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Abstract

We illustrate the general point of view developed in [SIAM J. Math. Anal., 51(6),
4356–4381] that can be described as a variation of Helgason’s theory of dual G-
homogeneous pairs pX,Ξq and which allows us to prove intertwining properties and
inversion formulae of many existing Radon transforms. Here we analyze in detail one
of the important aspects in the theory of dual pairs, namely the injectivity of the
map label-to-manifold ξ Ñ ξ̂ and we prove that it is a necessary condition for the
irreducibility of the quasi-regular representation of G on L2pΞq. We further explain
how the theory in [SIAM J. Math. Anal., 51(6), 4356–4381] applies to the classical
Radon and X-ray transforms in R

3.
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1 Introduction

The circle of ideas and problems that may be collectively named “Radon transform theory”
was born at least a century ago [20] but still abounds with questions and new perspectives
that range from very concrete computation-oriented tasks to geometric or representation
theoretic issues. We may describe the heart of the matter by paraphrasing Gelfand [10]:

“Let X be some space and in it let there be given certain manifolds which we shall
suppose to be analytic and dependent analytically on parameters ξ1, . . . , ξk, that is tξ̂pξq “

ξ̂pξ1, . . . , ξkqu. With a function f on X we associate its integrals over these manifolds:

Rfpξq “

ż

ξ̂

fpxqdmξpxq.

We then ask whether it is possible to determine f knowing the integrals Rfpξq.”

Among the many generalizations and theorems that may be subsumed in this basic, yet
profound, mathematical sketch, it is certainly worth mentioning Helgason’s contribution,
inspired [14] by work of Fritz John’s, in turn triggered by Radon’s original result [20]
dating back to 1917. In particular, Helgason developed the notion of dual pairs and double
fibrations, whereby (Lie) groups and homogeneous spaces thereof stand at center stage. His
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basic observation comes by inspecting John’s inversion formula for the integral transform–
nowadays the prototypical Radon transform–defined by integration over planes in R

3. The
inversion takes the form

fpxq “ ´
1

8π2
∆x

´ż

S2

Rfpn,n ¨ xqdn
¯
,

where pn, tq ÞÑ Rfpn, tq is the function on S2 ˆR given by the integral of f over the plane
ξ̂n,t “ tx P R

3 : n ¨ x “ tu, ∆x is the Laplacian and dn is the Riemannian measure on the
sphere S2. This formula, observes Helgason [14], “involves two dual integrations, Rf is the
integral over the set of points in a plane and then dn, the integral over the set of planes
through a point.” Furthermore, the domain X on which the functions of interest are defined
(here X “ R

3) and the set Ξ of relevant manifolds (here the two-dimensional planes) are
homogeneous spaces of the same group G, namely the group of isometries of R3, and enjoy
a sort of duality, well captured by the differential-geometric notion of incidence that was
introduced by Chern [6].

Helgason proceeds on developing this duality in group-theoretic terms, emphasizing a
remarkable formal symmetry, according to which the objects of interest come naturally
in pairs, one living in X and its twin in Ξ. Most notably, each point ξ P Ξ (the pair
pξ1, ξ2q “ pn, tq in our basic example) labels one of the actual submanifolds ξ̂ of X on
which the relevant integrals are to be taken (the plane ξ̂pn, tq). Conversely, with each
point x P X it is natural to associate the “sheaf ” of planes passing through it. In the
example above, this is precisely the set x̌ “ tξ̂pn,x ¨nq : n P S2u over which the integral of
Rf is taken.

In the abstract setting developed by Helgason, the whole construction enjoys natural
properties as long as the mappings ξ ÞÑ ξ̂ and x ÞÑ x̌ are both injective, requirement
that is then built into the definition of dual pair and expressed algebraically. Note that
in the above example, the map pn, tq ÞÑ ξ̂pn, tq is two-to-one and this lack of injectivity
is reflected by the fact that Rf is an even function. The central object is of course the
Radon transform

Rfpξq “

ż

ξ̂

fpxqdmξpxq

for integrable functions on X, where mξ is a suitable measure on ξ̂.
Utilizing a variation of this framework, which is recalled in full detail below, we have

addressed [1] some issues that are naturally expressed in this language. Our main contribu-
tion (see Theorem 1) is a general result concerning the “unitarization” of R from L2pX, dxq
to L2pΞ, dξq and the fact that the resulting unitary operator intertwines the quasi regular
representations π and π̂ of G on L2pX, dxq and L2pΞ, dξq, respectively. This unitarization
really means first pre-composing the closure of R with a suitable pseudo-differential oper-
ator and then extending this composition to a unitary map, as is done in the existing and
well-known precedecessors of Theorem 1, such as those in [13] and in [23]. The represen-
tations π and π̂ of course play a central role and are assumed to be irreducible, and π is
assumed to be square integrable (see assumptions A4) and A5) below). The combination
of unitary extension and intertwining leads to an interesting inversion formula for the true
Radon transform, see Theorem 2.

Compared to [1], the present article adopts a slightly different, though fully compatible,
formalism in the sense that we take here the point of view that seems most natural in
applications. Indeed, the space X where the signals of interest are defined and the set
of submanifolds of X where integrals are to be taken are both in the foreground, and
the group G of geometric actions that one wants to consider comes next, taylored to the
problem at hand. In this regard, it is important to observe that, in principle, there are
many different realizations of X as homogeneous space, and the choice of G is tantamount
to choosing the particular set of transformations (or symmetries) that one wants to focus
on. What is of course essential is that they are plentiful enough. As for the submanifolds,
we observe that in most applications one has in mind a prototypical submanifold ξ̂0. We

2



thus choose and fix ξ̂0, which we refer to as the root submanifold, as the image of the base
point x0 P X under the action of some closed subgroup H of G. Thus ξ̂0 “ Hrx0s, and
the other submanifolds are obtained by exploiting the fact that X is a transitive G-space.
This entails that X is covered with all the shifted versions of ξ̂0 by means of the geometric
transformations given by the elements of G. Incidentally, in this way one often achieves
families of foliations, and in most cases this leads to a natural splitting of the parameters
in Ξ, those that label the foliation and those that select the leaf in the foliation.

Although largely inspired by the work of Helgason, our approach is different in several
ways that are discussed in detail in Section 2. His construction rests not only on the strict
invariance of the measures onX, Ξ and ξ̂0 (versus relative invariance as in our construction)
but on the fact that the correspondence ξ Ñ ξ̂ between “labels” in the transitive G-space
Ξ and submanifolds of X is assumed to be injective. In the present article we investigate
this issue in detail and focus on the subgroup rH of G that fixes ξ̂0, in principle larger than
H. We find (Proposition 5) that the map ξ Ñ ξ̂ is injective if and only if rH “ H and we
further show in Theorem 7 that, under reasonable assumptions on rH, if this equality fails,
then π̂ cannot be irreducible. This implies that in order for assumption A5) to be fulfilled,
one must choose H as large as possible among those subgroups of G that fill out ξ̂0 by
acting on x0. Our theory is then illustrated with the help of two examples, namely the
classical Radon transform and the X-ray transform in R

3, both analyzed with the group
SIMp3q of rotations, dilations and translations. Again, this is different from Helgason’s
standard choice, the isometry group Mp3q.

