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Abstract

The electro-quasistatic approximation of Maxwell’s equations is
commonly used to model coupled resistive/capacitive phenomena at
low frequencies. It neglects induction and becomes unstable in the
stationary limit. We introduce a stabilization that prevents this low-
frequency breakdown. It results in a system for the electric scalar
potential that can be used for electro-quasistatics, electrostatics as
well as DC-conduction.

Our main finding is that the electro-quasistatic fields can be cor-
rected for magnetic/inductive phenomena at any frequency in a sec-
ond step. The combined field from both steps is a solution of the
full Maxwell’s equations that consistently takes into account all elec-
tromagnetic effects. Electro-quasistatics serves as a gauge condition
in this semi-decoupled procedure to calculate the electromagnetic po-
tentials. We derive frequency-stable weak variational formulations
for both steps that immediately lend themselves to finite-element
Galerkin discretization.

Keywords. Maxwell’s equations, ECE boundary conditions, quasi-static
models, low-frequency breakdown, low-frequency stabilization, finite-element
method

1 Introduction

The full Maxwell equations describe all electromagnetic phenomena at any
frequency. So why are they not used to calculate electromagnetic fields in all
situations? Two reasons came to our minds:
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The first is that in the majority of situations we observe a near decoupling
of capacitive and inductive effects at very low frequencies, and either capac-
itive or inductive effects dominate, see also [1, 2]. Especially for capacitive
settings it is then more efficient to just solve for the electric scalar potential,
neglect induction and omit the costly calculation of the vectorial magnetic
field. Similarly, efficient approximate models for inductive settings that ne-
glect capacitive effects are also well established, the eddy current models [3].
These approximate models cannot be applied in situations, in which both in-
ductive and capacitive effects matter. As a consequence users of simulation
software are forced to select the appropriate model a priori for the specific
phenomenon that they want to simulate. Directly solving the full Maxwell’s
equations would render unnecessary this often problematic choice.

Another reason for eschewing full Maxwell numerical models is their no-
torious low-frequency instability. Robust formulations that avoid this insta-
bility have been developed in recent years, see [4–12]. A good overview of
the approaches is given in [5], where the authors devise a symmetric elec-
tric field based formulation that uses a minimal number of unknowns for
problems with source currents. In [4] the authors introduced a formulation
for more general scenarios, also allowing excitation through boundary condi-
tions. This work relies on that approach for stabilization in the low frequency
limit. It boils down to explicitly including Gauss’s law in the non-conducting
domain. Yet, hitherto all the proposed stabilization techniques couple capac-
itive and inductive effects and needlessly incur high computational cost in
electro(-quasi)static settings.

In this article we will show that full Maxwell computations are a viable
option even at low frequencies and when coupling with circuits has to be
taken into account. We introduce a gauge that cleanly decouples

(i) the calculation of the electric scalar potential, accounting for capacitive
effects, in a first step from

(ii) the calculation of the magnetic vector potential, accounting for induc-
tive effects, in a second step.

This two-step approach to the full Maxwell equations can be deployed at any
frequency and nicely reflects the decoupling of capacitive and inductive effects
at very low frequencies. It is no longer necessary to rely on an approximate
model because both steps can be executed efficiently. In purely electro(-
quasi)static settings it is even possible to solve for the electric scalar potential
only, and to skip the second step.

The plan of the paper is as follows: In Section 2 we will first introduce the
(six) customary electromagnetic model equations in frequency domain and
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potential formulations. Our focus is on low-frequency models. Then we will
outline the gist of our approach in Section 3. It represents a unification of all
electromagnetic models that were presented in Section 2. Section 4 discusses
boundary conditions paving the way for coupling with circuit models. Then,
in Section 5, we derive weak formulations. In the final Section 6 we will
explain how we realized an implementation with finite elements, demonstrate
the importance of stabilizing the electro-quasistatic model at the stationary
limit, and illuminate the physical interpretation of our two-step procedure.

2 Electromagnetic Models

We first review established frequency-domain models for electromagnetic phe-
nomena, see also [1,2]. Among them, the quasistatic models are approxima-
tions that neglect either inductive or capacitive effects. The static models,
however, are true specializations of Maxwell’s equations at zero frequency.
We write ω > 0 for the fixed angular frequency, and ı for the imaginary
unit. Time domain can be recovered by the replacement ıω −→ ∂t. We
gloss over boundary conditions in this section and postpone their treatment
to Section 4.

2.1 Full Maxwell’s Equations

In a bounded region of space Ω ⊂ R
3 we consider Maxwell’s equations for

linear constitutive material relations and ohmic conductors in frequency do-
main,

Faraday’s law: curlE = −ıωB , divB = 0 , (1a)

Ampere’s law: curlH = j+ ıωD , (1b)

Gauss’s law: divD = ρ , (1c)

material laws: D = ǫE , B = µH , j = σE+ js . (1d)

Herein E : Ω → C3 denotes the (complex amplitude of the) electric field,
B : Ω → C

3 the magnetic field, D : Ω → C
3 the electric displacement field,

H : Ω→ C3 the magnetizing field, ǫ : Ω→ R+ the permittivity, µ : Ω→ R+

the permeability, σ : Ω → R
+
0 the electrical conductivity, and j : Ω → C3

is the current density. In order to model coils and space charges in the
interior of the computational domain we added a prescribed source current
js = js0 + ıωjs1. It consists of a solenoidal current js0 : Ω → C

3, div js0 = 0,
for the coils and a fictitious current js1 : Ω → C3 with div js1 = −ρs for a
prescribed source charge density ρs : Ω→ C.
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At this point let us specify the setting for the considerations in this article,
see also Figure 1:

• We assume that the computational domain Ω is partitioned into

(i) a non-conducting domain (air region) ΩA where σ = 0,

(ii) and a conducting domain ΩC where σ is positive and uniformly
bounded away from 0, that is,

Ω = ΩA ∪ ΩC , ΩA ∩ ΩC = ∅ ,
• Source charges can only exist in the non-conducting domain ΩA, and
there Gauss’s law reads

divD = ρs in ΩA . (2)

• We take for granted that the exciting current js is supported inside ΩA:
supp(js) ⊂ ΩA.

