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Abstract

We present an extension of the convergence analysis for Richardson-extrapolated polyno-
mial lattice rules from [Josef Dick, Takashi Goda and Takehito Yoshiki: Richardson extrapola-
tion of polynomial lattice rules, SIAM J. Numer. Anal. 57(2019) 44-69] for high-dimensional,
numerical integration to classes of integrand functions with quantified smoothness and Quasi-
Monte Carlo (“QMC” for short) integration rules with so-called smoothness-driven, product
and order dependent (SPOD for short) weights. We establish in particular sufficient conditions
for the existence of an asymptotic expansion of the QMC integration error with respect to suit-
able powers of N , the number of QMC integration nodes. We derive a dimension-separated
criterion for a fast component-by-component (“CBC” for short) construction algorithm for
the computation of the QMC generating vector with quadratic scaling with respect to the
integration dimension s.

We prove that the proposed QMC integration strategies a) are free from the curse of dimen-
sionality, b) afford higher-order convergence rates subject to suitable summability conditions
on the QMC weights, c) allow for certain classes of high-dimensional integrands functions
a computable, asymptotically exact numerical estimate of the QMC quadrature error, with
reliability and efficiency independent of the dimension of the integration domain and d) ac-
commodate fast, FFT-based matrix-vector multiplication from [Dick, Josef; Kuo, Frances Y.;
Le Gia, Quoc T.; Schwab, Christoph: Fast QMC matrix-vector multiplication. SIAM J. Sci.
Comput. 37 (2015), no. 3, A1436-A1450] when applied to parametric operator equations.

The integration methods are applicable for large classes of many-parametric integrand
functions with quantified parametric smoothness. We verify all hypotheses and present nu-
merical examples arising from the Galerkin Finite-Element discretization of a model, linear
parametric elliptic PDE illustrating a) - d). We verify computationally the scaling of the fast
CBC construction algorithm with SPOD QMC weights, and examine the extrapolation-based
a-posteriori numerical estimation of the QMC quadrature error. We find in examples with
parameter spaces of dimension s = 10, ..., 128 that the extrapolation-based, computable QMC
integration error indicator has an efficiency index between 0.9 and 1.1, for a moderate number
N of QMC points.

Key Words: High-dimensional Quadrature, Quasi-Monte Carlo, Richardson Extrapolation, A-
posterior Error Estimation

AMS Subject Classification: 65C05, 65N30, 35J25
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1 Introduction

The efficient numerical analysis of partial differential equations (PDEs for short) with distributed
uncertain inputs, i.e. uncertain input data from function spaces, has emerged as one key element
in the field of computational uncertainty quantification.

We consider a physical process described by a governing equation (assumed to be known),
the forward model P. We assume that P depends on empirical input data to be determined
by observations or experiments, and therefore prone to (observational) uncertainty. For a given
instance of such uncertain input ψ into P, we consider a parametric operator equation of generic
form: given ψ ∈ L, find u ∈ X such that

P (u, ψ) = 0 in Y ′. (1)

Here, L,X, Y are suitable Banach spaces. We assume that the forward model is locally well-posed,
i.e. it is well-posed for a (assumed known) nominal input ψ0 ∈ L and the unique solution u ∈ X
is assumed to depend continuously on the data ψ ∈ L, i.e. the data-to-solution map S : L → X,
where S : ψ 7→ u, is assumed to be locally Lipschitz continuous as a map from L to X, on a
(sufficiently small) neighborhood of ψ0 ∈ L. More precisely, we assume that (1) is well-posed for
all ψ ∈ BR(ψ0) ⊂ L, with the usual notation of BR(ψ) denoting an open ball of radius R > 0
about ψ in a Banach space (here: L).

The numerical analysis of (1) will require further hypotheses. We assume that all admissible
inputs ψ ∈ BR(ψ0) ⊂ L for (1) are parametrized in terms of an affine representation system
Ψ = {ψj}j≥1, where the index j ranges over a set {1 : s} := {1, 2, ..., s} ⊆ N (understood as
all of N in the case that s = ∞). Then, we consider (1) for input data ψ ∈ BR(ψ0) ⊂ L of
affine-parametric form

ψ(y) := ψ0 +
∑

j≥1

yjψj , (2)

where the parameter sequence y := (yj)j≥1 ⊂ U lies in the parameter domain U = [−1/2, 1/2]s,
and where the parameter dimension s ∈ N is either finite or, in case that sequences of parameters
are considered, infinite, in which case s = ∞. Inserting the affine-parametric representation (2)
into the forward operator equation (1), we obtain the parametric forward operator equation: given
y ∈ U , find u(y) ∈ X such that

P (u(y), ψ(y)) = 0 in Y ′. (3)

Examples of affine-parametric representations (2) comprise in particular so-called Karhunen-
Loeve (KL for short) expansions of random fields ψ, but also multiresolution representations of
ψ.

The purpose of the present paper is to study the numerical approximation of integrals over
(functionals of) parametric solution families of the parametric operator equations (3) on possibly
high-dimensional parameter spaces U . Our goal is an accurate numerical approximation, with low
computational cost, of the quantity

Is(G(u)) =

∫

U

G(u(·,y))dy ≈
1

N

∑

yn∈P

G(uh(·,yn)) =: QN,s̄(G(uh)), (4)

for some s̄ ≤ s, s̄ <∞, where uh is the finite element solution of (3) for the case where ψ depends
only on the first s̄ elements of y. Here, the linear functional G ∈ X ′ shall be referred to as Quantity
of Interest (“QoI” for short).

The sampling set P ⊂ [−1/2, 1/2]s̄ in (4) in the present shall be a deterministic QMC point set
of cardinality N . Specifically, we choose P to be the extrapolated polynomial lattice as proposed
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recently in [9]. For the numerical approximation of (4), the parametric solution u of (3) must
be approximated numerically by discretizing the operator equation (3) for each instance of the
parameter sequence y. We denote by h a generic discretization parameter that describes, for
example, the meshwidth of a Galerkin discretization of the parametric problem.

In recent years, the mathematical analysis of QMC integration methods as applied to PDEs
with distributed uncertain inputs (such as diffusion coefficient fields in heterogeneous media, spa-
tiotemporally varying source term and boundary data, etc.) has seen significant development,
starting with [30, 21]. However, the Richardson extrapolation method based on an asymptotic
expansion of the QMC integration error, which was first proposed in [9], has not been studied so
far in the context of PDEs with random coefficients. It allows one to obtain QMC integration rules
which achieve convergence rates greater than 1 independently of the dimension s of the integration
domain thereby overcoming the curse of dimensionality, for certain classes of smooth integrands.
In the present paper we develop the Richardson extrapolation for QMC from [9] further and apply
it to PDEs with random coefficients.

1.1 Contributions

The contributions of the present paper are as follows.
Firstly, we extend the QMC error analysis for extrapolated polynomial lattice rules given in

[9] for the function space setting with so-called “product weights ” to the more general, so-called
“smoothness-driven, product and order dependent weights” (SPOD weights, for short). The main
result, Theorem 2.4, constitutes an extension of [9] to the case of SPOD weights. We remark
that both, product and SPOD weights do appear in partial differential equations with parametric
random field input data. We refer to the discussion in [17, 16], depending on the support properties
of the representation system for the parametric input data: localized supports allow for the use
of product weights whereas globally supported representation systems (such as Karhunen-Loeve
eigensystems [36], or reduced basis representations computed by greedy searches [35]) entail SPOD
type QMC weights in order to ensure the maximal (dimension-independent) convergence rates for
given sparsity of the coefficient representation.

Secondly, we show that the asymptotic expansion of the QMC quadrature error which is fur-
nished by the QMC theory allows for computable, a posteriori estimation of the QMC integration
error. Under suitable hypotheses on the parametric integrand functions that we verify for a model,
parametric elliptic PDE with uncertain coefficient, we prove that the computable QMC quadra-
ture error estimate is asymptotically exact. Furthermore, the efficiency of the extrapolation-based,
computable QMC integration error estimator is independent of the dimension s of the QMC inte-
gration domain. In numerical experiments we show that very good efficiencies, i.e., ratios between
numerically estimated QMC integration error and the exact value of the integral, between 0.9 and
1.1, are achieved already with a moderate number of QMC lattice points, with performance which
is uniform in the quadrature dimension s = 16, ...., 128.

Thirdly, we argue that the particular structure of the lattice points employed in the base QMC
integration rule, on which the extrapolation process is based, facilitates higher order QMC quadra-
ture and a so-called fast matrix-vector multiplication, which is accelerated by FFT algorithms, as
proposed in [11] for first order lattice QMC integration rules as used here. Extension of [11] to
higher order QMC quadrature rules, such as the interlaced polynomial lattice rules (IPLs) in [10],
was not feasible due to digit interlacing used in the construction of the generating vectors for these
higher order QMC integration techniques. The extrapolation-based QMC algorithms proposed
here and in [9] do allow us to achieve higher order, dimension-independent QMC convergence rates
while at the same time facilitating use of FFT accelerated matrix-vector multiplication. In numer-
ical experiments for a linear, affine-parametric elliptic model PDE, we find significant quantitative
advantages of the FFT accelerated algorithms.
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1.2 Outline

The outline of this paper is as follows. In Section 2, we recapitulate the function space setting and
the basic results from [9] on extrapolated polynomial lattice rules. The main result is contained in
Theorem 2.4 in Section 2.

In Section 3, we verify the assumptions in Theorem 2.4 for a particular, model class of operator
equations (1), namely a linear, elliptic diffusion problem in a bounded, physical domain D. Section 4
will present a novel, computable a posteriori QMC integration error estimator and establishes its
asymptotic exactness. Section 5 is devoted to several sets of numerical experiments, indicating
the sharpness of the summability conditions of the extrapolated lattice rules based on SPOD
QMC weights, establishing the viability and the asymptotic exactness of the computable QMC a-
posterior error estimators and demonstrating an application to a model, linear elliptic parametric
PDE problem in two space dimensions. Section 6 will present several conclusions and perspectives
for further work.

2 Richardson extrapolation of polynomial lattice rules for

SPOD weights

In this section, to prepare the subsequent developments of the present paper, we recall the setting
of [9] and the references there in Sections 2.1–2.3. Then in Sections 2.4 and 2.5, we develop the
extension of the Richardson extrapolation of the QMC error, that was developed in [9] for product
weights, to SPOD weights.

Throughout this section, we assume that the parametric dimension s ∈ N is arbitrary.

2.1 Polynomial lattice rules

Polynomial lattice rules provide a special construction of QMC quadrature rules introduced by
Niederreiter [33] and employed in many instances, for a comprehensive overview we refer to [13].
In the following let b ≥ 2 be a prime number, Fb be the finite field with b elements, Fb[x] be the
set of all polynomials with coefficients in Fb and Fb((x

−1)) be the set of all formal Laurent series∑∞
i=w aix

−i, w ∈ Z, and with coefficients ai in Fb. We identify the integers 0, 1, . . . , b − 1 with
the elements in the finite field 0, 1, . . . , b − 1 (mod b). For an integer 0 ≤ n < bm given by the
base b expansion n = n0 + n1b+ · · ·+ nm−1b

m−1, with n0, . . . , nm−1 ∈ {0, 1, . . . , b− 1}, we define
n(x) ∈ Fb[x] given by n(x) = n0+n1x+· · ·+nm−1x

m−1, where we now consider n0, . . . , nm−1 ∈ Fb.

Definition 2.1. Let m ≥ 2 be an integer and p ∈ Fb[x] be a polynomial with deg(p) = m. Let
q = (q1, . . . , qs) be a vector of polynomials over Fb with degree deg qj < m. We define the map
vm : Fb((x

−1)) → [0, 1) by

vm

(
∞∑

i=w

aix
−i

)
=

m∑

i=max{1,w}

aib
−i.