The paper is organized as follows. In Section 2 we set up the context and recall the main
results of [1]. In Section 3 we present a rather detailed analysis of the relations existing
between the objects naturally arising from an arbitrary choice of H and those that come
from the maximal choice rH. This leads to the main contribution of this work, namely the
fact that a gap between rH and H implies that the quasi regular representation π̂ of G on
L2pΞq cannot be irreducible. Section 4 illustrates our theory with two classical examples
in three-dimensional Euclidean space.

2 The framework

In this section we introduce the setting and the main result of [1].

2.1 Notation

We briefly introduce the notation. We set R
ˆ “ Rzt0u and R

` “ p0,`8q. The Euclidean
norm of a vector v P R

d is denoted by |v| and its scalar product with w P R
d by v ¨ w.

For any p P r1,`8s we denote by LppRdq the Banach space of functions f : Rd Ñ C that
are p-integrable with respect to the Lebesgue measure dx and, if p “ 2, the corresponding
scalar product and norm are x¨, ¨y and } ¨ }, respectively. If E is a Borel subset of Rd, |E|
denotes its Lebesgue measure. The Fourier transform is denoted by F both on L2pRdq and
on L1pRdq, where it is defined by

Ffpωq “

ż

Rd

fpxqe´2πi ω¨xdx, f P L1pRdq.

If G is a locally compact second countable (lcsc) group, we denote by L2pG,µGq the Hilbert
space of square-integrable functions with respect to a left Haar measure µG on G. If X is
a lcsc transitive G-space with origin x0, we denote by grxs the action of G on X. A Borel
measure ν on X is relatively invariant if there exists a positive character α of G such that
for any measurable set E Ď X and g P G it holds νpgrEsq “ αpgqνpEq. Furthermore, a
Borel section is a measurable map s : X Ñ G satisfying spxqrx0s “ x and spx0q “ e, with
e the neutral element of G; a Borel section always exists since G is second countable [25,
Theorem 5.11]. We denote the (real) general linear group of size dˆ d by GLpd,Rq.

3



Given two unitary representations π, π̂ of G acting on two Hilbert spaces H and Ĥ,
respectively, a densely defined closed operator T : H Ñ Ĥ is called semi-invariant with
weight ζ if it satisfies

π̂pgqTπpgq´1 “ ζpgqT, g P G, (1)

where ζ is a character of G, see [7].

2.2 Setting and assumptions

The Radon transform of a signal f : X Ñ C is defined as the integral of f over a suitable
family tξ̂u of subsets of X indexed by a label ξ P Ξ.

In this paper, we assume that the input space X is a lcsc space and the signals are
elements of the Hilbert space L2pX, dxq, where dx is a given measure on X, defined on the
Borel σ-algebra of X and finite on compact subsets.

Following Helgason’s approach, the family tξ̂u is defined by first choosing a lcsc group
G acting on X by a continuous action

pg, xq ÞÑ grxs (2)

in such a way that X becomes a transitive G-space. Then, we fix an origin x0 P X, a closed
subgroup H of G and we define the root ξ̂0 of the family tξ̂u as

ξ̂0 “ Hrx0s, (3)

which is a closed H-invariant subset of X, by [13, Lemma 1.1]. Denote the set of left cosets
by Ξ “ G{H and define for each ξ “ gH P Ξ the closed subset of X

ξ̂ “ grξ̂0s “ gHrx0s, (4)

which is independent of the choice of the representative g P G of ξ P G{H.
In order to view the roles played by X and Ξ as somewhat symmetric, we introduce

the stability subgroup of G at x0

K “ tk P G : krx0s “ x0u,

which is a closed subgroup of G such that X can be identified with G{K by means of the
map

G{K Q gK ÞÑ grx0s P X.

Conversely, we regard Ξ as a transitive lcsc space with respect to the continuous action of
G given by

g.ξ “ pgg1qH ξ “ g1H P Ξ. (5)

and we choose, as origin, the point ξ0 “ eH, which makes (3) and (4) consistent with each
other (see Lemma 3 below).

With this setting, we need the following conditions to hold true:

A1) the measure dx is relatively G-invariant with character α and there exists a relatively
invariant measure dξ on Ξ with character β;

A2) there exists a relatively H-invariant measure m0 on ξ̂0 with character γ;

A3) there exist a Borel section σ : Ξ Ñ G for the action (5) and a character ι of G such
that

γ
`
σpξq´1gσpg´1. ξq

˘
“ ιpgq, g P G, ξ P Ξ; (6)

A4) the quasi-regular representation π of G acting on L2pX, dxq as

πpgqfpxq “ αpgq´1{2fpg´1rxsq,

is irreducible and square-integrable;
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A5) the quasi-regular representation π̂ of G acting on L2pΞ, dξq as

π̂pgqF pξq “ βpgq´1{2F pg´1. ξq,

is irreducible;

A6) there exists a non-trivial π-invariant subspace A Ď L2pX, dxq such that for all f P A

fpσpξqr¨sq P L1pξ̂0,m0q for almost all ξ P Ξ, (7a)

Rf :“

ż

ξ̂0

fpσp¨qrxsqdm0pxq P L2pΞ, dξq, (7b)

and the adjoint of the operator R : A Ñ L2pΞ, dξq has non-trivial domain.

We add a few comments. The assumption that the measure dx is (relatively) invariant
ensures that the group G acts also on the signals by means of the unitary representation
π.

It is worth observing that (7a) is independent of the section σ. Indeed, if σ1 is another
section, by assumption A2) we have

ż

ξ̂0

|fpσ1pξqrxsq|dm0pxq “

ż

ξ̂0

|fpσpξqσpξq´1σ1pξqrxsq|dm0pxq

“ γ
`
σ1pξq´1σpξq

˘ ż

ξ̂0

|fpσpξqrxsq|dm0pxq,

since σpξq´1σ1pξq P H.
By means of the section σ, the family tξ̂u is given by

ξ̂ “ σpξqrξ̂0s Ď X, (8)

and the map x ÞÑ σpξqrxs is a Borel bijection from ξ̂0 onto ξ̂, so that (7b) reads as

Rfpξq “

ż

ξ̂

fpxqdmξpxq, (9)

where mξ is the image measure of m0 under the above bijection. Hence for any signal
belonging to A, the map Rf is precisely the Radon transform of f . Note that A is a
dense subspace of L2pX, dxq by irreducibility of π and this property also guarantees that
the adjoint of R is uniquely defined.

Given the space of signals L2pX, dxq, there are possibly many different pairs pG,Hq that
give rise to the same family tξ̂u of subsets and (essentially) to the same Radon trasform
R. In this paper, G is chosen in such a way that π is a square-integrable representation,
so that there exists a self-adjoint operator

C : domC Ď L2pX, dxq Ñ L2pX, dxq,

semi-invariant with weight ∆
1

2 , where ∆ is the modular function of G. Hence, for all
ψ P domC with }Cψ} “ 1, the voice transform Vψ

pVψfqpgq “ xf, πpgqψy, g P G,

is an isometry from L2pX, dxq into L2pG,µGq. In this case the vector ψ is called admissible
and we have the weakly-convergent reproducing formula

f “

ż

G

pVψfqpgqπpgqψ dµGpgq, (10)
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see, for example, [8, Theorem 2.25]). Eq. (10) is at the basis of our reconstruction for-
mula (14).

