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II: Robust exponential convergence for multiple length scales in corner

domains. †
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In bounded, polygonal domains Ω ⊂ R2 with Lipschitz boundary ∂Ω consisting of a finite number of

Jordan curves admitting analytic parametrizations, we analyze hp-FEM discretizations of linear, second

order, singularly perturbed reaction diffusion equations on so-called geometric boundary layer meshes.

We prove, under suitable analyticity assumptions on the data, that these hp-FEM afford exponential

convergence in the natural “energy” norm of the problem, as long as the geometric boundary layer mesh

can resolve the smallest length scale present in the problem. Numerical experiments confirm the robust

exponential convergence of the proposed hp-FEM.

Keywords: anisotropic hp–refinement, geometric corner refinement, exponential convergence.

1. Introduction

The need for accurate numerical approximations of solutions to singularly perturbed partial differential

equations in nonsmooth domains arises in a wide range of applications, e.g., in structural mechanics in

the theory of plates and shells as well as fluid mechanics in vicous, incompressible flow. Typically, these

solutions feature singularities near regions of nonsmoothness of the geometry as well as boundary layers

induced by the singular perturbation nature of the equation. These boundary layers occur frequently on

multiple length scales. We mention dimensionally reduced models of curved thin solids (“shells”) in

so-called “bending-dominated” states (see, e.g., Chaussade-Beaudouin et al. (2017) and the references

there for a detailed discussion of possible length scales), and linear, elliptic reaction-diffusion boundary

value problems that result from implicit time-discretizations of parabolic evolution equations and, more

recently, from discretizations of fractional powers of elliptic operators (see, e.g., Banjai et al. (2019);

Melenk & Rieder (2021) and the references there). Advection-diffusion problems often have layers with

complicated structure in particular near points where the boundary becomes characteristic. Interaction

of corner singularities and layers arise also in electromagnetics in so-called eddy-current models (where

the small parameter is a complex number) (see, e.g., Buret et al. (2012) and the references there).

High order methods for singularly perturbed problems can lead to exponential convergence on spe-

cially designed meshes to capture boundary layers of a given scale, Schwab & Suri (1996); Melenk &
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Schwab (1998); Melenk (1997); Melenk & Schwab (1999); Melenk (2002) and the references there.

These references focus on boundary layers on a single scale on smooth geometries. In nonsmooth ge-

ometries, the interaction of corner singularities and layers is highly non-trivial and correspondingly the

design of meshes or numerical methods is challenging. In the present work, we propose geometric

boundary layer meshes (GBLM) that are geometrically refined towards both corners and edges of the

domain. Such meshes are capable to resolve boundary layers of any length scale down to a minimal one

that depends the refinement level of the GBLM. The geometric refinement towards corners also allows

for simultaneously resolving corner singularities, typical of elliptic problems in corner domains.

For analysis purposes, our GBLM are constructed in a patch-based fashion in that the actual mesh

is defined as the push-forwards of finitely many reference refinement configurations. Our convergence

analysis focuses on the approximation of typical corner layers and boundary layers of any length scale

on these patches and could be applied whenever the solution structure in terms of such components is

available. Such structural information is made available in Melenk (2002) for a singularly perturbed

scalar reaction-diffusion problem in polygons. Based on that detailed regularity analysis, we are able to

provide a full convergence analysis of the hp-FEM for that scalar singularly perturbed model problem

in polygons and show exponential convergence on the GBLM proposed here. Thus, the present work

extends in the scalar reaction-diffusion case the hp-error analysis of Part I, Melenk & Schwab (1998), to

polygons. However, the scope of the mesh design principles presented here is wider as they are applica-

ble to more complex singularly perturbed PDEs with multiple scales, see Arnold & Falk (1996); Gerdes

et al. (1998); Chaussade-Beaudouin et al. (2017); Gie et al. (2018) and the references there. We under-

line the success of the GBLM with a numerical example from fractional diffusion in polygons, where

the numerical solution involves solving a collection of local singularly perturbed reaction-diffusion

problems with a wide range of boundary layer length scales.