For 0 ≤ n < bm, we put

xn =

(
vm

(
n(x)q1(x)

p(x)

)
, . . . , vm

(
n(x)qs(x)

p(x)

))
∈ [0, 1)s.

Then the point set P (p, q) ={x0,x1, . . . ,xbm−1} is called a polynomial lattice point set and a QMC
rule using this point set is called a polynomial lattice rule.
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Since our integrands are defined on [− 1
2 ,

1
2 ]

s rather than [0, 1]s, we sometimes use the point sets

xn =

(
vm

(
n(x)q1(x)

p(x)

)
−

1

2
, . . . , vm

(
n(x)qs(x)

p(x)

)
−

1

2

)
, n = 0, 1, . . . , bm − 1.

In the analysis of the following sections, we will denote by P⊥(p, q) ⊂ Ns
0 the dual lattice of P (p, q),

defined as in [9, Definition 2.6]. Moreover, we denote P⊥
u (p, q) := {ku ∈ N|u| : (ku,0) ∈ P⊥(p, q)}.

2.2 Extrapolated polynomial lattice rules and CBC construction

Given 1 ≤ r, q ≤ ∞, a set of positive weights γ = (γu)u⊂N,|u|<∞ and α ∈ N, α ≥ 2, the QMC error
analysis is based on the weighted unanchored Sobolev space Ws,α,γ,q,r which is equipped with the
norm

‖F‖s,α,γ,q,r :=




∑

u⊆{1:s}


γ−q

u

∑

v⊆u

∑

νu\v∈{1:α}|u\v|

∫

[− 1
2
, 1
2
]|v|

∣∣∣∣∣

∫

[− 1
2
, 1
2
]s−|v|

∂
(νu\v,αv)
y F (y)

∣∣∣∣∣

q



r/q



1/r

.

(5)
These function spaces were also found to be crucial in the mathematical convergence rate analysis
for so-called interlaced polynomial lattice rules (IPLs for short) in [10, 8, 12] and the references
there. Assume that the integrand F has finite norm ‖F‖s,α,γ,q,r <∞. Then in [9, Equation (3.1)]
it was shown that the following equality holds

Qbm,s(F ) =
1

bm

bm−1∑

n=0

F (xn) = Is(F ) +

α−1∑

τ=1

στ (F )

bτm
+ Spm

(qm)(F ) +Rs,α,bm , (6)

where P (pm, qm) ={x0,x1, . . . ,xbm−1} is the polynomial lattice with generating vector qm and
modulus pm, and Qbm,s is the corresponding rule on the nodes P (pm, qm). We have that στ (F )
depends on the function F and τ but not on the polynomial lattice point set, Rs,α,bm decays with
order b−αm, and Spm

(qm)(F ) depends on the polynomial lattice rule and the integrand F (see
(49) below for a precise definition). The work [9] uses a so-called component-by-component (CBC)
algorithm to find a sequence of polynomial lattices P (pm, qm),m ∈ N, such that Spm

(qm)(F ) is of
order Cδb

−αm+δ, for some constant Cδ > 0 and any δ > 0, where the constant Cδ goes to ∞ as
δ → 0+. Spm

(qm)(F ) is also related to the search criterion Bγ(pm, (q1,m, . . . , qd−1,m, qd,m)) defined
in (12) below.

Given m ∈ N, the CBC algorithm consists of the steps:

1. Initialize p ∈ Fb[x] irreducible of degree m and q∗1 = 1,

2. For d = 2, . . . , s, define q∗d = argminqd∈Fb[x]\{0},deg(qd)<mBγ(p, (q
∗
1 , . . . , q

∗
d−1, qd)).

Moreover, a suitable reformulation of the criterion Bγ , allows to accelerate the argmin search
using FFT, in the case of product or SPOD weights [34, 29, 10]. Its analysis in the present setting
is subject of Section 2.5.

The only terms in (6), which are not of order b−αm+δ, δ > 0, are
∑α−1

τ=1
στ (F )
bτm . The basic idea

of the Richardson extrapolation rests on the following formula

Q
(2)
bm,s(F ) =

bQbm,s(F )−Qbm−1,s(F )

b− 1

=Is(F ) +

α−1∑

τ=1

στ (F )

bτm
b− bτ

b− 1
+
bSpm

(qm)(F )− Spm−1
(qm−1)(F )

b− 1
+
bRs,α,m −Rs,α,m−1

b− 1
.

(7)
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Since the term in the sum for τ = 1 now cancels out, we get that Q
(2)
bm,s(F )− Is(F ) converges with

order b−2m+δ for any δ > 0. Hence we have improved the convergence rate of our approximation
algorithm. Repeated application of this idea, namely,

Q
(τ+1)
bn,s (F ) =

bτQ
(τ)
bn,s(F )−Q

(τ)
bn−1,s(F )

bτ − 1
, m− α+ τ < n ≤ m,

then yields an integration rule Q
(α)
bm,s which achieves a convergence rate of the integration error

of order Cδb
−αm+δ for any δ > 0. Here, we set Q

(1)
bm,s = Qbm,s. Therefore, we can rewrite the

extrapolated sequence as linear combinations of the original sequence

Q
(α)
bm,s(F ) =

α∑

τ=1

a(α)τ Qbm−τ+1,s(F ), (8)

for some constants a
(α)
τ which are independent of b,m, s (these constants arise from the Richardson

extrapolation, see [9, Section 2.4]). In Section 4 we show that this method also yields a computable
a-posteriori estimation of the integration error.

2.3 Previous results

In [9, Section 3.4], it is shown that for every α ∈ N, α ≥ 2, and for every prime basis b ∈ N, there

exists an extrapolated polynomial lattice rule Q
(α)
bm,s such that, for all 1/α < λ ≤ 1 and for every

integrand function F ∈ Ws,α,γ,q,∞, there exists a constant C > 0 independent of m, F and of the
integration dimension s such that

|Is(F )−Q
(α)
bm,s(F )| ≤ C

‖F‖s,α,γ,q,∞
(bm − 1)1/λ

(Js,λ,γ +Hs,γ,q,∞) , (9)

where the constant C depends only on b and α and

Js,λ,γ :=



∑

u⊆{1:s}

γλuC
λ|u|
α E

|u|
α,λ



1/λ

, Hs,γ,q,∞ :=
∑

u⊆{1:s}

γu(α+ 1)|u|/q
′

D|u|
α . (10)

In [9, Theorem 4.1], it was shown for product weights γu =
∏

j∈u
γj that it is possible to construct

a generating vector with a so-called fast CBC algorithm satisfying (9). Moreover, it is sufficient to
have (γj)j ∈ ℓλ(N) for some λ > 1/α to obtain the convergence rate O

(
b−m/λ

)
, which is free from

the curse of dimensionality, i.e. it holds with rate and constant independent of the parametric
dimension s.

Here, we extend this result to SPOD weights. We recall that the error bound in [9] was restricted
to product weights due to a technical obstruction (see [9, Remark 4.2]).

2.4 Extrapolated polynomial lattice rule error analysis with SPOD weights

We use Richardson extrapolation in the context of PDEs with random coefficients, which are rep-
resented by dictionaries with globally supported elements. Such representations arise, for example,
in parametric input functions which are obtained from reduced basis (RB) or from model order
reduction (MOR) approaches which typically result in parsimonius representation of input mani-
folds in terms of globally supported basis functions. We refer to [26, 35] and the references there
for such representations of distributed, parametric inputs.
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We need a corresponding error bound also for SPOD weights γu in the weighted norm (5),
where

γu =
∑

ν∈{1:α}|u|

((|ν|+ c1)!)
c2
∏

j∈u

c3β
νj

j , (11)

where β = (βj)j∈N is a sequence of non-increasing, non-negative real numbers, c1 is a non-negative
integer, and c2, c3 > 0 are real numbers.

In [9, Theorem 3.1] it was shown that the following quantity, for d ∈ N, d ≤ s

Bγ(pm, (q1,m, . . . , qd−1,m, qd,m)) =
∑

∅6=u⊆{1:d}

γuC
|u|
α

∑

ku∈P⊥
u
(pm,(q1,m,...,qd−1,m,qd,m))

∃j∈u:bm∤kj

b−µα(ku), (12)

where pm ∈ Fb[x] is the modulus of degree m and the generating vector (q1,m, . . . , qs−1,m, qs,m) ∈
(Fb[x])

s depends onm, is the main term in the bound on the QMC integration error for Richardson-
extrapolated lattice QMC integration rules, i.e.

|Is(F )−Q
(α)
bm,s(F )| ≤

α∑

τ=1

|a(α)τ |
(
Bγ(pm−τ+1, (q1,m−τ+1, . . . , qs−1,m−τ+1, qs,m−τ+1)) +Rs,α,bm−τ+1

)
.

(13)
The second term in the above bound, arising from Rs,α,bm in (6) is bounded up to a constant

independent of s, F and the number of QMC points, by

b−αm‖F‖s,α,γ,q,∞Hs,γ,q,∞,

where Hs,γ,q,∞ given in (10), and hence already converges with the optimal rate. Since the second
term Rs,α,bm is independent of the choice of (q1, . . . , qs−1, qs), we focus on Bγ . In the following we
show that there is a component-by-component algorithm for SPOD weights such that Bγ(p, q) is

bounded by C(bm − 1)1/λJ̃s,λ,γ , where J̃s,λ,γ is similar to Js,λ,γ given in (10).
We need the following lemma, which is [20, Lemma 7].

Lemma 2.2. For α ≥ 2 and 1/α < λ ≤ 1, we have

∞∑

k=1

b−λµα(k) =
α−1∑

w=1

w∏

i=1

(
b− 1

bλi − 1

)
+

(
bλα − 1

bλα − b

) α∏

i=1

(
b− 1

bλi − 1

)
=: Eα,λ.

We obtain the following extension of [9, Theorem 4.1] to SPOD weights.

Lemma 2.3. Let β be a sequence of non-increasing, non-negative real numbers. For u ⊂ N with
|u| <∞ let γu be given by (11).

Let α, s ∈ N, b be a prime number and let p ∈ Fb[x] be an irreducible polynomial of degree
m ∈ N. Assume that q∗1 , q

∗
2 , . . . , q

∗
s ∈ Fb[x] were constructed using a component-by-component

algorithm based on the criterion (12).
Then, for any 1/α < λ ≤ 1 with E = Cαc3Eα,1α

αc2 we have

Bγ(p, q
∗) ≤

1

(bm − 1)1/λ




∑

u⊆{1:s}

γλuC
λ|u|
α E

|u|
α,λ

∏

j /∈u

(
1 + E

α∑

ν=1

((j + c1/α)
c2βj)

ν

)λ



1/λ

.

The proof follows along the lines of the proof of [9, Theorem 4], with some modifications to
avoid the obstruction outlined in [9, Remark 4.2].
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Proof. Without loss of generality we may assume that the modulus p ∈ Fb[x] is monic. We prove
the result by induction on s. The dual polynomial lattice for q∗ = 1 is given by

P⊥(p, 1) = {k ∈ N0 : trm(k) = 0 (mod p)} = {k ∈ N0 : bm|k}.

Hence we have
Bγ(p, 1) = Cαγ1

∑

k∈P⊥(p,1)\{0}
bm∤k

b−µα(k) = 0.

