)), . . . , ((vec(c(Nf ))⊤, 0))

))
≤ NfN

d
1d ≤ CNf (1 + |log ε|2d),

for a constant C > 0 independent of Nf and ε.

5 Exponential expression rates for solution classes of PDEs

In this section, we develop Theorem 4.3 into several exponentially decreasing upper bounds for the rates
of approximation, by realizations of NNs with ReLU activation, for solution classes to elliptic PDEs with
singular data (such as singular coefficients or domains with nonsmooth boundary). In particular, we
consider elliptic PDEs in two-dimensional general polygonal domains, in three-dimensional domains that
are a union of cubes, and elliptic eigenvalue problems with isolated point singularities in the potential
which arise in models of electron structure in quantum mechanics.

In each class of examples, the solution sets belong to the class of weighted analytic functions
introduced in Subsection 2.2. However, the approximation rates established in Section 4 only hold
on tensor product domains with singularities on the boundary. Therefore, we will first extend the
exponential NN approximation rates to functions which exhibit singularities on a set of isolated points
internal to the domain, arising from singular potentials of nonlinear Schrödinger operators. In Section
5.2, we demonstrate, using an argument based on a partition of unity, that the approximation problem on
general polygonal domains can be reduced to that on tensor product domains and Fichera-type domains,
and establish exponential NN expression rates for linear elliptic source and eigenvalue problems. In
Section 5.3, we show exponential NN expression rates for classes of weighted analytic functions on two-
and three-dimensional Fichera-type domains.

5.1 Nonlinear eigenvalue problems with isolated point singularities

Point singularities emerge in the solutions of elliptic eigenvalue problems, as arise, for example, for
electrostatic interactions between charged particles that are modelled mathematically as point sources
in R3. Other problems that exhibit point singularities appear in general relativity, and for electron
structure models in quantum mechanics. We concentrate here on the expression rate of “ab initio”
NN approximation of the electron density near isolated singularities of the nuclear potential. Via a
ReLU-based partition of unity argument, an exponential approximation rate bound for a single, isolated
point singularity in Theorem 5.1 is extended in Corollary 5.4 to electron densities corresponding to
potentials with multiple point singularities at a priori known locations, modeling (static) molecules.

The numerical approximation in ab initio electron structure computationswithNNs has been recently
reported to be competitive with other established, methodologies (e.g. [37, 18] and the references
there). The exponential ReLU expression rate bounds obtained here can, in part, underpin competitive
performances of NNs in (static) electron structure computations.

5.1.1 Nonlinear Schrödinger equations

Let Ω = Rd/(2Z)d, where d ∈ {2, 3}, be a flat torus and let V : Ω → R be a potential such that
V (x) ≥ V0 > 0 for all x ∈ Ω and there exists δ > 0 and AV > 0 such that

‖r2+|α|−δ∂αV ‖L∞(Ω) ≤ A
|α|+1
V |α|! ∀α ∈ N

d
0, (5.1)
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where r(x) = dist(x, (0, . . . , 0)). For k ∈ {0, 1, 2}, we introduce the Schrödinger eigenproblem that
consists in finding the smallest eigenvalue λ ∈ R and an associated eigenfunction u ∈ H1(Ω) such that

(−∆+ V + |u|k)u = λu in Ω, ‖u‖L2(Ω) = 1. (5.2)

There holds the following approximation result.

Theorem 5.1. Let k ∈ {0, 1, 2} and (λ, u) ∈ R ×H1(Ω)\{0} be a solution of the eigenvalue problem (5.2)
with minimal λ, where V satisfies (5.1).

Then, for every 0 < ε ≤ 1 there exists a NN Φε,u such that

‖u− R(Φε,u)‖H1(Q) ≤ ε. (5.3)

In addition, as ε→ 0,

M(Φε,u) = O(| log(ε)|2d+1), L(Φε,u) = O(| log(ε)| log(| log(ε)|)) .

Proof. Let C = {(0, . . . , 0)} and E = ∅. The regularity of u is a consequence of [27, Theorem 2] (see
also [28, Corollary 3.2] for the linear case k = 0): there exists γc > d/2 and Cu, Au > 0 such that
u ∈ J̟

γc (Ω; C, E ;Cu, Au). Here, γc and the constants Cu and Au depend only on, V0, AV and δ in (5.1),
and on k in (5.2).

Then, for all 0 < ε ≤ 1, by Theorem 4.2 and Proposition A.25, there exists a NN Φε,u such that (5.3)
holds. Furthermore, there exist constants C1, C2 > 0 dependent only on V0, AV , δ, and k, such that

M(Φε,u) ≤ C1(1 + | log(ε)|2d+1) and L(Φε,u) ≤ C2

(
1 + | log(ε)|

)(
1 + log(1 + | log(ε)|)

)
.

5.1.2 Hartree-Fock model

The Hartree-Fock model is an approximation of the full many-body representation of a quantum system
under the Born-Oppenheimer approximation, where the many-body wave function is replaced by a
sum of Slater determinants. Under this hypothesis, forM,N ∈ N, the Hartree-Fock energy of a system
with N electrons andM nuclei with positive charges Zi at isolated locations Ri ∈ R3, reads

EHF = inf

{ N∑

i=1

∫

R3

(
|∇ϕi|2 + V |ϕi|2

)
+

1

2

∫

R3

∫

R3

ρ(x)ρ(y)

|x− y| dxdy −
1

2

∫

R3

∫

R3

τ(x, y)2

|x− y| dxdy :

(ϕ1, . . . , ϕN ) ∈ H1(R3)N such that

∫

R3

ϕiϕj = δij

}
, (5.4)

where δij is the Kronecker delta, V (x) = −∑M
i=1 Zi/|x−Ri|, τ(x, y) =

∑N
i=1 ϕi(x)ϕi(y), and ρ(x) =

τ(x, x), see, e.g., [23, 24]. The Euler-Lagrange equations of (5.4) read

(−∆+V (x))ϕi(x)+

∫

R3

ρ(y)

|x− y|dyϕi(x)−
∫

R3

τ(x, y)

|x− y|ϕi(y)dy = λiϕi(x), i = 1, . . . , N, and x ∈ R
3

(5.5)
with

∫
R3 ϕiϕj = δij .

Remark 5.2. It has been shown in [23] that, if
∑M
k=1 Zk > N − 1, there exists a ground state ϕ1, . . . , ϕN of

(5.4), solution to (5.5).

The following statement gives exponential expression rate bounds of the NN-based approximation
of electronic wave functions in the vicinity of one singularity (corresponding to the location of a nucleus)
of the potential.

Theorem 5.3. Assume that (5.5) hasN real eigenvalues λ1, . . . , λN with associated eigenfunctions ϕ1, . . . , ϕN ,
such that

∫
R3 ϕiϕj = δij . Fix k ∈ {1, . . . ,M}, let Rk be one of the singularities of V and let a > 0 such that

|Rj −Rk| > 2a for all j ∈ {1, . . . ,M} \ {k}. Let Ωk be the cube Ωk =
{
x ∈ R3 : ‖x−Rk‖∞ ≤ a

}
.

Then there exists a NN Φε,ϕ such that R(Φε,ϕ) : R
3 → RN , satisfies

‖ϕi − R(Φε,ϕ)i‖H1(Ωk)
≤ ε, ∀i ∈ {1, . . . , N}. (5.6)

In addition, as ε→ 0, ‖R(Φε,ϕ)i‖L∞(Ωk) = O(|log ε|6) for every i = {1, . . . , N},

M(Φε,ϕ) = O(|log(ε)|7 +N |log(ε)|6), L(Φε,ϕ) = O(|log(ε)| log(|log(ε)|)).
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Proof. Let C = {(0, 0, 0)} and E = ∅ and fix k ∈ {1, . . . ,M}. From the regularity result in [29, Corollary

1], see also [8, 9], there exist Cϕ, Aϕ, and γc > 3/2 such that (ϕ1, . . . , ϕN ) ∈
[
J̟
γc (Ωk; C, E ;Cϕ, Aϕ)

]N
.

Then, (5.6), the L∞ bound and the depth and size bounds on the NN Φε,ϕ follow from the hp approxi-
mation result in Proposition A.25 (centered in Rk by translation), from Theorem 4.2, as in Corollary
4.4.

The arguments in the preceding subsections applied to wave functions for a single, isolated nucleus
modelled by the singular potential V as in (5.1) can then be extended to give upper bounds on the
approximation rates achieved by realizations of NNs of the wave functions in a bounded, sufficiently
large domain containing all singularities of the nuclear potential in (5.4).

Corollary 5.4. Assume that (5.5) hasN real eigenvalues λ1, . . . , λN with associated eigenfunctionsϕ1, . . . , ϕN ,

such that
∫
R3 ϕiϕj = δij . Let ai, bi ∈ R, i = 1, 2, 3, and Ω =×

d

i=1
(ai, bi) such that {Rj}Mj=1 ⊂ Ω. Then, for

every 0 < ε < 1, there exists a NN Φε,ϕ such that R(Φε,ϕ) : R
3 → RN and

‖ϕi − R(Φε,ϕ)i‖H1(Ω) ≤ ε, ∀i = 1, . . . , N. (5.7)

Furthermore, as ε→ 0 M(Φε,ϕ) = O(|log(ε)|7 +N |log(ε)|6) and L(Φε,ϕ) = O(|log(ε)| log(|log(ε)|)).

Proof. The proof is based on a partition of unity argument. We only sketch it at this point, but will
develop it in detail in the proof of Theorem 5.6. Let T be a tetrahedral, regular triangulation of Ω, and
let {κk}Nκ

k=1 be the hat-basis functions associated to it. We suppose that the triangulation is sufficiently

refined to ensure that, for all k ∈ {1, . . . , Nκ}, exists a cube Ω̃k ⊂ Ω such that supp(κk) ⊂ Ω̃k and that

there exists at most one j ∈ {1, . . . ,M} such that Ω̃k ∩Rj 6= ∅.
For all k ∈ {1, . . . , Nκ}, by [17, Theorem 5.2], which is based on [49], there exists a NN Φκk such

that
R(Φκk )(x) = κk(x), ∀x ∈ Ω.

For all 0 < ε < 1, let

ε1 :=
ε

2Nκ
(
maxk∈{1,...,Nκ} ‖κk‖W1,∞(Ω)

) .

For all k ∈ {1, . . . , Nκ} and i ∈ {1, . . . , N}, there holds ϕi|Ω̃k
∈ J̟

γ (Ω̃k; {R1, . . . , RM} ∩ Ω̃k,∅). Then

there exists a NN Φkε1,ϕ, as defined in Theorem 5.3, such that

‖ϕi − R(Φkε1,ϕ)i‖H1(Ω̃k)
≤ ε1, ∀i ∈ {1, . . . , N}. (5.8)

Let

C∞ := max
k∈{1,...,Nκ}

sup
ε̂∈(0,1)

‖R(Φkε̂,ϕ)‖L∞(Ω̃k)

1 + |log ε̂|6
<∞

where the finiteness is due to Theorem 5.3. Then, we denote

ε× :=
ε

2Nκ(|Ω|1/2+1 +maxi=1,...,N |ϕi|H1(Ω) +maxk=1,...,Nκ ‖κk‖W1,∞(Ω)|Ω|1/2)

andM×(ε1) := C∞(1 + |log ε1|6). As detailed in the proof of Theorem 5.6 below, after concatenating
with identity NNs and possibly after increasing the constants, we assume thatL(Φkε1,ϕ) is independent of
k and that the bound on M(Φkε1,ϕ) is independent of k, and that the same holds for Φκk , k = 1, . . . , Nκ.

Let now, for i ∈ {1, . . . , N}, Ei : RN+1 → R2 be the matrices such that, for all x = (x1, . . . , xN+1),
Eix = (xi, xN+1). Let also A ∈ RN×Nκ be a matrix of ones. Then, we introduce the NN

Φε,ϕ = (A, 0)⊙ P

({
P

({
Π2
ε×,M×(ε1) ⊙ (Ei, 0)

}N
i=1

)
⊙ P(Φkε1,ϕ,Φ

Id
1,L ⊙ Φκk )

}Nκ

k=1

)
, (5.9)

where L ∈ N is such that L(ΦId
1,L ⊙ Φκk ) = L(Φkε1,ϕ), from which it follows that M(ΦId

1,L) ≤ C L(Φkε1,ϕ).
There holds, for all i ∈ {1, . . . , N},

R(Φε,ϕ)(x)i =

Nκ∑

k=1

R(Π2
ε×,M×(ε1))(R(Φkε1,ϕ)(x)i, κk(x)), ∀x ∈ Ω.
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By the triangle inequality, [33, Theorem 2.1], (5.8), and Proposition 3.6, for all i ∈ {1, . . . , N},

‖ϕi − R(Φε,ϕ)i‖H1(Ω)

≤ ‖ϕi −
Nκ∑

i=1

κk R(Φkε1,ϕ)i‖H1(Ω) +

Nκ∑

k=1

‖R(Π2
ε×,M×(ε1))

(
R(Φkε1,ϕ)i, κk

)
− κk R(Φkε1,ϕ)i‖H1(Ωk)

≤ Nκ

(
max

k∈{1,...,Nκ}
‖κk‖W1,∞(Ω)

)
ε1 +Nκ(|Ω|1/2 + 1 + max

i=1,...,N
|ϕi|H1(Ω) + max

k=1,...,Nκ

‖κk‖W1,∞(Ω)|Ω|1/2)ε×

≤ ε.

The asymptotic bounds on the size and depth of Φε,ϕ can then be derived from (5.9), using Theorem
5.3, as developed in more detail in the proof of Theorem 5.6 below.

5.2 Elliptic PDEs in polygonal domains

We establish exponential expressivity for realizations of NNs with ReLU activation of solution classes to
elliptic PDEs in polygonal domains Ω, the boundaries ∂Ω of which are Lipschitz and consist of a finite
number of straight line segments. Notably, Ω ⊂ R2 need not be a finite union of axiparallel rectangles.
In the following lemma, we construct a partition of unity in Ω subordinate to an open covering, of which
each element is the affine image of one out of three canonical patches. Remark that we admit corners with
associate angle of aperture π; this will be instrumental, in Corollaries 5.11 and 5.12, for the imposition of
different boundary conditions on ∂Ω. The three canonical patches that we consider are listed in Lemma
5.5, item [P2]. Affine images of (0, 1)2 are used away from corners of ∂Ω and when the internal angle of
a corner is smaller than π. Affine images of (−1, 1)× (0, 1) are used near corners with internal angle π.
PDE solutions may exhibit point singularities near such corners e.g. if the two neighboring edges have
different types of boundary conditions. Affine images of (−1, 1)2 \ (−1, 0]2 are used near corners with
internal angle larger than π. In the proof of Theorem 5.6, we use on each patch Theorem 4.3 or a result
from Subsection 5.3 below.

A triangulation T ofΩ is defined as a finite partition ofΩ into open trianglesK such that
⋃
K∈T K =

Ω. A regular triangulation of Ω is, additionally, a triangulation T of Ω such that, for any two neighboring
elementsK1,K2 ∈ T ,K1 ∩K2 is either a corner of bothK1 andK2 or an entire edge of bothK1 and
K2. For a regular triangulation T of Ω, we denote by S1(Ω, T ) the space of functions v ∈ C(Ω) such
that for everyK ∈ T , v|K ∈ P1.

We postpone the proof of Lemma 5.5 to Appendix B.1.

Lemma 5.5. Let Ω ⊂ R2 be a polygon with Lipschitz boundary, consisting of straight sides, and with a finite set
C of corners. Then, there exists Np ∈ N, a regular triangulation T of R2, such that for allK ∈ T eitherK ⊂ Ω

orK ⊂ Ωc. Moreover, there exists a partition of unity {φi}Np

i=1 ⊂ [S1(Ω, T )]Np such that

[P1] supp(φi) ∩ Ω ⊂ Ωi for all i = 1, . . . , Np,

[P2] for each i ∈ {1, . . . , Np}, there exists an affine map ψi : R
2 → R2 such that ψ−1

i (Ωi) = Ω̂i for

Ω̂i ∈ {(0, 1)2,ΩDN ,ΩF }, with ΩDN := (−1, 1)× (0, 1), ΩF := (−1, 1)2 \ (−1, 0]2;

[P3] C ∩ Ωi ⊂ ψi({(0, 0)}) for all i ∈ {1, . . . , Np}.
The following statement, then, provides expression rates for the NN approximation of functions in

weighted analytic classes in polygonal domains.

Theorem 5.6. Let Ω ⊂ R2 be a polygon with Lipschitz boundary consisting of straight sides and with a finite
set C of corners. Let γ = {γc : c ∈ C} such that min γ > 1. Then, for all u ∈ J̟

γ (Ω; C,∅) and for every
0 < ε < 1, there exists a NN Φε,u such that

‖u− R(Φε,u)‖H1(Ω) ≤ ε. (5.10)

In addition, as ε→ 0,

M(Φε,u) = O(|log(ε)|5), L(Φε,u) = O(|log(ε)| log(|log(ε)|)).

Proof. We introduce, using Lemma 5.5, a regular triangulation T of R2, an open cover {Ωi}Np

i=1 of Ω,

and a partition of unity {φi}Np

i=1 ∈ [S1(Ω, T )]Np such that the properties [P1] – [P3] of Lemma 5.5 hold.
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We define ûi := u|Ωi
◦ ψi : Ω̂i → R. Since u ∈ J̟

γ (Ω; C,∅) with min γ > 1 and since the

maps ψi are affine, we observe that for every i ∈ {1, . . . , Np}, there exists γ such that min γ > 1 and

ûi ∈ J̟
γ (Ω̂i, {(0, 0)},∅), because of [P2] and [P3]. Let

ε1 :=
ε

2Npmaxi∈{1,...,Np} ‖φi‖W1,∞(Ω)

(
‖ det Jψi‖L∞((0,1)2)

(
1 + ‖‖J

ψ−1
i

‖2‖2L∞(Ωi)

))1/2 .

By Theorem 4.3 and by Lemma 5.21 and Theorem 5.16 in the forthcoming Subsection 5.3, there exist Np
NNs Φûi

ε1 , i ∈ {1, . . . , Np}, such that

‖ûi − R(Φûi
ε1 )‖H1(Ω̂i)

≤ ε1, ∀i ∈ {1, . . . , Np}, (5.11)

and there exists C∞ > 0 independent of ε1 such that, for all i ∈ {1, . . . , Np} and all ε̂ ∈ (0, 1)

‖R(Φûi
ε̂ )‖L∞(Ω̂i)

≤ C∞(1 + |log ε̂|4).