1.1 Model reaction-diffusion problem

In a bounded domain Ω ⊂R2, which is assumed to be scaled to unit size, and for a parameter 0 < ε 6 1,

we consider the hp-FE approximation of the model reaction-diffusion Dirichlet problem

−ε2∇ · (A(x)∇uε)+ c(x)uε = f in Ω , uε = 0 on ∂Ω . (1.1)

We assume

A, c, f analytic on Ω , independent of ε ,

A symmetric, positive definite uniformly in Ω , c > c0 > 0 on Ω .
(1.2)

To design H1
0 (Ω)-conforming, hp-FE approximations of the solutions {uε : 0 < ε 6 1} of (1.1) under

the analyticity assumptions (1.2) which converge exponentially in the ε-dependent energy norm ‖◦‖ε,Ω

given by

‖v‖2
ε,Ω := ε2‖∇v‖2

L2(Ω)+‖v‖2
L2(Ω) , v ∈ H1(Ω), (1.3)

is the purpose of the present paper. We prove in particular in Theorem 4.1 a robust exponential conver-

gence error bound, i.e., all constants in the exponential convergence bound do not depend on ε > 0.

We again emphasize that we consider (1.1) for illustration. The scope of the robust exponential hp

convergence rate bounds below extends well beyond (1.1) to more complex, singularly perturbed PDE

such as those in Arnold & Falk (1996); Gerdes et al. (1998); Chaussade-Beaudouin et al. (2017).
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FIG. 1. Example of a curvilinear polygon Ω .

1.2 Geometric Preliminaries

In (1.2), the domain Ω ⊂R2 is a curvilinear polygonal domain, schematically depicted in Fig. 1. Specif-

ically, the boundary ∂Ω is assumed to consist of J ∈ N closed curves Γ (i). Each curve Γ (i) in turn is

assumed to be partitioned into finitely many open, disjoint, analytic arcs Γ
(i)
j , in the sense that there are

numbers Ji ∈ N such that

Γ (i) =
Ji⋃

j=1

Γ
(i)
j , i = 1, . . . ,J .

Here, analytic arcs Γ
(i)
j admit nondegenerate, analytic parametrizations, i.e.,

Γ
(i)
j =

{
x
(i)
j (θ)|θ ∈ (0,1)

}
, i = 1, ...,J, j = 1, ...,Ji .

with the coordinate functions x
(i)
j , y

(i)
j of x

(i)
j (θ) = (x

(i)
j (θ),y

(i)
j (θ)) assumed to be (real) analytic func-

tions of θ ∈ [0,1] and such that

min
θ∈[0,1]

{∣∣∣∣
d

dθ
x
(i)
j (θ)

∣∣∣∣
2

+

∣∣∣∣
d

dθ
y
(i)
j (θ)

∣∣∣∣
2
}

> 0, j = 1, ...,Ji, i = 1, ...,J .

We denote ∂Γ
(i)
j = {AAA

(i)
j−1,AAA

(i)
j } where AAA

(i)
j−1 = x

(i)
j (0) and AAA

(i)
j = x

(i)
j (1). For each boundary component

Γ (i), we enumerate {AAA
(i)
j }Ji

j=1 cyclically, counterclockwise by indexing with j modulo Ji, thereby iden-

tifying in particular AAA
(i)
j := AAA

(i)
j+Ji

. The interior angle at A
(i)
j is denoted ω

(i)
j ∈ (0,2π). For notational

simplicity, we assume henceforth that J = 1, i.e., ∂Ω consists of a single component of connectedness.

We write AAA j =AAA
(1)
j , Γj for Γ

(1)
j , x j = x

(1)
j , y j = y

(1)
j . Then, in a vicinity of any point x∈ ∂Ω , a curvilinear

polygon Ω is analytically diffeomorphic to either a half-space, or to a plane sector with vertex situated

at the origin.

1.3 Contributions
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The principal contribution of the present paper is the development of the GBLM in Section 2.3 and the

proof that these meshes allow to approximate boundary layers as well as corner layers at an exponential

rate in Section 3. As an important application, we show in Section 4 robust, exponential convergence

of a class of hp-FEM approximations of the singular perturbation problem (1.1) under the analyticity

assumptions (1.2), in curvilinear polygons Ω as described in Section 1.2. The convergence proof in

Sections 3 and 4 is done under a scale resolution condition that corresponds, roughly speaking, to the

hp-FE partitions resolving the shortest length scale that occurs in the solution uε , and it is strongly based

on parameter-explicit, analytic regularity results for the parametric solution family {uε : 0 < ε 6 1} ⊂
H1

0 (Ω) of (1.1), which were obtained by one of the authors in Melenk (2002). Importantly, and distinct

from earlier work on robust exponential hp-FE convergence for (1.1), a patch-based convergence proof

is developed which also enables an algorithmic, patchwise-structured anisotropic mesh specification,

described in Section 2, which is applicable in domains Ω of the generality admitted in Section 1.2.