Now assume that we have already fixed the first d − 1 components q∗
d−1 = (q∗1 , . . . , q

∗
d−1) ∈

(G∗
b,m)d−1, 2 ≤ d ≤ s of the generating vector, such that

(Bγ(p, q
∗
d−1))

λ ≤
1

bm − 1

∑

u⊆{1:d−1}

γλuC
λ|u|
α E

|u|
α,λ

∏

j /∈u

(
1 + E

α∑

ν=1

((j + c1/α)
c2βj)

ν

)λ

holds for any 1/α < λ ≤ 1. Put qd = (q∗
d−1, qd) with qd ∈ G∗

b,m := {q ∈ Fb[x] : deg(q) < m} \ {0}.
Then we have

Bγ(p, qd) =
∑

∅6=u⊆{1:d−1}

γuC
|u|
α

∑

ku∈P⊥
u
(p,qd)

∃j∈u : bm∤kj

b−µα(ku)

+
∑

∅6=u⊆{1:d−1}

γu∪{d}C
|u|+1
α

∑

ku∪{d}∈P⊥
u∪{d}(p,qd)

∃j∈u : bm∤kj

bm|kd

b−µα(ku∪{d})

+
∑

u⊆{1:d−1}

γu∪{d}C
|u|+1
α

∑

ku∪{d}∈P⊥
u∪{d}(p,qd)

bm∤kd

b−µα(ku∪{d})

= Bγ(p, q
∗
d−1) +

∑

∅6=u⊆{1:d−1}

γu∪{d}C
|u|+1
α

∑

ku∈P⊥
u
(p,q∗

d−1)

∃j∈u : bm∤kj

∑

kd∈N
bm|kd

b−µα(ku,kd)

+
∑

u⊆{1:d−1}

γu∪{d}C
|u|+1
α

∑

ku∪{d}∈P⊥
u∪{d}(p,qd)

bm∤kd

b−µα(ku∪{d})

≤ Bγ(p, q
∗
d−1)




1 +
∑

kd∈N
bm|kd

b−µα(kd)
α∑

νd=1

(
(α(d− 1) + c1 + νd)!

(α(d− 1) + c1)!

)c2

Cαc3β
νd

d

︸ ︷︷ ︸
=:A(βd)




+
∑

u⊆{1:d−1}

γu∪{d}C
|u|+1
α

∑

ku∪{d}∈P⊥
u∪{d}(p,qd)

bm∤kd

b−µα(ku∪{d}), (14)

where the second equality stems from the fact that since bm | kd, we have trm(kd) = 0 and thus
trm(ku∪{d}) · (q

∗
u, qd) = trm(ku) · q

∗
u, which yields

{ku∪{d} ∈ P⊥
u∪{d}(p, qd) : b

m | kd} = {(ku, kd) ∈ N|u|+1 : ku ∈ P⊥
u (p, q∗

d−1), b
m | kd}.
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In the last step we used the estimate

γu∪{d} ≤
∑

ν∈{1:α}|u|

((|ν|+ c1)!)
c2



∏

j∈u

c3β
νj

j




α∑

νd=1

(
(α(d− 1) + c1 + νd)!

(α(d− 1) + c1)!

)c2

c3β
νd

d .

It is clear that the first term of (14) does not depend on the choice of qd. Thus, denoting the
second term of (14) by

ψp,q∗
d−1

(qd) :=
∑

u⊆{1:d−1}

γu∪{d}C
|u|+1
α

∑

ku∪{d}∈P⊥
u∪{d}(p,qd)

bm∤kd

b−µα(ku∪{d}),

we have
q∗d = arg min

qd∈G∗
b,m

Bγ(p, qd) = arg min
qd∈G∗

b,m

ψp,q∗
d−1

(qd).

Using Jensen’s inequality, as long as 1/α < λ ≤ 1, we have

(ψp,q∗
d−1

(q∗d))
λ

≤
1

bm − 1

∑

qd∈G∗
b,m

(ψp,q∗
d−1

(qd))
λ

≤
1

bm − 1

∑

qd∈G∗
b,m

∑

u⊆{1:d−1}

γλ
u∪{d}C

λ(|u|+1)
α

∑

ku∪{d}∈P⊥
u∪{d}(p,qd)

bm∤kd

b−λµα(ku∪{d})

=
1

bm − 1

∑

u⊆{1:d−1}

γλ
u∪{d}C

λ(|u|+1)
α

∑

ku∪{d}∈N|u|+1

bm∤kd

b−λµα(ku∪{d})

×
∑

qd∈G∗
b,m

trm(ku)·q
∗
u
+trm(kd)qd=0 (mod p)

1.

Since bm ∤ kd, we have trm(kd) 6= 0. For ku ∈ P⊥
u (p, q∗

d−1), it follows from the definition of the dual
polynomial lattice that trm(ku) · q

∗
u = 0 (mod p), and thus there is no polynomial qd ∈ G∗

b,m such

that the condition trm(kd)qd = 0 (mod p) is satisfied. For ku /∈ P⊥
u (p, q∗

d−1), there exists exactly
one qd ∈ G∗

b,m such that trm(kd)qd = − trm(ku) · q
∗
u (mod p). From these facts and Lemma 2.2,

we obtain

(ψp,q∗
d−1

(q∗d))
λ ≤

1

bm − 1

∑

u⊆{1:d−1}

γλ
u∪{d}C

λ(|u|+1)
α

∑

ku∈N|u|

ku /∈P⊥
u
(p,q∗

d−1)

∑

kd∈N
bm∤kd

b−λµα(ku,kd)

≤
1

bm − 1

∑

u⊆{1:d−1}

γλ
u∪{d}C

λ(|u|+1)
α

∑

ku∈N|u|

b−λµα(ku)
∑

kd∈N
bm∤kd

b−λµα(kd)

=
1

bm − 1

∑

u⊆{1:d−1}

γλ
u∪{d}C

λ(|u|+1)
α E

|u|+1
α,λ .

We now study the expression A(βd) from (14) in more detail. The sum over kd is bounded by
Eα,1 from Lemma 2.2. Then we have

A(βd) ≤Cαc3Eα,1

α∑

νd=1

νd∏

ℓ=1

βd(α(d− 1) + c1 + ℓ)c2 .

9



Hence

A(βd) ≤ Cαc3Eα,1

α∑

νd=1

νd∏

ℓ=1

βd(αd+ c1 + ℓ− α)c2 ≤ Cαc3Eα,1α
αc2

α∑

νd=1

((d+ c1/α)
c2βd)

νd .

To simplify the notation we collect all the constants in a new constant E = Cαc3Eα,1α
αc2 .

Finally by applying Jensen’s inequality to (14) and using Lemma 2.2, we have

(Bγ(p, q
∗
d))

λ ≤ (Bγ(p, q
∗
d−1))

λ

(
1 + E

α∑

νd=1

((d+ c1/α)
c2βd)

νd

)λ

+
1

bm − 1

∑

u⊆{1:d−1}

γλ
u∪{d}C

λ(|u|+1)
α E

|u|+1
α,λ

≤
1

bm − 1

∑

u⊆{1:d}

γλuC
λ|u|
α E

|u|
α,λ

∏

j∈{1:d}\u

(
1 + E

α∑

ν=1

((j + c1/α)
c2βj)

ν

)λ

.

This completes the proof.

Theorem 2.4. Let c2 ≥ 0 and β be a sequence of non-increasing, non-negative real numbers such
that

∞∑

j=1

jc2βj <∞.

For u ⊂ N with |u| <∞ let γu be given by (11). Let α ∈ N, b be a prime number and p ∈ Fb[x] be an
irreducible polynomial of degree m ∈ N. Assume that q∗1 , q

∗
2 , . . . , q

∗
s ∈ Fb[x] were constructed using

a component-by-component algorithm based on the criterion (12). Then, for any 1/α < λ ≤ 1 we
have

Bγ(p, q
∗) ≤

K

(bm − 1)1/λ




∑

u⊆{1:s}

γλuC
λ|u|
α E

|u|
α,λ




1/λ

,

where the constant K :=
∏∞

j=1 (1 + E
∑α

ν=1((j + c1/α)
c2βj)

ν) is independent of b,m, s, λ.

Proof. We bound the term

∏

j /∈u

(
1 + E

α∑

ν=1

((j + c1/α)
c2βj)

ν

)
≤

∞∏

j=1

(
1 + E

α∑

ν=1

((j + c1/α)
c2βj)

ν

)

≤ exp


E

α∑

ν=1

∞∑

j=1

((j + c1/α)
c2βj)

ν


 <∞,

where we used the inequality log(1 + x) ≤ x for x > 0. The assumption
∑∞

j=1(j + c1/α)
c2βj <∞

implies that
∑∞

j=1((j + c1/α)
c2βj)

ν <∞ for any ν ≥ 1. Further we have for any j ∈ N that

(j + c1/α)
c2 ≤ (1 + c1/α)

c2jc2 .

Hence
∑∞

j=1 j
c2βj <∞ implies that

∑∞
j=1(j + c1/α)

c2βj <∞.
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Theorem 2.5. Let β be a sequence of non-increasing, non-negative real numbers. Let c2 > 0 and
0 < p < 1/(1 + c2) such that

∑∞
j=1 β

p
j < ∞. For u ⊂ N with |u| < ∞ let γu be given by (11). Let

α = 1 + ⌊1/p⌋, b be a prime number and p ∈ Fb[x] be an irreducible polynomial of degree m ∈ N.
Assume that q∗1 , q

∗
2 , . . . , q

∗
s ∈ Fb[x] were constructed using a component-by-component algorithm

based on the criterion (12). Then for any p ≤ λ < 1/c2 there is a constant C(λ) > 0, which does
not depend on s,m, such that

Bγ(p, q
∗) ≤

C(λ)

bm/λ
.

Proof. The bound on the sum
∑

u
γλuC

λ|u|
α E

|u|
α,λ follows as in [10, Section 3]. In order to obtain

a bound which is independent of the dimension, we need to bound
∑

u⊂N,|u|<∞ γλuC
λ|u|
α E

|u|
α,λ. Let

B := max{1, c3CαE
1/λ
α,λ } and define γ̃1, γ̃2, . . . to be the sequence

Bβ1, Bβ1, . . . , Bβ1︸ ︷︷ ︸
α times

, Bβ2, Bβ2, . . . , Bβ2︸ ︷︷ ︸
α times

, . . .

i.e., γ̃1 = · · · = γ̃α = Bβ1, γ̃α+1 = · · · = γ̃2α = Bβ2, . . . . Then
∑∞

j=1 β
p
j < ∞ if and only if∑∞

j=1 γ̃
p
j <∞. We have

∑

u⊂N
|u|<∞

γλuC
λ|u|
α E

|u|
α,λ ≤

∑

u⊂N
|u|<∞

∑

ν∈{1:α}|u|

((|ν|+ c1)!)
c2λ
∏

j∈u

(Bβ
νj

j )λ

≤
∑

v⊂N
|v|<∞

((|v|+ c1)!)
c2λ
∏

j∈v

γ̃λj ≤
∞∑

ℓ=0

((ℓ+ c1)!)
c2λ

1

ℓ!




∞∑

j=1

γ̃λj




ℓ

.

As long as λ ≥ p, the sum S =
∑∞

j=1 γ̃
λ
j <∞. From Stirling’s formula we have

((ℓ+ c1)!)
c2λ

ℓ!
≍
(ℓ+ c1)

(ℓ+c1+1/2)c2λe−ℓc2λ

ℓℓ+1/2e−ℓ

≍
(ℓ+ c1)

ℓc2λ

ℓℓ
eℓ(1−c2λ)

(ℓ+ c1)
(c1+1/2)c2λ

ℓ1/2
, as ℓ→ ∞.