We stress that in Helgason’s approach, the representation π is not directly considered,
and hence there is no need to require it to be either irreducible or square-integrable. This
entails a larger freedom in the choice of the group G.

We recall that, sinceX, Ξ and ξ̂0 are transitive spaces, there always exist quasi-invariant
measures on these three spaces. In Helgason’s approach, it is assumed that the measures
are invariant, so that they are unique up to a constant. In this paper, we only require that
dx, dξ and m0 are relatively invariant. In particular, m0 is not uniquely given (up to a
constant) and the definition of the Radon transform depends not only on the family tξ̂u,
but also on the measure m0 and the section σ. Since m0 is not invariant, Assumption A3)
is needed to ensure the right covariance properties of the Radon transform and in many
examples it can be easily satisfied by a suitable choice of the section σ.

2.3 The Unitarization Theorem and Inversion Formula

The isometric extension problem for the Radon transform was actually addressed and
implicitly solved by Helgason in the general context of symmetric spaces, see [12, Corollary
3.11]. However, as a consequence of the intertwining properties of the Radon transform it
is possible to provide an alternative proof of the following result, see [1].

Theorem 1. Under the above assumptions,

(i) the Radon transform R : A Ñ L2pΞ, dξq admits a unique closure R;

(ii) the closure R satisfies
Rπpgq “ χpgq´1π̂pgqR, (11)

for all g P G, where χ is the character given by

χpgq “ αpgq1{2βpgq´1{2γpgσpg´1.ξ0qq´1; (12)

(iii) there exists a unique positive self-adjoint operator

I : dompIq Ě ImR Ñ L2pΞ, dξq,

semi-invariant with weight ζ “ χ´1 with the property that the composite operator
IR extends to a unitary operator Q : L2pX, dxq Ñ L2pΞ, dξq intertwining π and π̂,
namely

π̂pgqQπpgq´1 “ Q, g P G. (13)

It follows that the representations π and π̂ are equivalent, so that π̂ is square-integrable,
too.

Since Q is unitary and satisfies (39) and π is square-integrable, it is possible to prove
the following inversion formula for the Radon transform, [1].

Theorem 2. Let ψ P L2pX, dxq be an admissible vector for the representation π such that
Qψ P dom I, and set Ψ “ IQψ. Then, for any f P domR,

f “

ż

G

χpgqxRf, π̂pgqΨyπpgqψ dµGpgq, (14)

where the integral is weakly convergent,and

}f}2 “

ż

G

χpgq2|xRf, π̂pgqΨy|2dµpgq. (15)

If, in addition, ψ P domR, then Ψ “ I2Rψ.

Note that the datum Rf is analyzed by the family tπ̂pgqΨugPG and the signal f is
reconstructed by a different family, namely tπpgqψugPG. The idea to exploit the theory of
the continuous wavelet transform to derive inversion formulae for the Radon transform is
not new, we refer to [4, 15, 16, 19, 22, 26, 27]–to name a few.
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3 Dual pairs and irreducibility

In this section, we show the relation between our setting and the notion of dual pairs
introduced by Helgason [13] and the connection with the assumption on the irreducibility.
If we identify X and Ξ with the corresponding homogenous spaces G{K and G{H, so that
ξ “ g1H for some g1 P G, then a point x “ g2K belongs to ξ̂ if and only if g2KXg1H ‰ H,
which is the notion of incidence introduced by Chern in [6] and adopted by Helgason.

Interchanging the roles of X and Ξ, we can define

x̌0 “ K. ξ0 Ď Ξ, x̌ “ spxq. x̌0 Ď Ξ,

where s : X Ñ G is any section for the action (2). The notion of incidence makes clear the
following duality relation

x P ξ̂ ðñ ξ P x̌.

Furthermore, if x̌0 admits a relatively invariant measure m̂0, we can define the back-
projection of a function f̂ : Ξ Ñ C as

R#f̂pxq “

ż

x̌0

f̂pspxq.ξqdm̂0pξq “:

ż

x̌

f̂pξqdm̂xpξq,

provided that the integral converges, where m̂x is the image measure of m0 under the
bijection ξ ÞÑ spxq.ξ from x̌0 onto x̌.

The pair pX,Ξq is called a dual pair by Helgason if both the map ξ ÞÑ ξ̂ and the map
x ÞÑ x̌ are injective. Below we provide an alternative characterization of injectivity. We
need some preliminary facts.

Lemma 3. For all g P G and ξ P Ξ

grξ̂s “ xg.ξ

Proof. For g P G and ξ “ g1H P Ξ, by equations (4) and (5) it holds that

grξ̂s “ gg1rξ̂0s “ xg.ξ.

This concludes the proof.

Lemma 4. The set
rH “ tg P G | grξ̂0s “ ξ̂0u

is a closed subgroup of G and rH Ě H.

Proof. Clearly, rH is a subgroup of G and rH Ě H. We prove that it is closed. Let pgnqn be
a sequence of rH converging to g and x P ξ̂0, then pgnrxsqn is a sequence of ξ̂0 converging
to grxs P ξ̂0 since the action is continuous and ξ̂0 is closed. Then, grξ̂0s Ď ξ̂0. The same
argument applied to the sequence pg´1

n qn in rH, which converges to g´1, yields g´1rξ̂0s Ď ξ̂0,
namely, ξ̂0 Ď grξ̂0s.

The next proposition provides an alternative characterization of the injectivity in terms
of rH. More precisely, the map ξ ÞÑ ξ̂ is injective if and only if H is chosen as the maximal
subgroups fixing ξ̂0. The reader is referred to Section 4 below for two examples of this
aspect.

Proposition 5. The map ξ ÞÑ ξ̂ is injective if and only if rH “ H.

Proof. Given ξ, ξ1 P Ξ, the condition ξ̂ “ ξ̂1 is equivalent to σpξ1q´1σpξqrξ̂0s “ ξ̂0, i.e.,
σpξ1q´1σpξq P rH.

On the other hand, since ξ “ σpξq.ξ0 and ξ1 “ σpξ1q.ξ0, the condition ξ “ ξ1 is equivalent
to σpξq.ξ0 “ σpξ1q.ξ0, i.e., σpξ1q´1σpξq P H.
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If H “ rH, it follows that ξ̂ “ ξ̂1 if and only if ξ “ ξ1. If H ‰ rH, then since H is always
contained in rH, there exists g P rHzH. Then, by Lemma 3,

ξ̂0 “ grξ̂0s “ yg.ξ0.

However, g.ξ0 ‰ ξ0 because g R H.

Since rH is closed, we can consider the transitive space rΞ “ G{ rH and, since H is a
closed subgroup of rH, the map

j : Ξ Ñ rΞ, jpgHq “ g rH,

is a continuous surjection intertwining the actions of G on Ξ and rΞ, i.e.

jpg.ξq “ g.jpξq, g P G, ξ P Ξ,

where the action of rΞ is still denoted by g.rξ. Furthermore, for all rξ “ g rH P rΞ, we define

r̂ξ “ g rHrx0s.

Corollary 6. For all ξ P Ξ
yjpξq “ ξ̂ (16)

and the map rξ ÞÑ r̂ξ is injective.