The NNs given by Theorem 4.3, Lemma 5.21 and Theorem 5.16, which we here denote by Φ̃ûi
ε1 for

i = 1, . . . , Np, may not have equal depth. Therefore, for all i = 1, . . . , Np and suitable Li ∈ N we

define Φûi
ε1 := ΦId

1,L1
i
⊙ Φ̃ûi

ε1 , so that the depth is the same for all i = 1, . . . , Np. To estimate the size

of the enlarged NNs, we use the fact that the size of a NN is not smaller than the depth unless the
associated realization is constant. In the latter case, we could replace the NN by a NN with one non-
zero weight without changing the realization. By this argument, we obtain for all i = 1, . . . , Np that

M(Φûi
ε1 ) ≤ 2M(ΦId

1,Li
) + 2M(Φ̃ûi

ε1 ) ≤ Cmaxj=1,...,Np L(Φ̃
ûj
ε1 ) + CM(Φ̃ûi

ε1 ) ≤ Cmaxj=1,...,Np M(Φ̃
ûj
ε1 ).

Furthermore, as shown in [17], there exist NNs Φφi , i ∈ {1, . . . , Np}, such that

R(Φφi)(x) = φi(x), ∀x ∈ Ω, ∀i ∈ {1, . . . , Np}.

Here we use that T is a partition R2, so that φi is defined on all of R2 and [17, Theorem 5.2] applies,
which itself is based on [49]. Similarly to the previously handled case of Φûi

ε1 , we can assume that Φφi

for i = 1, . . . , Np all have equal depth and that the size of Φφi is bounded independent of i.
Since by [P2] the mappings ψi are affine and invertible, it follows that ψ−1

i is affine for every

i ∈ {1, . . . , Np}. Thus, there exist NNs Φψ
−1
i , i ∈ {1, . . . , Np}, of depth 1, such that

R(Φψ
−1
i )(x) = ψ−1

i (x), ∀x ∈ Ωi, ∀i ∈ {1, . . . , Np}. (5.12)

Next, we define

ε× :=
ε

2Np(|Ω|1/2 + 1 + |u|H1(Ω) +maxi=1,...,Np ‖φi‖W1,∞(Ω)|Ω|1/2)

andM×(ε1) := C∞(1 + |log ε1|4). Finally, we set

Φε,u := ((1, . . . , 1︸ ︷︷ ︸
Np times

), 0)⊙ P

({
Π2
ε×,M×(ε1) ⊙ P(Φûi

ε1 ⊙ Φψ
−1
i ,ΦId

1,L ⊙ Φφi)
}Np

i=1

)
, (5.13)

where L ∈ N is such that L(Φû1
ε1 ⊙ Φψ

−1
1 ) = L(ΦId

1,L ⊙ Φφ1), which yields that M(ΦId
1,L) ≤ C L(Φû1

ε1 ⊙
Φψ

−1
1 ).

Approximation accuracy. By (5.13), we have for all x ∈ Ω,

R(Φε,u)(x) =

Np∑

i=1

R(Π2
ε×,M×(ε1))

(
R(Φûi

ε1 ⊙ Φψ
−1
i )(x),R(Φφi)(x)

)
.

Therefore,

‖u− R(Φε,u)‖H1(Ω) ≤ ‖u−
Np∑

i=1

φi R(Φûi
ε1 ⊙ Φψ

−1
i )‖H1(Ω)

+

Np∑

i=1

‖R(Π2
ε×,M×(ε1))

(
R(Φûi

ε1 ⊙ Φψ
−1
i ), φi

)
− φi R(Φûi

ε1 ⊙ Φψ
−1
i )‖H1(Ω)

= (I) + (II).
(5.14)
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We start by considering term (I). For each i ∈ {1, . . . , Np}, thanks to (5.11), there holds, with ‖J
ψ−1
i

‖22
denoting the square of the matrix 2-norm of the Jacobian of ψ−1

i ,

‖u− R(Φûi
ε1 ⊙ Φψ

−1
i )‖H1(Ωi)

= ‖ûi ◦ ψ−1
i − R(Φûi

ε1 ) ◦ ψ
−1
i ‖H1(Ωi)

=

(∫

Ω̂i

(
|ûi|2 +

∥∥∥Jψ−1
i

∇
(
ûi − R(Φûi

ε1 )
)∥∥∥

2

2

)
det Jψidx

)1/2

≤ ε1
(
‖ det Jψi‖L∞(Ω̂i)

+ ‖ det Jψi‖L∞(Ω̂i)
‖‖J

ψ−1
i

‖22‖L∞(Ωi)

)1/2

≤ ε2 := ε1 max
i

(
‖ det Jψi‖L∞(Ω̂i)

+ ‖ det Jψi‖L∞(Ω̂i)
‖‖J

ψ−1
i

‖22‖L∞(Ωi)

)1/2
.

(5.15)
By [33, Theorem 2.1],

(I) ≤ Npε2 max
i∈{1,...,Np}

‖φi‖W1,∞(Ω) ≤
ε

2
. (5.16)

We now consider term (II) in (5.14). There holds, by Theorem 4.3 and (5.12),

‖R(Φûi
ε1 ⊙ Φψ

−1
i )‖L∞(Ωi) = ‖R(Φûi

ε1 )‖L∞(Ω̂i)
≤ C∞(1 + |log ε1|4)

for all i ∈ {1, . . . , Np}. Furthermore, by [P1], φi(x) = 0 for all x ∈ Ω \ Ωi and, by Proposition 3.6,

R(Π2
ε×,M×(ε1))

(
R(Φûi

ε1 ⊙ Φψ
−1
i )(x), φi(x)

)
= 0, ∀x ∈ Ω \ Ωi.

From (5.15), we also have

|R(Φûi
ε1 ⊙ Φψ

−1
i )|H1(Ωi)

≤ |u|H1(Ωi)
+ ‖u− R(Φûi

ε1 ⊙ Φψ
−1
i )‖H1(Ωi)

≤ 1 + |u|H1(Ωi)
.

Hence,

(II) =

Np∑

i=1

‖R(Π2
ε×,M×(ε1))

(
R(Φûi

ε1 ⊙ Φψ
−1
i ), φi

)
− φi R(Φûi

ε1 ⊙ Φψ
−1
i )‖H1(Ωi)

≤
Np∑

i=1

(
‖R(Π2

ε×,M×(ε1))(a, b)− ab‖W1,∞([−M×(ε1),M×(ε1)]2)

(
|Ω|1/2 + |R(Φûi

ε1 ⊙ Φψ
−1
i )|H1(Ωi)

+ |φi|H1(Ωi)

))

≤ Npε×

(
|Ω|1/2 + 1 + |u|H1(Ωi)

+ |Ω|1/2 max
i=1,...,Np

‖φi‖W1,∞(Ω)

)

≤ ε

2
.

(5.17)
The asserted approximation accuracy follows by combining (5.14), (5.16), and (5.17).

Size of the neural network. To bound the size of the NN, we remark thatNp and the sizes of Φψ
−1
i

and of Φφi only depend on the domain Ω. Furthermore, there exist constants CΩ,i, i = 1, 2, 3, that
depend only on Ω and u such that

|log ε1| ≤ CΩ,1(1 + |log ε|), |log ε×| ≤ CΩ,2(1 + |log ε|),
|logM×(ε1)| ≤ CΩ,3(1 + log(1 + |log ε|)). (5.18)

From Theorem 4.3 and Proposition 3.6, in addition, there exist constants CLû , C
M
û , C× > 0 such that, for

all 0 < ε1, ε× ≤ 1,

L(Φûi
ε1 ) ≤ CLû (1 + |log ε1|)(1 + log(1 + |log ε1|)), M(Φûi

ε1 ) ≤ CMû (1 + |log ε1|5),
max(M(Π2

ε×,M×(ε1)),L(Π
2
ε×,M×(ε1))) ≤ C×(1 + log(M×(ε1)

2/ε×)).
(5.19)

Then, by (5.13), we have

L(Φε,u) = 1 + L(Π2
ε×,M×(ε1)) + max

i=1,...,Np

(
L(Φûi

ε1 ) + L(Φψ
−1
i )
)
,

M(Φε,u) ≤ C


Np +M(Π2

ε×,M×(ε1)) +

Np∑

i=1

(
M(Φûi

ε1 ) +M(Φψ
−1
i ) +M(ΦId

1,L) +M(Φφi)
)

 .

(5.20)

The desired depth and size bounds follow from (5.18), (5.19), and (5.20). This concludes the proof.
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The exponential expression rate for the class of weighted, analytic functions in Ω by realizations
of NNs with ReLU activation in the H1(Ω)-norm established in Theorem 5.6 implies an exponential
expression rate bound on ∂Ω, via the trace map and the fact that ∂Ω can be exactly parametrized by the
realization of a shallow NN with ReLU activation. This is relevant for NN-based solution of boundary
integral equations.

Corollary 5.7. (NN expression of Dirichlet traces) LetΩ ⊂ R2 be a polygon with Lipschitz boundary and a finite
set C of corners. Let γ = {γc : c ∈ C} such thatmin γ > 1. For any connected component Γ of ∂Ω, let ℓΓ > 0 be

the length of Γ, such that there exists a continuous, piecewise affine parametrization θ : [0, ℓΓ] → R2 : t 7→ θ(t)
of Γ with finitely many affine linear pieces and

∥∥ d
dt
θ
∥∥
2
= 1 for almost all t ∈ [0, ℓΓ].

Then, for all u ∈ J̟
γ (Ω; C,∅) and for all 0 < ε < 1, there exists a NN Φε,u,θ approximating the trace

Tu := u|Γ such that

‖Tu− R(Φε,u,θ) ◦ θ−1‖H1/2(Γ) ≤ ε. (5.21)

In addition, as ε→ 0,

M(Φε,u,θ) = O(|log(ε)|5), L(Φε,u,θ) = O(|log(ε)| log(|log(ε)|)).

Proof. We note that both components of θ are continuous, piecewise affine functions on [0, ℓΓ], thus
they can be represented exactly as realization of a NN of depth two, with the ReLU activation function.
Moreover, the number of weights of these NNs is of the order of the number of affine linear pieces of θ.
We denote the parallelization of the NNs emulating exactly the two components of θ by Φθ .

By continuity of the trace operator T : H1(Ω) → H1/2(∂Ω) (e.g. [10, 4]), there exists a constant
CΓ > 0 such that for all v ∈ H1(Ω) it holds ‖Tv‖H1/2(Γ) ≤ CΓ ‖v‖H1(Ω) , and without loss of generality
we may assume CΓ ≥ 1.

Next, for any ε ∈ (0, 1), let Φε/CΓ,u be as given by Theorem 5.6. Define Φε,u,θ := Φε/CΓ,u ⊙ Φθ . It
follows that

∥∥Tu− R(Φε,u,θ) ◦ θ−1
∥∥
H1/2(Γ)

=
∥∥T
(
u− R(Φε/CΓ,u)

)∥∥
H1/2(Γ)

≤ CΓ

∥∥u− R(Φε/CΓ,u)
∥∥
H1(Ω)

≤ ε.

The bounds on its depth and size follow directly from Proposition 3.2, Theorem 5.6, and the fact that
the depth and size of Φθ are independent of ε. This finishes the proof.

Remark 5.8. The exponent 5 in the bound on the NN size M(Φε,u,θ) in Corollary 5.7 is likely not optimal, due
to it being transferred from the NN rate in Ω.

The proof of Theorem 5.6 established exponential expressivity of realizations of NNs with ReLU
activation for the analytic class J̟

γ (Ω; C,∅) inΩ. This implies that realizations of NNs can approximate,
with exponential expressivity, solution classes of elliptic PDEs in polygonal domains Ω. We illustrate
this by formulating concrete results for three problem classes: second order, linear, elliptic source and
eigenvalue problems in Ω, and viscous, incompressible flow. To formulate the results, we specify the
assumptions on Ω.

Definition 5.9 (Linear, second order, elliptic divergence-form differential operator with analytic coeffi-
cients). Let d ∈ {2, 3} and let Ω ⊂ Rd be a bounded domain. Let the coefficient functions aij , bi, c : Ω → R be
real analytic in Ω, and such that the matrix function A = (aij)1≤i,j≤d : Ω → Rd×d is symmetric and uniformly
positive definite in Ω. With these functions, we define the linear, second order, elliptic divergence-form differential
operator L acting on w ∈ C∞

0 (Ω) via (summation over repeated indices i, j ∈ {1, . . . , d})

(Lw)(x) := −∂i(aij(x)∂jw(x)) + bj(x)∂jw(x) + c(x)w(x) , x ∈ Ω .

Setting 5.10. We assume that Ω ⊂ R2 is an open, bounded polygon with boundary ∂Ω that is Lipschitz and
connected. In addition, ∂Ω is the closure of a finite number J ≥ 3 of straight, open sides Γj , i.e., Γi ∩ Γj = ∅

for i 6= j and ∂Ω =
⋃

1≤j≤J Γj . We assume the sides are enumerated cyclically, according to arc length, i.e.

ΓJ+1 = Γ1. By nj , we denote the exterior unit normal vector to Ω on Γj and by cj := Γj−1 ∩ Γj the corner j of
Ω.

With L as in Definition 5.9, we associate on boundary segment Γj a boundary operator Bj ∈ {γj0, γj1}, i.e.
either the Dirichlet trace γ0 or the distributional (co-)normal derivative operator γ1, acting on w ∈ C1(Ω) via

γj0w := w|Γj , γj1w := (A∇w) · nj |Γj , j = 1, ..., J . (5.22)

We collect the boundary operators Bj in B := {Bj}Jj=1.

The first corollary addresses exponential ReLU expressibility of solutions of the source problem
corresponding to (L,B).
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Corollary 5.11. Let Ω, L, and B be as in Setting 5.10 with d = 2. For f analytic in Ω, let u denote a solution to
the boundary value problem

Lu = f in Ω, Bu = 0 on ∂Ω . (5.23)

Then, for every 0 < ε < 1, there exists a NN Φε,u such that

‖u− R(Φε,u)‖H1(Ω) ≤ ε. (5.24)

In addition,M(Φε,u) = O(|log(ε)|5) and L(Φε,u) = O(|log(ε)| log(|log(ε)|)), as ε→ 0.

Proof. The proof is obtained by verifying weighted, analytic regularity of solutions. By [5, Theorem
7.2], there exists γ such that min γ > 1 and u ∈ J̟

γ (Ω; C,∅). Then, the application of Theorem 5.6
concludes the proof.

Next, we address NN expression rates for eigenfunctions of (L,B).
Corollary 5.12. Let Ω, L, B be as in Setting 5.10 with d = 2 and let 0 6= w ∈ H1(Ω) be an eigenfunction of
the elliptic eigenvalue problem

Lw = λw in Ω, Bw = 0 on ∂Ω. (5.25)

Then, for every 0 < ε < 1, there exists a NN Φε,w such that

‖w − R(Φε,w)‖H1(Ω) ≤ ε. (5.26)

In addition,M(Φε,w) = O(|log(ε)|5) and L(Φε,w) = O(|log(ε)| log(|log(ε)|)), as ε→ 0.

Proof. The statement follows from [5] and Theorem 5.6 as in Corollary 5.11.

The analytic regularity of solutions u in the proof of Theorem 5.6 also holds for certain nonlinear,
elliptic PDEs. We illustrate it for the velocity field of viscous, incompressible flow in Ω.

Corollary 5.13. Let Ω ⊂ R2 be as in Setting 5.10. Let ν > 0 and let u ∈ H1
0 (Ω)

2 be the velocity field of the
Leray solutions of the viscous, incompressible Navier-Stokes equations in Ω, with homogeneous Dirichlet (“no
slip”) boundary conditions

− ν∆u+ (u · ∇)u+∇p = f in Ω, ∇ · u = 0 in Ω, u = 0 on ∂Ω, (5.27)

where the components of f are analytic in Ω and such that ‖f‖H−1(Ω)/ν
2 is small enough so that u is unique.

Then, for every 0 < ε < 1, there exists a NN Φε,u with two-dimensional output such that

‖u− R(Φε,u)‖H1(Ω) ≤ ε. (5.28)

In addition,M(Φε,u) = O(|log(ε)|5) and L(Φε,u) = O(|log(ε)| log(|log(ε)|)), as ε→ 0.

Proof. The velocity fields of Leray solutions of the Navier-Stokes equations in Ω satisfy the weighted,

analytic regularity u ∈
[
J̟
γ (Ω; C,∅)

]2
, with min γ > 1, see [31]. Then, the application of Theorem 5.6

concludes the proof.

5.3 Elliptic PDEs in Fichera-type polyhedral domains

Fichera-type polyhedral domains Ω ⊂ R3 are, loosely speaking, closures of finite, disjoint unions of
(possibly affinely mapped) axiparallel hexahedra with ∂Ω Lipschitz. In Fichera-type domains, analytic
regularity of solutions of linear, elliptic boundary value problems from acoustics and linear elasticity in
displacement formulation has been established in [5]. As an example of a boundary value problem
covered by [5] and our theory, consider ΩF := (−1, 1)d \ (−1, 0]d for d = 2, 3, displayed for d = 3
in Figure 2. We introduce the setting for elliptic problems with analytic coefficients in ΩF . Note that the
boundary of ΩF is composed of 6 edges when d = 2 and of 9 faces when d = 3.

Setting 5.14. We assume that L is an elliptic operator as in Definition 5.9. On each edge (if d = 2) or face (if
d = 3) Γj , j ∈ {1, . . . , 3d} of ∂ΩF , we introduce the boundary operator Bj ∈ {γ0, γ1}, where γ0 and γ1 are
defined as in (5.22). We collect the boundary operators Bj in B := {Bj}3dj=1.

For a right hand side f , the elliptic boundary value problem we consider in this section is then

Lu = f in ΩF , Bu = 0 on ∂ΩF . (5.29)

The following extension lemma will be useful for the approximation of the solution to (5.29) by
NNs. We postpone its proof to Appendix B.2.
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Figure 2: Example of Fichera-type corner domain.

Lemma 5.15. Let d ∈ {2, 3} and u ∈W 1,1
mix(ΩF ). Then, there exists a function v ∈W 1,1

mix((−1, 1)d) such that
v|ΩF = u. The extension is stable with respect to theW 1,1

mix norm.

We denote the set containing all corners (including the re-entrant one) of ΩF as

CF = {−1, 0, 1}d \ (−1, . . . ,−1).

When d = 3, for all c ∈ CF , then we denote by Ec the set of edges abutting at c and we denote
EF :=

⋃
c∈CF

Ec.
Theorem 5.16. Let u ∈ J̟

γ (ΩF ; CF , EF ) with

γ = {γc : c ∈ CF }, with γc > 1, for all c ∈ CF if d = 2,

γ = {γc, γe : c ∈ CF , e ∈ EF }, with γc > 3/2 and γe > 1, for all c ∈ CF and e ∈ EF if d = 3.

Then, for any 0 < ε < 1 there exists a NN Φε,u so that

‖u− R(Φε,u)‖H1(ΩF ) ≤ ε. (5.30)

In addition, ‖R(Φε,u) ‖L∞(ΩF ) = O(1 + |log ε|2d) , for ε → 0. Also, M(Φε,u) = O(| log(ε)|2d+1) and
L(Φε,u) = O(| log(ε)| log(| log(ε)|)), for ε→ 0.