This expression converges to 0 superexponentially fast as long as c2λ < 1. Hence

∑

u⊂N
|u|<∞

γλuC
λ|u|
α E

|u|
α,λ <∞ (15)

for any p ≤ λ < 1/c2. We now show that
∑∞

j=1 β
p
j <∞ for some 0 < p < 1/(1 + c2) implies that

∑∞
j=1 j

c2βj < ∞. We have jβp
j ≤

∑j
i=1 β

p
i and therefore βj ≤ Cj−1/p, where C = (

∑∞
j=1 β

p
j )

1/p.
Hence

∞∑

j=1

jc2βj ≤ C
∞∑

j=1

jc2−1/p.

Now p < 1/(1 + c2) implies that c2 − 1/p < −1 and the result follows.

Remark 2.6. To have a guaranteed convergence rate of the QMC approximation of 1/λ, we have
the constraints

• 1/α < λ ≤ 1, coming from the CBC construction

11



• p < 1
c2+1 , to verify the summability hypothesis of Theorem 2.4

• p ≤ λ < 1
c2
, for the summability required in Theorem 2.5.

Therefore, in the case c2 = 1 and α = 2, we also obtain convergence order arbitrarily close to
O
(
N−2

)
provided that p < 1

2 .

Remark 2.7 (Low summability – Part I). Under the same assumptions of Lemma 2.3, we also
have, the estimate

Bγ(p, q
∗) ≤

1

bm − 1

∑

u⊆{1:s}

γuC
|u|
α E

|u|
α,1. (16)

Therefore, following the arguments from Theorem 2.5, given SPOD weights (11) such that c2 = 1
and β ∈ ℓ1(N) with the smallness condition (analogous to [10, Equation (3.42)])

‖β‖ℓ1(N) <
1

αmax{1, c3CαEα,1}
, (17)

this yields

∑

u⊆{1:s}

γuC
|u|
α E

|u|
α,1 ≤

∞∑

ℓ=0

(ℓ+ c1)!

ℓ!


αmax{1, c3CαEα,1}

∞∑

j=1

βj




ℓ

<∞. (18)

The same argument applies to Hs,γ,q,∞ from (10). Hence, we obtain at least first order convergence
of the QMC quadrature with extrapolated polynomial lattices. In particular, the constraint β ∈
ℓp(N), p < 1

1+c2
= 1

2 can be omitted in this case.

Proof of (16). In the proof of Lemma 2.3 we observe

Bγ(p, qd) = Bγ(p, q
∗
d−1) +

∑

∅6=u⊆{1:d−1}

γu∪{d}C
|u|+1
α

∑

ku∈P⊥
u
(p,q∗

d−1)

∃j∈u : bm∤kj

∑

kd∈N
bm|kd

b−µα(ku,kd)

+
∑

u⊆{1:d−1}

γu∪{d}C
|u|+1
α

∑

ku∪{d}∈P⊥
u∪{d}(p,qd)

bm∤kd

b−µα(ku∪{d})

=: Bγ(p, q
∗
d−1) + φp,q∗

d−1
+ ψp,q∗

d−1
(qd), (19)

where the first two terms of (19) do not depend on the choice of qd. In the same lemma we also
show that for the choice qd = q∗d ,

ψp,q∗
d−1

(q∗d) ≤
1

bm − 1

∑

u⊆{1:d−1}

γu∪{d}C
|u|+1
α Eα,1

∑

ku∈N|u|

ku /∈P⊥
u
(p,q∗

d−1)

b−µα(ku).

Next, using the estimate µα(kb
m) ≥ m+ µα(k) for all k ∈ N and Lemma 2.2, we bound

φp,q∗
d−1

=
∑

∅6=u⊆{1:d−1}

γu∪{d}C
|u|+1
α

∑

ku∈P⊥
u
(p,q∗

d−1)

∃j∈u : bm∤kj

b−µα(ku)
∑

k∈N

b−µα(kbm)

≤ b−m
∑

∅6=u⊆{1:d−1}

γu∪{d}C
|u|+1
α

∑

ku∈P⊥
u
(p,q∗

d−1)

∃j∈u : bm∤kj

b−µα(ku)
∑

k∈N

b−µα(k)
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= b−m
∑

∅6=u⊆{1:d−1}

γu∪{d}C
|u|+1
α Eα,1

∑

ku∈P⊥
u
(p,q∗

d−1)

∃j∈u : bm∤kj

b−µα(ku). (20)

Therefore, we obtain

ψp,q∗
d−1

(q∗d) + φp,q∗
d−1

≤
1

bm − 1

∑

u⊆{1:d−1}

γu∪{d}C
|u|+1
α Eα,1

∑

ku∈N|u|

b−µα(ku)

=
1

bm − 1

∑

u⊆{1:d−1}

γu∪{d}C
|u|+1
α E

|u|+1
α,1 ,

and with the inductive hypothesis this completes the proof.

Remark 2.8 (Low summability – Part II). Applying the same estimate µα(kb
m) ≥ m + µα(k)

to A(βd) defined in (14), we observe that the result of Lemma 2.3 is valid with the constant E
replaced by Eb−m. Hence, under the additional assumption that s ≤ bm < ∞, the (dimension
independent) convergence Bγ(p, q

∗) ≤ C(p)b−m/p from Theorem 2.5 is also attained for β ∈ ℓp(N),
p ∈ [ 1

c2+1 ,
1
c2
), due to (15) and

∏

j∈{1:s}\u

(
1 + Eb−m

α∑

ν=1

((j + c1/α)
c2βj)

ν

)
≤ exp

(
E

α∑

ν=1

max
j∈N

((j + c1/α)
c2βj)

ν

)
<∞.

Since in practical applications the parameter space U is truncated to finite dimension s < ∞, the
growth m ≥ logb s is a mild requirement that can be enforced easily in many situations, in particular
in the parametric PDE setting of Theorem 3.8 below.

2.5 Fast component-by-component construction

We want to apply the fast CBC construction for SPOD weights for the construction of extrapolated
polynomial lattice rules from [9]. The criterion in (12) is of the same form as the criterion E2

s (zs)
in [29, Section 5], so the fast CBC construction with POD weights can be performed in the same
way as described there.

The general form of the SPOD weights (11) can be written as γ∅ = 1 and, for any ∅ 6= u ⊆ {1 :
s},

γu =
∑

ν∈{1:ᾱ}|u|

Γ|ν|

∏

j∈supp(ν)

γj(νj),

where supp(ν) = {j ∈ {1 : s} : γj(νj) 6= 0}, and where γj(νj) is a non-negative real number which
may depend on νj (cf. (36)).

The POD weights γu := Γ|u|

∏
j∈u

γj correspond to the case of ᾱ = 1. For applications to PDEs
with globally supported uncertain coefficients, we have ᾱ = α as in (11). However, in order to have
greater flexibility of the results in this section, we distinguish α corresponding to the maximum
derivative order in (5) and appearing in the Walsh bound, from ᾱ for the parameter in the SPOD
weights. By choosing the parameter ᾱ = 1 we obtain results for POD weights and by setting ᾱ = α
we obtain results for SPOD weights.

As in [9, p.64], we perform the CBC construction for d = 1, . . . , s by adding the terms that do
not depend on the new component qd. We thus employ the following search criterion in the CBC
algorithm,

B̃γ(p, qd) := Bγ(p, qd) +
∑

∅6=u⊆{1:d}

γuC
|u|
α

∑

ku∈P⊥
u
(p,qd)

∀j∈u : bm|kj

b−µα(ku)
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=
∑

∅6=u⊆{1:d}

γuC
|u|
α

∑

ku∈P⊥
u
(p,qd)

b−µα(ku).

Therefore, using the dual lattice property we get

B̃γ(p, qd) =
1

bm

bm−1∑

n=0

∑

∅6=u⊆{1:d}

γuC
|u|
α

∑

ku∈N|u|

b−µα(ku) wal(ku,0)(yn)

=
1

bm

bm−1∑

n=0

∑

∅6=u⊆{1:d}

γuC
|u|
α

∏

j∈u

∑

k∈N

b−µα(k) walk(yn,j).

Define wα(y) :=
∑

k∈N b
−µα(k) walk(y) and Γ0 := 1. Following the fast CBC construction in

[10] we obtain

B̃γ(p, qd) = −1 +
1

bm

bm−1∑

n=0

∑

u⊆{1:d}

∑

ν∈{1:ᾱ}|u|

Γ|ν|

∏

j∈u

γj(νj)Cαwα(yn,j)

= −1 +
1

bm

bm−1∑

n=0

ᾱd∑

l=0

Γl

∑

ν∈{0:ᾱ}d

|ν|=l

∏

j∈supp(ν)

γj(νj)Cαwα(yn,j).

Employing the convention that Ud,0(n) := 1 for all d ∈ N0, and Ud,l(n) := 0 for all l > ᾱd, the
definition

Ud,l(n) := Γl

∑

ν∈{0:ᾱ}d

|ν|=l

∏

j∈supp(ν)

γj(νj)Cαwα(yn,j) (21)

implies

B̃γ(p, qd) = −1 +
1

bm

bm−1∑

n=0

ᾱd∑

l=0

Ud,l(n). (22)

We now isolate the summands that do not depend on the last component of the generating vector,
that is the summands corresponding to ν with νd = 0. With the conventions above we obtain a
recursive formula

Ud,l(n) =Ud−1,l(n) + Γl

min(ᾱ,l)∑

νd=1

γd(νd)Cαwα(yn,d)

×
∑

ν∈{0:ᾱ}d−1

|ν|=l−νd

∏

j∈supp(ν)

γj(νj)Cαwα(yn,j)

=Ud−1,l(n) + wα(yn,d)

min(ᾱ,l)∑

νd=1

γd(νd)Cα
Γl

Γl−νd

Ud−1,l−νd
(n)

=Ud−1,l(n) + wα(yn,d)Vd,l(n), (23)

where we defined

Vd,l(n) :=

min(ᾱ,l)∑

νd=1

γd(νd)Cα
Γl

Γl−νd

Ud−1,l−νd
(n). (24)
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Therefore, the only term dependent on qd in (22) is

bm−1∑

n=1

wα

(
vm

(
qdn

p

)) ᾱd∑

l=1

Vd,l(n),

where qdn
p

is computed in Fb((x
−1)), i.e., with slight abuse of notation we identify n ∈ {1 : bm − 1}

with n(x) ∈ Fb[x] defined in Section 2.1. Note that n = 0 is not included. Therefore, there exists
a permutation Π of n ∈ {1 : bm − 1} that allows us to rewrite qdΠ(n) = gzd−n (mod p) for some
primitive element g ∈ (Fb[x]/p) \ {0}, obtaining

bm−1∑

n=1

wα

(
vm

(
gzd−n

p

)) ᾱd∑

l=1

Vd,l(Π(n)). (25)

Here, the values wα(vm(gn/p)) can be efficiently precomputed for n = 1, . . . , bm − 1 in O(αmbm)
operations, as shown in [6, Theorem 2]. Next, the convolution above can be evaluated for all
zd = 0, . . . , bm − 1 with FFT in O(mbm) operations. We then choose q∗d, i.e. z∗d that realizes
the minimum. Next we compute Ud,l(n), Vd,l(n) ∀l = 1, . . . , ᾱd, ∀n = 0, . . . , bm − 1 in O

(
ᾱ2dbm

)

operations. Iterating over d = 1, . . . , s, the computational cost for the CBC algorithm is then
O
(
ᾱ2s2bm + (s+ α)mbm

)
. Moreover, we can overwrite the quantities Ud,l(n), Vd,l(n) as d increases;

therefore, we require O(ᾱsbm) memory. The vector wα(vm(gn/p)) can be stored with O(bm)
memory. The cases of POD and SPOD weights are both covered, with ᾱ = 1 and ᾱ = α,
respectively.