• We also assume that Ω has trivial topology, that is, no holes and no
cavities. The treatment of topologically complex arrangements is elab-
orated in [13].

• The field model inside Ω is connected to the outside world through
contacts, also called electric ports, which are simply-connected well-
separated patches on the boundary of Ω.

Figure 1: Setting with connected conductor ΩBC
C , floating conductor ΩF l

C ,
air-domain ΩA, two contacts Π1, Π2, source current js0, supported inside ΩA,
and insulated boundary ΓI .
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Faraday’s law (1a) is fulfilled automatically, if electromagnetic potentials,
i.e. the electric scalar potential ϕ : Ω→ C, and the magnetic vector potential
A : Ω→ C

3 are used to write

E = −gradϕ− ıωA , B = curlA . (3)

Inserting this approach into Ampère’s law (1b) yields the Full Maxwell
Model in potential formulation

curl
1

µ
curlA+ (σ + ıωǫ) · (gradϕ+ ıωA) = js . (4)

Even if we impose appropriate boundary conditions, solutions of (4) will not
be unique without an additional gauge condition, e.g., the Coulomb gauge
divA = 0. The charge density ρ can be calculated from Gauss’s law (1c)
once the potentials are known.

2.2 Quasistatic Models

An important approximate model in low-frequency electromagnetics is the
Magneto-Quasistatic Model (or Eddy-Current Model) that results from
(4) by dropping the displacement field term ıωD in Ampère’s law (1b), i.e.
by neglecting capacitive effects:

curl
1

µ
curlA+ σ · (gradϕ+ ıωA) = js0 in Ω . (5)

The Electro-Quasistatic Model (EQS) is the second fundamental qua-
sistatic model. It is used when induction can be neglected, assumes curlE =
0, and, thus, the electric field can be expressed by the scalar potential ϕ alone:
E = −gradϕ. By applying the divergence on (1b) we infer

− div(σ + ıωǫ) · gradϕ = ıωρs in Ω . (6)

When endowed with suitable boundary conditions, the solution of this partial
differential equation will be unique (maybe only up to a constant). The
magnetic field is usually not of interest, when the EQS model is applied.
Breakdown in the stationary limit ω = 0 is evident, because in this case the
potential becomes undefined in the non-conductive domain ΩA where σ = 0.

2.3 Static Models

In the case ω = 0 one utilizes the following static models for which the electric
field can be described by a scalar potential: E = −gradϕ, see equation (3).
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• The DC-Conduction Model is used to compute the ohmic current
in conducting domains ΩC with σ > 0:

− div(σ gradϕ) = 0 in ΩC . (7)

• In the Magnetostatic Model (with Coulomb gauge) one computes
the magnetic field from the current that results from (7) by solving

curl
1

µ
curlA = −σ gradϕ+ js0 , divA = 0 in Ω . (8)

• The Electrostatic Model is based on Gauss’s law (1c), complements
(7), and is used to compute the extension of the electric scalar potential
into the non-conducting domain ΩA with σ = 0

− div(ǫgradϕ) = ρs in ΩA . (9)

For a related discussion of static models refer to [5, Remark 2].

3 Main Ideas

We introduce the two basic ideas that have inspired this article. Details will
be discussed in the following sections.

I. Electro-Quasistatic Gauge

We propose to compute the full-Maxwell solution for E (and, optionally, for
H) in a sequential two step procedure. The first step amounts to solving the
electro-quasistatic model. The resulting scalar potential ϕ serves as a gauge
condition for the second step, which, on the one hand, corrects the electric-
field for inductive effects, and, on the other hand, is needed to calculate the
magnetic field.

• Step I (EQS), cf. (6): Solve

− div ((σ + ıωǫ) gradϕ) = ıωρs in Ω , (10)

• Step II (Maxwell), cf. (4): Solve

curl
1

µ
curlA+ (ıωσ − ω2ǫ)A = −(σ + ıωǫ) gradϕ+ js in Ω .

(11)
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Each of the two equations (10) and (11) has a unique solution for ω > 0,
if they are equipped with appropriate boundary conditions, see Section 4.
Therefore (10) can be interpreted as supplying a gauge condition by fixing the
scalar potential. Combining (10) and (11) with div js = −ıωρs we conclude

div
(
(ıωσ − ω2ǫ) ·A

)
= 0 in Ω . (12)

Thus, A becomes ungauged for ω = 0! This is acceptable, because the vector
potential is not needed for the computation of the electric field in the static
case and we just obtain E = −gradϕ, see (3). The magnetic field is also
not affected, because any undetermined contribution to A has vanishing curl
and will not affect B = curlA.

Remark 1. A major challenge in this two-step approach is the definition of
physically consistent boundary conditions that enable coupling with circuit
models. Obviously, all electromagnetic effects, resistive, capacitive, and in-
ductive, contribute to the voltage drops between contacts, and to the currents
through contacts. Writing Um,n = Vm−Vn, for the voltage between two con-
tacts m, n on potentials Vm, Vn, and Im for the current through contact m,
we would like to separate

(i) the capacitive/resistive contributions Ustat,m,n and Istat,m, that will be
solely determined by Step I from

(ii) the inductive contributions Uind,m,n and Iind,m, that will be calculated
in Step II:

Um,n = Ustat,m,n + Uind,m,n , (13)

Im = Istat,m + Iind,m . (14)

A possibility to realize this separation will be discussed in Section 4.

II. Generating System Approach For Stabilization

Instability will haunt boundary value problems for the equations (10) and
(11) in the stationary limit ω → 0. The reason is that for ω > 0 Gauss’s
law (1c) is only implicitly included in equation (10) as well as in equation
(11). Yet, for ω = 0, Gauss’s law (2) in ΩA must be enforced separately,
because neither of the two equations determines the electric field in the non-
conducting domain. In order to balance the numbers of equations and un-
knowns, it is then required to augment the systems by additional “redundant”
unknowns. After Galerkin discretization we end up with a consistent, albeit
singular, linear system of equations, which can be solved iteratively. This is
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the gist of the so-called generating system approach introduced in [4]. We
apply it in both steps.