Proof. Fix ξ “ gH P Ξ, then

yjpξq “ g rHrx0s “ gp rHHqrx0s “ g rHrξ̂0s “ grξ̂0s “ ξ̂,

where the second equality holds true since rHH “ rH whereas the fourth equality is due to

the definition of rH. If rξ0 “ jpξ0q “ rH is the origin of rΞ, from (16), it follows that prξ0 “ ξ̂0,

so that
ĂĂH “ rH and the injectivity follows from Prop. 5 with H replaced by rH.

3.1 Irreducibility

In this section we show that if H is a proper subgroup of rH, then π̂ is not irreducible. To
prove the claim we need that rH satisfies the same assumptions made on H and that there
is the appropriate compatibility between the two subgroups.

As in A1), we first suppose that G{ rH has a G-relatively invariant measure drξ with the
same character β of dξ. Since β satisfies

βphq “
∆ĂHphq

∆Gphq
h P rH, βphq “

∆Hphq

∆Gphq
h P H, (17)

then
∆Hphq “ ∆ĂHphq, h P H. (18)

Eq. (18) implies that there exists an invariant measure ω on rH{H, see [5, Corollary 2
Section 2, No. 6 INT VII.43].

Note that ξ̂0 is a transitive space with respect to the action of rH. As in Ass. A2), we
also assume that the measure m0 is relatively rH-invariant with character rγ. Note that

rγphq “ γphq, h P H.

Finally, strengthening the analogous of A3) for rΞ, we suppose that σ is such that

rγpσpξ1q´1σpξqq “ 1, (19)

for every ξ, ξ1 P Ξ with jpξq “ jpξ1q.
The main result of this work reads as follows.
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Theorem 7. Under the above assumptions, if π̂ is irreducible, then H “ rH and the map
ξ ÞÑ ξ̂ is injective.

The rest of this section is devoted to the proof of this result.
To prove our main result we recall the following disintegration formula. We adopt the

notation of [5, Definition 1, Section 2, No. 2 INTVII.31]. Given a character β of G and
a closed subgroup G0 of G, we denote by β ¨ µG{µG0

the unique measure on the quotient
space G{G0 such that for all compactly supported continuous functions f : G Ñ C

ż

G

βpgqfpgqdµGpgq “

ż

G{G0

¨
˝

ż

G0

fpghqdµG0
phq

˛
‚d pβ ¨ µG{µG0

q pgG0q.

Observe first that, according to [5, Theorem 3, Section 2, No. 6 INT VII.43], the relatively
invariant measures drξ and dξ are proportional to pβ ¨µGq{µĂH and pβ ¨µGq{µH , respectively.
Furthermore, note that the map

pG, rHq Q pg, hq Ñ gh P G

defines a continuous and proper right action of rH onto G. The measure β ¨ µG is right
relatively rH-invariant with character ∆ĂH . Then by [5, Corollary 1, Section 2, No. 8
INT VII.45], there exists a positive constant C ą 0 such that, for any f P L1pΞ, dξq

ż

Ξ

fpξqdξ “ C

ż

rΞ

¨
˚̋

ż

ĂH{H

fprσprξqh.ξ0qdωphHq

˛
‹‚drξ (20)

where rσ : rΞ Ñ G is a section and the value fprσprξqh.ξ0q depends only on the left coset hH
since H is the stability subgroup at ξ0. The right hand side is well defined since there is a
negligible set rE Ă rΞ such that if rξ R rE, the map

rH{H Q hH Ñ fprσprξqh.ξ0q P C

is integrable with respect to ω, and the almost everywhere defined function

rΞ Q rξ ÞÑ

ż

ĂH{H

fprσprξqh.ξ0q P C

is integrable with respect to drξ. Furthermore, (20) is equivalent to

ż

Ξ

fpξqdξ “ C

ż

rΞ

¨
˚̋

ż

jpξq“rξ

fpξqdνrξpξq

˛
‹‚drξ (21)

where νrξ is the image measure of ω under the map

rH{H Q hH ÞÑ rσprξqh.ξ0 P Ξ,

which is a homeomorphism from rH{H onto the closed subset j´1prξq. In particular, it holds
true that the support of each νrξ is j´1prξq. As a consequence, a subset rE Ă rΞ is negligible

with respect to drξ if and only if j´1p rEq is negligible with respect to dξ.
The next lemma shows that the Radon transform Rfpξq depends only on jpξq.

Lemma 8. For all f P A, there exists rF : rΞ Ñ C and a negligible set rE Ď rΞ such that
j´1p rEq is negligible and

Rfpξq “ rF pjpξqq, ξ R j´1p rEq. (22)

Furthermore, for every ξ1, ξ2 P Ξ

ξ̂1 “ ξ̂2 ùñ Rfpξ1q “ Rfpξ2q.
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Proof. Given f P A, define

E “ tξ P Ξ: fpσpξqqr¨sq R L1pξ̂0,m0qu.

By (7a), the set E is negligible. For any two points ξ, ξ1 P Ξ such that jpξq “ jpξ1q, taking
into account that σpξ1q´1σpξq P rH and by assumption (19), it holds that

Rfpξ1q “

ż

ξ̂0

fpσpξqσpξq´1σpξ1qrxsqdm0pxq

“ rγpσpξ1q´1σpξqq

ż

ξ̂0

fpσpξqqrxsqdm0pxq

“ rγpσpξ1q´1σpξqqRfpξq

“ Rfpξq,

so that either ξ, ξ1 R E or ξ, ξ1 P E and the claim follows with rE “ jpEq because E “

j´1pjpEqq. Since E is negligible, so is rE as a consequence of (21), as already observed.
The last part immediately follows from Corollary 6.

As shown by the following corollary, F is the Radon transform of f associated to the pair
pX, rΞq, which trivially satisfies A1) to A4), whereas the definition of the Radon trasform
requires only (7a).

Corollary 9. Let q : rΞ Ñ Ξ be a measurable section such that qp rξ0q “ ξ0. Then rσ “

σ ˝ q : rΞ Ñ G is a measurable section. Furthermore, the pair pX, rΞq satisfies A3) and (7a)
for all f P A and, denoting the corresponding Radon transform by rR, for all f P A,

Rfpξq “ rRfpjpξqq a.e. ξ P Ξ,

and
Rfpqprξqq “ rRfprξq a.e. rξ P rΞ.

Proof. Let p : G Ñ Ξ and rp : G Ñ rΞ be the canonical projections, then rp “ j ˝ p. We
readily derive

rp ˝ rσ “ j ˝ pp ˝ σq ˝ q “ j ˝ q “ Id, rσpjpξ0qq “ σpξ0q “ e,

so that rσ is a measurable section from rΞ to G.
From (6), with ξ “ qprξq and g P G we get

ιpgq “ γ
`
σpqprξqq´1gσpg´1.qprξqq

˘

“ rγ
`
rσprξq´1g

´
rσpg´1. rξqσpξ1q´1

¯
σpξ2q

˘

“ rγ
`
rσprξq´1grσpg´1. rξq

˘
rγpσpξ1q´1σpξ2qq

“ rγ
`
rσprξq´1grσpg´1. rξq

˘

where ξ1 “ qpg´1.rξq and ξ2 “ g´1.qprξq are such that jpξ1q “ jpξ2q so that the last equality
is a consequence of (19). Hence, Assumption A3) holds true.