To apply Richardson extrapolation, we need to construct polynomial lattice rules with α con-
secutive sizes of nodes bm−α+1, . . . , bm, so that we construct in total N = bm−α+1+ . . .+ bm QMC
points. Since

α∑

τ=1

(s+ α)(m− τ + 1)bm−τ+1 ≤ (s+ α)mN ≤ (s+ α)N logbN

we have proven that the total cost is

O
(
ᾱ2s2N + (s+ α)N logN

)
operations and O(ᾱsN) memory. (26)

Remark 2.9. The error bound does not apply for α = 1, since we require 1/α < λ ≤ 1. Moreover,
for applications to parametric PDEs with global support of the fluctuations we usually have α = ᾱ,
to bound the derivatives of the solution up to order α. Therefore, Richardson extrapolation is not
relevant for such PDE applications in the case of POD weights. In the following sections we will
always work with α = ᾱ.

Remark 2.10. The result (26) compares favorably to interlaced polynomial lattice (IPL) rules:
IPL rules require O

(
α2s2N + αsN logN

)
operations for SPOD weights (see, e.g., [10, 18, 19]).

3 Linear affine-parametric PDEs

The error analysis of the extrapolated lattice rules for QMC integration of the previous section
is now applied to forward UQ for a model linear, elliptic countably parametric PDE. Specifically,
we consider the following model parametric elliptic PDE on a bounded physical domain D ⊂ Rd,
d ∈ {1, 2, 3} {

−div (a(x,y)∇u(x,y)) = f(x) x ∈ D

u(x,y) = 0 x ∈ ∂D
(27)
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where y ∈ U :=
[
− 1

2 ,
1
2

]N
denotes the sequence of parameters of the uncertain diffusion coefficient.

We describe the uncertainty through an affine-parametric structure of the coefficients

a(x,y) = ā(x) +
∑

j≥1

yjψj(x) for y ∈ U (28)

for a sequence (ψj)j≥1 ⊂ L∞(D). Examples of such sequences include Karhunen-Loeve expansions
[36], which are generally described by globally supported functions, as well as locally supported
bases as, for example, splines or wavelets. The former case will lead to the choice of SPOD weights,
which is subject of Section 3.1. The latter will be analyzed in Section 3.2. Following the arguments
in [17], in this case the QMC theory based on (5) for product weights will be sufficient.

For f ∈ L2(D) and for a(·,y) ∈ L∞(D) for all y ∈ U , we consider its variational formulation
∫

D

a(x,y)∇u(x,y) · ∇v(x)dx =

∫

D

f(x)v(x)dx ∀v ∈ H1
0 (D). (29)

To state its variational form, we introduce the space V := H1
0 (D), with dual V ′ := H−1(D) with

respect to the pivot space L2(D).
For any f ∈ V ′, we can write the above equation in the generic form

ay(u(·,y), v) = 〈f, w〉V ∀v ∈ V, (30)

where brackets denote the duality pairing in V and

ay(v, w) :=

∫

D

a(x,y)∇v(x) · ∇w(x)dx (31)

is a bilinear form in V .

3.1 Globally supported fluctuations

In order to verify well-posedness of (30), we impose a set of additional assumptions. First, we
assume in (32) nominal invertibility, i.e. there are constants āmin ≤ āmax such that

0 < āmin ≤ ā(x) ≤ āmax for a.a. x ∈ D . (32)

The smallness of the fluctuation in (32) with respect to the nominal operator is given by

‖β‖ℓ1(N) < 2 for βj :=
‖ψj‖L∞(D)

āmin
, ∀j ∈ N . (33)

With these assumptions we have that a(x,y) ≥ amin > 0 a.e. x ∈ D and for all y ∈ U where
amin := āmin(1 − ‖β‖ℓ1(N) /2). A direct application of the Lax-Milgram lemma verifies that these

conditions are sufficient for existence and uniqueness of solutions u(·,y) ∈ V for all y ∈ U .
Furthermore, we have the uniform a-priori estimate

sup
y∈U

‖u(·,y)‖V ≤
‖f‖V ′

amin
.

Moreover, we choose an ordering of the functions ψj , j ∈ N, such that the sequence β is monoton-
ically non-increasing and we assume that

β ∈ ℓp(N), p ∈ (0, 1). (34)

The following theorem was obtained in [7, Theorem 4.3]. Such bounds on the derivatives with
respect to the parameters allow to control the norm (5) of F (y) = G(u(y)).
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Theorem 3.1. Under the assumptions (32), (33), for all f ∈ V ′ the partial derivatives of the
parametric solution u of (27), (28) satisfy

sup
y∈U

∥∥(∂νyu)(y)
∥∥
V
≤ |ν|!βν ‖f‖V ′

amin
.

Corollary 3.2. Let α, s ∈ N and f,G ∈ V ′. Assume that β is a non-increasing sequence satisfying
(32), (33) and define the positive SPOD weights γ = (γu)u⊂N,|u|<∞ by (cf. [10])

γu :=
∑

ν∈{1:α}|u|

|ν|!
∏

j∈u

2δ(νj ,α)β
νj

j

where δ(νj , α) = 1 if νj = α and 0 otherwise. Then there exist a positive constant C only dependent
on the data f,G and a such that the solution u ∈ V of (27) satisfies

‖G(u)‖s,α,γ,1,∞ ≤ C. (35)

Proof. Theorem 3.1 implies the bound

‖G(u)‖s,α,γ,1,∞ ≤ ‖G‖V ′ sup
u⊆{1:s}

γ−1
u

∑

ν∈{1:α}|u|

2|j: νj=α| sup
y∈U

∥∥∂νyu(·,y)
∥∥
V

≤
‖G‖V ′ ‖f‖V ′

amin
sup

u⊆{1:s}
γ−1
u

∑

ν∈{1:α}|u|

|ν|!
∏

j∈u

2δ(νj ,α)β
νj

j ,

which leads to the choice of SPOD weights for γu. Thus, ‖G(u)‖s,α,γ,1,∞ is bounded independently

of s by C :=
‖G‖V ′‖f‖V ′

amin
.

Proposition 3.3. Let f,G ∈ V ′ and s ∈ N be given. Assume that β is a non-increasing sequence
satisfying (32), (33), (34) with p ∈ (0, 1/2). Then, there exist extrapolated polynomial lattice rules

constructed with a CBC algorithm and with α =
⌊
1
p

⌋
+ 1 such that

∣∣∣(Is −Q
(α)
N,s)(G(u))

∣∣∣ ≤ CN− 1
p ,

where the constant C is independent of s. If instead p ∈ [1/2, 1), the same holds if additionally
N ≥ s.

Proof. By Corollary 3.2, ‖G(u)‖s,α,γ,1,∞ is bounded independently of s for the SPOD weights

γu :=
∑

ν∈{1:α}|u|

|ν|!
∏

j∈u

2δ(νj ,α)β
νj

j . (36)

We can then apply Theorem 2.5 or Remark 2.8, so that we can construct a QMC rule such that
Bγ(p, q) ≤ C(p)N−1/p with C(p) independent of s. Moreover, the residual term Hs,γ,1,∞ in (9)
is also bounded independently of s, since p < 1. Therefore, the claim follows by inserting these
estimates into equation (13).
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3.2 Locally supported fluctuations

In this section, motivated by the results in [17, 16], we replace the assumptions (33) and (34) on
the diffusion coefficient in (27), (28) by the following bound that takes into account possible local
support of the (ψj)j≥1 ∥∥∥∥∥

∑
j≥1 |ψj |/β̄j

2ā

∥∥∥∥∥
L∞(D)

≤ κ < 1. (37)

Here, we assume that (β̄j)j is a non-increasing sequence in ℓp(N) for some p ∈ (0, 1), with β̄j ≤ 1.
Again we assume the invertibility of the nominal operator in (32). Under these assumptions it was
proved in [17] that the problem is well-posed for every y ∈ U and that, for any η ∈ (κ, 1) there
holds

|∂νyG(u(·,y))| ≤ C‖f‖V ′‖G‖V ′



∏

j∈u

(
2β̄j
1− η

)νj

νj !


 .

This bound on the derivatives is of product form. Defining F (y) := G(u(·,y)), for r = ∞ and any
q ∈ [1,∞], there holds

‖F‖s,α,γ,q,∞ ≤ sup
u⊆{1:s}

γ−1
u




∑

ν∈{1:α}|u|

∫

[− 1
2
, 1
2
]s
2|{j∈u :νj=α}|

∣∣∂νyF (y)
∣∣q dy




1/q

≤ C‖f‖V ′‖G‖V ′ sup
u⊆{1:s}

γ−1
u




∑

ν∈{1:α}|u|

∏

j∈u

2δ(νj ,α)

[(
2β̄j
1− η

)νj

νj !

]q


1/q

= C‖f‖V ′‖G‖V ′ sup
u⊆{1:s}

γ−1
u

∏

j∈u

(
α∑

ν=1

2δ(ν,α)
[(

2β̄j
1− η

)ν

ν!

]q)1/q

.

We now consider two methods for obtaining upper bounds on these expressions which are adapted
to particular integrand classes.

Method 1: (conservative upper bound) Set q = 1, i.e. ‖F‖s,α,γ,q,∞ ≤ ‖F‖s,α,γ,1,∞ and choose
product weights

γu :=
∏

j∈u

α∑

ν=1

2δ(ν,α)
(

2β̄j
1− η

)ν

ν!.

Method 2: (sharper bound) the inequality above is valid for all q ∈ [1,∞]; therefore, we let
q = ∞ to minimize the weights. Then

∏

j∈u

(
α∑

ν=1

2δ(ν,α)
[(

2β̄j
1− η

)ν

ν!

]q)1/q

=
∏

j∈u

([(
2β̄j
1− η

)α

α!

]q
+

α∑

ν=1

[(
2β̄j
1− η

)ν

ν!

]q)1/q

that leads to the definition

γu :=
∏

j∈u

max
ν=1,...,α

[(
2β̄j
1− η

)ν

ν!

]
.

Note that method 2 results in a better constant but the convergence rate of the QMC approximation
does not improve. Moreover, both methods above result in product weights, so that we can apply
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the results from [9]: Js,λ,γ and Hs,γ,∞,∞ are bounded independently of s if and only if

∑

|u|<∞

γλuC
λ|u|
α E

|u|
α,λ <∞ and

∑

|u|<∞

γu(α+ 1)|u|D|u|
α <∞.

Since λ ≤ 1, the first condition is stronger than the second. Let K be a generic constant, then we
verify both as follows:

∑

|u|<∞

γλuK
|u| =

∑

|u|<∞

∏

j∈u

K max
ν=1,...,α

[(
2β̄j
1− η

)ν

ν!

]λ

≤ exp


K

∑

j≥1

max
ν=1,...,α

[(
2β̄j
1− η

)λν

(ν!)λ

]


≤ exp


K

α∑

ν=1

(
2

1− η

)λν

(ν!)λ
∑

j≥1

β̄λν
j


 .

The value ν = 1 gives the asymptotically largest summand; hence the decay rate of the QMC
error of O

(
N−1/λ

)
follows provided that (β̄j)j ∈ ℓλ(N), that imposes λ ≥ p. Since we also have the

constraint λ > 1/α we get the rate O
(
N−1/p

)
, with constant independent of s, using extrapolation

of order α = 1+
⌊
1
p

⌋
. Observe that, conversely to Proposition 3.3, we do not require p < 1

2 in this
case.