In Step I (EQS), in the case of equation (10) we split the potential into
two parts ϕ = ϕ̃+ ψ, and instead of (10) we consider the stabilized version

− div ((σ + iωǫ) grad(ϕ̃+ ψ)) = ıωρs in Ω , (15a)

− div (ǫgrad(ϕ̃+ ψ)) = ρs in ΩA . (15b)

The additional potential ψ is constant on every connected component of the
conducting region ΩC . The splitting of ϕ into ϕ̃ and ψ is not unique, but ϕ
itself remains unique (tacitly assuming suitable boundary conditions).

In Step II (Maxwell), in the case of equation (11) instability for ω → 0
is caused by vectorfields belonging to the kernel of curl and supported in the
air region ΩA. In the generating system approach these have to be represented
by one component of a non-unique splitting. Accordingly, we decompose the
vector potential as A = Â+ grad ν, where ν is a scalar potential supported
in ΩA and, thus, grad ν takes care of the unstable solution components.
Summing up, instead of (11) we consider the stabilized version of (11)

curl
1

µ
curl Â+ (σ + ıωǫ)ıω(Â+ grad ν)

= −(σ + ıωǫ) gradϕ+ js in Ω ,
(16a)

div
(
ǫ(Â+ grad ν)

)
= 0 in ΩA . (16b)

Of course, the splitting ofA into Â and grad ν is not unique and (16) will fail
to possess a unique solution. However, A itself remains unique for ω > 0,
provided that appropriate boundary conditions are imposed, which is the
topic of the next section.

4 ECE Boundary Conditions

The possibility to couple the field model to an external circuit through con-
tact surfaces (or ports) is a crucial requirement in low-frequency applications.
In a physically sound way this can be done using the so-called electric cir-
cuit element (ECE) boundary conditions [14–16]. They distinguish contact
or port parts of the boundary ∂Ω and their complement that we call the
insulated boundary part ΓI . For the sake of simplicity we confine ourselves
to a situation with only two contacts Π1,Π2 ⊂ ∂Ω, as sketched in Figure 1.
Refer to [13] for the discussion of more general situations.

The ECE treatment of contacts/electric ports and the insulated boundary
ΓI is based on the following assumptions [13, 14]:
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(i) There is no inductive coupling with the exterior:

ıωB · n = 0 ⇐⇒ curlE · n = 0 on the entire boundary ∂Ω ,

where n is the outer unit normal vectorfield on ∂Ω.

(ii) The contacts are equipotential surfaces: the tangential components Et

of the electric field E vanish on Π1 and Π2.

(iii) No electric currents can penetrate the insulated boundary part:

curlH · n = 0 ⇐⇒ E · n = 0 on ΓI .

From (i) and (ii) we conclude that the tangential component trace Et :=
(n×E)× n|∂Ω of the electric field E at the boundary is the surface
gradient of a scalar potential ∂Ω→ R that is constant on each contact:

Et = gradΓ (ϕtot|∂Ω) , (17)

for some

ϕtot ∈ H1
ece(Ω) :=

{
φ : Ω→ R :

φ ∈ H1(Ω) ,

φ|
Πj
≡ const, j = 1, 2

}
. (18)

Here, we wrote H1(Ω) for the classical Sobolev space of square integrable
complex-valued functions with square integrable gradients.

The ECE port boundary conditions (i)-(iii) neatly fit to our approach and
are applied in both steps:

(I) In Step I (EQS) in (10) we compute a scalar potential ϕ anyway, and
thus fulfill condition (i). We choose ϕ ∈ H1

ece(Ω), which amounts to
imposing a constant potential at contacts according to condition (ii)

ϕ|
Πj
≡ const , j = 1, 2 , (19)

to be complemented by the zero-current condition (iii) on the insulated
boundary part

(σ + ıωǫ) gradϕ · n = 0 on ΓI . (20)
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Remark 2. In the electro-quasistatic model the “(quasi)static” currents
through the contacts are accessible through the flux integrals

Istat, j := −
∫

Πj

(σ + ıωǫ) gradϕ · n dS , j = 1, 2 . (21)

We point out that the divergence theorem applied to (10) yields the
flux balance condition

Istat,1 + Istat,2 = ıω

∫

Ω

ρs dx . (22)

(II) In order to ensure (17) in light of (3), for the solution A of (11) in Step
II (Maxwell) we have to demand that the tangential component trace
of the vector potential is the surface gradient of another scalar potential

At = gradΓ ηA|∂Ω on ∂Ω for some ηA ∈ H1
ece(Ω) . (23)

We point out that At fixes ηA|∂Ω up to a constant.

Since we have assumed trivial topology of Ω this is equivalent to impos-
ing B · n = 0 on the entire boundary, i.e. condition (i), and to enforce
vanishing tangential components of A on contacts, i.e. condition (ii):

(23) ⇐⇒
{

curlA · n = 0 on ∂Ω ,

At = 0 on Π1 ∪Π2 .
(24)

More explicitly, the scalar surface potential ηA in (23) has to satisfy
boundary conditions (ii) that mirror (19):

ηA|Πj
≡ const , j = 1, 2 , (25)

The counterpart of (20) is the zero-current condition (iii) on the insu-
lated boundary part expressed as (H = µ−1 curlA)

divΓ

(1
µ
curlA× n

)
= divΓ

(
H× n

)
= curlH · n = 0 on ΓI . (26)

Remark 3. We recover the “inductive” current contribution of Step II
as

Iind, j := −ıω
∫

Πj

(σ + ıωǫ)A · n dS , j = 1, 2 . (27)

From (11) we conclude div((σ + ıω)A) = 0, cf. (12), which implies
balance of induced currents:

Iind,1 + Iind,2 = 0 . (28)
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By (3) the total scalar boundary potential ϕtot|∂Ω from (17) is a super-
position of the scalar potentials obtained in both steps

ϕtot|∂Ω = ϕ|∂Ω + ıω ηA|∂Ω ,

{
ϕ from Step I,

A, ηA from Step II,
(29)

so that the total voltage drop between two contacts can be computed as

U1,2 = ϕ|
Π2
− ϕ|

Π1︸ ︷︷ ︸
=:Ustat,1,2

+ ıω
(
ηA|Π2

− ηA|Π1

)
︸ ︷︷ ︸

=:Uind,1,2

. (30)

Analogously, the currents (21) and (27) add up to the total current
flowing through a contact:

Ij = −
∫

Πj

(σ + ıωǫ) gradϕ · n dS

︸ ︷︷ ︸
=: Istat, j

−ıω
∫

Πj

(σ + ıωǫ)A · n dS

︸ ︷︷ ︸
=: Iind, j

, j = 1, 2 .

(31)

Summing up, all port quantities comprise two contributions, one due to
electro-quasistatic effects that are solely determined in Step I, the other
representing an inductive correction that is determined in Step II.

Remark 4. Combining (22) and (28) yields a constraint on the contact cur-
rents:

I1 + I2 = Istat,1 + Iind,1 + Istat,2 + Iind,2 = iω

∫

Ω

ρs dx . (32)

Further, in the static case ω = 0 non-zero contact currents can only be
imposed at contacts connected to the conducting region ΩC .

5 Variational (Weak) Formulations

In this section we present variational formulations for the boundary value
problems to be solved in Step I (EQS) and Step II (Maxwell) of our approach.
For implementation details see Section 6.1. We use the ECE port boundary
conditions introduced above and, as in Section 4, restrict ourselves to the
two-port setting with contacts Π1 and Π2. All the other assumptions made
in Section 3 still apply, see Figure 1 for a typical situation.
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5.1 Step I (EQS): Weak Formulations

5.1.1 Standard Electro-Quasistatics (EQS)

As already mentioned in Section 4, the ECE boundary conditions (17) for
(10) are captured by representing the electric scalar potential as

ϕ = ϕ̃+ Vstat,1Φ1 + Vstat,2Φ2 .

and enriching the function space

H1
ece,0(Ω) :=

{
ψ ∈ H1(Ω) : ψ|

Πj
= 0 , j = 1, 2

}
, (33)

of admissible scalar potentials ϕ̃ with the offset functions

Φ1, Φ2 ∈ H1
ece(Ω) , Φ1|Π1

= 1, Φ1|Π2
≡ 0 , Φ2|Π1

≡ 0, Φ2|Π2
= 1 , (34)

that can be chosen to have localized support at the ports. Integration by
parts by applying Green’s formula to (10) together with the zero-current
boundary condition (20) and the current formula (21) yield the variational
problem: seek ϕ̃ ∈ H1

ece,0(Ω), Vstat,1, Vstat,2 ∈ C, such that

∫

Ω

(σ + ıωǫ) grad(ϕ̃+ Vstat,1Φ1 + Vstat,2Φ2)·grad ϕ̃′ dx

= ıω

∫

Ω

ρsϕ̃′ dx ,

(35a)

∫

Ω

(σ + ıωǫ) grad(ϕ̃+ Vstat,1Φ1 + Vstat,2Φ2)·gradΦj dx

= −Istat,j + ıω

∫

Ω

ρsΦj dx

(35b)

for all ϕ̃′ ∈ H1
ece,0(Ω) and j = 1, 2.

The static voltage between the two ports is given by Ustat,1,2 = Vstat,2 −
Vstat,1. The currents Istat,1 and Istat,2 that flow through the ports Π1 and Π2

fulfill (22), as can be seen by testing (35) with ϕ̃′ := 1−Φ1−Φ2 ∈ H1
ece,0(Ω)

and adding all three equations.

5.1.2 Stabilized Electro-Quasistatics (SEQS)

The variational problem suffers instability for ω → 0, as we lose control of ϕ
in the non-conducting region ΩA where σ ≡ 0. As mentioned in Section 3,
this can be remedied by the generating system approach according to (15).
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Its weak formulation extends (35) and relies on the additional function space
H1

e (Ω), which includes those functions inH1
ece(Ω) that are constant in floating

conductors and that vanish in conductors that are connected to a port

H1
e (Ω) :=

{
ψ ∈ H1

ece(Ω) : ψ|
Π1

= ψ|
Π2

= 0 ,

ψ ≡ const on all connected components of ΩC

}
. (36)

Following [4], we add a function ψ ∈ H1
e (Ω) to the trial and test functions of

(35), represent the electric scalar potential as

ϕ = ϕ̂+ ψ + Vstat,1Φ1 + Vstat,2Φ2 ∈ H1
ece(Ω) , (37)

and arrive at the following singular variational problem.

SEQS problem: seek ϕ̂ ∈ H1
ece,0(Ω), ψ ∈ H1

e (Ω), Vstat,1, Vstat,2 ∈ C such
that
∫

Ω

(σ + ıωǫ) grad(ϕ̂+ ψ + Vstat,1Φ1 + Vstat,2Φ2)·grad ϕ̂′ dx

= ıω

∫

Ω

ρsϕ̂′ dx ,

(38a)∫

ΩA

ǫgrad(ϕ̂+ ψ + Vstat,1Φ1 + Vstat,2Φ2)·gradψ′ dx

=

∫

Ω

ρs ψ′ dx ,

(38b)

∫

Ω

(σ + ıωǫ) grad(ϕ̂+ ψ + Vstat,1Φ1 + Vstat,2Φ2)·gradΦj dx

= −Istat,j + ıω

∫

Ω

ρsΦj dx

(38c)

for all ϕ̂′ ∈ H1
ece,0(Ω), ψ

′ ∈ H1
e (Ω), j = 1, 2.