We now prove (7a) for rσ. Take f P A. Let rE Ď rΞ be the negligible set given by
Lemma 8. Note that if rξ R rE then qprξq R j´1p rEq. Thus, for rξ R rE we have

ż

ξ̂0

|fprσprξqqrxsq|dm0pxq “

ż

ξ̂0

|fpσpqprξqqrxsq|dm0pxq ă `8,
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and so fprσprξqr¨sq P L1pξ̂0,m0q. Similarly, for rξ R rE we have

rRfprξq :“

ż

r̂ξ0

fprσprξqrxsqdm0pxq “

ż

ξ̂0

fpσpqprξqqrxsqdm0pxq “ Rfpqprξqq.

Finally, for rξ “ jpξq with ξ R j´1p rEq we have jpqprξqq “ rξ, and so Lemma 8 yields

rRfpjpξqq “ Rfpξq,

as desired.

Lemma 10. The space

L2pΞ, dξq0 “ tF P L2pΞ, dξq | F pξq “ rF pjpξqq for a.e. ξ P Ξ for some rF : rΞ Ñ Cu

is a closed π̂-invariant subspace. Hence, if π̂ is irreducible, then

L2pΞ, dξq0 “ L2pΞ, dξq. (23)

Proof. We first observe that, given F P L2pΞ, dξq0, by construction there exists rF : rΞ Ñ C

such that F and rF ˝ j are equal almost everywhere. Hence, we can always assume that
F “ rF ˝ j.

Let pFnq be a sequence in L2pΞ, dξq0 converging to F P L2pΞ, dξq. As observed, we can
assume that Fn “ rFn ˝ j where rFn : rΞ Ñ C. Since Fn converges to F , possibly passing to
a subsequence, there exists a negligible set E such that

lim
nÑ`8

Fnpξq “ lim
nÑ`8

rFnpjpξqq “ F pξq, ξ R E.

Define rF : rΞ Ñ C as

rF prξq “

#
lim

nÑ`8
rFnprξq rξ P jpΞzEq,

0 rξ R jpΞzEq.

Then by construction
F pξq “ rF pjpξqq, ξ R E.

It follows that L2pΞ, dξq0 is closed. We now prove that it is π̂-invariant. Given g P G, for
all F P L2pΞ, dξq0

π̂pgqF pξq “ βpgq´1{2F pg´1.ξq

“ βpgq´1{2 rF pjpg´1.ξqq

“ βpgq´1{2 rF pg´1.jpξqq,

so that L2pΞ, dξq0 is π̂-invariant.
Assume that π̂ is irreducible, then L2pΞ, dξq0 is zero or the full space. Since A is not

trivial, there exists a non-zero f P A such that Rf P L2pΞ, dξq0 by (22). Furthermore,
Rf ‰ 0 since IRf “ Qf ‰ 0 because Q is an isometry. Hence L2pΞ, dξq0 is non-trivial
and L2pΞ, dξq0 “ L2pΞ, dξq.

The proof of Theorem 7 will be an immediate consequence of Proposition 5 and of the
following result.

Proposition 11. Assume that rH ‰ H, then π̂ is not irreducible.

Proof. Suppose by contradiction that π̂ is irreducible, then L2pΞ, dξq0 “ L2pΞ, dξq by
Lemma 10.

11



Ξ

Ξ̃
ξ̃

j´1pξ̃q

K

Z
ξ1

V 1

ξ̃

ξ2 V 2

ξ̃

Figure 1: The setup considered in the proof of Proposition 11.

We first prove that ω is a finite measure. Fix f P L1pΞ, dξq X L2pΞ, dξq such that f is
positive and f ‰ 0, then there exists F : rΞ Ñ C such that F pjpξqq “ fpξq for all ξ R E

where E Ă Ξ is negligible. Hence, by (21)

0 ă

ż

Ξ

fpξqdξ “

ż

Ξ

F pjpξqqdξ “ C

ż

rΞ

¨
˚̋

ż

jpξq“rξ

F pjpξqqdνrξpξq

˛
‹‚drξ

“ C

ż

rΞ

F prξq νrξpΞqdrξ ă 8.

It follows that there exists a negligible subset rE Ă rΞ such that for all rξ R rE, νrξpΞq is finite.
By construction of νrξ as image measure

νrξpΞq “ ωp rH{Hq ă `8, rξ P rΞ.

For every rξ P rΞ, the map hH ÞÑ prσprξqhq.ξ0 is a homeomorphism from rH{H onto j´1prξq.
Thus, since rH{H is not a singleton, there exist ξ1, ξ2 P j´1prξq such that ξ1 ‰ ξ2 and, hence,
two disjoint compact neighbourhoods V 1

rξ , V
2
rξ of ξ1 and ξ2, respectively (see Figure 1). Since

the support of νrξ is j´1prξq, then

νrξpV
1
rξ q ą 0, νrξpV

2
rξ q ą 0. (24)

Let now K Ă rΞ be a compact set of positive measure,

Z “ tξ P Ξ : jpξq P K, ξ P V 1
jpξqu,

and f be the corresponding characteristic function of Z. By applying (21) we obtain

0 ă

ż

Ξ

|fpξq|2dξ “

ż

Ξ

fpξqdξ “ C

ż

K

νrξpV
1
rξ qdrξ ď Cωp rH{Hq

ż

K

drξ ă `8,

which is finite since ωp rH{Hq ă `8 and K is compact. We can apply (21) since f is
positive [5, item c), Corollary 1, Section 2, No. 8 INT VII.45]. Hence f P L2pΞ, dξq and,
as above, there exists F : rΞ Ñ C such that F pjpξqq “ fpξq for all ξ R E1 where E1 Ă Ξ is
negligible. Since E1 is negligible, by (21) applied to the characteristic function of E1 there
exists a negligible subset ĂE1 Ă rΞ such that

νrξ

´
E1 X j´1prξq

¯
“ 0, rξ R ĂE1. (25)
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Choose an arbitrary rξ P Kz rE1. By (24) and (25), for i “ 1, 2 there exists ξi P V irξ zE1 such

that jpξiq “ rE1. Thus

F prξq “ F pjpξiqq “ fpξiq “

#
1 if i “ 1,

0 if i “ 2,

which is absurd.

4 3D-signals: Radon and ray transforms

4.1 The Radon transform on R
3

4.1.1 Groups and spaces

The Radon transform on R
3 of a signal f is defined as the integral of f over the set of

planes in R
3. We show that this is an example of our construction.

The input space is X “ R
3 and the group is SIMp3q, the semi-direct product R

3 ¸ K,
with K “ taR P GLp3,Rq : R P SOp3q, a P R`u. Under the identification K » SOp3q ˆR`,
we write pb, R, aq for the elements in SIMp3q and the group law becomes

pb, R, aqpb1, R1, a1q “ pb ` aRb1, RR1, aa1q.

A left Haar measure of SIMp3q is given by

dµpb, R, aq “ a´4dbdRda, (26)

where db and da are the Lebesgue measures on R
3 and R`, respectively, and dR is a Haar

measure of SOp3q. The group SIMp3q acts on R
3 by the canonical action

pb, R, aqrxs “ b ` aRx, pb, R, aq P SIMp3q, x P R
3.