As we show in numerical experiments in Section 5, the mesh generator Netgen Schöberl (1997) does

produce automatically, i.e., without “expert pruning”, anisotropic, geometric meshes in Ω with the

required boundary and corner refinement capable to deliver robust exponential convergence.

1.4 Outline of this paper

In Section 2, we introduce the geometric mesh families in Ω that underlie our robust exponential con-

vergence results. The meshes require concurrent anisotropic geometric partitions of Ω towards the

boundary ∂Ω and isotropic geometric refinement towards the corners AAA j. We define these meshes in

a macro-element fashion based on an initial, coarse regular partition of the physical domain Ω into a

macro-triangulation consisting of a regular, finite, and fixed partition of the physical domain Ω that

is described in Section 2.1. Its elements will be referred to as (macro) patches and are assumed to be

images of a finite number of quadrilateral reference patches under analytic patch maps. The reference

patches are key in ensuring robust exponential convergence rate bounds of our hp-FEM approxima-

tion. Following earlier work Melenk (1997); Melenk & Schwab (1999); Melenk (2002), we consider

so-called geometric boundary layer meshes, denoted by T
L,n

geo,σ . We introduce these in Def. 2.2. Unlike

the so-called “two-element” meshes considered earlier in Schwab et al. (1998a,b), which are designed

to approximate only a single small scale in a robust way, the presently considered geometric boundary

layer meshes afford robust exponential convergence rates of hp-FEM also in the presence of multiple

physical length scales. This situation arises in a number of applications (e.g., Chaussade-Beaudouin

et al. (2017); Banjai et al. (2019)). Section 2.3 introduces the geometric boundary layer mesh, first on

the reference patches, and then in Section 2.4 in curvilinear polygons.

Section 3 is devoted to the polynomial approximation of functions on geometric boundary layer

meshes. The approximation is based on Gauss-Lobatto interpolation operators in the reference triangle,

indicated by △, and in the reference square, indicated by ✷, in Section 3.1. These are then assembled

into (nodal) patch approximation operators on the geometric boundary layer patches in Section 3.2.

Then, the robust hp-approximation of corner singularities and boundary layer functions is proved. These

functions are the key solution components of singularly perturbed problems in polygons such as the

model problem (1.1).

Section 4 assembles the patch hp-approximation results and interpolants into a global approximation

operator, and presents the main result of this paper: robust exponential convergence rate bounds for the

global hp-interpolation of the solution of (1.1) assembled from the patch approximations.

Section 5 presents several illustrative numerical experiments in polygons, which underline the the-

oretical results. Besides singular perturbation problems with single scales we include an example from
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fractional diffusion whose numerical treatment naturally leads to a collection of singularly perturbed

problems with multiple scales. All our numerical examples are based on hp-meshes that are furnished

by the automated mesh generation procedure Netgen Schöberl (1997) to make the point that the some-

what technical construction of geometric boundary layer meshes is, in principle, available and feasible

automatically. Appendix A contains proofs of auxiliary results on analytic regularity estimates under

analytic changes of variables. Appendix B collects (mostly known) results on univariate polynomial

approximation for convenient reference in the main text.