By “singular” we mean that the bilinear form underlying (38) has a non-
trivial null space: Setting ϕ̂ = −ψ for any ψ ∈ H1

e (Ω) gives an element of
that null space. However, thanks to the consistency of the right-hand side it
possesses solutions ϕ̂, ψ. From those we recover a unique (up to a constant)
electric scalar potential ϕ, which agrees with the ϕ obtained in Section 5.1.1.
We also point out that charge neutrality is guaranteed by the choice of H1

e

and equation (38b), see [4].
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5.2 Step II (Maxwell): Weak Formulations

5.2.1 Standard A-based Formulation

The ECE boundary conditions manifest themselves as the constraint (23) on
the magnetic vector potential. This suggests that we represent the magnetic
vector potential as A = Ã+ Vind,1 gradΦ1 + Vind,2Φ2 and choose Ã from the
following function space:

Hece,0(curl,Ω) :=

{
v ∈H(curl,Ω) :

there is ηv ∈ H1
ece,0(Ω) :

vt = grad (ηv|∂Ω) on ∂Ω

}
. (39)

This needs explaining: First recall that the function space H(curl,Ω) con-
tains square-integrable vectorfields, whose curl is square-integrable as well.
It is the natural space for electromagnetic fields with finite energy. Second,
as before a subscript t designates the tangential component of a vector-
field on ∂Ω. Hence, functions belonging to Hece,0(curl,Ω) have vanishing
tangential components on all contacts, cf. (24). Moreover, their tangen-
tial components on all of ∂Ω can be written as the surface gradient of a
scalar potential, cf. (23). We must not forget to add gradients of off-
set functions to Hece,0(curl,Ω), since in (39) the surface gradients are re-
stricted to H1

ece,0(Ω)
∣∣
∂Ω
; as ultimate trial space we rely on Hece,0(curl,Ω) +

Span {gradΦ1, gradΦ2}.
Next, using Green’s formula for curl on (11) and taking into account the

boundary conditions gives the variational formulation: seek Ã ∈Hece,0(curl,Ω),
Vind,1, Vind,2 ∈ C, such that
∫

Ω

µ−1 curl Ã · curl Ã′ dx+
∫

Ω

(σ + ıωǫ)ıω(Ã+ Vind,1 gradΦ1 + Vind,2 gradΦ2) · Ã′ dx

=

∫

Ω

(
− (σ + ıωǫ) gradϕ+ js

)
· Ã′ dx ,

(40a)∫

Ω

(σ + ıωǫ)ıω(Ã+ Vind,1 gradΦ1 + Vind,2 gradΦ2) · gradΦj dx = −Iind,j .
(40b)

for all Ã′ ∈Hece,0(curl,Ω).
The induced voltage between the contacts is Uind,1,2 = ıω(Vind,2 − Vind,1).

The inductive currents flowing through Π1 and Π2 directly enter as Iind,1
and Iind,2. Adding all three equations with Ã′ := grad(1 − Φ1 − Φ2) ∈
Hece,0(curl,Ω) confirms the flux balance law (28).
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5.2.2 Stabilized A-based Formulation

As explained in Section 3 we augment (40) with gradients of scalar potentials
ν supported in ΩA as “redundant” unkowns. This means that we write

A = Â+ Vind,1Φ1 + Vind,2Φ2 + grad ν ,
Â ∈Hece,0(curl,Ω) ,

ν ∈ H1
0 (Ω) .

(41)

with

H1
0 (Ω) :=

{
ν ∈ H1

ece,0(Ω) : ν ≡ 0 on ΩC

}
. (42)

Of course, this splitting is not unique, because Hece,0(curl,Ω)+gradH1
0 (Ω)

is not a direct sum. Yet, the gradient contribution captures that part of
the kernel of curl of which we lose control as ω → 0. Thus, (41) turns out
to be the right starting point for the generating system approach (16) in a
variational context. We arrive at the following underdetermined variational
problem:

Stabilized Maxwell problem: seek Â ∈Hece,0(curl,Ω), η ∈ H1
0 (Ω),

Vind,1, Vind,2 ∈ C such that

∫

Ω

µ−1 curl Â · curl Â′ dx

+

∫

Ω

(σ + ıωǫ)ıω(Â+ grad η + Vind,1 gradΦ1 + Vind,2 gradΦ2) · Â′ dx

=

∫

Ω

(
− (σ + ıωǫ) gradϕ+ js

)
· Â′ dx

(43a)∫

ΩA

ǫ(Â+ grad η + Vind,1 gradΦ1 + Vind,2 gradΦ2) · grad η′ dx = 0 ,

(43b)∫

Ω

(σ + ıωǫ)ıω(Â+ grad η + Vind,1 gradΦ1 + Vind,2 gradΦ2)·

gradΦj dx = −Iind,j .
(43c)

for all Â′ ∈Hece,0(curl,Ω), η
′ ∈ H1

0 (Ω), j = 1, 2.
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5.3 Coupling With Circuits

Let us suppose we want to impose a prescribed voltage between the contacts
or a prescribed current through the contacts in the setting of Figure 1. To
begin with recall that, according to Section 4, both voltages and currents
consist of an electro(-quasi)static part that is determined in Step I and an
induced part that is calculated in Step II . So in general excitation through
contacts can be imposed in both steps. Imposing a voltage or a current in
the second step however contradicts our aim to separate capacitive/resistive
contributions from inductive contributions. This can be understood by the
following considerations: let us assume we want to impose a voltage U0.
According to Formula (30)

U1,2 = Vstat,2 − Vstat,1︸ ︷︷ ︸
=:Ustat,1,2

+ ıω
(
Vind,2 − Vind,1

)
︸ ︷︷ ︸

=:Uind,1,2

. (44)

we can calculate a solution ϕ1 (in Step I, EQS), A1 (in Step II, Maxwell)
for the choice Ustat,1,2 = U0, Uind,1,2 = 0. Alternatively we could also impose
Ustat,1,2 = 0, Uind,1,2 = U0 and obtain the Step-I solution ϕ2 = 0 and the
Step-II solution A2 = A1 +

1

iω
gradϕ1. Thus imposing the voltage in Step

II leads to the same solution for the electromagnetic fields E and H, but
the entire field, including the capacitive part, is described by the magnetic
vector potential. This is not what we intend to do and in addition leads to
problems in the static limit ω = 0. Remember how one tackles the static
models of Section 2.3:

(i) One first solves the DC conduction model (7) with imposed voltages
and currents,

(ii) and then uses the obtained potential as input for magnetostatics (8),
or electrostatics (9).