The isotropy at the origin x0 “ 0 is the subgroup tp0, kq : k P Ku which we identify with
K, so that X » SIMp3q{K. Furthermore, the Lebesgue measure dx on R

3 is a relatively
SIMp3q-invariant measure with positive character αpb, R, aq “ a3. It remains to choose the
closed subgroup H of SIMp3q in such a way that tpξu is the set of planes in R

3. We consider
H “ pR2 ˆ t0uq ¸ pOp2q ˆ R`q, where Op2q denotes the subgroup of rotations leaving the
plane z “ 0 invariant, i.e. it consists of the matrices of the form

R “

„
R˘Rθ 0

0 ˘1


,

where Rθ P SOp2q, R` is the identity and R´ “ r 1 0
0 ´1 s. By (3), the root manifold is the

xy-plane
ξ̂0 “ Hrx0s “ tx P R

3 : x ¨ e3 “ 0u

and it is easy to verify that m0 “ dxdy is a relatively H-invariant measure on ξ̂0 with
character γpb, R, aq “ a2. Furthermore, for each ξ “ pb, R, aqH P Ξ “ SIMp3q{H, by (4)
we compute

ξ̂ “ pb, R, aqrξ̂0s “ tx P R
3 : Re3 ¨ x “ Re3 ¨ bu,

which is the plane perpendicular to the vector Re3 and passing through b. It is worth
observing that H is the maximal closed subgroup of SIMp3q which satisfies hrξ̂0s “ ξ̂0

for every h P H and then, by Proposition 5, the map ξ Ñ ξ̂ is injective. Had we chosen
H 1 “ pR2 ˆ t0uq ¸ pSOp2q ˆR`q, we would have had H 1 Ĺ rH and, indeed, the map ξ1 ÞÑ pξ1

would not have been injective, since every plane would have been labeled by two different
ξ1.

We identify the coset space Ξ “ SIMp3q{H with the set r0, πq2˚ ˆ R, where

r0, πq2˚ “
`
r0, πq ˆ p0, πq

˘
Y tp0, 0qu,
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and we write
npθ, ϕq “ tpsinϕ cos θ, sinϕ sin θ, cosϕq

for every pθ, ϕq P r0, πq2˚. The group SIMp3q acts on r0, πq2˚ ˆ R by the transitive action

pb, R, aq.pθ, ϕ, tq “ pθR, ϕR, Rnpθ, ϕq ¨ npθR, ϕRqpat`Rnpθ, ϕq ¨ bqq,

where pθR, ϕRq P r0, πq2˚ is such that Rnpθ, ϕq “ ˘npθR, ϕRq. Since the stability sub-
group at p0, 0, 0q is H, then SIMp3q{H » r0, πq2˚ ˆ R under the canonical isomorphism
pb, R, aqH ÞÑ pb, R, aq.p0, 0, 0q.

We endow Ξ with the measure dξ “ sinϕ dθdϕdt, where dθ, dϕ and dt are the Lebesgue
measure on r0, πq and R, respectively. It is easy to verify that dξ is a relatively SIMp3q-
invariant measure on Ξ with positive character βpb, R, aq “ a.

4.1.2 The representations

The group SIMp3q acts on L2pR3q by means of the unitary representation π defined by

πpb, R, aqfpxq “ a´ 3

2 fpa´1R´1px ´ bqq, (27)

The dual action R
3 ˆ K Q pη, kq ÞÑ tkη has a single open orbit O “ R

3 for e3 of full
measure and the stabilizer Ke3

» SOp2q ˆ t1u is compact. Then, the representation π is
irreducible and square-integrable, see [2].

Furthermore, the quasi-regular representation π̂ of SIMp3q acting on L2pΞ, dξq as

π̂pb, R, aqF pθ, ϕ, tq “ a´ 1

2F

ˆ
θR´1 , ϕR´1 , R´1

npθ, ϕq ¨ npθR´1 , ϕR´1q
t´ npθ, ϕq ¨ b

a

˙
,

is irreducible, too. As a consequence, Theorem 7 guarantees that the map ξ ÞÑ ξ̂ is injective.
Let us consider again the situation with the choice H 1 “ pR2 ˆ t0uq ¸ pSOp2q ˆ R`q. In
this case, Ξ1 “ SIMp3q{H1 may be identified with S2 ˆ R, and we have already observed
that the map

ξ1 “ pn, tq ÞÑ ξ̂n,t “ tx P R
3 : n ¨ x “ tu

is not injective, since pn1, t1q and pn2, t2q identify the same plane if

pn1, t1q “ ˘pn2, t2q. (28)

In the notation of Section 3, this corresponds to jpn1, t1q “ jpn2, t2q. According to Theo-
rem 7, this implies that the corresponding quasi-regular representation pπ1 cannot be irre-
ducible. Let us verify this explicitly, in order to visualise the link between the irreducibility
of pπ1 and the injectivity of ξ1 ÞÑ pξ1 in this example. By arguing as above, it is easy to prove
that

pπ1pb, R, aqF pn, tq “ a´ 1

2F

ˆ
R´1

n,
t´ n ¨ b

a

˙
.

Thus, using the notation of Lemma 10, the set

L2pΞ1, dξ1q0 “ tF P L2pΞ1, dξ1q : F pn1, t1q “ F pn2, t2q if (28) holdsu

is a closed pπ1-invariant proper subspace of L2pΞ1, dξ1q. Hence, pπ1 is not irreducible.

4.1.3 The Radon transform

In order to define the Radon transform we need to endow each ξ̂ with a suitable measure.
Since the measure m0 is H-relatively invariant, the choice of the representative of ξ is
crucial. We fix the Borel section

σ : Ξ Ñ G, σpθ, ϕ, tq “ ptnpθ, ϕq, Rθ,ϕ, 1q,
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with Rθ,ϕ P SOp3q such that Rθ,ϕe3 “ npθ, ϕq. We observe that, since γ extends to a
positive character of G, assumption (A4) is implied by the stronger condition γpσpξqq “ 1

for every ξ P Ξ. Then, we compute the Radon transform by (9) obtaining

Rfpθ, ϕ, tq “

ż

R2

f
`
tnpθ, ϕq `Rθ,ϕpx, y, 0q

˘
dxdy, (29)

which is the integral of f on the plane of equation npθ, ϕq ¨ x “ t. As a consequence of
Fubini theorem, equation (29) makes sense for instance if f P L1pR3q.

We recall a crucial result in Radon transform theory in its standard version, known as
Fourier slice theorem. We denote by I the identity operator.

Proposition 12. For every f P L1pR3q

pI b FqRfpθ, ϕ, τq “ Ffpτnpθ, ϕqq, (30)

for all pθ, ϕ, τq P r0, πq2˚ ˆ R.

Here the Fourier transform on the right-hand side is in R
3, whereas the operator F

on the left-hand side is one-dimensional and acts on the variabile t. We repeat this slight
abuse of notation in other formulas below.