Proof. By Lemma 5.15, we extend the function u to a function ũ such that

ũ ∈W 1,1
mix((−1, 1)d) and ũ|ΩF = u.

Note that, by the stability of the extension, there exists a constant Cext > 0 independent of u such that

‖ũ‖
W

1,1
mix

((−1,1)d)
≤ Cext‖u‖W1,1

mix
(ΩF )

. (5.31)

Since u ∈ J̟
γ (ΩF ; CF , EF ), there holds u ∈ J̟

γ (S; CS , ES) for all

S ∈
{

d

×
j=1

(aj , aj + 1/2) : (a1, . . . , ad) ∈ {−1,−1/2, 0, 1/2}d
}

such that S ∩ ΩF 6= ∅ (5.32)

with CS = S ∩ CF and ES = {e ∈ EF : e ⊂ S}. Since S ⊂ ΩF and ũ|ΩF = u|ΩF , we also have

ũ ∈ J̟
γ (S; CS , ES) for all S satisfying (5.32).

By Theorem A.25 exist Cp > 0, CÑ1d
> 0, CÑint

> 0, Cṽ > 0, Cc̃ > 0, and bṽ > 0 such that, for all

0 < ε ≤ 1, there exists p ∈ N, a partition G1d of (−1, 1) into Ñint open, disjoint, connected subintervals,

a d-dimensional array c ∈ RÑ1d×···×Ñ1d , and piecewise polynomials ṽi ∈ Qp(G1d) ∩ H1((−1, 1)),

i = 1, . . . , Ñ1d, such that

Ñ1d ≤ CÑ1d
(1 + |log ε|2), Ñint ≤ CÑint

(1 + |log ε|), ‖c‖1 ≤ Cc̃(1 + |log ε|2d), p ≤ Cp(1 + |log ε|)

and
‖ṽi‖H1(I) ≤ Cṽε

−bṽ , ‖ṽi‖L∞(I) ≤ 1, ∀i ∈ {1, . . . , Ñ1d}.
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Furthermore,

‖u− vhp‖H1(ΩF ) = ‖ũ− vhp‖H1(ΩF ) ≤
ε

2
, vhp =

Ñ1d∑

i1,...,id=1

c̃i1...id

d⊗

j=1

ṽij .

Due to the stability (5.31) and to Lemmas A.21 and A.22, there holds

‖c̃‖1 ≤ CN2d
int‖u‖J d

γ (ΩF ),

i.e., the bound on the coefficients c̃ is independent of the extension ũ of u. By Theorem 4.2, there exists
a NN Φε,u with the stated approximation properties and asymptotic size bounds. The bound on the
L∞(ΩF ) norm of the realization of Φε,u follows as in the proof of Theorem 4.3.

Remark 5.17. Arguing as in Corollary 5.7, a NN with ReLU activation and two-dimensional input can be
constructed so that its realization approximates the Dirichlet trace of solutions to (5.29) in H1/2(∂ΩF ) at an
exponential rate in terms of the NN sizeM.

The following statement now gives expression rate bounds for the approximation of solutions to the
Fichera problem (5.29) by realizations of NNs with the ReLU activation function.

Corollary 5.18. Let f be an analytic function on ΩF and let u be a solution to (5.29) with operators L and B as
in Setting 5.14 and with source term f . Then, for any 0 < ε < 1 there exists a NN Φε,u so that

‖u− R(Φε,u)‖H1(ΩF ) ≤ ε. (5.33)

In addition,M(Φε,u) = O(| log(ε)|2d+1) and L(Φε,u) = O(| log(ε)| log(| log(ε)|)), for ε→ 0.

Proof. By [5, Corollary 7.1 and Theorem 7.4], there exists γ such that γc − d/2 > 0 for all c ∈ CF and
γe > 1 for all e ∈ EF such that u ∈ J̟

γ (ΩF ; CF , EF ). An application of Theorem 5.16 concludes the
proof.

Remark 5.19. By [5, Corollary 7.1 and Theorem 7.4], Corollary 5.18 holds verbatim also under the hypothesis
that the right-hand side f is weighted analytic, with singularities at the corners/edges of the domain; specifically,
(5.33) and the size bounds on the NN Φε,u hold under the assumption that there exists γ such that γc − d/2 > 0
for all c ∈ CF and γe > 1 for all e ∈ EF such that

f ∈ J̟
γ−2(ΩF ; CF , EF ).

Remark 5.20. The numerical approximation of solutions for (5.29) with a NN in two dimensions has been
investigated e.g. in [26] using the so-called ‘PINNs’ methodology. There, the loss function was based on
minimization of the residual of the NN approximation in the strong form of the PDE. Evidently, a different
(smoother) activation than the ReLU activations considered here had to be used. Starting from the approximation
of products by NNs with smoother activation functions introduced in [44, Sec.3.3] and following the same line of
reasoning as in the present paper, the results we obtain for ReLU-based realizations of NNs can be extended to
large classes of NNs with smoother activations and similar architecture.

Furthermore, in [6, Section 3.1], a slightly different elliptic boundary value problem is numerically approxi-
mated by realizations of NNs. Its solutions exhibit the same weighted, analytic regularity as considered in this
paper. The presently obtained approximation rates by NN realizations extend also to the approximation of solutions
for the problem considered in [6].

In the proof of Theorem 5.6, we require in particular the approximation ofweighted analytic functions
on (−1, 1)×(0, 1)with a corner singularity at the origin. For convenient reference, we detail the argument
in this case.

Lemma 5.21. Let d = 2 and ΩDN := (−1, 1) × (0, 1). Denote CDN = {−1, 0, 1} × {0, 1}. Let u ∈
J̟
γ (ΩDN ; CDN ,∅) with γ = {γc : c ∈ CDN}, with γc > 1 for all c ∈ CDN .
Then, for any 0 < ε < 1 there exists a NN Φε,u so that

‖u− R(Φε,u)‖H1(ΩDN ) ≤ ε. (5.34)

In addition, ‖R(Φε,u) ‖L∞(ΩDN ) = O(1 + |log ε|4) , for ε → 0. Also, M(Φε,u) = O(| log(ε)|5) and
L(Φε,u) = O(| log(ε)| log(| log(ε)|)), for ε→ 0.
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Proof. Let ũ ∈W 1,1
mix((−1, 1)2) be defined by

{
ũ(x1, x2) = u(x1, x2) for all (x1, x2) ∈ (−1, 1)× [0, 1),

ũ(x1, x2) = u(x1, 0) for all (x1, x2) ∈ (−1, 1)× (−1, 0),

such that ũ|ΩDN = u. Here we used that there exist continuous imbeddings J̟
γ (ΩDN ; CDN ,∅) →֒

W 1,1
mix(ΩDN ) →֒ C0(ΩDN ) (see Lemma A.22 for the first imbedding), i.e. u can be extended to a

continuous function on ΩDN .
As in the proof of Lemma 5.15, this extension is stable, i.e. there exists a constant Cext > 0 indepen-

dent of u such that
‖ũ‖

W
1,1
mix

((−1,1)d)
≤ Cext‖u‖W1,1

mix
(ΩDN )

. (5.35)

Because u ∈ J̟
γ (ΩDN ; CDN ,∅), it holds with CS = S ∩ CDN that u ∈ J̟

γ (S; CS ,∅) for all

S ∈
{

×
j=1,2

(aj , aj + 1/2) : (a1, a2) ∈ {−1,−1/2, 0, 1/2} × {0, 1/2}
}
.

The remaining steps are the same as those in the proof of Theorem 5.16.

6 Conclusions and extensions

We review the main findings of the present paper and outline extensions of the present results, and
perspectives for further research.

6.1 Principal mathematical results

We established exponential expressivity of realizations of NNs with the ReLU activation function in the
Sobolev normH1 for functions which belong to certain countably normed, weighted analytic function
spaces in cubes Q = (0, 1)d of dimension d = 2, 3. The admissible function classes comprise functions
which are real analytic at points x ∈ Q, and which admit analytic extensions to the open sides F ⊂ ∂Q,
but may have singularities at corners and (in space dimension d = 3) edges ofQ. We have also extended
this result to cover exponential expressivity of realizations of NNs with ReLU activation for solution
classes of linear, second order elliptic PDEs in divergence form in plane, polygonal domains and of
elliptic, nonlinear eigenvalue problems with singular potentials in three space dimensions. Being
essentially an approximation result, the DNN expression rate bound in Theorem 5.6 will apply to any
elliptic boundary value problem in polygonal domains where weighted, analytic regularity is available.
Apart from the source and eigenvalue problems, such regularity is in space dimension d = 2 also
available for linearized elastostatics, Stokes flow and general elliptic systems [12, 15, 5].

The established approximation rates of realizations of NNs with ReLU activation are fundamen-
tally based on a novel exponential upper bound on approximation of weighted analytic functions
via tensorized hp approximations on multi-patch configurations in finite unions of axiparallel rectan-
gles/hexahedra. The hp approximation result is presented in Theorem A.25 and of independent interest
in the numerical analysis of spectral elements.

The proofs of exponential expressivity of NN realizations are, in principle, constructive. They are
based on explicit bounds on the coefficients of hp projections and on corresponding emulation rate
bounds for the (re)approximation of modal hp bases.

6.2 Extensions and future work

The tensor structure of the hp approximation considered here limited geometries of domains that
are admissible for our results. Curvilinear, mapped domains with analytic domain maps will allow
corresponding approximation rates, with the NN approximations obtained by composing the present
constructions with NN emulations of the domain maps and the fact that compositions of NNs are again
NNs.

The only activation function considered in this work is the ReLU. Following the same strategy, similar
expression rate bounds can be obtained for functions with smoother, nonlinear activation functions. We
refer to Remark 5.20 and to the discussion in [44, Sec. 3.3].

The principal results in Section 5.1 yield exponential expressivity of realizations of NNs with ReLU
activation for singular eigenvalue problemswithmultiple, isolated point singularities as arise in electron-
structure computations for static molecules with known loci of the nuclei. Inspection of our proofs reveals that
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the expression rate bounds are robust with respect to perturbations of the nuclei sites; only interatomic
distances enter the constants in the expression rate bounds of Section 5.1.2. Given the closedness of
NNs under composition, obtaining similar expression rates also for solutions of the vibrational Schrödinger
equation appears in principle possible.

The presently proved deep ReLU NN expression rate bounds can, in connection with recently
proposed residual-based DNN training methodologies (e.g., [46]), imply exponential convergence rates
of numerical PDE solutions based on machine learning approaches.

A Tensor product hp approximation

In this section, we construct the hp tensor product approximation which will then be emulated to obtain
the NN expression rate estimates. We denote Q = (0, 1)d, d ∈ {2, 3} and introduce the set of corners C,

C =

{{
(0, 0)

}
if d = 2,{

(0, 0, 0)
}

if d = 3,
(A.1)

and the set of edges E ,

E =

{
∅ if d = 2,{
{0} × {0} × (0, 1), {0} × (0, 1)× {0}, (0, 1)× {0} × {0}

}
if d = 3.

(A.2)

The results in this section extend, by rotation or reflection, to the case where C contains any of the corners
ofQ and E is the set of the adjacent edges when d = 3. Most of the section addresses the construction of
exponentially consistent hp-quasiinterpolants in the reference cube (0, 1)d; in Section A.10 the analysis
will be extended to domains which are specific finite unions of such patches.

A.1 Product geometric mesh and tensor product hp space

We fix a geometric mesh grading factor σ ∈ (0, 1/2]. Furthermore, let

Jℓ0 = (0, σℓ) and Jℓk = (σℓ−k+1, σℓ−k), k = 1, . . . , ℓ.

In (0, 1), the geometric mesh with ℓ layers is Gℓ1 =
{
Jℓk : k = 0, . . . , ℓ

}
. Moreover, we denote the nodes

of Gℓ1 by xℓ0 = 0 and xℓk = σℓ−k+1 for k = 1, . . . , ℓ + 1. In (0, 1)d, the d-dimensional tensor product
geometric mesh is1

Gℓd =

{
d

×
i=1

Ki, for allK1, . . . ,Kd ∈ Gℓ1
}
.

For an elementK =×
d

i=1
Jℓki , ki ∈ {0, . . . , ℓ}, we denote by dKc the distance from the singular corner,

and dKe the distance from the closest singular edge. We observe that

dKc =

(
d∑

i=1

σ2(ℓ−ki+1)

)1/2

(A.3)

and

dKe = min
(i1,i2)∈{1,2,3}2




∑

i∈{i1,i2}
σ2(ℓ−ki+1)




1/2

. (A.4)

The hp tensor product space is defined as

Xℓ,p
hp,d := {v ∈ H1(Q) : v|K ∈ Qp(K), for allK ∈ Gℓd},

whereQp(K) := span
{∏d

i=1(xi)
ki : ki ≤ p, i = 1, . . . , d

}
. Note that, by construction,Xℓ,p

hp,d =
⊗d

i=1X
ℓ,p
hp,1.

For positive integers p and s such that 1 ≤ s ≤ p, we will write

Ψp,s :=
(p− s)!

(p+ s)!
. (A.5)

Additionally, we will denote, for all σ ∈ (0, 1/2],

τσ :=
1− σ

σ
∈ [1,∞). (A.6)

1We assume isotropic tensorization, i.e. the same σ and the same number of geometric mesh layers in each coordinate direction;
all approximation results remain valid (with possibly better numerical values for the constants in the error bounds) for anisotropic,
co-ordinate dependent choices of ℓ and of σ.
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A.2 Local projector

We denote the reference interval by I = (−1, 1) and the reference cube by K̂ = (−1, 1)d. We also write

H1
mix(K̂) =

⊗d
i=1H

1(I) ⊃ Hd(K̂). Let p ≥ 1: we introduce the univariate projectors π̂p : H1(I) →
Pp(I) as

(π̂pv̂) (x) = v̂(−1) +

p−1∑

n=0

(
v̂′,

2n+ 1

2
Ln

)∫ x

−1

Ln(ξ)dξ

= v̂(−1)

(
1− x

2

)
+ v̂(1)

(
1 + x

2

)
+

p−1∑

n=1

(
v̂′,

2n+ 1

2
Ln

)∫ x

−1

Ln(ξ)dξ,

(A.7)

where Ln is the nth Legendre polynomial, L∞ normalized, and (·, ·) is the scalar product of L2((−1, 1)).
Note that

(π̂pv̂) (±1) = v̂(±1), ∀v̂ ∈ H1(I). (A.8)

For p ∈ N, we introduce the projection on the reference element K̂ as Π̂p =
⊗d

i=1 π̂p. For allK ∈ Gℓd,
we introduce an affine transformation fromK to the reference element

ΦK : K → K̂ such that ΦK(K) = K̂. (A.9)

Remark that since the elements are axiparallel, the affine transformation can be written as a d-fold

product of one dimensional affine transformations φk : Jℓk → I , i.e., supposing that K =×
d

i=1
Jℓki ,

there holds

ΦK =

d⊗

i=1

φki .

LetK ∈ Gℓd and let ki, i = 1, . . . , d be the indices such thatK =×
d

i=1
Jℓki . Define, for w ∈ H1(Jℓki),

πkip w =
(
π̂p(w ◦ φ−1

ki
)
)
◦ φki .

For v defined on K such that v ◦ Φ−1
K ∈ H1

mix(K̂) and for (p1, . . . , pd) ∈ Nd, we introduce the local
projection operator

ΠKp1...pd =

d⊗

i=1

πkipi . (A.10)

We also write
ΠKp v = ΠKp...pv =

(
Π̂p(v ◦ Φ−1

K )
)
◦ ΦK . (A.11)

For later reference, we note the following property of ΠKp v:

Lemma A.1. LetK1,K2 be two axiparallel cubes that share one regular face F (i.e., F is an entire face of both
K1 andK2). Then, for v ∈ H1

mix(int (K1 ∪K2)), the piecewise polynomial

ΠK1∪K2
p v =

{
ΠK1
p v inK1,

ΠK2
p v inK2

is continuous across F .

Proof. This follows directly from (A.8).

A.3 Global projectors

We introduce, for ℓ, p ∈ N, the univariate projector πℓ,php : H1((0, 1)) → Xℓ,p
hp,1 as

(
πℓ,php u

)
(x) =

{(
π0
1u
)
(x) if x ∈ Jℓ0 ,(

πkpu
)
(x) if x ∈ Jℓk, k ∈ {1, . . . , ℓ}. (A.12)

Note that for all ℓ ∈ N, for x ∈ Jℓ0
(
π0
1u
)
(x) = u(0) + σ−ℓ

(
u(σℓ)− u(0)

)
x.

The d-variate hp quasi-interpolant is then obtained by tensorization, i.e.

Πℓ,php,d :=
d⊗

i=1

πℓ,php . (A.13)
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Remark A.2. By the nodal exactness of the projectors, the operator Πℓ,php,d is continuous across interelement

interfaces (see Lemma A.1), hence its image is contained in H1((0, 1)d). The continuity can also be observed
from the expansion in terms of continuous, globally defined basis functions given in Proposition A.24.

Remark A.3. The projector Πℓ,php,d is defined on a larger space than H1
mix(Q) as specified below (e.g. Remark

A.20).

A.4 Preliminary estimates

The projector on K̂ given by

Π̂p1...pd :=

d⊗

i=1

π̂pi (A.14)

has the following property.

Lemma A.4 ([43, Propositions 5.2 and 5.3]). Let d = 3, (p1, p2, p3) ∈ N3, and (s1, s2, s3) ∈ N3 with

1 ≤ si ≤ pi. Then the projector Π̂p1p2p3 : H1
mix(K̂) → Qp1,p2,p3(K̂) satisfies that

‖v − Π̂p1p2p3v‖2H1(K̂)
≤ Cappx1

(
Ψp1,s1

∑

α1,α2≤1

‖∂(s1+1,α1,α2)v‖2
L2(K̂)

+Ψp2,s2
∑

α1,α2≤1

‖∂(α1,s2+1,α2)v‖2
L2(K̂)

+Ψp3,s3
∑

α1,α2≤1

‖∂(α1,α2,s3+1)v‖2
L2(K̂)

)
,

(A.15)

for all v ∈ Hs1+1(I)⊗Hs2+1(I)⊗Hs3+1(I). Here, Cappx1 is independent of (p1, p2, p3), (s1, s2, s3) and v.

Remark A.5. In space dimension d = 2, a result analogous to Lemma A.4 holds, see [43].