3.3 Galerkin discretization

We consider a bounded polygon D ⊂ Rd, d = 2 with corners ξ1, . . . , ξJ and we fix ω ∈ R satisfying
ω < π

maxi θi
where θi is the interior angle of D corresponding to ξi. In addition, given the weight

function

rD(x) :=

J∏

j=1

|x− ξj |

and k ∈ N0, we can define the Kondrat’ev spaces Kk
ω(D) ⊂ Hk

loc(D) via the norm

‖v‖Kk
ω(D) :=

k∑

|α|=0

∥∥∥|∂αv|r|α|−ω
D

∥∥∥
L2(D)

(38)

and the space Wk,∞(D) with the norm

‖v‖Wk,∞(D) :=

k∑

|α|=0

∥∥∥|∂αv|r|α|D

∥∥∥
L∞(D)

,

where we used the multiindex notation for derivatives with respect to x. We assume that there
are t, t′ ∈ N such that

f ∈ Kt−1
ω−1(D), G ∈ Kt′−1

ω−1(D), sup
y∈U

‖a(·,y)‖Wt,∞(D) <∞.

The regularity theory in [2, Theorem 4.4] implies that the solution of (27) satisfies

sup
y∈U

‖u(·,y)‖Kt+1

ω+1
(D) ≤ C ‖f‖Kt−1

ω−1
(D) , (39)
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as the full regularity shift of the elliptic operator holds in the weighted spaces (38) uniformly in the
parameter y ∈ U . In what follows, we will write V t

± := Kt±1
ω±1(D) and V t := Kt

ω(D). We define a
sequence of nested, conforming, finite-dimensional FEM spaces {VM}M , dim(VM ) =M , VM ⊂ V .
Then we consider the Galerkin discretization of the parametric, elliptic PDE (27): find

uM (·,y) ∈ VM such that ay(uM (·,y), v) = 〈f, v〉V , ∀v ∈ VM . (40)

This problem is also well posed due to the Lax-Milgram lemma and conformity of the FEM spaces,
and we have the uniform stability estimate

sup
M∈N

sup
y∈U

‖uM (·,y)‖V ≤
‖f‖V ′

amin
.

Furthermore, there exists a constant C > 0, independent of M and y, such that there holds
quasi-optimality

‖u(·,y)− uM (·,y)‖V ≤ C inf
vM∈VM

‖u(·,y)− vM‖V . (41)

It was shown in [3] that suitably graded meshes can give an explicit construction of the spaces VM ,
satisfying the approximation property,

inf
vM∈VM

‖v − vM‖V ≤ CM−t/d ‖v‖V t
+

, (42)

for d = 2 and a constant C independent of v. This is done with piecewise polynomials of degree t
in each element.

For the case of a polyhedron D ⊂ Rd, in space dimension d = 3 with plane faces, the definition
of the solution space V t

+ is more involved. It considers anisotropic regularity [4, 5, 1, 23]. Therefore,
the approximation property (42) for t ≥ 2 holds, provided that the data f belongs to the space
V t
− = Ht−1(D) [5, Theorem 8.1], while the case t = 1 and less regular f was covered in [1, Theorem

4.6]. In both cases, the regular, simplicial triangulations of D which enter the construction of the
Lagrangian FE spaces VM must be graded towards the corners and, in space dimension d = 3, also
anisotropically towards the edges of the domain (see [1] and the references there).

Combining the estimates (39), (41) and (42) we obtain the following bound for the Galerkin
error.

Proposition 3.4. Let f ∈ V t
− and u be the exact solution of (27) for d = 2, 3. Then, there exists

a suitably graded mesh such that the corresponding Galerkin solution uM on the space VM satisfies

sup
y∈U

‖u(·,y)− uM (·,y)‖V ≤ CM−t/d ‖f‖V t
−

(43)

for all M . Moreover, for a G ∈ V t′

− , an Aubin-Nitsche duality argument implies that there exists a
constant C > 0 independent of M such that

sup
y∈U

|G(u(·,y))−G(uM (·,y))| ≤ CM−(t+t′)/d ‖f‖V t
−
‖G‖V t′

−
(44)

in the family of FE spaces VM of piecewise polynomials of degree max(t, t′).

Remark 3.5. Corollary 3.2 also holds for Galerkin solutions uM with the same choice of weights.
This follows from the fact that the proof of 3.1 only uses the variational formulation of the PDE.
Therefore, restricting the test space to the finite dimensional space VM leads to the same upper
bound on the derivatives ∂νyuM (·,y).
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3.4 Dimension truncation

Since the parameter space is infinite dimensional, the first step in approximating integrals of the
goal functional is a truncation of the expansion for the fluctuation. In our setting, a complete
theory is already available from [30, 31, 15]. Given y = (y1, y2, . . .) ∈ U , define ys := (y1, . . . , ys)
and us(·,y) := u(·, (ys, 0, 0, . . .)) be the solution of (27) with truncated expansion of the uncertain
coefficient. We recall here the main results of [15, Proposition 3, Theorem 1].

Theorem 3.6. Under assumptions (32) and (33), there exists a constant C such that for every
f ∈ V ′, every y ∈ U and s ∈ N, we have

‖u(·,y)− us(·,y)‖V ≤ C
‖f‖V ′

amin
s−(1/p−1).

Moreover, there exists another constant C̃ such that, if also G ∈ V ′,

|I∞(G(u))− Is(G(u))| ≤ C̃
‖f‖V ′ ‖G‖V ′

amin
s−(2/p−1).

Remark 3.7. For any fixed s ∈ N, since
[
− 1

2 ,
1
2

]s
× {0}N\{1:s} ⊂ U , then equation (44) is also

valid for the solution us(·,y) of the truncated problem.

3.5 Combined QMCFEM error bound

In the following theorem we summarize the preceding bounds on the QMC quadrature error,
Galerkin error and dimension truncation error.

Theorem 3.8. Let s ∈ N. For 0 < t, t′ ≤ t̄, let a(·,y) ∈ W t̄,∞(D), f ∈ V t
−, G ∈ V t′

− and assume
that (32) holds. Let β be a non-increasing sequence satisfying (33) and (34) for some p ∈ (0, 1/2).

Then, there exists an extrapolated polynomial lattice rule of order α = 1 +
⌊
1
p

⌋
such that

∣∣∣I∞(G(u))−Q
(α)
N,s(G(uM ))

∣∣∣ ≤ C ‖f‖V t
−
‖G‖V t′

−
(M−(t+t′)/d +N−1/p + s−(2/p−1))

for a constant C > 0 independent of s,N,M and of the data f,G. If instead p ∈ [1/2, 1), the same
holds if additionally N ≥ s.

Proof. We separate the sources of error so that
∣∣∣I∞(G(u))−Q

(α)
N,s(G(uM ))

∣∣∣ ≤|I∞(G(u))− Is(G(u))|+
∣∣∣Is(G(u))−Q

(α)
N,s(G(u))

∣∣∣

+
∣∣∣Q(α)

N,s(G(u))−Q
(α)
N,s(G(uM ))

∣∣∣.

Since (44) holds, we can bound the Galerkin error as follows
∣∣∣Q(α)

N,s(G(u− uM ))
∣∣∣ ≤ CM−(t+t′)/d ‖f‖V t

−
‖G‖V t′

−
.

On the other hand, since V t ⊂ V ′ with continuous embedding, we bound the truncation error and
the QMC error using Theorem 3.6 and Proposition 3.3 and the claim follows.

Coupling the number of degrees of freedom in the FEM space and the number of QMC samples
should be done according to

N−1/p ∼M−(t+t′)/d ∼ s−(2/p−1) = O(ε)
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where ε is a prescribed error tolerance. Note that, for given p ∈ [1/2, 1), the requirement N ≥ s is
thus readily satisfied. Therefore, assuming that the QMC points have been precomputed and that
the solution of the linear FE system can be done in O(M) operations using sparse matrices, the
computational work of the single level QMCFEM algorithm is

work = O
(
worka + ε−pε−d/(t+t′))

)
.

Here worka is the cost for the assembly of all the linear FEM systems. In particular, the affine-
parametric structure (28) implies that

A(yn) = Ā+

s∑

j=1

yn,jΨj ∀n ∈ 0, . . . , bm − 1,

where Ā and Ψj are the stiffness matrices corresponding to ā and ψj respectively. The Ψj are
usually sparse and have O(M) non-zero entries. Moreover, since they have the same sparsity
pattern as Ā, dependent on the FEM basis, but not on n, we get

work = O
(
sε−p−d/(t+t′)

)
= O

(
ε−p−p/(2−p)−d/(t+t′)

)
. (45)

On the other hand, the main motivation to introduce Richardson extrapolation in [9] was the
possibility to extend the fast matrix-vector multiplication in [11] to higher-order QMC quadrature.
This is due to the fact that extrapolated lattice rules are linear combinations of first order polyno-
mial lattice rules, see Section 2.2. As a consequence, the fast QMC matrix vector product can be
used to reduce the complexity of the computation of the parametric stiffness matrices A(y) corre-
sponding to the PDE coefficient in (28). Using the standard approach, the overall computational
cost is O(Mbms); however, the computation can be carried out in O(Mmbm) operations plus at
most O(M(s− 1)) additions with FFT (see [11, Section 3.2] for more details). On the other hand,
this requires to store all the stiffness matrices in O(Mbm) memory.

If we repeat the same steps for every m′ = m− α+ 1, . . . ,m and then we combine the partial

results Q
(1)

bm′ ,s
(F ), it is immediate to verify that the overall computational cost of the fast matrix-

vector multiplication for extrapolated lattice rules is O(MN logN) plus at most O(M(s− 1))
additions – that can be avoided when the generating vector has no repeated components – and
O(MN) memory, with N = bm + . . .+ bm−α+1. This is advantageous for N ≪ 2s, which holds in
our setting since N ∼ s2−p. As a result, we obtain the following work vs error rate that improves
(45)

work = O
(
log(ε−1)ε−p−d/(t+t′)

)
. (46)

4 A-posteriori QMC error estimator

It is often required to control the (relative) error of a numerical approximation, aiming at an
accuracy up to a predefined tolerance tol > 0. In the context of QMC integration using extrapolated
polynomial lattice rules, we want to verify that

∣∣∣Is(F )−Q
(α)
N,s(F )

∣∣∣
|Is(F )|

≤ tol

with reasonable computational effort. We show that it is possible to compute an estimate of the
error that is asymptotically exact and we can use this quantity as a valid stopping criterion for the
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QMC approximation. The key to numerical extrapolation of the QMC approximating sequence

Q
(α)
bm,s(F ), for m ∈ N, is the availability of the asymptotic Euler-MacLaurin expansion of the QMC

rule. We therefore think of Richardson extrapolation of order α as an application of correction

terms to the sequence (Q
(1)
bm,s)m∈N, based on previously computed quantities. We collect these

corrections in the value ∆Q
(α)
bm,s, defined by the relation

Q
(α)
bm,s = Q

(1)
bm,s +∆Q

(α)
bm,s. (47)

In particular, we interpret ∆Q
(α)
bm,s as an indicator of how far the originally computed QMC quadra-

ture Q
(1)
bm,s lies from the exact integral, provided that we have F ∈ Ws,α,γ,q,∞ so that the Euler-

MacLaurin formula holds. This indicator is evaluated in the extrapolation algorithm with negligible
overhead. Let us now proceed to the detailed derivation. We adopt the notation of Section 2.2.

Fix a natural prime number b ≥ 2. Let furthermore Pm := P (p, q) be a polynomial lattice point
set with deg(p) = m and q constructed with the CBC algorithm of Section 2.4, and denote by

Q
(1)
bm,s the corresponding QMC rule, obtained by shifting the points yn = xn −

1

2
to the hypercube

[−1/2, 1/2]s. In the following theorem, the term on the right hand side of (48) is (up to the

remainder term O(·)) a computable expression for ∆Q
(2)
bm,s.