1.5 Notation

We employ standard notation for Sobolev spaces. Constants C, γ , b > 0 may be different in different

instances. However, they will be independent of parameters of interest such as ε ∈ (0,1], the polynomial

degree q, and the element under consideration. The notation ∇nu stands for the collection of all partial

derivatives of order n and |∇nu|2 = ∑|α|=n
n!
α!
|Dα u|2. Points in R2 will be denoted depending on the

context as either x = (x,y) (physical domain) or x̃ = (x̃, ỹ) (patch domains) or x̂ = (x̂, ŷ) (reference

domains). We abbreviate {x̃ = 0}, {ỹ = 0}, and {x̃ = ỹ} for the line segments {x̃ = (0, ỹ) |0 < ỹ < 1},

{x̃ = (x̃,0) |0 < x̃ < 1}, and {x̃ = (x̃, ỹ) |0 < x̃ = ỹ < 1}, respectively. We write {ỹ 6 x̃} for {x̃ =
(x̃, ỹ) |0 < ỹ 6 x̃ < 1}. The origin will be denoted 000 = (0,0). The reference square and triangle are

Ŝ := (0,1)2 and T̂ := {(x̂, ŷ) |0 < x̂ < 1,0 < ŷ < x̂}. The region covered by the reference patch will be

denoted S̃ := Ŝ = (0,1)2. It will be convenient to introduce T̃ := T̂ and set T flip := S̃\ T̃ . We denote the

space of polynomials of total degree q by Pq = span{xiy j |0 6 i+ j 6 q}; the tensor product space Qq

is Qq = span{xiy j |0 6 i, j 6 q}.

2. Macro triangulation. Geometric boundary layer mesh (GBLM)

Our robust exponentially convergent hp approximation is based on so-called geometric boundary layer

meshes, denoted by T
L,n

geo,σ . To facilitate our error analysis, the T
L,n

geo,σ are generated as push-forwards

of a small number of so-called reference patches, which are partitions of S̃, under the patch maps. The

images of S̃ under the patch maps form a (coarse) macro triangulation of Ω satisfying some minimal

conditions, which are described in Section 2.1. This concept was also used in the context of hp-FEM for

singular perturbations in (Melenk, 2002, Sec. 3.3.3) and in Melenk & Xenophontos (2016); Faustmann

& Melenk (2017).

2.1 Macro triangulations

We assume given a fixed macro-triangulation T M = {KM |KM ∈T M } of Ω consisting of curvilinear

quadrilaterals KM with bijective element maps FKM : S̃ → KM that are analytic in S̃ and that in addition

satisfy the usual compatibility conditions. I.e., the partition T M does not have hanging nodes and, for

any two distinct elements KM
1 ,KM

2 ∈ T M that share an edge e, their respective element maps induce

compatible parametrizations of e (cf., e.g., (Melenk, 2002, Def. 2.4.1) for the precise conditions).

Each element of the fixed macro-triangulation T M is further subdivided according to one of the

refinement patterns in Definition 2.1 (see also (Melenk, 2002, Sec. 3.3.3) or Faustmann & Melenk

(2017)). The actual triangulation is then obtained by transplanting refinement patterns on the square

reference patch S̃ into the physical domain Ω by the element maps FKM of the macro-triangulation

resulting in the physical triangulation T . For any element K ∈ T , the element maps FK : K̂ → K are

then concatenations of affine maps AK : K̂ → K̃, which realize the mapping from K̂ ∈ {Ŝ, T̂} to the
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FIG. 2. Catalog P of mesh patches of GBLM T̃geo. Top row: boundary layer patch T̃

BL,L
geo,σ with L layers of geometric refinement

towards {ỹ = 0}; corner patch T̃
C,n

geo,σ with n layers of geometric refinement towards (0,0); trivial patch. Bottom row: tensor patch

T̃
T,L,n

geo,σ with n layers of isotropic geometric refinement towards (0,0) and L layers of anisotropic geometric refinement towards

{x̃ = 0} and {ỹ = 0}; mixed patch T̃
M,L,n

geo,σ with L layers of refinement towards {y = 0} and n layers of refinement towards (0,0).

Geometric entities shown in boldface indicate parts of ∂ S̃ that are mapped to ∂Ω . Patch meshes are transported into the curvilinear

polygon Ω shown in Fig. 1 via analytic patch maps FKM .

elements in the patch refinement pattern, and the analytic patch maps FKM . That is, the element maps

have the form FK = FKM ◦AK for an affine AK . Throughout the article, we will denote by K̂ ∈ {Ŝ, T̂}
the reference element corresponding to an element K of a triangulation, and we will denote by K̃ the

elements of the triangulation of the reference patterns. Points in the reference patch S̃ are denoted

x̃ = (x̃, ỹ) ∈ S̃; variables (x,y) are employed to indicate points in Ω , and x̂ = (x̂, ŷ) are used for points of

the reference square Ŝ = (0,1)2 and reference triangle T̂ = {(x̂, ŷ) |0 < ŷ < x̂ < 1}.