The DC conduction model is contained in the stabilized electro-quasistatic
variational problem (38). This motivated our decision that exciting voltages
and currents are generally imposed in Step I (SEQS).

5.3.1 Current Excitation

We prescribe a current I1 at Π1 and fix the potential V2 at Π2 for uniqueness
of the electric scalar potential.

1. In (38) (Step I, SEQS) we fix Istat,1 := I1 and Vstat,2 := V2 and drop the
equation belonging to Φ2 from (38c).
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2. In (43) (Step II, Stabilized Maxwell) we set Iind,1 = 0 and Vind,2 := 0,
and drop the equation belonging to Φ2 from (43c).

The total voltage drop between Π2 and Π1 is then given by Formula (44).

5.3.2 Voltage Excitation

To impose prescribed potentials V2, V1 ∈ C at Π2 and Π1,

(I) in (38) (Step I, SEQS) we fix Vstat,1 := V1 and Vstat,2 := V2 and drop
the two equations (38c).

(II) in (43) (Step II, Stabilized Maxwell) we set Vind,1 := 0 and Vind,2 := 0
and keep only (43a) and (43b).

The currents through the contacts can be determined in a post-processing
step from (38c) (static/capacitive current) and (43c) (inductive current) and,
then, summing up Istat,j and Iind,j, j = 1, 2, according to (31).

5.3.3 Imposing U-I Relationship

A simple two-port circuit can implicitly be characterized by a voltage-current
relationship F (U1,2, I2) = 0 with a function F : R×R→ R. Attaching such a
circuit to the two ports Π2 and Π1 of the field domain can be done as follows:

1. Augment (38) by the additional equation F (Ustat,1,2, Istat,2) = 0, and
solve the resulting variational problem (Step I, SEQS).

2. Then add the extra equation

F (Ustat,1,2 + Uind,1,2, Istat,2 + Iind,2) = 0

to (43) and solve the resulting extended variational problem (Step II,
Stabilized Maxwell).

5.3.4 Power Balance

Physically meaningful port potentials and currents must satisfy a power bal-
ance relationship. To verify it for our two-step approach we first find an
expression for the contact currents Ij for ω > 0, relying on the variational
formulations (35) (Step I, QES) and (40) (Step II, Maxwell). Stabilization
does not matter for the considerations in this section. The total current
through contact Πj can be recast as

Ij = Istat,j + Iind,j
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and continuing with (35b) and (40b)

= −
∫

Ω

(σ + ıωǫ) gradϕ · gradΦj dx+ ıω

∫

Ω

ρsΦj dx

−
∫

Ω

(σ + ıωǫ)ıωA · gradΦj dx

and with (3),

=

∫

Ω

(σ + ıωǫ)E · gradΦj dx+ ıω

∫

Ω

ρsΦj dx

and with Ampere’s law (1b),

=

∫

Ω

(curlH− js) · gradΦj dx + ıω

∫

Ω

ρsΦj dx,

and using Green’s formula plus the cancellation due to div js = −ıωρs,

=

∫

∂Ω

curlH · n Φj |∂Ω dS = −
∫

∂Ω

(H× n) · gradΓ Φj |∂Ω dS .

Owing to the zero-current condition (26), which implies
∫

∂Ω

curlH · n ϕ̃′|∂Ω dS =

∫

∂Ω

divΓ(H× n) ϕ̃′|∂Ω dS = 0 ∀ϕ̃′ ∈ H1
ece,0(Ω) ,

we can deduce, with ϕtot = ϕ + ıωηA the scalar surface potential for E as
introduced in (17),

I1V1 + I2V2

=

∫

∂Ω

curlH · n (V1Φ1 + V2Φ2)|∂Ω dS =

∫

∂Ω

curlH · n ϕtot|∂Ω dS

=

∫

∂Ω

divΓ(H× n) ϕtot|∂Ω dS = −
∫

∂Ω

(H× n) · gradΓ ϕtot|∂Ω dS

=

∫

∂Ω

(H× n) · Et dS =

∫

∂Ω

(E×H) · n dS .

The port quantities Vj and Ij provide the electromagnetic power flux through
∂Ω as given by Poynting’s theorem. Thus, in the case js = 0 the power P
that is transferred to the system is

P = −
∫

∂Ω

(E×H) · n dS =

∫

Ω

(j ·E+ iω · (D ·E+H ·B)) dV

= −
(
I1V1 + I2V2

)
=
(
V2 − V1

)
· I1 = U1,2 · I1 .
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6 Numerical Tests

6.1 Finite-Element Galerkin Discretization

The computations of this section were carried out on meshes that consisted of
curved tetrahedral elements. We used first order piecewise linear Lagrangian
(“nodal”) finite elements for test and trial functions in H1(Ω), and first order
edge elements for test and trial functions in H(curl,Ω). The offset function
Φj at port j was implemented as piecewise linear nodal finite-element func-
tion by setting all its nodal values on port Πj to 1, and all other nodal values

zero. The functions Â of Hece,0(curl,Ω), see (39), were realized by splitting

Â = A0 + grad ηv into an interior part A0 ∈ H(curl,Ω) with vanishing
tangential trace A0 × n = 0 on the boundary ∂Ω, and a part grad ηv with
ηv ∈ H1

ece,0(Ω) belonging to the piecewise linear nodal finite-element space
with all its nodal values set to zero except those on ∂Ω. Of course, all edge
degrees of freedom for A0 are set to zero on edges contained in the boundary
∂Ω.