Lemma A.6. Let d = 3, (p1, p2, p3) ∈ N3, and (s1, s2, s3) ∈ N3 with 1 ≤ si ≤ pi. Further, let {i, j, k} be a

permutation of {1, 2, 3}. Then, the projector Π̂p1p2p3 : H1
mix(K̂) → Qp1,p2,p3(K̂) satisfies

‖∂xi
(
v − Π̂p1p2p3v

)
‖2
L2(K̂)

≤ Cappx2

(
Ψpi,si

∑

α1,α2≤1

‖∂si+1
xi ∂α1

xj ∂
α2
xk v‖

2
L2(K̂)

+Ψpj ,sj
∑

α1≤1

‖∂xi∂
sj+1
xj ∂α1

xk v‖
2
L2(K̂)

+Ψpk,sk
∑

α1≤1

‖∂xi∂α1
xj ∂

sk+1
xk v‖2

L2(K̂)

)
,

(A.16)

for all v ∈ Hs1+1(I)⊗Hs2+1(I)⊗Hs3+1(I). Here, Cappx2 > 0 is independent of (p1, p2, p3), (s1, s2, s3),
and v.

Proof. Let (p1, p2, p3) ∈ N3, and (s1, s2, s3) ∈ N3, be as in the statement of the lemma. Also, let
i ∈ {1, 2, 3} and {j, k} = {1, 2, 3} \ {i}. By Lemma A.4, there holds

‖∂xi(v − Π̂pv)‖2L2(K̂)
≤ Cappx1

(
Ψp1,s1

∑

α1,α2≤1

‖∂(s1+1,α1,α2)v‖2
L2(K̂)

+Ψp2,s2
∑

α1,α2≤1

‖∂(α1,s2+1,α2)v‖2
L2(K̂)

+Ψp3,s3
∑

α1,α2≤1

‖∂(α1,α2,s3+1)v‖2
L2(K̂)

)
.

(A.17)

With a Cappx1 > 0 independent of (p1, p2, p3), (s1, s2, s3), and v. Let now, vi : I
2 → R such that

vi(xj , xk) =

∫

I

v(x1, x2, x3)dxi.
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We denote ṽ := v − vi and, remarking that ∂xivi = ∂xiΠ̂pvi = 0, we apply (A.17) to ṽ, so that

‖∂xi(v − Π̂pv)‖2L2(K̂)
≤ C

(
Ψp1,s1

∑

α1,α2≤1

‖∂(s1+1,α1,α2)ṽ‖2
L2(K̂)

+Ψp2,s2
∑

α1,α2≤1

‖∂(α1,s2+1,α2)ṽ‖2
L2(K̂)

+Ψp3,s3
∑

α1,α2≤1

‖∂(α1,α2,s3+1)ṽ‖2
L2(K̂)

)
.

(A.18)

By the Poincaré inequality, it holds for all α1 ∈ {0, 1} that

‖∂sj+1
xj ∂α1

xk ṽ‖
2
L2(K̂)

≤ C‖∂xi∂
sj+1
xj ∂α1

xk v‖
2
L2(K̂)

and ‖∂α1
xj ∂

sk+1
xk ṽ‖2

L2(K̂)
≤ C‖∂xi∂α1

xj ∂
sk+1
xk v‖2

L2(K̂)
.

Using the fact that ∂xi ṽ = ∂xiv in the remaining terms of (A.18) concludes the proof.

A.4.1 One dimensional estimate

The following result is a consequence of, e.g., [41, Lemma 8.1] and scaling.

Lemma A.7. There exists C > 0 such that for all ℓ ∈ N, all integer 0 < k ≤ ℓ, all integers 1 ≤ s ≤ p, all
γ > 0, and all v ∈ Hs+1(Jℓk)

h−2‖v − πkpv‖2L2(Jℓ
k
) + ‖∇(v − πkpv)‖2L2(Jℓ

k
) ≤ Cτ2(s+1)

σ Ψp,sh
2(min{γ−1,s})‖|x|(s+1−γ)+v(s+1)‖2L2(Jℓ

k
)

(A.19)
where h = |Jℓk| ≃ σℓ−k.

Proof. From [41, Lemma 8.1], there exists C > 0 independent of p, k, s, and v such that

h−2‖v − πkpv‖2L2(Jℓ
k
) + ‖∇(v − πkpv)‖2L2(Jℓ

k
) ≤ CΨp,sh

2s‖v(s+1)‖2L2(Jℓ
k
).

In addition, for all k = 1, . . . , ℓ, there holds x|Jℓ
k
≥ σ

1−σh. Hence, for all γ < s+ 1,

h2s‖v(s+1)‖2L2(Jℓ
k
) ≤ τ2(s+1−γ)

σ h2γ−2‖xs+1−γv(s+1)‖2L2(Jℓ
k
).

This concludes the proof.

A.4.2 Estimate at a corner in dimension d = 2

We consider now a setting with a two dimensional corner singularity. Let β ∈ R, K = Jℓ0 × Jℓ0 ,
r(x) = |x− x0| with x0 = (0, 0), and define the corner-weighted norm ‖v‖J 2

β
(K) by

‖v‖2J 2
β
(K) :=

∑

|α|≤2

‖r(|α|−β)+∂αv‖2L2(K).

Lemma A.8. Let d = 2, β ∈ (1, 2). There exists C1, C2 > 0 such that for all v ∈ J 2
β (K)

∑

α∈N2
0
:|α|≤1

‖∂α(π0
1 ⊗ π0

1)v‖L2(K) ≤ C1


‖v‖H1(K) +

∑

α∈N2
0
:|α|=2

σ(β−1)ℓ‖r2−β∂αv‖L2(K)


 . (A.20)

and
∑

α∈N2
0
:|α|≤1

σ−ℓ(1−|α|)‖∂α(v − (π0
1 ⊗ π0

1)v)‖L2(K) ≤ C2σ
ℓ(β−1)

∑

α∈N2
0
:|α|=2

‖r2−β∂αv‖L2(K). (A.21)

Proof. Denote by ci, i = 1, . . . , 4 the corners of K and by ψi, i = 1, . . . , 4 the bilinear functions such that
ψi(cj) = δij . Then,

(π0
1 ⊗ π0

1)v =

4∑

i=1

v(ci)ψi.

Therefore, writing h = σℓ, we have

‖(π0
1 ⊗ π0

1)v‖L2(K) ≤
∑

i=1,...,4

|v(ci)|‖ψi‖L2(K) ≤ 4‖v‖L∞(K)|K|1/2 ≤ 4h‖v‖L∞(K). (A.22)

28



With the imbedding J 2
β ((0, 1)

2) →֒ L∞((0, 1)2) which is valid for β > 1 (which follows e.g. from

Lemma A.22 andW 1,1
mix((0, 1)

2) →֒ L∞((0, 1)2)), a scaling argument gives

h2‖v‖2L∞(K) ≤ Ch2


h−2‖v‖2L2(K) + |v|2H1(K) +

∑

|α|=2

h2β−2‖r2−β∂αv‖2L2(K)


 ,

so that we obtain

‖(π0
1 ⊗ π0

1)v‖2L2(K) ≤ C


‖v‖2L2(K) + h2|v|2H1(K) +

∑

|α|=2

h2β‖r2−β∂αv‖2L2(K)


 . (A.23)

For any |α| = 1, denoting v0 = v(0, 0) and using the fact that (π0
1 ⊗π0

1)v0 = v0 hence ∂
α(π0

1 ⊗π0
1)v0 = 0,

‖∂α(π0
1⊗π0

1)v‖L2(K) = ‖∂α(π0
1⊗π0

1)(v−v0)‖L2(K) ≤
∑

i=1,...,4

|(v−v0)(ci)|‖∂αψi‖L2(K) ≤ C‖v−v0‖L∞(K).

(A.24)
With the imbedding J 2

β ((0, 1)
2) →֒ L∞((0, 1)2), Poincaré’s inequality, and rescaling we obtain

‖∂α(π0
1 ⊗ π0

1)v‖2L2(K) ≤ C


|v|2H1(K) +

∑

|α|=2

h2β−2‖r2−β∂αv‖2L2(K)


 ,

which finishes the proof of (A.20). To prove (A.21), note that by the Sobolev imbedding ofW 2,1(K)
intoH1(K) and by scaling, we have

∑

|α|≤1

h|α|−1‖∂α(v − (π0
1 ⊗ π0

1)v)‖L2(K) ≤ C
∑

|α|≤2

h|α|−2‖∂α(v − (π0
1 ⊗ π0

1)v)‖L1(K).

By classical interpolation estimates [4, Theorem 4.4.4], we additionally conclude that

∑

|α|≤1

h|α|−2‖∂α(v − (π0
1 ⊗ π0

1)v)‖L1(K) ≤ C|v|W2,1(K).

Using the Cauchy-Schwarz inequality,

∑

|α|≤1

h|α|−1‖∂α(v − (π0
1 ⊗ π0

1)v)‖L2(K) ≤ C
∑

|α|=2

‖∂αv‖L1(K)

≤ C
∑

|α|=2

‖r−2+β‖L2(K)‖r2−β∂αv‖L2(K)

≤ C
∑

|α|=2

hβ−1‖r2−β∂αv‖L2(K)

where we also have used, in the last step, the facts that r(x) ≤
√
2h for all x ∈ K and that β > 1.

A.5 Interior estimates

The following lemmas give the estimate of the approximation error on the elements not belonging to
edge or corner layers. For d = 3, all ℓ ∈ N, all k1, k2, k3 ∈ {0, . . . , ℓ} and allK = Jℓk1 × Jℓk2 × Jℓk3 , we
denote, by h‖ the length ofK in the direction parallel to the closest singular edge, and by h⊥,1 and h⊥,2
the lengths ofK in the other two directions. If an element has multiple closest singular edges, we choose
one of those and consider it as “closest edge” for all points in that element. When considering functions
from J d

γ (Q), γe will refer to the weight of this closest edge. Similarly, we denote by ∂‖ (resp. ∂⊥,1 and
∂⊥,2) the derivatives in the direction parallel (resp. perpendicular) to the closest singular edge.

Lemma A.9. Let d = 3, ℓ ∈ N and K = Jℓk1 × Jℓk2 × Jℓk3 for 0 < k1, k2, k3 ≤ ℓ. Let also v ∈
J̟
γ (Q; C, E ;Cv, Av) with γc ∈ (3/2, 5/2), γe ∈ (1, 2). Then, there exists C > 0 dependent only on σ,

Cappx2, Cv and A > 0 dependent only on σ, Av such that for all 1 ≤ s ≤ p

‖∂‖(v −ΠKp v)‖2L2(K) ≤ CΨp,sA
2s+6

(
(dKc )2 + (dKc )2(γc−1)

)
((s+ 3)!)2, (A.25)

where ∂‖ is the derivative in the direction parallel to the closest singular edge.
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Proof. We write da = dKa , a ∈ {c, e}. There holds

d2c =

(
σ

1− σ

)2

(h2
‖ + h2

⊥,1 + h2
⊥,2), d2e =

(
σ

1− σ

)2

(h2
⊥,1 + h2

⊥,2).

Denoting v̂ = v◦Φ−1
K and Π̂pv̂ = ΠKp v◦Φ−1

K = Π̂p(v◦ΦK), using the result of LemmaA.6 and rescaling,
we have

‖∂̂‖(v̂ − Π̂pv̂)‖2L2(K̂)
≤ Cappx2Ψp,s

h‖
h⊥,1h⊥,2




∑

α1,α2≤1

h2s
‖ h

2α1

⊥,1h
2α2

⊥,2‖∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2L2(K)

+
∑

α1≤1

h2s+2
⊥,1 h2α1

⊥,2‖∂‖∂s+1
⊥,1 ∂

α1

⊥,2v‖2L2(K)

+
∑

α1≤1

h2α1

⊥,1h
2s+2
⊥,2 ‖∂‖∂α1

⊥,1∂
s+1
⊥,2 v‖2L2(K)




= Cappx2Ψp,s
h‖

h⊥,1h⊥,2

(
(I) + (II) + (III)

)
.

(A.26)

DenoteKc = K ∩Qc,Ke = K ∩Qe,Kce = K ∩Qce, andK0 = K ∩Q0. Furthermore, we indicate

(I)c =
∑

α1,α2≤1

h2s
‖ h

2α1

⊥,1h
2α2

⊥,2‖∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2L2(Kc)
,

and do similarly for the other terms of the sum (II) and (III) and the other subscripts e, ce, 0. Remark
also that ri|K ≥ di, i ∈ {c, e}, and that for a, b ∈ R holds rac r

b
e = ra+bc ρbce.

We will also write γ̃ = γc − γe. We start by considering the term (I)ce. Let α1 = α2 = 1; then,

h2s
‖ h

2
⊥,1h

2
⊥,2‖∂s+1

‖ ∂⊥,1∂⊥,2v‖2L2(Kce)
≤ τ2s+4

σ d2sc d
4
e‖∂s+1

‖ ∂⊥,1∂⊥,2v‖2L2(Kce)

≤ τ2s+4
σ d2γ̃−2

c d2γee ‖rs+3−γc
c ρ2−γece ∂s+1

‖ ∂⊥,1∂⊥,2v‖2L2(Kce)
,

where τσ is as in (A.6). Furthermore, if α1 + α2 ≤ 1 and s+ 1 + α1 + α2 − γc ≥ 0,

h2s
‖ h

2α1

⊥,1h
2α2

⊥,2‖∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2L2(Kce)
≤ τ2s+2(α1+α2)

σ d2sc d
2(α1+α2)
e ‖∂s+1

‖ ∂α1

⊥,1∂
α2

⊥,2v‖2L2(Kce)

≤ τ2s+2(α1+α2)
σ d2γc−2

c ‖rs+1+α1+α2−γc
c ∂s+1

‖ ∂α1

⊥,1∂
α2

⊥,2v‖2L2(Kce)
,

where we have also used de ≤ dc. Therefore,

(I)ce ≤ τ2s+4
σ d2γc−2

c

∑

α1,α2≤1

‖rs+1+α1+α2−γc
c ρ

(α1+α2−γe)+
ce ∂s+1

‖ ∂α1

⊥,1∂
α2

⊥,2v‖2L2(Kce)
.

If s+ 1 + α1 + α2 − γc < 0, then s = 1 and α1 = α2 = 0, thus

(I)ce ≤ τ2s+4
σ d2c‖r(s+1+α1+α2−γc)+

c ρ
(α1+α2−γe)+
ce ∂s+1

‖ ∂α1

⊥,1∂
α2

⊥,2v‖2L2(Kce)
.

Then, if s+ 1 + α1 + α2 − γc ≥ 0

(I)c =
∑

α1,α2≤1

h2s
‖ h

2α1

⊥,1h
2α2

⊥,2‖∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2L2(Kc)

≤ τ2s+4
σ

∑

α1,α2≤1

d2sc d
2(α1+α2)
e ‖∂s+1

‖ ∂α1

⊥,1∂
α2

⊥,2v‖2L2(Kc)

≤ τ2s+4
σ d2γc−2

c

∑

α1,α2≤1

‖r(s+1+α1+α2−γc)+
c ∂s+1

‖ ∂α1

⊥,1∂
α2

⊥,2v‖2L2(Kc)

where the last inequality follows also from de ≤ dc. If s+ 1 + α1 + α2 − γc < 0, then the same bound
holds with d2γc−2

c replaced by d2c . Similarly,

(I)e =
∑

α1,α2≤1

h2s
‖ h

2α1

⊥,1h
2α2

⊥,2‖∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2L2(Ke)

≤ τ2s+4
σ

∑

α1,α2≤1

d2sc d
2α1+2α2−2(α1+α2−γe)+
e ‖r(α1+α2−γe)+

e ∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2L2(Ke)

≤ τ2s+4
σ d2sc

∑

α1,α2≤1

‖r(α1+α2−γe)+
e ∂s+1

‖ ∂α1

⊥,1∂
α2

⊥,2v‖2L2(Ke)
,
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where we used that de ≤ 1. The bound on (I)0 follows directly from the definition:

(I)0 =
∑

α1,α2≤1

h2s
‖ h

2α1

⊥,1h
2α2

⊥,2‖∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2L2(K0)
≤ τ2s+4

σ d2sc
∑

α1,α2≤1

‖∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2L2(K0)
.

Using (2.1), there exists C > 0 dependent only on Cv and σ and A > 0 dependent only on Av and σ
such that

(I) ≤ CA2s+6((s+ 3)!)2
(
d2c + d2γc−2

c

)
. (A.27)

We then apply the same argument to the terms (II) and (III). Indeed,

(II)ce =
∑

α1≤1

h2s+2
⊥,1 h2α1

⊥,2‖∂‖∂s+1
⊥,1 ∂

α1

⊥,2v‖2L2(Kce)

≤ τ2s+4
σ

∑

α1≤1

d2s+2+2α1
e ‖∂‖∂s+1

⊥,1 ∂
α1

⊥,2v‖2L2(Kce)

≤ τ2s+4
σ

∑

α1≤1

d2γ̃−2
c d2γee ‖rs+2+α1−γc

c ρs+1+α1−γe
ce ∂‖∂

s+1
⊥,1 ∂

α1

⊥,2v‖2L2(Kce)

and the estimate for (III)ce follows by exchanging h⊥,1 and ∂⊥,1 with h⊥,2 and ∂⊥,2 in the inequality
above. The estimates for (II)c,e,0 and (III)c,e,0 can be obtained as for (I)c,e,0:

(II)c ≤ τ2s+4
σ

∑

α1≤1

d2γc−2
c ‖rs+2+α1−γc

c ∂‖∂
s+1
⊥,1 ∂

α1

⊥,2v‖2L2(Kc)
,

(II)e ≤ τ2s+4
σ

∑

α1≤1

d2γee ‖rs+1+α1−γe
e ∂‖∂

s+1
⊥,1 ∂

α1

⊥,2v‖2L2(Ke)
,

(II)0 ≤ τ2s+4
σ

∑

α1≤1

d2s+2
e ‖∂‖∂s+1

⊥,1 ∂
α1

⊥,2v‖2L2(K0)
.

Therefore, we have
(II), (III) ≤ CA2s+6(d2c + d2γc−2

c )((s+ 3)!)2. (A.28)

We obtain, from (A.26), (A.27), and (A.28) that there exists C > 0 (dependent only on σ, Cappx2, Cv
and A > 0 (dependent only on σ, Av) such that

‖∂̂‖(v̂ − Π̂pv̂)‖2L2(K̂)
≤ C

h‖
h⊥,1h⊥,2

Ψp,sA
2s+6(d2c + d2γc−2

c )((s+ 3)!)2.

Considering that

‖∂‖(v −Πpv)‖2L2(K) ≤
h⊥,1h⊥,2

h‖
‖∂̂‖(v̂ − Π̂pv̂)‖2L2(K̂)

completes the proof.