Theorem 4.1. Let an integration dimension s ∈ N be given, and also α ≥ 2, 1 ≤ q ≤ ∞, γ = (γu)u
be a set of positive product weights γu =

∏
j∈u

γj, with (γj)j∈N ∈ ℓp(N) for all p > 1/2, and let
F ∈ Ws,α,γ,q,∞. Then, for all fixed n ∈ N and for all ε > 0

Is(F )−Q
(1)
bm,s(F ) =

1

bn − 1
(Q

(1)
bm,s(F )−Q

(1)
bm−n,s(F )) +O

(
bn−2m+ε

)
as m→ ∞, (48)

with constant in the O(·) notation independent of s. Furthermore, for weights in SPOD form
(11) with c1 ∈ N0, c2 ∈ N, the same estimate holds if we assume (βj)j∈N ∈ ℓp(N) for some
0 < p < 1/(1 + c2).

Proof. For any F ∈ Ws,α,γ,q,∞ the Euler-MacLaurin formula holds for regular s-dimensional grids
[9, Equation 3.1] which gives the following asymptotic expansion for the QMC integral

Q
(1)
bm,s(F ) = Is(F ) +

∑

k∈P⊥
m\{0}

∃j: bm∤kj

F̂ (k) +
α−1∑

τ=1

στ (F )

bτm
+Rs,α,bm , (49)

where the coefficients στ (F ) are defined in [9, Theorem 3.4]. Here, P⊥
m is the dual lattice of Pm

and Rs,α,bm = O(b−mα). Moreover, in [9, Theorem 3.6] it was shown that, for product weights, a
suitable CBC constructed generating vector q satisfies for all λ > 1/α

∑

k∈P⊥
m\{0}

∃j: bm∤kj

|F̂ (k)| ≤
1

(bm − 1)1/λ
‖F‖s,α,γ,q,∞




s∏

j=1

(
1 + γλj C

λ
αEα,λ

)


1/λ

.

If (γj)j∈N ∈ ℓp(N) ∀p > 1/2, then the right-hand side decays at least with rate O
(
b−m(2−ε)

)
for

all ε > 0, with constant independent of s. The same decay property is satisfied for SPOD weights,
with the constraint (βj)j∈N ∈ ℓp(N) for some p < 1

1+c2
≤ 1

2 (see Theorem 2.5). Therefore, if we
collect the higher order terms

δm := Rs,α,bm +
∑

k∈P⊥
m\{0}

∃j: bm∤kj

F̂ (k) +

α−1∑

τ=2

στ (F )

bτm
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we get that δm = O
(
b−2m+ε

)
for any ε > 0. Applying the Euler-MacLaurin formula (49) for

distinct values m,m′ ∈ N with m = m′ + n, we have

Q
(1)
bm,s(F )−Q

(1)

bm′ ,s
(F ) = σ1(F )(b

−m − b−m′

)− δm′ + δm,

which yields

σ1(F ) =
bm

1− bn

(
Q

(1)
bm,s(F )−Q

(1)
bm−n,s(F )

)
+O

(
bn−m+ε

)
.

Thus, defining σ̃1(F ) :=
bm

1− bn

(
Q

(1)
bm,s(F )−Q

(1)
bm−n,s(F )

)
, we get from (49) that

Is(F )−Q
(1)
bm,s(F ) = −

σ̃1(F ) +O(bn−m+ε)

bm
− δm

=
1

bn − 1
(Q

(1)
bm,s(F )−Q

(1)
bm−n,s(F )) +O

(
bn−2m+ε

)

and the proof is complete.

In a similar fashion, we can approximate the relative error: if the exact integral is unknown,

we can compare the absolute error with the approximate integral Q
(1)
bm,s(F ); then we obtain, for

the choice n = 1

∣∣∣Is(F )−Q
(1)
bm,s(F )

∣∣∣
|Is(F )|

=
1

b− 1

∣∣∣Q(1)
bm,s(F )−Q

(1)
bm−1,s(F )

∣∣∣
∣∣∣Q(1)

bm,s(F )
∣∣∣+O(b−m)

+O
(
b1−2m+ε

)

≈
1

b− 1

∣∣∣Q(1)
bm,s(F )−Q

(1)
bm−1,s(F )

∣∣∣
∣∣∣Q(1)

bm,s(F )
∣∣∣

, (50)

which is an a-posteriori QMC error estimator, asymptotically exact for m → ∞. Furthermore, if∣∣∣Q(1)
bm,s(F )

∣∣∣ 6= 0 then the approximation above is accurate up to O
(
b−2m+ε

)
.

A straightforward application of Theorem 4.1 implies the following result.

Corollary 4.2. Under the assumptions of Theorem 4.1, for the computable QMC quadrature error

estimator ∆Q
(1)
bm,s = Q

(1)
bm,s(F )−Q

(1)
bm−1,s(F ), we have asymptotic exactness, i.e.

∣∣∣∆Q(1)
bm,s(F )

∣∣∣
∣∣∣Is(F )−Q

(1)
bm,s(F )

∣∣∣
→ 1 as m→ ∞. (51)

Remark 4.3. If we assume that α ≥ 3 and we employ α different values m, . . . ,m−α+1, we can
analogously approximate the quantities σ1, . . . , σα−1, by solving a linear system with α variables
up to higher order terms. For the numerical extrapolation process, however, the knowledge of the
numerical values of σ1, . . . , σα−1 is not required.

The above approach can be extended to Q
(τ)
bm,s for τ = 1, 2, . . . , α− 1, since Q

(τ)
bm,s also satisfies

an expansion of the form (49), i.e.

Q
(τ)
bm,s(F ) = Is(F ) +

α−1∑

κ=τ

στ,κ(F )

bκm
+ δτ,m,
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where δτ,m decays with order b−m/p+ε independently of the dimension. See (7) for the case τ = 2.
Hence we have

Is(F )−Q
(τ)
bm,s(F ) =

1

bτn − 1
(Q

(τ)
bm,s(F )−Q

(τ)
bm−n,s(F )) +O

(
bτn−m/p+ε

)
as m→ ∞. (52)

In the same way, we can also extend Corollary 4.2 to obtain for any τ = 1, 2, . . . , α− 1 that

(bτ − 1)−1
∣∣∣Q(τ)

bm,s(F )−Q
(τ)
bm−1,s(F )

∣∣∣
∣∣∣Is(F )−Q

(τ)
bm,s(F )

∣∣∣
→ 1, as m→ ∞.

Notice that in a general setting for integrands with smoothness α, this only works for τ =
1, 2, . . . , α− 1, since the sum

∑α−1
τ=1 στ (F )b

−τm is restricted by the smoothness of F , i.e. σα(F ) is
in general not defined anymore. However, in the context of PDEs with random coefficients, it is
known that the integrands are actually infinitely many times differentiable, the limiting factor in
this context is the dependence on the dimension. Hence, the formula (49) also holds with the sum
extended to

∑α
τ=1 στ (F )b

−τm. Hence in this special situation, (52) also holds for τ = α.

5 Numerical experiments

In this section we present some numerical examples to illustrate applications of extrapolated poly-
nomial lattice rules. In all experiments which we report here, we employ polynomial lattice rules
constructed with base b = 2.

5.1 Fast CBC construction

As a first example, we measure the computational cost of the fast CBC algorithm to compute
the generating vector of the polynomial lattice rule, for the choice of SPOD weights considered
here. We are in particular interested in the verification of the cost of the CBC construction in (26)
using FFT with respect to the integration dimension s. The computations were performed with
MATLAB 2018a on the ETH Euler cluster1, enforcing single thread computations by activating
the option -singleCompThread.

We observe the asymptotic rate of O
(
s2
)
for every fixed m, which confirms our analysis.

5.2 Explicit parametric integrand

We perform numerical integration of the following explicit parametric integrand function over
U = [−1/2, 1/2]s for a range of integration dimensions s

F (y) :=


1 + σ

s∑

j=1

j−ηyj




−1

(53)

for a parameter η > 1 and a constant σ > 0, that can be chosen so that the function is bounded
uniformly in y. In particular, we have the constraint σ < 2/ζ(η) with ζ denoting the Riemann
zeta function. From [19, Section 4.1.1] we know

∣∣∂νyF (y)
∣∣ ≤ sup

y∈U
|F (y)||ν|!βν with βj = sup

y∈U
|F (y)|σj−η. (54)

1https://scicomp.ethz.ch/wiki/Euler
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Figure 1:
Fast CBC construction: runtimes in sec-
onds, versus number of dimensions, for
α = 2, SPOD weights with c1 = 0, c2 =
1, c3 = 1 and βj = 0.2j−2 for the choices
m = 4, 8, 12, 16 marked by circle, cross,
square and down-triangle, respectively.

Therefore, the parametric integrand function F defined in (53) belongs to the weighted, unanchored
Sobolev space Ws,α,γ,1,∞ with SPOD weights

γu :=
∑

ν∈{1:α}|u|

|ν|!
∏

j∈u

2δ(νj ,α)β
νj

j . (55)

We have β ∈ ℓp(N) for p > 1/η. In the first experiment we work with s = 16. The reference value
for the exact integral Is(F ) was computed by adaptive Smolyak with tolerance tol = 10−14 [19,
Table 9.2], for the case η = 2, and by 220 points of an interlaced polynomial lattice of order 2, for
η = 3. In the same work it was also shown that it is advantageous to set the multiplicative constant
in βj below the value suggested by the theory. Therefore, we perform the fast CBC construction

with the weights γ̃u obtained replacing βj by the choice β̃j := 0.2j−η.
In Figure 2, we observe that the error decay reaches O

(
N−2.07

)
for σ = 0.1 and reduces slightly

as σ gets larger, for the choice η = 3. In Figure 3 we set η = 2, so that we do not have a theoretical
convergence of O

(
N−2+ε

)
for any ε > 0, but only for N sufficiently large (cp. Remark 2.8); the

optimal rate is obtained for sufficiently small values of σ, showing robustness of extrapolation for
α = 2. Finally, convergence for varying dimension s is shown in Figure 4.

5.3 A-posteriori QMC Quadrature Error Estimation

We illustrate the efficiency of the a-posteriori computable QMC integration error estimator of
Section 4 with an example for the same integrand (53), considering various choices of QMC weights,
always with quadrature dimension s = 16.

We observe in Figure 5 that the ratio (51) converges to 1 for η > 2, which is the sufficient
condition for the existence of the first term of the Euler-MacLaurin expansion. Furthermore, for
η = 1.9, the estimator is still a good upper bound for the error, while as the summability decreases

the estimator becomes less reliable. An analogous experiment employing the estimator ∆Q
(α)
bm,s for

α = 3 and the same summability is displayed in Figure 6. Here, we cannot expect to catch the
coefficient σ2(F ) in the estimator because η ≤ 3; however, the ratio converges faster to 1 in the
case η = 2.5.

Finally, the dimension independent convergence of the a-posteriori estimator to the QMC error
is shown in Figure 7 up to dimension s = 128.
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Figure 2:
Relative integration error versus num-
ber of QMC points. Extrapolated lat-
tice rules with SPOD weights determined
by the sequence 0.2j−η , η = 3, α = 2,
s = 16. The choices σ = 0.1, 0.2, 0.5, 1
are marked by circle, cross, square and
down-triangle, respectively.
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Figure 3:
Relative integration error versus num-
ber of QMC points. Extrapolated lat-
tice rules with SPOD weights determined
by the sequence 0.2j−η , η = α = 2,
s = 16. The choices σ = 0.1, 0.2, 0.5, 1
are marked by circle, cross, square and
down-triangle, respectively.