6.2 Importance Of Stabilization: EQS vs. SEQS

In order to demonstrate the robustness of the novel stabilized SEQS formu-
lation (38) we use an example with an analytical solution of the equation

div(σ + iωǫ) gradϕ = 0 ⇐⇒ div
(
(
σ

ǫ
+ iω)D

)

︸ ︷︷ ︸
jtot

= 0 .

The configuration is shown in Figure 2. It consists of three conductive rect-
angular bars that are contained in a rectangular dielectric box. The length
of the sections are do = 10 cm, di = 2 cm, and a voltage of U0 = 1V (peak) is
applied between the entire front- and back side of the box. On the other sides
we use zero-flux boundary conditions. The material parameters are constant
in each subdomain. They are chosen such, that the ratio σ

ǫ
is kept constant

in x-direction, i.e. σ0

ǫor
= σi

ǫir
. This yields a spatially constant total current

density in x direction

jtot = (
σ

ǫ
+ iω)D, with D = D · ex and D = −U0 ·

(
2 · do
ǫo

+
di

ǫi

)
−1

.

So the electric displacement field D is spatially constant and frequency in-
dependent. In our example it holds D = −1.48 · 10−10 C

m2 for the peak value.
The electric field and the electric potential are also frequency independent
and can easily be calculated from D.
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Figure 2: Conductive bars inside of a dielectric box. The entire front side of
the box is grounded V1 = 0 and the entire back side is set to V2 = 1.

We solved the EQS problem (35) and the SEQS problem (38) by using a
preconditioned BiCGstab method. The preconditioner for the EQS system
was chosen as

PEQS = 〈σlim grad(ϕ0 + ϕI), grad(ϕ
′

0 + ϕ′

I)〉Ω ,

with a lower bound for the coefficient σlim ← max{σ, ǫr} in order to guarantee
regularity. The preconditioner for the SEQS system was chosen accordingly
as

PSEQS =

(
〈σlim grad(ϕ̃0 + ϕI), grad(ϕ̃

′

0 + ϕ′

I)〉Ω 0

0 〈ǫr gradψ, gradψ′〉
ΩA

)
.

Both preconditioners are real-valued, symmetric and positive definite. We
stopped the iteration when the relative residual was smaller than 1.0 · 10−10.
This took in none of the cases that we calculated more than 4 iterations on a
mesh with 400′000 tetrahedral elements. Table 1 shows the resulting relative
L2 errors of the EQS/SEQS-solutions.
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Frequency [Hz]
Rel. Error D
Dielectric

Rel. Error D
Conductor

EQS SEQS EQS SEQS
0 2.1 9.2 · 10−8 9.2 · 10−8 9.2 · 10−8

0.001 2.1 9.2 · 10−8 9.2 · 10−8 9.2 · 10−8

1 4.4 · 10−3 9.2 · 10−8 9.2 · 10−8 9.2 · 10−8

10 5.1 · 10−5 9.2 · 10−8 9.2 · 10−8 9.2 · 10−8

100 7.6 · 10−7 9.2 · 10−8 9.2 · 10−8 9.2 · 10−8

1000 9.3 · 10−8 9.2 · 10−8 9.2 · 10−8 9.2 · 10−8

Table 1: Relative errors of the electric displacement field in the dielectric and
the conductive subdomain for the EQS and the SEQS solution at different
frequencies.

The field is accurately calculated at any frequency in the conductive do-
main in both cases EQS/SEQS. In the dielectric domain there are large errors
for the EQS system at low frequencies, while the solution of the SEQS is al-
ways accurate, even at 0Hz. Thus it can be concluded that the stabilization
works very well. Owing to the extreme ill-conditioning of EQS for ω ≈ 0,
the results obtained by linear solvers are hardly predictable.

6.3 Step II: Stabilized Maxwell

As a first example for the proposed two step procedure we studied the correc-
tion to the electric field that resulted from the first step (SEQS) (38) by the
second step (stabilized Maxwell) (43) for the case of the previous Section 6.2.
Figure 3 shows the results. At zero frequency there is no correction to the
electric field, because E = −gradϕ− iωA. So the picture to the left shows
the SEQS solution. The second step is in the stationary case only required if
the magnetic field has to be calculated. The other two pictures in Figure 3
show the total field, i.e. the SEQS solution −gradϕ of the first step with
the correction by −iωA of the second step. Note that the SEQS solution
is in this specific case independent of the frequency! Thus the differences
between the fields at 100Hz/1000Hz and the field at 0Hz are in this figure
exclusively due to the correction by the second step.
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Figure 3: Electric displacement field (rms) at several frequencies.

For test purposes we also computed the field that resulted from first
solving the SEQS system, and then solving the non-stabilized Maxwell system
(40). Thereby we encountered stability problems at low frequencies ω > 0
due to the already mentioned numerical kernel in the non-conducting domain.
These kind of problems are avoided if the stabilized versions are used in both
steps, as can be seen in Table 2: the correction of the SEQS field vanishes
continuously for ω → 0, as required, if the stabilized Maxwell formulation is
used to compute A.

Frequency [Hz]
Rel. Difference D

Dielectric
Rel. Difference D

Conductor
0 9.2 · 10−8 9.2 · 10−8

0.001 9.6 · 10−7 4.6 · 10−6

1 9.5 · 10−4 4.6 · 10−3

10 9.5 · 10−3 4.6 · 10−2

100 8.6 · 10−2 0.41
1000 0.2 0.97

Table 2: Relative L2 differences of the electric displacement field between
the analytical solution at 0Hz and the solution of the combined SEQS / Sta-
bilized Maxwell formulations (38)/(43) in the dielectric and the conductive
subdomain at several frequencies.