We show that assumption A6) holds true. Let S2 be the sphere in R
3 and denote by

SpR3q and SpS2 ˆ Rq the Schwartz spaces of rapidly decreasing functions on R
3 and on

S2 ˆ R, respectively, and by S 1pR3q and S 1pS2 ˆ Rq the corresponding spaces of tempered
distributions; see [13, Chapter 1.2] for the definition on S2 ˆ R.

We extend the Radon transform R as an even function on S2 and we denote it by Re,
i.e.

Refpu, tq “ Rfpθu, ϕu,u ¨ npθu, ϕuqtq,

where pθu, ϕuq P r0, πq2˚ is such that npθu, ϕuq “ ˘u.
We recall that, since Re is a continuous map from SpR3q into SpS2 ˆ Rq (see [11]),

given F P S 1pS2 ˆ Rq, the tempered distribution R#
e F : SpR3q Ñ C given by

xR#
e F, fy “ xF,Refy

is well-defined. If F P SpS2 ˆ Rq, by Theorem 1.4 in [18, Chapter 2], the tempered
distribution FR#

e F is represented by the function

FR#
e F pvq “ |v|´2rpI b FqF pv{|v|, |v|q ` pI b FqF p´v{|v|,´|v|qs. (31)

By equation (31), R#
e F is in L2pR3q provided that

ż

R

tmF pu, tqdt “ 0, m P N. (32)

We fix a non-zero F P SpS2 ˆRq which satisfies (32) and the symmetry condition F pu, tq “
F p´u,´tq and we denote its restriction to r0, πq2˚ ˆ R by F0, that is

F0pθ, ϕ, tq “ F pnpθ, ϕq, tq,

for every pθ, ϕ, tq P r0, πq2˚ ˆ R. Then, there exists a positive constant C such that

|xF0,RfyL2pr0,πq2
˚

ˆRq| “
1

2
|xF,RefyL2pS2ˆRq| “ |xR#

e F, fy| ď C}f},

for any f P SpR3q. Therefore, if we take f0 P SpR3q and define the vector subspace
A “ spantπpgqf0 : g P Gu Ď SpR3q, then the domain of the adjoint of the restriction of R
to A is non-trivial since F0 P dompR˚q and assumption A6) holds true.
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4.1.4 The unitarization theorem

By Theorem 1, the Radon transform R : A Ñ L2pΞ, dξq admits a unique closure R which
satisfies

Rπpb, R, aq “ χpb, R, aq´1π̂pb, R, aqR, pb, R, aq P G, (33)

where χpb, R, aq “ a since αpb, R, aq “ a3, βpb, R, aq “ a and γpb, R, aq “ a2. Further-
more, there exists a unique positive self-adjoint operator

I : dompIq Ě ImR Ñ L2pΞ, dξq,

semi-invariant with weight χpb, R, aq´1 “ a´1 with the property that the composite oper-
ator IR extends to a unitary operator Q : L2pX, dxq Ñ L2pΞ, dξq intertwining π and π̂,
namely

π̂pgqQπpgq´1 “ Q, g P G. (34)

We can provide an explicit formula for I .
Consider the subspace

D “ tf P L2pr0, πq2˚ ˆ Rq :

ż

r0,πq2
˚

ˆR

|τ |2|pI b Fqfpθ, ϕ, τq|2 sinϕ dθdϕdτ ă `8u

and define the operator J : D Ñ L2pr0, πq2˚ ˆ Rq by

pI b FqJ fpθ, ϕ, τq “ |τ |pI b Fqfpθ, ϕ, τq, (35)

a Fourier multiplier with respect to the variable t. A direct calculation shows that J is
a densely defined positive self-adjoint injective operator and is semi-invariant with weight
ζpgq “ χpgq´1 “ a´1. By [7, Theorem 1], there exists c ą 0 such that I “ cJ and we
now show that c “ 1. Take a non-zero function f P A. Then, by Plancherel theorem and
Proposition 12 we have that

}f}2 “ }IRf}2L2pr0,πq2
˚

ˆRq “ c2}pI b FqJRf}2L2pr0,πq2
˚

ˆRq

“ c2
ż

r0,πq2
˚

ˆR

|pI b FqRfpθ, ϕ, τq|2|τ |2 sinϕ dθdϕdτ

“ c2
ż

r0,πq2
˚

ˆR

|Ffpτnpθ, ϕqq|2|τ |2 sinϕ dθdϕdτ

“ c2}f}2.

Thus, we obtain c “ 1.

4.1.5 The inversion formula

By Theorem 2, for any f P A we have the reconstruction formula

f “

ż

SIMp3q

a´ 9

2 xRf, π̂pb, R, aqΨyL2pΞ,dξqψpa´1R´1px ´ bqqdbdRda,

where the integral is weakly convergent and where we used that χpb, R, aq “ a, the ex-
pression of the Haar measure of SIMp3q given in (26) and the expression of π given in
(27).

4.2 The X-ray transform.

The X-ray transform in the Euclidean 3-space maps a function on R
3 into the set of integrals

over the lines and the X-ray reconstruction problem consists in reconstructing a signal f
by means of its line integrals.
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4.2.1 Groups and spaces

Take the same group G “ SIMp3q as in subsection 4.1, namely G “ R
3¸K, withK “ taR P

GLp3,Rq : R P SOp3q, a P R`u. Firstly, we choose X “ R
3 and, for what concerns this

space, we keep the notation as in subsection 4.1. Then, we consider the space Ξ “ G{H,
where H “ ptp0, 0qu ˆ Rq ¸ pˆR`q. By (3), the root manifold is then

ξ̂0 “ tte3 : t P Ru

and it is easy to verify thatm0 “ dt is a relativelyH-invariant measure on ξ̂0 with character
γpb, R, aq “ a. Furthermore, for each ξ “ pb, R, aqH P Ξ, by (4) we compute

ξ̂ “ pb, R, aqrξ̂0s “ ttRe3 ` b : t P Ru,

which is the line parallel to the vector Re3 and passing through the point b. It is worth
observing that H is the maximal closed subgroup of SIMp3q which satisfies hrξ̂0s “ ξ̂0 for
every h P H and then, by Proposition 5, the map ξ Ñ ξ̂ is injective.

The coset space Ξ “ SIMp3q{H can be identified with the set T “ tpθ, ϕ, tq : pθ, ϕq P
r0, πq2˚, t P pθ, ϕqKu, where pθ, ϕqK denotes the plane passing through the origin and per-
pendicular to the vector npθ, ϕq, i.e. the plane of equation npθ, ϕq ¨ x “ 0. The group
SIMp3q acts on T by the action

pb, R, aq.pθ, ϕ, tq “ pθR, ϕR, t ` aRb ´ pnpθR, ϕRq ¨ pt ` aRbqqnpθR, ϕRqq,

where we recall that pθR, ϕRq P r0, πq2˚ is such that Rnpθ, ϕq “ ˘npθR, ϕRq. Since the
stability subgroup at p0, 0, 0q is H, then SIMp3q{H » T under the canonical isomorphism
pb, R, aqH ÞÑ pb, R, aq.p0, 0, 0q.

We endow Ξ with the measure dξ “ sinϕ dθdϕdt, with dθ, dϕ and dt being the
Lebesgue measure on r0, πq and R

3, respectively. It is easy to verify that dξ is a relatively
SIMp3q-invariant measure on Ξ with positive character βpb, R, aq “ a3.