Lemma A.10. Let d = 3, ℓ ∈ N and K = Jℓk1 × Jℓk2 × Jℓk3 for 0 < k1, k2, k3 ≤ ℓ. Let also v ∈
J̟
γ (Q; C, E ;Cv, Av) with γc ∈ (3/2, 5/2), γe ∈ (1, 2). Then, there exists C > 0 dependent only on σ,

Cappx2, Cv and A > 0 dependent only on σ, Av such that for all p ∈ N and all 1 ≤ s ≤ p

‖∂⊥,1(v −ΠKp v)‖2L2(K) + ‖∂⊥,2(v −ΠKp v)‖2L2(K)

≤ CΨp,sA
2s+6

(
(dKc )2(γc−1) + (dKc )2(γe−1)

)
((s+ 3)!)2, (A.29)

where ∂⊥,1, ∂⊥,2 are the derivatives in the directions perpendicular to the closest singular edge.

Proof. The proof follows closely that of Lemma A.9 and we use the same notation. From Lemma A.6
and rescaling, we have

‖∂̂⊥,1(v̂ − Π̂pv̂)‖2L2(K̂)
≤ Cappx2Ψp,s

h⊥,1
h‖h⊥,2



∑

α1≤1

h2s+2
‖ h2α1

⊥,2‖∂s+1
‖ ∂⊥,1∂

α1

⊥,2v‖2L2(K)

+
∑

α1,α2≤1

h2α1

‖ h2s
⊥,1h

2α2

⊥,2‖∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2L2(K)

+
∑

α1≤1

h2α1

‖ h2s+2
⊥,2 ‖∂α1

‖ ∂⊥,1∂
s+1
⊥,2 v‖2L2(K)




= Cappx2Ψp,s
h⊥,1
h‖h⊥,2

(
(I) + (II) + (III)

)
.

(A.30)
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As before, we will write γ̃ = γc − γe. We start by considering the term (I)ce. When α1 = 1,

h2s+2
‖ h2

⊥,2‖∂s+1
‖ ∂⊥,1∂⊥,2v‖2L2(Kce)

≤ τ2s+4
σ d2s+2

c d2e‖∂s+1
‖ ∂⊥,1∂⊥,2v‖2L2(Kce)

≤ τ2s+4
σ d2γ̃c d

2γe−2
e ‖rs+3−γc

c ρ2−γece ∂s+1
‖ ∂⊥,1∂⊥,2v‖2L2(Kce)

,

where d2γ̃c d
2γe−2
e ≤ d2γc−2

c . Furthermore, if α1 = 0,

h2s+2
‖ ‖∂s+1

‖ ∂⊥,1v‖2L2(Kce)
≤ τ2s+2

σ d2s+2
c ‖∂s+1

‖ ∂⊥,1v‖2L2(Kce)

≤ τ2s+2
σ d2γc−2

c ‖rs+2−γc
c ∂s+1

‖ ∂⊥,1v‖2L2(Kce)
.

Therefore,

(I)ce ≤
(
1− σ

σ

)2s+4

d2γc−2
c

∑

α1≤1

‖rs+2+α1−γc
c ρ

(1+α1−γe)+
ce ∂s+1

‖ ∂⊥,1∂
α1

⊥,2v‖2L2(Kce)
.

The estimates for (I)c,e,0 follow from the same technique:

(I)e ≤
∑

α1≤1

τ2s+4
σ d2s+2

c ‖r(1+α1−γe)+
e ∂s+1

‖ ∂⊥,1∂
α1

⊥,2v‖2L2(Ke)
,

(I)c ≤
∑

α1≤1

τ2s+4
σ d2γc−2

c ‖rs+2+α1−γc
c ∂s+1

‖ ∂⊥,1∂
α1

⊥,2v‖2L2(Kc)
,

(I)0 ≤
∑

α1≤1

τ2s+4
σ d2s+2

c ‖∂s+1
‖ ∂⊥,1∂

α1

⊥,2v‖2L2(K0)
.

Hence, from (2.1), there exists C > 0 dependent only on Cv and σ and A > 0 dependent only on Av
and σ such that

(I) ≤ CA2s+6((s+ 3)!)2d2γc−2
c . (A.31)

We then apply the same argument to the terms (II) and (III). Indeed, if s+ 1 + α1 + α2 − γc ≥ 0

(II)ce =
∑

α1,α2≤1

h2α1

‖ h2s
⊥,1h

2α2

⊥,2‖∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2L2(Kce)

≤ τ2s+4
σ

∑

α1,α2≤1

d2α1
c d2s+2α2

e ‖∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2L2(Kce)

≤ τ2s+4
σ

∑

α1≤1

d2γ̃c d
2γe−2
e ‖rs+1+α1+α2−γc

c ρs+1+α2−γe
ce ∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2L2(Kce)

≤ τ2s+4
σ

∑

α1≤1

d2γc−2
c ‖rs+1+α1+α2−γc

c ρs+1+α2−γe
ce ∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2L2(Kce)
,

where at the last step we have used that γe > 1 and de ≤ dc. If s+ 1 + α1 + α2 − γc < 0, then

(II)ce =
∑

α1,α2≤1

h2α1

‖ h2s
⊥,1h

2α2

⊥,2‖∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2L2(Kce)

≤ τ2s+4
σ

∑

α1,α2≤1

d2α1
c d2s+2α2

e ‖∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2L2(Kce)

≤ τ2s+4
σ

∑

α1≤1

d2α1
c d2s+2α2

e (de/dc)
−2s−2−2α2+2γe‖ρs+1+α2−γe

ce ∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2L2(Kce)

≤ τ2s+4
σ

∑

α1≤1

d2s+2−2γe
c d2γe−2

e ‖ρs+1+α2−γe
ce ∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2L2(Kce)
.

Thus, using de ≤ dc,

(II)ce ≤ τ2s+4
σ

∑

α1≤1

(d2sc + d2γc−2
c )‖r(s+1+α1+α2−γc)+

c ρs+1+α2−γe
ce ∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2L2(Kce)
.

The estimates for (II)c,e,0 and (III)ce,c,e,0 can be obtained as above:

(II)e ≤ τ2s+4
σ

∑

α1≤1

d2γe−2
e ‖rs+1+α2−γe

e ∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2L2(Ke)
,
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if s+ 1 + α1 + α2 − γc ≥ 0, then

(II)c ≤ τ2s+4
σ

∑

α1≤1

d2γc−2
c ‖rs+1+α1+α2−γc

c ∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2L2(Kc)
,

if s+ 1 + α1 + α2 − γc < 0, then

(II)c ≤ τ2s+4
σ

∑

α1≤1

d2sc ‖∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2L2(Kc)
,

so that

(II)c ≤ τ2s+4
σ

∑

α1≤1

(d2sc + d2γc−2
c )‖∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2L2(Kc)
,

(II)0 ≤ τ2s+4
σ

∑

α1≤1

d2sc ‖∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2L2(K0)
,

(III)ce ≤ τ2s+4
σ

∑

α1≤1

d2γc−2
c ‖rs+2+α1−γc

c ρs+2−γe
ce ∂α1

‖ ∂⊥,1∂
s+1
⊥,2 v‖2L2(Kce)

,

(III)e ≤ τ2s+4
σ

∑

α1≤1

d2γe−2
e ‖rs+2−γe

e ∂α1

‖ ∂⊥,1∂
s+1
⊥,2 v‖2L2(Ke)

,

(III)c ≤ τ2s+4
σ

∑

α1≤1

d2γc−2
c ‖rs+2+α1−γc

c ∂α1

‖ ∂⊥,1∂
s+1
⊥,2 v‖2L2(Kc)

,

(III)0 ≤ τ2s+4
σ

∑

α1≤1

d2s+2
e ‖∂α1

‖ ∂⊥,1∂
s+1
⊥,2 v‖2L2(K0)

.

Therefore, we have
(II) + (III) ≤ CA2s+6(d2γc−2

c + d2γe−2
c )((s+ 3)!)2. (A.32)

We obtain, from (A.30), (A.31), and (A.32) that there exists C > 0 dependent only on σ, Cappx2, Cv
and A > 0 dependent only on σ, Av such that

‖∂̂⊥,1(v̂ − Π̂pv̂)‖2L2(K̂)
≤ C

h⊥,1
h‖h⊥,2

Ψp,sA
2s+6

(
d2(γc−1)
c + d2(γe−1)

c

)
((s+ 3)!)2.

Considering that

‖∂⊥,1(v −Πpv)‖2L2(K) ≤
h‖h⊥,2
h⊥,1

‖∂̂⊥,1(v̂ − Π̂pv̂)‖2L2(K̂)

and considering that the estimate for the other term at the left-hand side of (A.29) is obtained by
exchanging {h, ∂}⊥,1 with {h, ∂}⊥,2 completes the proof.

Lemma A.11. Let d = 3, ℓ ∈ N and K = Jℓk1 × Jℓk2 × Jℓk3 for 0 < k1, k2, k3 ≤ ℓ. Let also v ∈
J̟
γ (Q; C, E ;Cv, Av) with γc ∈ (3/2, 5/2), γe ∈ (1, 2). Then, there exists C > 0 dependent only on σ,

Cappx1, Cv and A > 0 dependent only on σ, Av such that for all p ∈ N and all 1 ≤ s ≤ p

‖v −ΠKp v‖2L2(K) ≤ CΨp,sA
2s+6

(
d2(γc−1)
c + d2(γe−1)

c

)
((s+ 3)!)2. (A.33)

Proof. The proof follows closely that of Lemmas A.9 and A.10; we use the same notation. From Lemma
A.4 and rescaling, we have

‖v̂ − Π̂pv̂‖2L2(K̂)
≤ Cappx1Ψp,s

1

h‖h⊥,1h⊥,2




∑

α1,α2≤1

h2s+2
‖ h2α1

⊥,1h
2α2

⊥,2‖∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2L2(K)

+
∑

α1,α2≤1

h2α1

‖ h2s+2
⊥,1 h2α2

⊥,2‖∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2L2(K)

+
∑

α1,α2≤1

h2α1

‖ h2α2

⊥,1h
2s+2
⊥,2 ‖∂α1

‖ ∂α2

⊥,1∂
s+1
⊥,2 v‖2L2(K)


 .

(A.34)

Most terms at the right-hand side above have already been considered in the proofs of Lemmas A.9 and
A.10, and the terms with α1 = α2 = 0 can be estimated similarly; the observation that

‖v −Πpv‖2L2(K) ≤ h‖h⊥,1h⊥,2‖v̂ − Π̂pv̂‖2L2(K̂)

concludes the proof.
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We summarize Lemmas A.9 to A.11 in the following result.

Lemma A.12. Let d = 3, ℓ ∈ N and K = Jℓk1 × Jℓk2 × Jℓk3 such that 0 < k1, k2, k3 ≤ ℓ. Let also
v ∈ J̟

γ (Q; C, E ;Cv, Av) with γc ∈ (3/2, 5/2), γe ∈ (1, 2). Then, there exists C > 0 dependent only on σ,
Cappx1, Cappx2, Cv and A > 0 dependent only on σ, Av such that for all p ∈ N and all 1 ≤ s ≤ p

‖v −ΠKp v‖2H1(K) ≤ CΨp,sA
2s+6

(
d2(γc−1)
c + d2(γe−1)

c

)
((s+ 3)!)2. (A.35)

We then consider elements on the faces (but not abutting edges) of Q.

Lemma A.13. Let d = 3, ℓ ∈ N and K = Jℓk1 × Jℓk2 × Jℓk3 such that kj = 0 for one j ∈ {1, 2, 3} and
0 < ki ≤ ℓ for i 6= j. For all p ∈ N and all 1 ≤ s ≤ p, let pj = 1 and pi = p ∈ N for i 6= j. Let also
v ∈ J̟

γ (Q; C, E ;Cv, Av) with γc ∈ (3/2, 5/2), γe ∈ (1, 2). Then, there exists C > 0 dependent only on σ,
Cappx1, Cappx2, Cv and A > 0 dependent only on σ, Av such that

‖v −ΠKp1p2p3v‖
2
H1(K)C

(
Ψp,sA

2s+6(dKc )2(min(γc,γe)−1)((s+ 3)!)2 + (dKe )2(min(γc,γe)−2)σ2ℓA8
)
.

(A.36)

Proof. We write da = dKa , a ∈ {c, e}. Suppose, for ease of notation, that j = 3, i.e. k3 = 0. The projector
is then given by ΠKpp1 = πk1p ⊗ πk2p ⊗ π0

1 . Also, we denote h⊥,2 = σℓ and ∂⊥,2 = ∂x3 . By (A.16),

‖∂‖(v −ΠKpp1v)‖2L2(K) ≤ Cappx2


Ψp,s

( ∑

α1,α2≤1

h2s
‖ h

2α1

⊥,1h
2α2

⊥,2‖∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2L2(K)

+
∑

α1≤1

h2s+2
⊥,1 h2α1

⊥,2‖∂‖∂s+1
⊥,1 ∂

α1

⊥,2v‖2L2(K)

)

+
∑

α1≤1

h2α1

⊥,1h
4
⊥,2‖∂‖∂α1

⊥,1∂
2
⊥,2v‖2L2(K)




= Cappx2

(
(I) + (II) + (III)

)
.

The bounds on the terms (I) and (II) can be derived as in Lemma A.9, and give

(I) + (II) ≤ CΨp,sA
2s+6

(
(dKc )2 + (dKc )2(γc−1)

)
((s+ 3)!)2.

We consider then term (III): with the usual notation, writing γ̃ = γc − γe,

(III)ce =
∑

α1≤1

h2α1

⊥,1h
4
⊥,2‖∂‖∂α1

⊥,1∂
2
⊥,2v‖2L2(Kce)

≤
∑

α1≤1

τ4+2α1
σ d2γ̃−2

c d2γe−4
e σ4ℓ‖r3+α1−γc

c ρ2+α1−γe
ce ∂‖∂

α1

⊥,1∂
2
⊥,2v‖2L2(Kce)

≤ Cτ6σd
2γ̃−2
c d2γe−4

e σ4ℓA8.

(A.37)

Note that dc ≥ de and

dγ̃c d
γe
e ≤

{
1γ̃dγee if γ̃ ≥ 0

dγ̃ed
γe
e if γ̃ ≥ 0

≤ dmin(γc,γe)
e , (A.38)

where we have also used that dc ≤ 1. Hence,

(III)ce ≤ Cτ6σd
2min(γe,γc)−6
e σ4ℓA8 ≤ Cτ6σd

2min(γe,γc)−4
e σ2ℓA8. (A.39)

The bounds on the terms (III)c,e,0 follow by the same argument:

(III)e ≤ Cτ6σd
2γe−4
e σ4ℓA8,

(III)c ≤ Cτ6σd
2γc−6
c σ4ℓA8 ≤ Cτ6σd

2γc−4
e σ2ℓA8,

(III)0 ≤ Cτ6σσ
4ℓA8.
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Then,

‖∂⊥,1(v −ΠKpp1v)‖2L2(K) ≤ Cappx2


 (p− s)!

(p+ s)!

( ∑

α1≤1

h2s+2
‖ h2α1

⊥,2‖∂s+1
‖ ∂⊥,1∂

α1

⊥,2v‖2L2(K)

+
∑

α1,α2≤1

h2α1

‖ h2s
⊥,1h

2α2

⊥,2‖∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2L2(K)

)

+
∑

α1≤1

h2α1

‖ h4
⊥,2‖∂α1

‖ ∂⊥,1∂
2
⊥,2v‖2L2(K)




≤ Cappx2

(
(I) + (II) + (III)

)
.

The bounds on the first two terms at the right-hand side above can be obtained as in Lemma A.10:

(I) + (II) ≤ CΨp,sA
2s+6

(
(dKc )2(γc−1) + (dKc )2(γe−1)

)
((s+ 3)!)2,

while the last term can be bounded as in (A.39),

(III)ce ≤ τ6σd
2γ̃
c d

2γe−6
e σ4ℓA8 ≤ Cτ6σd

2min(γc,γe)−4
e σ2ℓA8,

(III)e ≤ τ6σd
2γe−6
e σ4ℓA8 ≤ Cτ6σd

2γe−4
e σ2ℓA8,

(III)c ≤ τ6σd
2γc−6
c σ4ℓA8 ≤ Cτ6σd

2γc−4
e σ2ℓA8,

(III)0 ≤ τ6σσ
4ℓA8,

so that ∑

α1≤1

h2α1

‖ h4
⊥,2‖∂α1

‖ ∂⊥,1∂
2
⊥,2v‖2L2(K) ≤ Cd2min(γc,γe)−4

e σ2ℓA8.

The same holds true for the last term of the gradient of the approximation error, given by

‖∂⊥,2(v −ΠKpp1v)‖2L2(K) ≤ Cappx2


Ψp,s

( ∑

α1≤1

h2s+2
‖ h2α1

⊥,1‖∂s+1
‖ ∂α1

⊥,1∂⊥,2v‖2L2(K)

+
∑

α1≤1

h2α1

‖ h2s+2
⊥,1 ‖∂α1

‖ ∂s+1
⊥,1 ∂⊥,2v‖2L2(K)

)

+
∑

α1,α2≤1

h2α1

‖ h2α2

⊥,1h
2
⊥,2‖∂α1

‖ ∂α2

⊥,1∂
2
⊥,2v‖2L2(K)




≤ Cappx2

(
(I) + (II) + (III)

)
.

From Lemma A.10, we obtain

(I) + (II) ≤ CΨp,sA
2s+6

(
(dKc )2(γc−1) + (dKc )2(γe−1)

)
((s+ 3)!)2,

whereas for the third term, it holds that if α1 + α2 + 2− γc ≥ 0

(III)ce ≤ τ6σd
2γ̃
c d

2γe−4
e σ2ℓA8 ≤ Cτ6σd

2min(γc,γe)−4
e σ2ℓA8, (III)c ≤ τ6σd

2γc−4
c σ2ℓA8,

and if α1 + α2 + 2− γc < 0, then

(III)ce ≤ τ6σd
2γe−4
e σ2ℓA8, (III)c ≤ τ6σσ

2ℓA8,

and for all α1 +α2 +2− γc ∈ R, (III)e and (III)0 satisfy the bounds that (III)ce and (III)c satisfy in
case α1 + α2 + 2− γc < 0, so that

‖∂⊥,2(v −ΠKpp1v)‖2L2(K) ≤ C
(
Ψp,sA

2s+6((s+ 3)!)2d2(min(γc,γe)−1)
c +A8d2(min(γc,γe)−2)

e σ2ℓ
)
.

Finally, the bound on the L2(K) norm of the approximation error can be obtained by a combination of
the estimates above.

The exponential convergence of the approximation in internal elements (i.e., elements not abutting a
singular edge or corner) follows, from Lemmas A.9 to A.13.
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Lemma A.14. Let d = 3 and v ∈ J̟
γ (Q; C, E) with γc > 3/2, γe > 1. There exists a constant C0 > 0 such

that if p ≥ C0ℓ, there exist constants C, b > 0 such that for every ℓ ∈ N holds

∑

K:dKe >0

‖v −Πℓ,php,dv‖2H1(K) ≤ Ce−bℓ.