2.2 Refinement patterns in the reference configuration (patch catalog P)

The admissible patch refinement patterns are collected in a catalog P and are depicted in Fig. 2. They are

based on geometric refinement towards a vertex and/or an edge; the parameter L controls the number

of layers of refinement towards an edge whereas the natural number n > L measures the number of

geometric refinements towards vertices.

DEFINITION 2.1 (catalog P of refinement patterns) Given σ ∈ (0,1), L, n ∈ N0 with n > L the catalog

P of admissible refinement patterns consists of the following patches:

1. The trivial patch: The reference square S̃ is not further refined. The corresponding triangulation

of S̃ consists of the single element: T̂ = {S̃}.

2. The geometric boundary layer patch T̃
BL,L

geo,σ : S̃ is refined anisotropically towards {ỹ = 0} into L

elements as depicted in Fig. 2 (top left). The mesh T̃
BL,L

geo,σ is characterized by the nodes (0,0),
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ỹ

T̃
C,half,n

geo,σ

T̃

x̃

ỹ
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FIG. 3. From left to right: half-patches T̃
M,half,L,n

geo,σ , T̃
C,half,n

geo,σ , and T̃
C,half,flip,n

geo,σ . They are given by the elements of T̃
C,n

geo,σ and

T̃
M,L,n

geo,σ below the diagonal {ỹ = x̃} and the mirror image of T̃
C,half,n

geo,σ at the diagonal {ỹ = x̃}.

T B M C

M

B

T B T

B

B

B

B

TBBBBT

B

Ω
B M C

M
∂Ω A j

FIG. 4. Left panel: example of an L-shaped domain decomposed into 27 patches (T , B, M, C indicate tensor, boundary layer,

mixed, corner patches; empty squares stand for trivial patches). Right panel: Zoom-in near the reentrant corner.

(0,σ i), (1,σ i), i= 0, . . . ,L, and the corresponding rectangular elements generated by these nodes.

3. The geometric corner patch T̃
C,n

geo,σ : S̃ is refined isotropically towards (0,0) as depicted in Fig. 2

(top middle). Specifically, the reference geometric corner patch mesh T̃
C,n

geo,σ in S̃ with geometric

refinement towards (0,0) and n layers is given by triangles and based on the nodes (0,0), and

(0,σ i), (σ i,0), (σ i,σ i), i = 0,1, . . . ,n.

4. The tensor product patch T̃
T,L,n

geo,σ : S̃ is triangulated in S̃1 := (0,σL)2 and S̃2 := S̃\ S̃1 separately as

depicted in Fig. 2 (bottom left). The triangulation of S̃1 is a scaled version of T̃
C,n−L

geo,σ and based

on the nodes (0,σ i), (σ i,0), i = L, . . . ,n. The triangulation of S̃2 is based on the nodes (σ i,σ j),
i, j = 0, . . . ,L.

5. The mixed patches T̃
M,L,n

geo,σ : The triangulation consists of both anisotropic elements and isotropic

elements as depicted in Fig. 2 (bottom right) and is obtained by triangulating the regions S̃1 :=
(0,σL)2, S̃2 :=

(
S̃\ S̃1

)
∩{ỹ 6 x̃}, S̃3 := S̃\ (S̃1 ∪ S̃2) separately. The set S̃1 is a scaled version of

T̃
C,n−L

geo,σ based on the nodes (0,σ i), (σ i,0), i = L, . . . ,n. The triangulation of S̃2 is based on the

nodes (σ i,0), (σ i,σ j), 0 6 i 6 L, i 6 j 6 L and consists of rectangles and triangles, and only the

triangles abut on the diagonal {x̃ = ỹ}. The triangulation of S̃3 consists of triangles only and is

based on the nodes (0,σ i), (σ i,σ i), i = 0, . . . ,L.
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REMARK 2.1 We kept the catalog P of admissible patch refinement patterns in Definition 2.1 small in

order to reduce the number of cases to be discussed for the hp-FE error bounds. A larger number of

refinement patterns provides greater flexibility in the mesh generation. In particular, the reference patch

meshes of Def. 2.1 do not contain general quadrilaterals but only rectangles; this restriction is not es-

sential but simplifies the hp-FE error analysis. Also certain types of anisotropic triangles (e.g., splitting

anisotropic rectangles along the diagonal), which are altogether excluded in the present analysis, could

be accommodated at the expense of additional technicalities.