For the solution of the stabilized Maxwell system we again used a precon-
ditioned BiCGstab method. This is an efficient method because a real-valued
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symmetric positive definite preconditioner PSM can be used

PSM =

(
MA 0

0 Mf

)
, with

MA↔
〈
1

µ
curl Ã, curl Ã′

〉

Ω

+

〈
σlim
µr

· ωlim(Ã+ grad ηI), (Ã
′ + grad η′I)

〉

Ω

Mf↔ 〈ǫr grad η0, grad η′0〉ΩA
, σlim ← max{σ, ǫr} , ωlim ← max{ω,1}

We stopped the iteration when the relative residual was smaller than 1.0·10−8,
which in no case of this Section 6.3 took more than 7 iterations.

6.4 An RLC Setup

We demonstrate the validity of our interpretation of the different terms of the
field solution as static/induced voltages Ustat / Uind, or as static/induced cur-
rents Istat / Iind by comparison of these quantities with the analytical solution
of a circuit model for the example of a RLC series circuit. The configuration
that we use for this comparison is shown in Figure 4.

Figure 4: RLC Series circuit. The capacitor and the inductance in the field
domain is coupled to a resistor and a voltage or current AC source in the
circuit domain.

The plate capacitor has a radius of 6 cm, the plate distance is 3mm, the
relative permittivity of the dielectric between the plates is ǫr = 1.0 · 106,
which yields an approximate capacity of C = 33.4µF. The coil with 8
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windings has a length of 9 cm, the inner radius is 17mm, and the magnetic
core has a relative permeability of µr = 1000, which yields an inductance
of L = 10.1µH, which we calculated with a field solver at 50Hz. The wire
with electrical conductivity of σ = 1.0 · 107 S/m has a diameter of 5mm, and
the total resistance of the configuration in the field domain was computed to
RL = 7.2mΩ.

If a pure circuit model is used then in frequency domain this configuration
is described by the equation

U = R · I︸︷︷︸
UR

+ iωL · I︸ ︷︷ ︸
UL

+
1

iωC
· I

︸ ︷︷ ︸
UC

, (45)

with the periodic applied voltage source U = U0 · eiωt, see e.g. [17]. The
current IRLC for a RLC-circuit, or in case of L = 0 the current IRC for a
RC-circuit is then given by

IRLC =
U0√

R2 +
(
ωL− 1

ωC

)2 , IRC =
U0√

R2 +
(

1

ωC

)2 , (46)

with the phase shifts between voltage and current

tan δRLC =
ωL− 1

ωC

R
, tan δRC = − 1

ωRC
. (47)

and the resonance frequency

fres =
1

2Π
√
LC

. (48)

This resonance frequency is at 8671Hz in our example. The current at this
resonance frequency is given as

Ires =
U0

RL +Rext

. (49)

6.4.1 Imposed Voltage U = 1V, Rext = 450mΩ

We first fixed the exterior resistance to Rext = 450mΩ and calculated the
field and the circuit solutions in case of a voltage source of U = 1V (rms).
Figure 5 shows the resulting currents. The dotted black line is the current IRC

according to equation (46) of a RC-circuit that neglects the inductance. The
(quasi)static current Istat that was computed by solving the SEQS system
(38) is marked with blues points. It matches perfectly with it.
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The black solid line is the current IRLC according to equation (46) of
a RLC-circuit. The total current I = Istat + Iind that then resulted from
adding the induced current Iind that was computed by solving the stabilized
Maxwell system (43) is marked with red points. It also agrees very well with
the RLC-circuit model, only the peak value at resonance is slightly lower.

Figure 5: Comparison of the current - FEM model vs circuit model.

The phase shift between the applied voltage and the resulting current are
shown in Figure 6 for the circuit model (47) and the field model. There is
again a perfect match between the phase shift of the SEQS field solution and
the phase shift of the RC-circuit. After correction of this phase shift by the
stabilized Maxwell model there is agreement with the phase shift according
to the RLC-circuit.
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Figure 6: Comparison of the phase shift - FEM model vs circuit model.

6.4.2 Imposed Current I = 1A, Rext = 0Ω

In the next example we compared the different contributions of the total
voltage that were calculated by the field model with the voltages of the circuit
model. We therefore set the external resistance to zero and imposed a current
of I = 1A (rms). The resulting total voltage U = Ustat +Uind consists in the
field model of the static voltage Ustat that results from the SEQS solution of
(38) and the induced voltage Uind of the Maxwell correction (43).
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Figure 7: Comparison of the voltage - FEM model vs circuit model.

Similarly as in the previous section there is agreement between the static
voltage Ustat and the voltages UR, UC of the RC-circuit. The imaginary part
of the inductive voltage Uind corresponds to the voltage UL that drops at the
inductance in case of the RLC-circuit. The only yet unclear contribution
is the real part of the induced voltage. It is small compared to the other
components, e.g. at resonance it is 0.024V. This voltage originates from the
increase of the resistance due to the skin effect, and explains the reduced
peak current at resonance in Figure 5.

6.4.3 Voltage Source U = 1V, Rext = 0Ω

In our final numerical experiment we studied the different contributions to
the electric field E = −gradϕ− iωA at different frequencies. We therefore
switched again back to a voltage source of U = 1V (rms) and removed the
external resistor. The results are shown in Figure 8.
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Figure 8: Comparison of the different contributions to the E-field.

The field is dominated by the contribution of the electric scalar poten-
tial at low frequencies, and at higher frequencies it is necessary to include
inductive effects, as expected.

For the field solution we used the same tetrahedral mesh for all calcula-
tions of the RLC-circuit of Section 6.4. It consists of 1.12 million elements.
We used the preconditioned iterative solver as described in the Sections 6.2,
6.3. The iterations in Step I were stopped after a relative residual of 1.0·10−10

was reached, which in no case took more than 6 iterations. We stopped the
iterations in Step II after a relative residual of 1.0 · 10−8 was reached, which
in no case took more than 30 iterations.

7 Summary

In this article we showed that capacitive/resistive and magnetic/inductive
effects can consistently be calculated in two sequential steps. We introduced
an efficient, frequency stable finite-element discretization and demonstrated
how the fields obtained in the two steps can be interpreted. The main ideas
can be extended beyond a finite-element framework.
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