Proof. We suppose, without loss of generality, that γc ∈ (3/2, 5/2), and γe ∈ (1, 2). The general case
follows from the inclusion J̟

γ
1
(Q; C, E) ⊂ J̟

γ
2
(Q; C, E), valid for γ1 ≥ γ2. Fix any C0 > 0 and choose

p ≥ C0ℓ. For all A > 0 there exist C1, b1 > 0 such that (see, e.g., [43, Lemma 5.9])

∀p ∈ N : min
1≤s≤p

Ψp,sA
2s(s!)2 ≤ C1e

−b1p.

From (A.35) and (A.36), there holds

∑

K:dKe >0

‖v −Πℓ,php,dv‖2H1(K) ≤ C2




∑

K:dKe >0

e−b1ℓ(dKc )2(min(γc,γe)−1) +
∑

K:dKe >0,dK
f

=0

(dKe )2(min(γe,γc)−2)σ2ℓ




= C2

(
(I) + (II)

)
,

where dKf indicates the distance of an elementK to one of the faces of Q. There holds directly (I) ≤
Cℓ2e−b1ℓ. Furthermore, because (min(γc, γe)− 2) < 0,

(II) ≤ 6σ2ℓ
ℓ∑

k1=1

k1∑

k2=1

σ2(ℓ−k2)(min(γe,γc)−2)

≤ Cσ2ℓ
ℓ∑

k1=1

σ2ℓ(min(γc,γe)−2)

≤ Cℓσ2(min(γc,γe)−1)ℓ.

Adjusting the constants at the exponent to absorb the terms in ℓ and ℓ2, we obtain the desired estimate.

A similar statement holds when d = 2, and the proof follows along the same lines.

Lemma A.15. Let d = 2 and v ∈ J̟
γ (Q; C, E) with γc > 1. There exists a constant C0 > 0 such that if

p ≥ C0ℓ, there exist constants C, b > 0 such that

∑

K:dKc >0

‖v −Πℓ,php,dv‖2H1(K) ≤ Ce−bℓ, ∀ℓ ∈ N.

A.6 Estimates on elements along an edge in three dimensions

In the following lemma, we consider the elementsK along one edge, but separated from the singular
corner.

Lemma A.16. Let d = 3, e ∈ E and letK ∈ Gℓ3 be such that dKc > 0 for all c ∈ C and dKe = 0. LetCv, Av > 0.
Then, if v ∈ J̟

γ (Q; C, E ;Cv, Av) with γc ∈ (3/2, 5/2), γe ∈ (1, 2), there exist C,A > 0 such that for all

p ∈ N and all 1 ≤ s ≤ p, with (p1, p2, p3) ∈ N3 such that p‖ = p, p⊥,1 = 1 = p⊥,2,

‖v −ΠKp1p2p3v‖
2
H1(K) ≤ C

(
σ2{min{γc−1,s}(ℓ−k)Ψp,sA

2s((s+ 3)!)2 + σ2(min(γe,γc)−1)ℓ
)
, (A.40)

where k ∈ {1, . . . , ℓ} is such that dKc = σℓ−k+1.

Proof. We suppose that K = Jℓk × Jℓ0 × Jℓ0 for some k ∈ {1, . . . , ℓ}, the elements along other edges
follow by symmetry. This implies that the singular edge is parallel to the first coordinate direction.
Furthermore, we denote

ΠKp11 = πkp ⊗ (π0
1 ⊗ π0

1) = π‖ ⊗ π⊥.

For α = (α1, α2, α3) ∈ N3
0, we write α‖ = (α1, 0, 0) and α⊥ = (0, α2, α3). Also,

h‖ = |Jℓk| = σℓ−k(1− σ) h⊥ = σℓ.

We have
v −ΠKp11v = v − π⊥v + π⊥

(
v − π‖v

)
. (A.41)
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We start by considering the first terms at the right-hand side of the above equation. We also compute
the norms overKce = K ∩Qce; the estimate on the norms overKc = K ∩Qc andKe = K ∩Qe follow
by similar or simpler arguments. By (A.21) from Lemma A.8, we have that if γc < 2

∑

|α⊥|≤1

h
−2(1−|α⊥|)
⊥ ‖∂α⊥(v − π⊥v)‖2L2(Kce)

. h
2(γe−1)
⊥

∑

|α⊥|=2

‖r2−γee ∂α⊥v‖2L2(Kce)

. h
2(γc−γe)
‖ h

2(γe−1)
⊥

∑

|α⊥|=2

‖r(2−γc)+c ρ2−γece ∂α⊥v‖2L2(Kce)

. σ2k(γe−1)σ2(ℓ−k)(γc−1)A4
. σ2ℓ(min{γc,γe}−1)A4,

(A.42a)
whereas for γc ≥ 2

∑

|α⊥|≤1

h
−2(1−|α⊥|)
⊥ ‖∂α⊥(v − π⊥v)‖2L2(Kce)

. h
2(γe−1)
⊥

∑

|α⊥|=2

‖r2−γee ∂α⊥v‖2L2(Kce)

. σ2ℓ(γe−1)A4. (A.42b)

On Ke, the same bound holds as on Kce for γc ≥ 2, and on Kc the same bounds hold as on Kce for
γc < 2. By the same argument, for |α‖| = 1,

‖∂α‖(v − π⊥v)‖2L2(Kce)
= ‖(∂α‖v)− π⊥(∂

α‖v)‖2L2(Kce)

. h2γe
⊥

∑

|α⊥|=2

‖r2−γee ∂α⊥∂α‖v‖2L2(Kce)

. h2γ̃−2
‖ h2γe

⊥
∑

|α⊥|=2

‖r3−γcc ρ2−γece ∂αv‖2L2(Kce)

. σ2(ℓ−k)(γc−1)σ2k(γe−1)A6
. σ2ℓ(min{γc,γe}−1)A6,

(A.43a)

and

‖(∂α‖v)− π⊥(∂
α‖v)‖2L2(Ke)

. σ2ℓγeA6, (A.43b)

‖(∂α‖v)− π⊥(∂
α‖v)‖2L2(Kc)

. σ2(ℓ−k)(γc−1)σ2k(γe−1)A6
. σ2ℓ(min{γc,γe}−1)A6. (A.43c)

We now turn to the second part of the right-hand side of (A.41). We use (A.20) from Lemma A.8 so that

∑

|α⊥|≤1

‖∂α⊥π⊥(v − π‖v)‖2L2(K)

.
∑

|α⊥|≤1

‖∂α⊥(v − π‖v)‖2L2(K) +
∑

|α⊥|=2

h
2(γe−1)
⊥ ‖r2−γee ∂α⊥(v − π‖v)‖2L2(K).

(A.44)

By Lemma A.7 we have, recalling that α‖ = s+ 1 and 1 ≤ s ≤ p, for all |α⊥| ≤ 1,

‖∂α⊥(v − π‖v)‖2L2(K) = ‖(∂α⊥v)− π‖(∂
α⊥v)‖2L2(K)

. τ2s+2
σ h

2min{γc,s+1}
‖ Ψp,s‖|x1|(s+1−γc)+∂α‖∂α⊥v)‖2L2(K),

and, for all |α⊥| = 2, using that π‖ and multiplication by re commute, because re does not depend on
x1,

‖r2−γee ∂α⊥(v − π‖v)‖2L2(K) = ‖(r2−γee ∂α⊥v)− π‖(r
2−γe
e ∂α⊥v)‖2L2(K)

. τ2s+2
σ h

2min{γc,s+1}
‖ Ψp,s‖|x1|(s+1−γc)+r2−γee ∂α‖∂α⊥v)‖2L2(K).

Then, remarking that |x1| . rc . |x1|, combining (A.44) with the two inequalities above we obtain

∑

|α⊥|≤1

‖∂α⊥π⊥(v − π‖v)‖2L2(K)

. τ2s+2
σ Ψp,sh

2min{γc−1,s}
‖ h2

‖



∑

|α⊥|≤1

‖r(s+1−γc)+
c ∂αv‖2L2(K)

+
∑

|α⊥|=2

h
2(γe−1)
⊥ ‖r(s+1−γc)+

c r2−γee ∂αv‖2L2(K)


 .
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Adjusting the exponent of the weights, replacing h‖ and h⊥ with their definition, we find that there
exists A > 0 depending only on σ and Av such that
∑

|α⊥|≤1

‖∂α⊥π⊥(v − π‖v)‖2L2(Kce)

. τ2s+2
σ Ψp,sh

2min{γc−1,s}
‖ h2

‖



∑

|α⊥|≤1

h
−2|α⊥|
‖ ‖r(s+1+|α⊥|−γc)+

c ∂αv‖2L2(Kce)

+
∑

|α⊥|=2

h
2(γe−1)
⊥ h−2γe

‖ ‖rs+3−γc
c ρ2−γece ∂αv‖2L2(Kce)




. σ2(ℓ−k)min{γc−1,s}Ψp,sA
2s+4((s+ 3)!)2,

(A.45a)
and similarly

∑

|α⊥|≤1

‖∂α⊥π⊥(v − π‖v)‖2L2(Ke)
. σ2(ℓ−k)min{γc,s+1}Ψp,sA

2s+4((s+ 3)!)2, (A.45b)

and the estimate onKc is the same as that onKce. Similarly to (A.44), using first (A.23) from the proof
of Lemma A.8, and then Lemma A.7
∑

|α‖|≤1

‖∂α‖π⊥(v − π‖v)‖2L2(K)

.
∑

|α‖|≤1



∑

|α⊥|≤1

h
2|α⊥|
⊥ ‖∂α⊥∂α‖(v − π‖v)‖2L2(K) +

∑

|α⊥|=2

h2γe
⊥ ‖r2−γee ∂α⊥∂α‖(v − π‖v)‖2L2(K)




. τ2s+2
σ Ψp,sh

2min{γc−1,s}
‖




∑

|α‖|=s+1

∑

|α⊥|≤1

h
2|α⊥|
⊥ ‖r(s+1−γc)+

c ∂α‖∂α⊥v‖2L2(K)

+
∑

|α‖|=s+1

∑

|α⊥|=2

h2γe
⊥ ‖r2−γee r

(s+1−γc)+
c ∂α‖∂α⊥v‖2L2(K)


 .

As before, there exists A > 0 depending only on σ and Av such that
∑

|α‖|≤1

‖∂α‖π⊥(v − π‖v)‖2L2(Kce)

. τ2s+2
σ Ψp,sh

2min{γc−1,s}
‖




∑

|α‖|=s+1

∑

|α⊥|≤1

h
2|α⊥|
⊥ h

−2|α⊥|
‖ ‖r(s+1+|α⊥|−γc)+

c ∂αv‖2L2(Kce)

+
∑

|α‖|=s+1

∑

|α⊥|=2

h2γe
⊥ h−2γe

‖ ‖rs+3−γc
c ρ2−γece ∂αv‖2L2(Kce)




. σ2(ℓ−k)min{γc−1,s}Ψp,sA
2s+4((s+ 3)!)2,

(A.46a)
and
∑

|α‖|≤1

‖∂α‖π⊥(v − π‖v)‖2L2(Ke)

. τ2s+2
σ Ψp,sh

2min{γc−1,s}
‖




∑

|α‖|=s+1

∑

|α⊥|≤1

h
2|α⊥|
⊥ ‖r(s+1−γc)+

c ∂αv‖2L2(Ke)

+
∑

|α‖|=s+1

∑

|α⊥|=2

h2γe
⊥ ‖r(s+1−γc)+

c r2−γee ∂αv‖2L2(Ke)




. σ2(ℓ−k)min{γc−1,s}Ψp,sA
2s+4((s+ 3)!)2,

(A.46b)
and the estimate on Kc is the same as that on Kce. The assertion now follows from (A.42), (A.43),
(A.45), and (A.46), upon possibly adjusting the value of the constant A.
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Lemma A.17. Let d = 3 and v ∈ J̟
γ (Q; C, E) with γc > 3/2, γe > 1. There exists a constant C0 > 0 such

that if p ≥ C0ℓ, there exist constants C, b > 0 such that

∑

K:dKc >0,dKe =0

‖v −Πℓ,php,dv‖H1(K) ≤ Ce−bℓ, ∀ℓ ∈ N.

Proof. As in the proof of Lemma A.14, we may assume that γc ∈ (3/2, 5/2) and γe ∈ (1, 2). The proof
of this statements follows by summing over the right-hand side of (A.40), i.e.,

∑

K:dKc >0,dKe =0

‖v −Πℓ,php,dv‖2H1(K) ≤ C

(
ℓ∑

k=1

σ2min{γc−1,s}(ℓ−k)Ψp,sA
2s((s+ 3)!)2 + σ2(min(γc,γe)−1)ℓ

)

= C((I) + (II)).

We have (II) . ℓσ2(min(γc,γe)−1)ℓ; the observation that for all A > 0 there exist C1, b1 > 0 such that

min
1≤s≤p

Ψp,s((s+ 3)!)2A2s ≤ C1e
−b1p,

(see, e.g., [43, Lemma 5.9]). Combining with p ≥ C0ℓ concludes the proof.

A.7 Estimates at the corner

The lemma below follows from classic low-order finite element approximation results and from the
embedding J 2

γ (Q; C, E) ⊂ H1+θ(Q), valid for a θ > 0 if γc − d/2 > 0, for all c ∈ C, and, when d = 3,
γe > 1 for all e ∈ E (see, e.g., [41, Remark 2.3]).

Lemma A.18. Let d ∈ {2, 3},K =×
d

i=1
Jℓ0 . Then, if v ∈ J̟

γ (Q; C, E) with

γc > 1, for all c ∈ C, if d = 2,

γc > 3/2 and γe > 1, for all c ∈ C and e ∈ E , if d = 3,

there exists a constant C0 > 0 independent of ℓ such that if p ≥ C0ℓ, there exist constants C, b > 0 such that

‖v −Πℓ,php,dv‖H1(K) ≤ Ce−bℓ.

A.8 Exponential convergence

The exponential convergence of the approximation in the full domain Q follows then from Lemmas
A.14, A.15, A.17, and A.18.

Proposition A.19. Let d ∈ {2, 3}, v ∈ J̟
γ (Q; C, E) with

γc > 1, for all c ∈ C, if d = 2,

γc > 3/2 and γe > 1, for all c ∈ C and e ∈ E , if d = 3.

Then, there exist constants cp > 0 and C, b > 0 such that, for all ℓ ∈ N,

‖v −Π
ℓ,cpℓ

hp,d v‖H1(Q) ≤ Ce−bℓ.

With respect to the dimension of the discrete space Ndof = dim(X
ℓ,cpℓ

hp,d ), the above bound reads

‖v −Π
ℓ,cpℓ

hp,d v‖H1(Q) ≤ C exp(−bN1/(2d)
dof ).

A.9 Explicit representation of the approximant in terms of continuous ba-
sis functions

Let p ∈ N. Let ζ̂1(x) = (1 + x)/2 and ζ̂2 = (1 − x)/2. Let also ζ̂n(x) = 1
2

∫ x
−1
Ln−2(ξ)dξ, for n =

3, . . . , p + 1, where Ln−2 denotes the L∞((−1, 1))-normalized Legendre polynomial of degree n − 2

introduced in Section A.2. Then, fix ℓ ∈ N and write ζkn = ζ̂n ◦ φk, n = 1, . . . , p + 1 and k = 0, . . . , ℓ,
with the affine map φk : Jℓk → (−1, 1) introduced in Section A.2. We construct those functions explicitly:
denoting Jℓk = (xk, xk+1) and hk = |xk+1 − xk|, there holds, for x ∈ Jℓk,

ζk1 (x) =
1

hk
(x− xk), ζk2 (x) =

1

hk
(xk+1 − x), (A.47)
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and

ζkn(x) =
1

hk

∫ x

xk

Ln−2(φk(η))dη n = 3, . . . , p+ 1. (A.48)

Then, for any elementK ∈ Gℓ3, withK = Jℓk1 × Jℓk2 × Jℓk3 , there exist coefficients cKi1...id such that

Πℓ,php,du|K (x1, x2, x3) =

p+1∑

i1,i2,i3=1

cKi1...idζ
k1
i1

(x1)ζ
k2
i2

(x2)ζ
k3
i3

(x3), ∀(x1, x2, x3) ∈ K (A.49)

by construction. We remark that, whenever ij > 2 for all j = 1, 2, 3, the basis functions vanish on the
boundary of the element:

(
ζk1i1 ζ

k2
i2
ζk3i3

)

|∂K

= 0 if ij ≥ 3, j = 1, 2, 3.

Furthermore, write
ψKi1...id(x1, x2, x3) = ζk1i1 (x1)ζ

k2
i2

(x2)ζ
k3
i3

(x3)

and consider ti1...id = #{ij ≤ 2, j = 1, 2, 3}. We have

• if ti1...id = 1, then ψKi1...id is not zero only on one face of the boundary ofK,

• if ti1...id = 2, then ψKi1...id is not zero only on one edge and neighboring faces of the boundary of
K,

• if ti1...id = 3, then ψKi1...id is not zero only on one corner and neighboring edges and faces of the
boundary ofK.

Similar arguments hold when d = 2.

A.9.1 Explicit bounds on the coefficients

We derive here a bound on the coefficients of the local projectors with respect to the norms of the
projected function. We will use that

‖Li ◦ φk‖L2(Jℓ
k
) =

(
hk
2

)1/2

‖Li‖L2((−1,1)) =

(
hk

2i+ 1

)1/2

∀i ∈ N0, ∀k ∈ {0, . . . , ℓ}. (A.50)

Remark A.20. As mentioned in Remark A.3, the hp-projector Πℓ,php,d can be defined for more general functions

than u ∈ H1
mix(Q). As follows from Equations (A.53), (A.57), (A.61) and (A.64) below, the projector is also

defined for u ∈W 1,1
mix(Q).

Lemma A.21. There exist constants C1, C2 such that, for all u ∈W 1,1
mix(Q), all ℓ ∈ N, all p ∈ N

|cKi1...id | ≤ C

(
d∏

j=1

ij

)
‖u‖

W
1,1
mix

(Q)
∀K ∈ Gℓd, ∀(i1, . . . , id) ∈ {1, . . . , p+ 1}d (A.51)

and for all (i1, . . . , id) ∈ {1, . . . , p+ 1}d

∑

K∈Gℓ
3

|cKi1...id | ≤ C‖u‖
W

1,1
mix

(Q)





(∏d
j=1 ij

)
if ti1...id = 0,

(ℓ+ 1)
(∑d

j1=1

∑d
j2=j1+1 ij1 ij2

)
if ti1...id = 1,

(ℓ+ 1)2
(∑d

j=1 ij
)

if ti1...id = 2,

(ℓ+ 1)d if ti1...id = 3.