5.4 Fast Matrix-vector multiplication

We compare the run times of the standard matrix-vector multiplication with the fast algorithm
proposed in [11]. This algorithm is based on FFT, as explained in Section 3.5. All timings are
performed in MATLAB R2019a, on an Intel(R) Core(TM) i7-7700T CPU @2.90GHz using the
timeit tool. Since we need to compute α terms of a sequence to perform extrapolation, in each
measurement we sum the runtimes corresponding to all α terms involved; here, we set α = 2. On
the interval D = (0, 1) we consider the model problem from Section 3 where we define the functions

ψj(x) =
sin(jπx)

jη
, j = 1, 2, ... (56)

with η = 2.1. Thus, the summability exponent of the sequence (βj)j≥1 satisfies p < 1/2. Based
on Theorem 3.8, with first order, conforming FEM (d = t = t′ = 1), we expect a dimension-
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Figure 4:
Relative integration error versus num-
ber of QMC points. Extrapolated lattice
rules with SPOD weights determined by
the sequence 0.2j−η , η = 2.5, α = 2,
σ = 0.5. The choices s = 16, 32, 64, 128
are marked by circle, cross, square and
down-triangle, respectively.
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Figure 5:
QMC efficiency index (i.e., ratio between
the QMC a-posteriori integration error
estimator and actual integration error),
versus number of QMC points, for the
choices η = 1.5, 1.9, 2.1, 2.5 marked by
circle, cross, square and down-triangle
respectively. Here, α = 2, σ = 1,
s = 16, SPOD weights generated by the
sequence 0.2j−η .

independent convergence rate arbitrarily close to O
(
N−2 +M−2 + s−3

)
. Equilibrating the (upper

bounds on the) error contributions, we arrive at the choice N ∼ M ∼ s3/2. On the other hand, if
d = 2 or if we are interested in the FEM error measured in the H1(D) norm instead of the QoI,
we have O

(
N−2 +M−1 + s−3

)
, which in turn implies N ∼M2 ∼ s3/2.
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QMC efficiency index (i.e., ratio between
the QMC a-posteriori integration error
estimator and actual integration error),
versus number of QMC points, for the
choices η = 1.5, 1.9, 2.1, 2.5 marked by
circle, cross, square and down-triangle
respectively. Here, α = 3, σ = 1,
s = 16, SPOD weights generated by the
sequence 0.2j−η .
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Figure 7:
QMC efficiency index (i.e., ratio between
the QMC a-posteriori integration error
estimator and actual integration error),
versus number of QMC points, for s =
16, 32, 64, 128 dimensions marked by cir-
cle, cross, square and down-triangle re-
spectively. Here, α = 2, σ = 1, η =
2.5, SPOD weights generated by the se-
quence 0.2j−η . Reference values in high
dimension are computed with 220 IPL
points with interlacing factor 2.

Times (sec)

M = N, s =
⌈
N2/3

⌉
M =

⌈
N3/2

⌉
, s =

⌈
N2/3

⌉
M = N2, s =

⌈
N2/3

⌉

N Slow Fast Slow Fast Slow Fast
48 0.0009 0.0014 0.0012 0.0021 0.0015 0.0057
96 0.0013 0.0016 0.0020 0.0052 0.0053 0.0371
192 0.0022 0.0046 0.0047 0.0412 0.3618 0.6595
384 0.0060 0.0111 0.1009 0.2000 5.3307 4.1966
768 0.0134 0.0349 1.8550 1.2186
1536 0.0573 0.1484 18.6773 6.5630
3072 1.8559 0.8218
6144 17.9490 2.6575
12288 118.2711 14.5797

Table 1: Runtimes, in seconds, of the slow and fast matrix-vector multiplication for three sets of choices for N,M, s.
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The results in Table 1 show a benefit of the fast MV algorithm for large values of the parameter
dimension s and of N when M = N or M ∼ N3/2. On the other hand, the memory demand
increases with O

(
N3
)
for the fast algorithm when M = N2. This limits the range of N in the

numerical experiments, for this choice of M . Moreover, compared to the numerical experiments in
[11], we require stronger summability to achieve higher order convergence rates, which results in
lower dimensionality of the problem and consequently smaller benefits of the fast algorithm.

5.5 Elliptic parametric PDE

We consider QMC-FE forward UQ for the model, linear, affine-parametric elliptic PDE (27) on
the convex physical domain D = (0, 1)2 with deterministic source f ≡ 1, QoI G(u) :=

∫
D
u and

with affine-parametric diffusion coefficient

a(x,y) = 1 +

s∑

j=1

yjψj(x) , x ∈ D.

Here ψj(x) := ψk(x) =
1

(k2
1
+k2

2
)η

sin(k1πx1) sin(k2πx2), s = 16 and the ordering is defined by k < k̄

when k21 + k22 < k̄21 + k̄22 and is arbitrary when equality holds. We prescribe the asymptotic decay

‖ψj‖L∞(D) ∼ j−η.

Due to the smoothness of f and of the parametric coefficient, i.e. a(·,y) ∈ W 1,∞(D) for all
y which is implied by the preceding assumptions, the convexity of the physical domain D implies
u(·,y) ∈ H2(D). This, in turn, ensures first order convergence in H1(D) of the P1-FEM on
shape-regular, quasiuniform partitions of D into triangles.
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Figure 8:
Relative error versus number of QMC
points. Extrapolated lattice rules with
SPOD weights determined by the se-
quence 0.2j−η , η = α = 2, s = 16 and
M ∼ N2 for all N . The reference value
was computed using 212 IPL points with
interlacing factor 2.

The resulting convergence of the QMCFEM algorithm is displayed in Figure 8, which confirms
the accurate order of O

(
N−2

)
.

6 Conclusion

We extended the error analysis for extrapolated polynomial lattice rules from [9] to classes of
integrand functions with so-called SPOD QMC weights. Such classes typically arise in the com-
putational uncertainty quantification for partial differential equations with distributed uncertain
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input data which is parametrized in terms of a representation system with globally supported (in
the physical domain D) elements (we remark that the setting for integrand functions with product
weights which was considered in [9] does accomodate inputs given in terms of locally supported
representation systems. See, e.g., [17, 24]) .

We considered only the mathematical analysis of so-called single-level QMC FEM. It is, how-
ever, possible to obtain significant gains in error vs. work by combining the presently considered
extrapolation methods with a multi-level discretization in physical space. We refer to [31, 12, 8]
and to the references there.

The analysis of QMC integration with higher-order, extrapolated polynomial lattice rules in
the present paper extends the work [9] to SPOD weights. Under the provision of sufficient summa-
bility of higher derivatives of the parametric integrand functions F (y), we proved that there exist
Richardson-extrapolated QMC integration schemes which afford, with N QMC integration points,
convergence rate of O(N−α) for any α ∈ N. In numerical experiments, however, we find the extrap-
olation formulas resulting from our analysis to be feasible only for moderate values of α = 2, 3, 4.
Considerably higher orders of integration are, in our view, theoretically justified, but are practi-
cally not feasible due to several reasons: first, large values of α require rather strong summability
of the partial derivatives of the integrand function F as expressed in terms of the norm (5). This,
in turn, implies that integrands in the class have low effective integration dimension (although
formally depending on infinitely many co-ordinates yj ∈ y).

The presently developed Richardson extrapolated lattice rules afford convergence rates greater
than 1 (under the provision of sufficient integrand sparsity, as quantified by the weighted function
spaces (5)) without the curse of dimensionality and accomodate, due to the structure of their gen-
erating vectors, so-called fast matrix-vector multiplication developed for first order QMC methods
in [11] for the efficient numerical evaluation of parametric solutions of the discretized PDEs at
lattice point parameter inputs. QMC quadratures based on so-called interlaced polynomial lattice
rules (IPLs) also afford higher order convergence rates without incurring the curse of dimensional-
ity [10, 8]. However, the digit interlacing at the root of their construction precludes the Fast MV
multiplication. The presently considered extrapolated polynomial lattice rules are, therefore, the
first approach which allows to combine higher order convergence of the QMC integration with the
computational advantages of the Fast MV multiplication.

In addition, we showed that the Richardson expansion of the QMC quadrature error can be
leveraged to afford an asymptotically exact, computable estimate of the QMC quadrature error.

The analysis of extrapolated polynomial lattice rules in the present paper was developed only
for forward uncertainty quantification for model, affine-parametric, linear elliptic boundary value
problems, and for single-level Galerkin FEM discretizations of these. Natural extensions of the
presently proposed analysis include multi-level QMC-FEM for such problems (e.g. [12, 16, 22]),
Bayesian inverse problems (e.g. [8]), and non-affine parametric dependence of the forward PDEs
on the parameters (e.g. [14, 25, 27, 28]). Furthermore, the presently proposed, extrapolation-based
computable a-posteriori quadrature error estimator may be combined with a-posteriori discretiza-
tion error estimators for the parametric PDE [32].
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ematics, ETH Zürich, 2019. (to appear in Proc. MCQMC 2018, Springer Publ. 2020).

[23] Lukas Herrmann and Christoph Schwab. Multilevel quasi-Monte Carlo integration with prod-
uct weights for elliptic PDEs with lognormal coefficients. ESAIM Math. Model. Numer. Anal.,
53(5):1507–1552, 2019.

[24] Lukas Herrmann and Christoph Schwab. QMC integration for lognormal-parametric, elliptic
PDEs: local supports and product weights. Numer. Math., 141(1):63–102, 2019.

[25] Lukas Herrmann, Christoph Schwab, and Jakob Zech. Uncertainty quantification for spec-
tral fractional diffusion: sparsity analysis of parametric solutions. SIAM/ASA J. Uncertain.
Quantif., 7(3):913–947, 2019.

[26] Jan S. Hesthaven, Gianluigi Rozza, and Benjamin Stamm. Certified reduced basis methods for
parametrized partial differential equations. SpringerBriefs in Mathematics. Springer, Cham;
BCAM Basque Center for Applied Mathematics, Bilbao, 2016. BCAM SpringerBriefs.

[27] R. Hiptmair, L. Scarabosio, C. Schillings, and Ch. Schwab. Large deformation shape uncer-
tainty quantification in acoustic scattering. Adv. Comput. Math., 44(5):1475–1518, 2018.

[28] Carlos Jerez-Hanckes, Christoph Schwab, and Jakob Zech. Electromagnetic wave scattering
by random surfaces: shape holomorphy. Math. Models Methods Appl. Sci., 27(12):2229–2259,
2017.

33



[29] Frances Y. Kuo, Christoph Schwab, and Ian H. Sloan. Quasi-Monte Carlo methods for high-
dimensional integration: the standard (weighted Hilbert space) setting and beyond. ANZIAM
J., 53(1):1–37, 2011.

[30] Frances Y. Kuo, Christoph Schwab, and Ian H. Sloan. Quasi-Monte Carlo finite element
methods for a class of elliptic partial differential equations with random coefficients. SIAM J.
Numer. Anal., 50(6):3351–3374, 2012.

[31] Frances Y. Kuo, Christoph Schwab, and Ian H. Sloan. Multi-level Quasi-Monte Carlo Finite
Element Methods for a Class of Elliptic PDEs with Random Coefficients. Found. Comput.
Math., 15(2):411–449, April 2015.

[32] M. Longo. Adaptive algorithms with a-posteriori Quasi-Monte Carlo estimation for parametric
elliptic PDEs. Technical Report 2021-03, Seminar for Applied Mathematics, ETH Zürich,
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