The addition of the diagonal line in the reference corner, tensor, and mixed patches is done to be able

to apply the regularity theory of Melenk (2002). It is likely not necessary in actual computations. We

also mention that with additional constraints on the macro triangulation T M the diagonal line could be

dispensed with in certain situations as is illustrated in Section 2.4.

2.3 Geometric boundary layer mesh

The following definition of the geometric boundary layer mesh T
L,n

geo,σ formalizes the patchwise con-

struction of meshes on Ω based on transplanting meshes of the reference configurations to Ω via the

patch maps FKM .

DEFINITION 2.2 (geometric boundary layer mesh T
L,n

geo,σ in Ω ) Let T M be a fixed macro-triangulation

consisting of quadrilaterals with analytic element maps that satisfy (Melenk, 2002, Def. 2.4.1).

Given σ ∈ (0,1), L, n ∈ N0 with n > L, a regular mesh T
L,n

geo,σ in Ω is called a geometric boundary

layer mesh if the following conditions are satisfied:

1. T
L,n

geo,σ is obtained by refining each element KM ∈ T M according to one of the refinement pat-

terns given in Definition 2.1 using the given parameters σ , L, and n.

2. The resulting mesh T
L,n

geo,σ is a regular triangulation of Ω , i.e., it does not have hanging nodes.

Since the element maps for the refinement patterns are assumed to be affine, this requirement

ensures that the resulting triangulation satisfies (Melenk, 2002, Def. 2.4.1).

For each macro-patch KM ∈ T M , exactly one of the following cases is possible:

3. KM ∩∂Ω = /0. Then the trivial patch is selected as the reference patch.

4. KM ∩∂Ω is a single point. Then two cases can occur:

(a) KM ∩∂Ω = {AAA j} for a vertex AAA j of Ω . Then the corresponding reference patch is the corner

patch T̃
C,n

geo,σ with n layers of refinement towards 000. Additionally, FKM (000) = AAA j.

(b) KM ∩∂Ω = {PPP}, where PPP is not a vertex of Ω . Then the refinement pattern is the corner patch

T̃
C,L

geo,σ with L layers of geometric mesh refinement towards 000. Additionally, it is assumed that

FKM (000) = PPP ∈ ∂Ω .

5. KM ∩∂Ω = e for an edge e of KM and neither endpoint of e is a vertex of Ω . Then the refinement

pattern is the boundary layer patch T̃
BL,L

geo,σ and additionally FKM ({ỹ = 0})⊂ ∂Ω .

6. KM ∩∂Ω = e for an edge e of KM and exactly one endpoint of e is a vertex AAA j of Ω . Then the

refinement pattern is the mixed layer patch T̃
M,L,n

geo,σ and additionally FKM ({ỹ = 0})⊂ ∂Ω as well

as FKM (000) = AAA j.
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7. Exactly two edges of a macro-element KM are situated on ∂Ω . Then the refinement pattern is the

tensor patch T̃
T,L,n

geo,σ . Additionally, it is assumed that FKM ({ỹ = 0})⊂ ∂Ω , FKM ({x̃ = 0})⊂ ∂Ω ,

and FKM (000) = AAA j for a vertex AAA j of Ω .

Finally, the following technical condition ensures the existence of certain meshlines:

8. For each vertex AAA j of Ω , introduce a set of lines

ℓ=
⋃

KM : AAA j∈KM

{FKM ({ỹ = 0}),FKM ({x̃ = 0}),FKM ({x̃ = ỹ})}.

Let Γj, Γj+1 be the two boundary arcs of Ω that meet at AAA j. Then there exists a line e ∈ ℓ such

that the interior angles ∠(e,Γj) and ∠(e,Γj+1) are both less than π .

REMARK 2.2 The last condition, requirement 8. in Definition 2.2, is merely a technical condition that

results from our applying the regularity theory for singular perturbations of Melenk (2002). Very likely,

it could be dropped.