(A.52)

Proof. Let d = 3 andK = Jℓk1 × Jℓk2 × Jℓk3 ∈ Gℓ3.
Internal modes. We start by considering the case of the coefficients of internal modes, i.e., cKi1,i2,i3 as
defined in (A.49) for in ≥ 3, n = 1, 2, 3. Let then i1, i2, i3 ∈ {3, . . . , p + 1} and write Lkn = Ln ◦ φk:
there holds

cKi1,i2,i3 = (2i1−3)(2i2−3)(2i3−3)

∫

K

(∂x1∂x2∂x3u(x1, x2, x3))L
k1
i1−2(x1)L

k2
i2−2(x2)L

k3
i3−2(x3)dx1dx2dx3.

(A.53)
If u ∈W 1,1

mix(K), since ‖Ln‖L∞(−1,1) = 1 for all n, we have

|cKi1...id | ≤ (2i1 − 3)(2i2 − 3)(2i3 − 3)‖∂x1∂x2∂x3u‖L1(K) in ≥ 3, n = 1, 2, 3, (A.54)
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hence,
∑

K∈Gℓ
3

|cKi1...id | ≤ (2i1 − 3)(2i2 − 3)(2i3 − 3)‖∂x1∂x2∂x3u‖L1(Q) in ≥ 3, n = 1, 2, 3. (A.55)

Face modes. We continue with face modes and fix, for ease of notation, i1 = 1. We also denote
F = Jℓk2 × Jℓk3 . The estimates will then also hold for i1 = 2 and for any permutation of the indices
by symmetry. We introduce the trace inequality constant CT,1, independent of K, such that, for all
v ∈W 1,1(Q) and x̂ ∈ (0, 1),

‖v(x̂, ·, ·)‖L1(F ) ≤ ‖v(x̂, ·, ·)‖L1((0,1)2) ≤ CT,1
(
‖v‖L1(Q) + ‖∂x1v‖L1(Q)

)
. (A.56)

This follows from the trace estimate in [42, Lemma 4.2] and from the fact that

‖v(x̂, ·, ·)‖L1((0,1)2) ≤ Cmin

{
1

|1− x̂| ‖v‖L1((x̂,1)×(0,1)2) + ‖∂x1v‖L1((x̂,1)×(0,1)2),

1

|x̂| ‖v‖L1((0,x̂)×(0,1)2) + ‖∂x1v‖L1((0,x̂)×(0,1)2)

}
.

There holds, for i2, i3 ∈ {3, . . . , p+ 1},

cK1,i2,i3 = (2i2 − 3)(2i3 − 3)

∫

F

(
∂x2∂x3u(x

ℓ
k1 , x2, x3)

)
Lk2i2−2(x2)L

k3
i3−2(x3)dx2dx3. (A.57)

Since the Legendre polynomials are L∞ normalized and using the trace inequality (A.56),

|cK1,i2,i3 | ≤ (2i2 − 3)(2i3 − 3)‖(∂x2∂x3u)(xℓk1 , ·, ·)‖L1(F ) ≤ CT,1(2i2 − 3)(2i3 − 3)‖u‖
W

1,1
mix

(Q)
. (A.58)

Summing over all internal faces, furthermore,

∑

K∈Gℓ
3

|cK1,i2,i3 | ≤ (2i2 − 3)(2i3 − 3)

ℓ∑

k1=0

‖(∂x2∂x3u)(xℓk1 , ·, ·)‖L1((0,1)2)

≤ CT,1(ℓ+ 1)(2i2 − 3)(2i3 − 3)‖u‖
W

1,1
mix

(Q)
.

(A.59)

Edge modes. We now consider edge modes. Fix for ease of notation i1 = i2 = 1; as before, the estimates
will hold for (i1, i2) ∈ {1, 2}2 and for any permutation of the indices. By the same arguments as for
(A.56), there exists a trace constant CT,2 such that, denoting e = Jℓk3 , for all v ∈W 1,1((0, 1)2) and for
all x̂ ∈ (0, 1),

‖v(x̂, ·)‖L1(e) ≤ ‖v(x̂, ·)‖L1((0,1)) ≤ CT,2
(
‖u‖L1((0,1)2) + ‖∂x2u‖L1((0,1)2)

)
. (A.60)

By definition,

cK1,1,i3 = (2i3 − 3)

∫

e

(
∂x3u(x

ℓ
k1 , x

ℓ
k2 , x3)

)
Lk3i3−2(x3)dx3. (A.61)

Using (A.56) and (A.60)

|cK1,1,i3 | ≤ (2i3 − 3)‖(∂x3u)(xℓk1 , x
ℓ
k2 , ·)‖L1(e) ≤ CT,1CT,2(2i3 − 3)‖u‖

W
1,1
mix

(Q)
. (A.62)

Summing over edges, in addition,

∑

K∈Gℓ
3

|cK1,1,i3 | ≤ (2i3 − 3)
ℓ∑

k1=0

ℓ∑

k2=0

‖(∂x3u)(xℓk1 , x
ℓ
k2 , ·)‖L1((0,1))

≤ CT,1CT,2(ℓ+ 1)2(2i3 − 3)‖u‖
W

1,1
mix

(Q)
.

(A.63)

Node modes. Finally, we consider the coefficients of nodal modes, i.e., cKi1,i2,i3 for i1, i2, i3 ∈ {1, 2},
which by construction equal function values of u, e.g.

c111 = u(xℓk1 , x
ℓ
k2 , x

ℓ
k3). (A.64)

The Sobolev imbeddingW 1,1
mix(Q) →֒ L∞(Q) and scaling implies the existence of a uniform constant

Cimb such that, for any v ∈W 1,1
mix(Q)

‖v‖L∞(K) ≤ ‖v‖L∞(Q) ≤ Cimb‖v‖W1,1
mix

(Q)
.
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Then, by construction,

|cKi1,i2,i3 | ≤ ‖u‖L∞(K) ≤ Cimb‖u‖W1,1
mix

(Q)
∀i1, i2, i3 ∈ {1, 2}. (A.65)

Summing over nodes, it follows directly that

∑

K∈Gℓ
3

|cKi1,i2,i3 | ≤
∑

K∈Gℓ
3

‖u‖L∞(K) ≤ Cimb(ℓ+ 1)3‖u‖
W

1,1
mix

(Q)
∀i1, i2, i3 ∈ {1, 2}. (A.66)

We obtain (A.51) from (A.54), (A.58), (A.62), and (A.65). Furthermore, (A.52) follows from (A.55),
(A.59), (A.63), and (A.66). The estimates for the case d = 2 follow from the same argument.

The following lemma shows the continuous imbedding of J d
γ (Q; C, E) intoW 1,1

mix(Q), given suffi-
ciently large weights γ.

Lemma A.22. Let d ∈ {2, 3}. Let γ be such that γc > d/2, for all c ∈ C and (if d = 3) γe > 1 for all e ∈ E .
There exists a constant C > 0 such that, for all u ∈ J d

γ (Q; C, E),

‖u‖
W

1,1
mix

(Q)
≤ C‖u‖J d

γ (Q).

Proof. We recall the decomposition of Q as

Q = Q0 ∪QC ∪QE ∪QCE ,

where QE = QCE = ∅ if d = 2. There holds

‖u‖
W

1,1
mix

(Q0)
≤ C|Q0|1/2‖u‖Hd(Q0)

≤ C|Q0|1/2‖u‖J d
γ (Q). (A.67)

We now consider the subdomain Qc, for any c ∈ C. There holds, with constant C that depends only on
γc and on |Qc|,

‖u‖
W

1,1
mix

(Qc)
= ‖u‖W1,1(Qc) +

∑

2≤|α|≤d
|α|∞≤1

‖∂αu‖L1(Qc)

≤ C|Qc|1/2‖u‖H1(Qc) + C
∑

2≤|α|≤d
|α|∞≤1

‖r−(|α|−γc)+
c ‖L2(Qc)‖r

(|α|−γc)+
c ∂αu‖L2(Qc)

≤ C‖u‖J d
γ (Q),

(A.68)

where the last inequality follows from the fact that γc > d/2, hence the norm ‖r−(|α|−γc)+
c ‖L2(Qc) is

bounded for all |α| ≤ d. Consider then d = 3 and any e ∈ E . Suppose also, without loss of generality,
that γc − γe > 1/2 and γe < 2 (otherwise, it is sufficient to replace γe by a smaller γ̃e such that
1 < γ̃e < γc − 1/2 and γe < 2 and remark that J d

γ (Q; C, E) ⊂ J d
γ̃ (Q; C, E) if γ̃e < γe). Since γe > 1,

then ‖r−|α⊥|+γe
e ‖L2(Qe) is bounded by a constant depending only on γe and |Qe| as long as α is such

that |α⊥| ≤ 2. Hence, denoting by ∂‖ the derivative in the direction parallel to e,

‖u‖
W

1,1
mix

(Qe)
= ‖u‖W1,1(Qe) +

∑

|α⊥|=1

‖∂‖∂α⊥u‖L1(Qe) +
∑

α1=0,1

‖∂α1

‖ ∂⊥,1∂⊥,2u‖L1(Qe)

≤ C|Qe|1/2

‖u‖H1(Qe) +

∑

|α⊥|=1

‖∂‖∂α⊥v‖L2(Qe)




+ C
∑

α1=0,1

‖r−2+γe
e ‖L2(Qe)‖r

2−γe
e ∂α1

‖ ∂⊥,1∂⊥,2u‖L2(Qe)

≤ C‖u‖J 3
γ (Q).

(A.69)

Since x‖ ≤ rc(x) ≤ ε̂ for all x ∈ Qce, and due to the fact thatQce ⊂
{
x‖ ∈ (0, ε̂), (x⊥,1, x⊥,2) ∈ (0, ε̂2)2

}
,

there holds

‖r−(γe+1−γc)+
c r−2+γe

e ‖L2(Qce) ≤ ‖x−(γe+1−γc)+
‖ ‖L2((0,ε̂))‖r−2+γe

e ‖L2((0,ε̂2)2) ≤ C,
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for a constant C that depends only on ε̂, γc, and γe. Hence,

‖u‖
W

1,1
mix

(Qce)
= ‖u‖W1,1(Qce) +

∑

|α⊥|=1

‖∂‖∂α⊥u‖L1(Qce) +
∑

α1=0,1

‖∂α1

‖ ∂⊥,1∂⊥,2u‖L1(Qce)

≤ C|Qce|1/2‖u‖H1(Qe) + C
∑

|α⊥|=1

‖r−(2−γc)+
c ‖L2(Qce)‖r

(2−γc)+
c ∂‖∂

α⊥u‖L2(Qce)

+ C
∑

α1=0,1

‖r−(α1+γe−γc)+
c r−2+γe

e ‖L2(Qce)‖r
(α1+2−γc)+
c ρ2−γece ∂α1

‖ ∂⊥,1∂⊥,2u‖L2(Qce)

≤ C‖u‖J 3
γ (Q),

(A.70)
with C independent of u. Combining inequalities (A.67) to (A.70) concludes the proof.

The following statement is a direct consequence of the two lemmas above and the fact that
∥∥ψKi1...id

∥∥
L∞(K)

≤
1 for allK ∈ Gℓ3 and all i1, . . . , id ∈ {1, . . . , p+ 1}.
Corollary A.23. Let γ be such that γc − d/2 > 0, for all c ∈ C and, if d = 3, γe > 1 for all e ∈ E . There exists
a constant C > 0 such that for all ℓ, p ∈ N and for all u ∈ J d

γ (Q; C, E),

‖Πℓ,php,du‖L∞(Q) ≤ Cp2d‖u‖J d
γ (Q).

A.9.2 Basis of continuous functions with compact support

It is possible to construct a basis for Πℓ,php,d in Q such that all basis functions are continuous and have
compact support. For all ℓ ∈ N and all p ∈ N, extend to zero outside of their domain of definition the
functions ζkn defined in (A.47) and (A.48), for k = 0, . . . , ℓ and n = 1, . . . , p + 1. We introduce the
univariate functions with compact support vj : (0, 1) → R, for j = 1, . . . , (ℓ+ 1)p+ 1 so that v1 = ζ02 ,
vℓ+2 = ζℓ1,

vk = ζk−2
1 + ζk−1

2 , for all k = 2, . . . , ℓ+ 1 (A.71)

and
vℓ+2+k(p−1)+n = ζkn+2, for all k = 0, . . . , ℓ and n = 1, . . . , p− 1.

Proposition A.24. Let ℓ ∈ N and p ∈ N. Furthermore, let u ∈ J d
γ (Q; C, E) with γ such that γc − d/2 > 0

and, if d = 3, γe > 1. Let N1d = (ℓ+ 1)p+ 1. There exists an array of coefficients

c =
{
ci1...id : (i1, . . . , id) ∈ {1, . . . , N1d}d

}

such that
(
Πℓ,php,du

)
(x1, . . . , xd) =

N1d∑

i1,...,id=1

ci1...id

d∏

j=1

vij (xj) ∀(x1, . . . , xd) ∈ Q. (A.72)

Furthermore, there exist constants C1, C2 > 0 independent of ℓ, p, and u, such that

|ci1...id | ≤ C1(p+ 1)d‖u‖J d
γ (Q) ∀i1, . . . , id ∈ {1, . . . , N1d}d

and
N1d∑

i1,...,id=1

|ci1...id | ≤ C2

(
d∑

t=0

(ℓ+ 1)t(p+ 1)2(d−t)
)
‖u‖J d

γ (Q).

Proof. The statement follows directly from the construction of the projector, see (A.49), and from the
bounds in Lemmas A.21 and A.22. In particular, (A.72) holds because the element-wise coefficients
related to ζk−1

2 and to ζk−2
1 are equal: it follows from Equations (A.57), (A.61) and (A.64) that cK1i2...id =

cK
′

2i2...id
for all i2, . . . , id ∈ {1, . . . , p + 1}, all K = Jℓk1 × Jℓk2 × Jℓk3 ∈ Gℓ3 satisfying k1 < ℓ and K′ =

Jℓk1+1 × Jℓk2 × Jℓk3 ∈ Gℓ3. The same holds for permutations of i1, . . . , id. Because (vk)
(ℓ+1)p+1
k=1 are

continuous, this again shows continuity of Πℓ,php,du (Remark A.2). The last estimate is obtained with
(A.52):

N1d∑

i1,...,id=1

|ci1...id | ≤
d∑

t=0

p+1∑

i1,...,id=1
ti1...id

=t



∑

K∈Gℓ
d

|ci1...id |


 ≤ C2

(
d∑

t=0

(ℓ+ 1)t(p+ 1)2(d−t)
)
‖u‖J d

γ (Q).
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A.9.3 Proof of Theorem 2.1

Proof of Theorem 2.1. Fix Af , Cf , and γ as in the hypotheses. Then, by Proposition A.19, there exists cp,

Chp, bhp > 0 such that for every ℓ ∈ N and for all v ∈ J̟
γ (Q; C, E ;Cf , Af ), there exists vℓhp ∈ X

ℓ,cpℓ

hp,d such

that (see Section A.1 for the definition of the spaceX
ℓ,cpℓ

hp,d )

‖v − vℓhp‖H1(Q) ≤ Chpe
−bhpℓ.

For ε > 0, we choose

L :=

⌈
1

bhp
|log(ε/Chp)|

⌉
, (A.73)

so that
‖v − vLhp‖H1(Q) ≤ ε.

Furthermore, vLhp =
∑N1d

i1,...,id
ci1...idφi1...id and, for all (i1, . . . , id) ∈ {1, . . . , N1d}d, there exists vij ,

j = 1, . . . , d such that φi1...id =
⊗d

j=1 vij , see Section A.9.2 and Proposition A.24. By construction of
vi in (A.71), and by using (A.47) and (A.48), we observe that ‖vi‖L∞(I) ≤ 1 for all i = 1, . . . , N1d. In
addition, (A.50), demonstrates that

‖vi‖H1(I) ≤
2

|supp(vi)|1/2 deg(vi)1/2
≤ 2σ−L/2 ∀i ∈ {1, . . . , N1d}.

Then, by (A.73),

σ−L ≤ σ
− 1

bhp
log(Chp)

ε
− 1

bhp
log(1/σ)

.

This concludes the proof of Items 1 and 2. Finally, Item 3 follows from Proposition A.24 and the fact
that p ≤ Cp (1 + |log(ε)|) for a constant Cp > 0 independent of ε.

A.10 Combination of multiple patches

The approximation results in the domain Q = (0, 1)d can be generalized to include the combination of
multiple patches. We give here an example, relevant for the PDEs considered in Section 5. For the sake
of conciseness, we show a single construction that takes into account all singularities of the problems in
Section 5. We will then use this construction to prove expression rate bounds for realizations of NNs.

Let a > 0 and Ω = (−a, a)d. Denote the set of corners

CΩ =
d

×
j=1

{−a, 0, a}, (A.74)

and the set of edges

EΩ =

{
∅ if d = 2,
⋃d
j=1×

j−1

k=1
{−a, 0, a} × {(−a,−a/2), (−a/2, 0), (0, a/2), (a/2, a)} ××

d

k=j+1
{−a, 0, a} if d = 3.

(A.75)
We introduce the affine transformationsψ1,+ : (0, 1) → (0, a/2), ψ2,+ : (0, 1) → (a/2, a), ψ1,− : (0, 1) →
(−a/2, 0), ψ2,− : (0, 1) → (−a,−a/2) such that

ψ1,±(x) = ±a
2
x, ψ2,±(x) = ±

(
a− a

2
x
)
.

For all ℓ ∈ N, define then
G̃ℓ1 =

⋃

i∈{1,2},⋆∈{+.−}
ψi,⋆(Gℓ1).

Consequently, for d = 2, 3, denote G̃ℓd = {×
d

i=1
Ki : K1, . . . ,Kd ∈ G̃ℓ1}, see Figure 3. The hp space in

Ω = (−a, a)d is then given by

X̃ℓ,p
hp,d = {v ∈ H1(Ω) : v|K ∈ Qp(K), for allK ∈ G̃ℓd}.

Finally, recall the definition of πℓ,php from (A.12) and construct

π̃ℓ,php :W 1,1((−a, a)) → X̃ℓ,p
hp,1
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Figure 3: Multipatch geometric tensor product meshes G̃ℓ
d, for d = 2 (left) and d = 3 (right).

such that, for all v ∈W 1,1((−a, a)),
(
π̃ℓ,php v

)
|(0, a

2
) =

(
πℓ,php (v|(0, a

2
) ◦ ψ1,+)

)
◦ ψ−1

1,+,
(
π̃ℓ,php v

)
|( a

2
,a) =

(
πℓ,php (v|( a

2
,a) ◦ ψ2,+)

)
◦ ψ−1

2,+,
(
π̃ℓ,php v

)
|(− a

2
,0) =

(
πℓ,php (v|(− a

2
,0) ◦ ψ1,−

)
◦ ψ−1

1,−,
(
π̃ℓ,php v

)
|(−a,− a

2
) =

(
πℓ,php (v|(−a,− a

2
) ◦ ψ2,−)

)
◦ ψ−1

2,−.