4.2.2 The representations

We recall that the group SIMp3q acts on L2pR3q by means of the unitary irreducible rep-
resentation π defined by

πpb, R, aqfpxq “ a´ 3

2 fpa´1R´1px ´ bqq.

Furthermore, the quasi-regular representation π̂ of SIMp3q acting on L2pΞ, dξq as

π̂pb, R, aqF pθ, ϕ, tq “

a´ 3

2F
`
θR´1 , ϕR´1 , a´1R´1pt ´ bq ´ pnpθR´1, ϕR´1q ¨ a´1R´1pt ´ bqqnpθR´1, ϕR´1q

˘
,

is irreducible, too.

4.2.3 The Radon transform

We fix a Borel section

σ : Ξ Ñ G, σpθ, ϕ, tq “ pt, Rθ,ϕ, 1q,

with Rθ,ϕ P SOp3q such that Rθ,ϕe3 “ npθ, ϕq. We observe that, since γ extends to a
positive character of G, assumption (A4) is implied by the stronger condition γpσpξqq “ 1

for every ξ P Ξ. Then, we compute by (9) the Radon transform between the SIMp3q-
transitive spaces X and Ξ obtaining

Rfpθ, ϕ, tq “

ż

R

fptnpθ, ϕq ` tqdt, (36)
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which is the integral of f over the line parallel to the vector npθ, ϕq and passing through
the point t P R

3. Let us now determine a suitable π-invariant subspace A of L2pR3q as in
(A7). In order to do that, it is useful to derive a Fourier slice theorem for R.

For any f P SpR3q, by Theorem 1.1 in [18, Chapter 2], we have

pI b FqRfpθ, ϕ,vq “ Ffpvq, v P pθ, ϕqK. (37)

As a consequence, by Plancherel theorem and formula (2.8) in [18, Chapter 7], we obtain

}Rf}2L2pΞq “

ż π

0

ż π

0

ż

pθ,ϕqK

|pI b FqRfpθ, ϕ,vq|2 sinϕ dvdθdϕ

“

ż π

0

ż π

0

ż

pθ,ϕqK

|Ffpvq|2 sinϕ dvdθdϕ

“

ż

R3

|Ffpvq|2

|v|
dv.

By using spherical coordinates, we obtain

}Rf}2L2pΞq “

ż π

0

ż π

0

ż

R

|Ffpτnpθ, ϕqq|2|τ | sinϕ dτdθdϕ

ď

ż π

0

ż π

0

ż

|τ |ď1

|Ffpτnpθ, ϕqq|2 sinϕ dτdθdϕ

`

ż π

0

ż π

0

ż

|τ |ą1

|τ ||Ffpτnpθ, ϕqq|2 sinϕ dτdθdϕ

ď 4π}f}21 ` }f}22 ă `8,

which proves that Rf P L2pΞq for any f P SpR3q and we set A “ SpR3q. Next, we show
that R, regarded as an operator from A to L2pΞq is closable. By [21, Theorem VIII.1], this
is equivalent to proving that the adjoint of Rf : A Ñ L2pΞq is densely defined. Suppose
that pfnqn Ď A is a sequence such that fn Ñ f in L2pR3q and Rfn Ñ g in L2pΞq. Since
I b F is unitary from L2pΞq onto L2pΞq, we have that pI b FqRfn Ñ pI b Fqg in L2pΞq.
Since fn P A, by (37), for every pθ, ϕq P r0, πq2˚

pI b FqRfnpθ, ϕ,vq “ Ffnpvq, v P pθ, ϕqK.

Hence, passing to a subsequence if necessary,

Ffnpvq Ñ pI b Fqgpθ, ϕ,vq

for almost every pθ, ϕq P r0, πq2˚ and v P pθ, ϕqK. Therefore, for almost every pθ, ϕq P r0, πq2˚
and v P pθ, ϕqK

pI b Fqgpθ, ϕ,vq “ lim
nÑ`8

Ffnpvq “ Ffpvq,

where the last equality holds true using a subsequence if necessary. Therefore, if phnqn P A

is another sequence such that hn Ñ f in L2pR3q and Rhn Ñ h in L2pΞq, then, for almost
every pθ, ϕq P r0, πq2˚ and v P pθ, ϕqK

pI b Fqhpθ, ϕ,vq “ Ffpvq.

Therefore,
pI b Fqgpθ, ϕ,vq “ pI b Fqhpθ, ϕ,vq

for almost every pθ, ϕq P r0, πq2˚ and v P pθ, ϕqK. Then limnÑ`8 Rfn “ limnÑ`8 Rhn,
and R is closable. We denote its closure by R.
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4.2.4 The unitarization theorem

By Theorem 1, the Radon transform R : A Ñ L2pΞ, dξq admits a unique closure R which
satisfies

Rπpb, R, aq “ χpb, R, aq´1π̂pb, R, aqR, pb, R, aq P G, (38)

where χpb, R, aq “ a since αpb, R, aq “ a3, βpb, R, aq “ a and γpb, R, aq “ a2. Further-
more, there exists a unique positive self-adjoint operator

I : dompIq Ě ImR Ñ L2pΞ, dξq,

semi-invariant with weight χpb, R, aq´1 “ a´1 with the property that the composite oper-
ator IR extends to a unitary operator Q : L2pX, dxq Ñ L2pΞ, dξq intertwining π and π̂,
namely

π̂pgqQπpgq´1 “ Q, g P G. (39)

We can provide an explicit formula for I . Consider the subspace

D “ tf P L2pΞq :

ż

r0,πq2
˚

ˆpθ,ϕqK

|τ ||pI b Fqfpθ, ϕ, τq|2 sinϕ dθdϕdτ ă `8u

and define the operator J : D Ñ L2pΞq by

pI b FqJ fpθ, ϕ, τq “ |τ |
1

2 pI b Fqfpθ, ϕ, τq, (40)

a Fourier multiplier with respect to the variable t. A direct calculation shows that J is
a densely defined positive self-adjoint injective operator and is semi-invariant with weight
ζpgq “ χpgq´1 “ a´ 1

2 . By [7, Theorem 1], there exists c ą 0 such that I “ cJ and we
now show that c “ 1. Consider a non-zero function f P A. Then, by Plancherel theorem,
equation (37) and formula (2.8) in [18, Chapter 7], we obtain

}f}2 “ }IRf}2L2pΞq “ c2}pI b FqJRf}2L2pΞq

“ c2
ż

r0,πq2
˚

ˆpθ,ϕqK

|pI b FqRfpθ, ϕ, τq|2|τ | sinϕ dθdϕdτ

“ c2
ż

r0,πq2
˚

ˆpθ,ϕqK

|Ffpτq|2|τ | sinϕ dθdϕdτ

“ c2}f}2.

Thus, c “ 1 and this concludes the proof.

4.2.5 The inversion formula

By Theorem 2, for any f P SpR3q, taking into account equations (26) and (27) and that
χpb, R, aq “ a

1

2 , the reconstruction formula (14) reads

f “

ż

SIMp3q

a´5xRf, π̂pb, R, aqΨyL2pΞ,dξqψpa´1R´1px ´ bqqdbdRda,

where the integral is weakly convergent.
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