(A.76)
Then, the global hp projection operator Π̃ℓ,php,d :W 1,1

mix(Ω) → X̃ℓ,p
hp,d is defined as

Π̃ℓ,php,d =
d⊗

i=1

π̃ℓ,php .

Theorem A.25. For a > 0, let Ω = (−a, a)d, d = 2, 3. Denote by Ωk, k = 1, . . . , 4d the patches composing

Ω, i.e., the sets Ωk =×
d

j=1
(akj , a

k
j + a/2) with akj ∈ {−a,−a/2, 0, a/2}. Denote also Ck = CΩ ∩ Ω

k
and

Ek = {e ∈ EΩ : e ⊂ Ω
k}, which contain one singular corner, and three singular edges abutting that corner, as in

(A.1) and (A.2).
Let I ⊂ {1, . . . , 4d} and let v ∈ W 1,1

mix(Ω) be such that, for all k ∈ I, there holds v|Ωk ∈ J̟
γk (Ω

k; Ck, Ek)
with

γkc > 1, for all c ∈ Ck, if d = 2,

γkc > 3/2 and γke > 1, for all c ∈ Ck and e ∈ Ek, if d = 3.

Then, there exist constants cp > 0 and C, b > 0 such that, for all ℓ ∈ N, with p = cpℓ,

‖v − Π̃ℓ,php,dv‖H1(Ωk) ≤ Ce−bℓ ≤ C exp(−b 2d
√
Ndof). (A.77)

Here,Ndof = O(ℓ2d) denotes the overall number of degrees of freedom in the piecewise polynomial approximation.

Furthermore, writing Ñ1d = 4(ℓ+ 1)p+ 1, there exists an array of coefficients

c̃ =
{
c̃i1...id : (i1, . . . , id) ∈ {1, . . . , Ñ1d}d

}

such that
(
Π̃ℓ,php,dv

)
(x1, . . . , xd) =

N1d∑

i1,...,id=1

c̃i1...id

d∏

j=1

ṽij (xj) ∀(x1, . . . , xd) ∈ Ω,

where for all j = 1, . . . , d and ij = 1, . . . , Ñ1d, ṽij ∈ X̃ℓ,p
hp,1 with support in at most two, neighboring elements

of G̃ℓ1. Finally, there exist constants C1, C2 > 0 independent of ℓ such that

‖vi‖H1((−a,a)) ≤ C1σ
−ℓ/2 ∀i = 1, . . . , Ñ1d, (A.78)

and
Ñ1d∑

i1,...,id=1

|c̃i1...id | ≤ C2

d∑

j=0

(ℓ+ 1)j(p+ 1)2(d−j)‖v‖
W

1,1
mix

(Ω)
. (A.79)
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Proof. The statement is a direct consequence of Propositions A.19 and A.24. We start the proof by

showing that for any function v ∈ W 1,1
mix(Ω), the approximation Π̃ℓ,php,dv is continuous; the rest of the

theorem will then follow from the results in each sub-patch. Let now w ∈ W 1,1((−a, a)). Then, it

holds that
(
π̃ℓ,php w

)
|I ∈ C(I), for all I ∈ {(0, a/2), (a/2, a), (−a/2, 0), (−a,−a/2)}, by definition (A.76).

Furthermore, by the nodal exactness of the local projectors, for x̃ ∈ {−a/2, 0, a/2}, there holds

lim
x→x̃−

(π̃ℓ,php w)(x) = w(x̃) = lim
x→x̃+

(π̃ℓ,php w)(x),

implying then that π̃ℓ,php w is continuous. Since Π̃ℓ,php,d =
⊗d

j=1 π̃
ℓ,p
hp , this implies that Π̃ℓ,php,dv is continuous

for all v ∈W 1,1
mix(Ω). Fix k ∈ {1, . . . , 4d} such that v ∈ J̟

γk (Ω
k; Ck, Ek). There exist then, by Proposition

A.19, constants C, b, cp > 0 such that for all ℓ ∈ N

‖v − Π̃
ℓ,cpℓ

hp,d ‖H1(Ωk) ≤ Ce−bℓ.

Equation (A.77) follows. The bounds (A.78) and (A.79) follow from the construction of the basis
functions (A.47)–(A.48) and from the application of Lemma A.21 in each patch, respectively.

B Proofs of Section 5

B.1 Proof of Lemma 5.5

Proof of Lemma 5.5. For any two sets X,Y ⊂ Ω, we denote by distΩ(X,Y ) the infimum of Euclidean
lengths of paths inΩ connecting an element ofX with one of Y . We introduce several domain-dependent
quantities to be used in the construction of the triangulation T with the properties stated in the lemma.

Let E denote the set of edges of the polygon Ω. For each corner c ∈ C at which the interior angle of
Ω is smaller than π (below called convex corner), we fix a parallelogram Gc ⊂ Ω and a bijective, affine
transformation Fc : (0, 1)

2 → Gc such that

• Fc((0, 0)) = c,

• two edges of Gc coincide partially with the edges of Ω abutting at the corner c.

If at c the interior angle of Ω is greater than or equal to π (both are referred to by slight abuse of
terminology as nonconvex corner), the same properties hold, with Fc : (−1, 1) × (0, 1) → Gc if the
interior angle equals π, and Fc : (−1, 1)2 \ (−1, 0]2 → Gc else, and with Gc having the corresponding
shape. Let now

dc,1 := sup{r > 0 : Br(c) ∩ Ω ⊂ Gc}, dC,1 := min
c∈C

dc,1.

Then, for each c ∈ C, let e1 and e2 be the edges abutting c, and define

dc,2 := distΩ

(
e1 ∩

(
B √

2√
2+1

dC,1
(c)

)c
, e2 ∩

(
B √

2√
2+1

dC,1
(c)

)c)
, dC,2 := min

c∈C
dc,2.

Furthermore, for each e ∈ E , denote de := ∞ if Ω is a triangle, otherwise

de := min {distΩ(e, e1) : e1 ∈ E and e ∩ e1 = ∅} , dE = min
e∈E

de.

Finally, for all x ∈ Ω, let

ne(x) := #{e1, e2, . . . ∈ E : distΩ(x, ∂Ω) = distΩ(x, e1) = distΩ(x, e2) = . . . }.

Then, in case Ω is a triangle, let d0 be half of the radius of the inscribed circle, else let d0 := 1
3
dE < 1

2
dE .

It holds that
distΩ({x ∈ Ω : ne(x) ≥ 3}, ∂Ω) ≥ d0 > 0.

For any shape regular triangulation T of R2, such that for all K ∈ T , K ∩ ∂Ω = ∅, denote TΩ =
{K ∈ T : K ⊂ Ω} and h(TΩ) = maxK∈TΩ

h(K), where h(K) denotes the diameter of K. Denote by
NΩ the set of nodes of T that are in Ω. For any n ∈ NΩ, define

patch(n) := int




⋃

K∈T :n∈K

K


 .
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(a) (b) (c) (d)

Figure 4: Patches Ωn for nodes near a convex (a), nonconvex corner (b), for nodes in the interior of Ω (c),
and near an edge (d).

Let T be a triangulation of R2 such that

h(TΩ) ≤ min

(
d0√
2
,
dC,1√
2 + 1

,
dC,2

2
√
2
,
dE

2
√
2

)
, (B.1)

and such that for allK ∈ T it holdsK ∩ ∂Ω = ∅.
The hat-function basis {φn}n∈NΩ

is a basis for P1(TΩ) such that supp(φn) ⊂ patch(n) for all n ∈ NΩ,
and it is a partition of unity.

We will show that, for each n ∈ NΩ, there exists a subdomain Ωn with the desired properties, such
that patch(n)∩Ω ⊂ Ωn. We point to Figure 4 for an illustration of the patchesΩn that will be introduced
in the proof, for different sets of nodes.

For each c ∈ C, let N̂c = {n ∈ NΩ : patch(n) ∩ Ω ⊂ Gc}. There holds

Nc := {n ∈ NΩ : distΩ(n, c) ≤ dC,1 − h(TΩ)} ⊂ N̂c.

Therefore, all the nodes n ∈ Nc are such that patch(n) ∩ Ω ⊂ Gc =: Ωn. Denote then

NC =
⋃

c∈C
Nc.

Note that, due to (B.1), there holds
√
2h(TΩ) ≤

√
2√

2+1
dC,1 ≤ dC,1 − h(TΩ).

We consider the nodes in N \ NC . First, consider the nodes in

N0 := {n ∈ N \ NC : distΩ(n, ∂Ω) ≥
√
2h(TΩ)}.

For all n ∈ N0, there exists a square Qn such that

patch(n) ⊂ Bh(TΩ)(n) ⊂ Qn ⊂ B√
2h(TΩ)(n) ⊂ Ω,

see Figure 4c. Hence, for all n ∈ N0, we take Ωn := Qn. Define

NE := N \ (N0 ∪NC) =
{
n ∈ N : distΩ(n, c) > dC,1 − h(TΩ), ∀c ∈ C, and distΩ(n, ∂Ω) <

√
2h(TΩ)

}
.

For all n ∈ NE , from (B.1) it follows that distΩ(n, ∂Ω) <
√
2h(TΩ) ≤ d0, hence ne(n) ≤ 2. Furthermore,

suppose there exists n ∈ NE such that ne(n) = 2. Let the two closest edges to n be denoted by e1
and e2, so that distΩ(n, e1) = distΩ(n, e2) = distΩ(n, ∂Ω) <

√
2h(TΩ). If e1 ∩ e2 = ∅, there must

hold distΩ(n, e1) + distΩ(n, e2) ≥ dE , which is a contradiction with distΩ(n, ∂Ω) <
√
2h(TΩ) ≤ dE/2.

If instead there exists c ∈ C such that e1 ∩ e2 = {c}, then n is on the bisector of the angle between
e1 and e2. Using that 2

√
2h(TΩ) ≤ dC,2, we now show that all such nodes belong either to NC or

to N0, which is a contradiction to n ∈ NE . Let x0 ∈ Ω be the intersection of B √
2√

2+1
dC,1

(c) and the

bisector. To show that n ∈ NC ∪ N0, it suffices to show that dist(x0, ei) ≥
√
2h(TΩ) for i = 1, 2.

Because
√
2√

2+1
dC,1 ≤ dC,1 − h(TΩ), it a fortiori holds for all points y in Ω on the bisector intersected with

(
BdC,1−h(TΩ)(c)

)c
, that dist(y, ei) ≥

√
2h(TΩ), which shows that if distΩ(n, c) ≥ dC,1 − h(TΩ), then

n ∈ N0. If c is a nonconvex corner, then dist(x0, ei) ≥
√
2h(TΩ) for i = 1, 2 follows immediately from

dist(x0, ei) = dist(x0, c) =
√
2√

2+1
dC,1 and (B.1). To show that dist(x0, ei) ≥

√
2h(TΩ), i = 1, 2 in case c

is a convex corner, we make the following definitions (see Figure 5):
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Figure 5: Situation near a convex corner c.

• For i = 1, 2, let xi be the intersection of ei and B √
2√

2+1
dC,1

(c),

• let x3 be the intersection of x1x2 with the bisector,

• and for i = 1, 2, let xi+3 be the orthogonal projection of x0 onto ei, which is an element of ei
because c is a convex corner.

Then dc,2 = |x1x2| = |x1x3| + |x3x2| = 2|xix3|. Because the triangle cx0xi+3 is congruent to cx1x3,
it follows that dist(x0, ei) = |x0xi+3| = |xix3| = 1

2
dc,2 ≥

√
2h(TΩ). We can conclude with (B.1) that

ne(n) = 1 for all n ∈ NE and denote the edge closest to n by en. Let then Sn be the square with two
edges parallel to en such that

patch(n) ⊂ Bh(TΩ)(n) ⊂ Sn ⊂ B√
2h(TΩ)(n),

see Figure 4d, i.e. Sn has center n and sides of length 2h(TΩ). For each n ∈ NE , the connected component
of Sn ∩ Ω containing n is a rectangle:

(i) Note that for all edges e such that e ∩ en = ∅, it holds that Sn ∩ e ⊂ B√
2h(TΩ)(n) ∩ e = ∅. The

latter holds because
√
2h(TΩ) ≤ 1

2
dE and distΩ(n, en) <

√
2h(TΩ) imply distΩ(n, e) ≥

√
2h(TΩ).

(ii) From the previously given geometric argument considering a convex corner c and the two neigh-
boring edges e1 and e2, showing that dist(x0, ei) ≥

√
2h(TΩ) for i = 1, 2, we can additionally

conclude that there is no x ∈ Ω \ B √
2√

2+1
dC,1

(c) for which dist(x, en) <
√
2h(TΩ) and such that

there exists another edge e so that en ∩ e 6= ∅ and dist(x, e) <
√
2h(TΩ). This implies that

Sn ∩ ∂Ω ⊂ en or Sn ∩ ∂Ω = ∅.

Thus, the connected component of Sn ∩ Ω containing n is a rectangle, which we define to be Ωn.
Setting Np := #NΩ and {Ωi}i=1,...,Np = {Ωn}n∈NΩ

concludes the proof.

B.2 Proof of Lemma 5.15

Proof of Lemma 5.15. Let d = 3 and denoteR = (−1, 0)3. Denote byO the origin, and letE = {e1, e2, e3}
denote the set of edges of R abutting the origin. Let also F = {f1, f2, f3} denote the set of faces of R
abutting the origin, i.e., the faces of R such that fi ⊂ R ∩ ΩF , i = 1, 2, 3. Let, finally, for each f ∈ F ,
Ef = {e ∈ E : e ⊂ f denote the subset of E containing the edges neighboring f .

For each e ∈ E, define ue to be the lifting of u|e into R, i.e., the function such that ue|e = ue and ue
is constant in the two coordinate directions perpendicular to e. Similarly, let, for each f ∈ F , uf be such
that uf |f = u|f and uf is constant in the direction perpendicular to f .

We define w : R → R as

w = u0 +
∑

e∈E

(
ue − u0

)
+
∑

f∈F

(
uf − u0 −

∑

e∈Ef

(ue − u0)
)
= u0 −

∑

e∈E
ue +

∑

f∈F
uf , (B.2)

where u0 = u(O). Since u|e ∈ W 1,1(e), u|f ∈ W 1,1
mix(f) for all e ∈ E and f ∈ F , there holds ue ∈

W 1,1
mix(R) and uf ∈ W 1,1

mix(R) for all e ∈ E and f ∈ F (cf. Equations (A.56) and (A.60)), hence
w ∈W 1,1

mix(R). Furthermore, note that
(
ue − u0

)
|ẽ = 0, for all E ∋ ẽ 6= e
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and that (
uf − u0 −

∑

e∈Ef

(ue − u0)
)
|f̃ = 0, for all F ∋ f̃ 6= f.

From the first equality in (B.2), then, it follows that, for all f ∈ F ,

w|f = u0 +
∑

e∈Ef

(
ue|f − u0

)
+ uf |f − u0 −

∑

e∈Ef

(
ue|f − u0

)
= u|f .

Let the function v be defined as
v|R = w, v|ΩF = u. (B.3)

Then, v is continuous in (−1, 1)3 and v ∈W 1,1
mix((−1, 1)3). Now, for all α ∈ N3

0 such that |α|∞ ≤ 1,

‖∂αue‖L1(R) = ‖∂α
e
‖ue‖L1(R) = ‖∂α

e
‖u‖L1(e), ∀e ∈ E,

where αe‖ denotes the index in the coordinate direction parallel to e, and

‖∂αuf‖L1(R) = ‖∂α
f
‖,1∂

α
f
‖,2uf‖L1(R) = ‖∂α

f
‖,1∂

α
f
‖,2u‖L1(f), ∀f ∈ F,

where αf‖,j , j = 1, 2 denote the indices in the coordinate directions parallel to f . Then, by a trace
inequality (see [42, Lemma 4.2]), there exists a constant C > 0 independent of u such that

‖ue‖W1,1
mix

(R)
≤ C‖u‖

W
1,1
mix

(ΩF )
, ‖uf‖W1,1

mix
(R)

≤ C‖u‖
W

1,1
mix

(ΩF )
,

for all e ∈ E, f ∈ F . Then, by (B.2) and (B.3),

‖v‖
W

1,1
mix

((−1,1)d)
≤ C‖u‖

W
1,1
mix

(ΩF )
,

for an updated constant C independent of u. This concludes the proof when d = 3. The case d = 2 can
be treated by the same argument.

References
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[18] J. Hermann, Z. Schätzle, and F. Noé. Deep neural network solution of the electronic Schrödinger
equation. arXiv preprint arXiv:1909.08423, 2019.

[19] A. Jentzen, D. Salimova, and T. Welti. A proof that deep artificial neural networks overcome
the curse of dimensionality in the numerical approximation of Kolmogorov partial differential
equations with constant diffusion and nonlinear drift coefficients. arXiv preprint arXiv:1809.07321,
2018.

[20] V. Kazeev, I. Oseledets, M. Rakhuba, and C. Schwab. QTT-Finite-Element approximation for
multiscale problems I: model problems in one dimension. Adv. Comput. Math., 43(2):411–442, 2017.

[21] V. Kazeev and C. Schwab. Quantized tensor-structured finite elements for second-order elliptic
PDEs in two dimensions. Numer. Math., 138(1):133–190, 2018.

[22] F. Laakmann and P. Petersen. Efficient approximation of solutions of parametric linear transport
equations by ReLU DNNs. arXiv preprint arXiv:2001.11441, 2020.

[23] E. H. Lieb and B. Simon. The Hartree-Fock theory for Coulomb systems. Comm. Math. Phys.,
53(3):185–194, 1977.

[24] P.-L. Lions. Solutions of Hartree-Fock equations for Coulomb systems. Comm. Math. Phys.,
109(1):33–97, 1987.

[25] J. Lu, Z. Shen, H. Yang, and S. Zhang. Deep network approximation for smooth functions. arXiv
preprint arXiv:2001.03040, 2020.

[26] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis. DeepXDE: A deep learning library for solving
differential equations. arXiv e-prints, page arXiv:1907.04502, July 2019.

[27] Y. Maday and C. Marcati. Analyticity and hp discontinuous Galerkin approximation of nonlinear
Schrödinger eigenproblems. arXiv e-prints, page arXiv:1912.07483, Dec. 2019.

[28] Y. Maday and C. Marcati. Regularity and hp discontinuous Galerkin finite element approximation
of linear elliptic eigenvalue problems with singular potentials. Math. Models Methods Appl. Sci.,
29(8):1585–1617, 2019.

[29] Y. Maday and C. Marcati. Weighted analyticity of Hartree-Fock eigenfunctions. Technical Report
2020-59, Seminar for Applied Mathematics, ETH Zürich, Switzerland, 2020.
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[41] D. Schötzau and C. Schwab. Exponential convergence of hp-FEM for elliptic problems in polyhedra:
mixed boundary conditions and anisotropic polynomial degrees. Found. Comput. Math., 18(3):595–
660, 2018.
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