The condition that FKM (000) ∈ ∂Ω or that FKM ({ỹ = 0}) ⊂ ∂Ω are not conditions on the patch

geometry but on the maps FKM . They are not essential but introduced for notational simplicity. They

could be enforced by suitably concatenating the maps F
K M with an orthogonal transformation.

REMARK 2.3 The meshes T
L,n

geo,σ are refined towards both vertices and edges of Ω . The parameter

L ∈ N0 measures the number of layers of geometric refinement towards ∂Ω whereas the parameter

n ∈ N characterizes the number of layers of geometric refinement towards the vertices. For L = 0 (or,

more generally, L fixed), the meshes T
0,n

geo,σ , n = 1,2, . . ., realize the “geometric meshes” introduced

in Babuška & Guo (1986a,b) (see also (Schwab, 1998, Sec. 4.4.1)) for the hp-FEM applied to elliptic

boundary value problems with piecewise analytic data.

EXAMPLE 2.3 Fig. 4 (left and middle) shows an example of an L-shaped domain with macro triangula-

tion and suitable refinement patterns.

2.4 Geometric boundary layer meshes in curvilinear polygons

Geometric boundary layer meshes can be constructed in various ways. A first approach, which is in

line with the illustration in Fig. 4, is to create one layer of quadrilateral elements that partition a tubular

neighborhood T∂Ω of ∂Ω . Each quadrilateral K should fall into one of the following 3 categories: a)

K∩∂Ω is an edge of K; b) K∩∂Ω consists of two contiguous edges and the shared vertex is a vertex of

Ω ; c) K∩∂Ω is a vertex of Ω . In the second step, refinement patterns from Definition 2.2 are applied to

each quadrilateral. In the final step, Ω ′ := Ω \T∂Ω is triangulated under the constraint that the boundary

nodes of the triangulation of Ω ′ on ∂Ω ′ coincide with the nodes of the triangulation of T∂Ω that also

lie on ∂Ω ′. This triangulation of Ω ′ could be chosen to consist of triangles (and/or quadrilaterals).

All elements of that triangulation will be denoted “trivial patches”; we mention without proof that the

approximation result holds also if we include “trivial” triangles in the list of refinement patterns.

Geometric boundary layer meshes can also be constructed for general (curvilinear) polygons Ω
starting from any regular initial triangulation T 0 of Ω . This triangulation T 0 is assumed to consist of

(curvilinear) triangles with analytic element maps and satisfying the “usual” conditions for triangula-

tions as spelled out in (Melenk, 2002, Def. 2.4.1). Then, the geometric boundary layer mesh is generated

in 3 steps (cf. Fig. 5):
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B B
CL

B B
CL

B M Cn

M

B

CL

FIG. 5. Generating a boundary layer mesh from a regular triangulation T 0: solid lines are the triangulation T 0, dashed lines

connect edge midpoints with element barycenters to create a mesh consisting of quadrilaterals. B stands for boundary layer patches

T̃
BL,L

geo,σ , M for mixed patches T̃
M,L,n

geo,σ , CL for corner layer patches T̃
C,L

geo,σ , Cn for corner layer patches T̃
C,n

geo,σ , empty quadrilaterals

are trivial patches.

1. (Ensure condition 8 of Def. 2.2) For each vertex AAA j of Ω verify if an edge e of T 0 splits the inte-

rior angle at AAA j into two angles each less than π . If not, then suitably split an appropriate triangle

abuting on AAA j into two triangles (so that the newly introduced edge will satisfy this condition) and

remove the newly introduced hanging node by a mesh closure. The resulting triangulation has

again analytic element maps and satisfies (Melenk, 2002, Def. 2.4.1); it is again denoted T 0.

2. (Create a macro triangulation T M consisting of quadrilaterals only.) Split each triangle K ∈ T 0

into 3 quadrilaterals as follows: split the reference triangle T̂ into 3 quadrilaterals K̂i, i = 1,2,3,

characterized by the vertices of T̂ , its barycenter, and by the 3 midpoints of the edges of T̂ .

The element maps of the 3 quadrilaterals FK(K̂i), i = 1,2,3, are obtained by concatenating the

bilinear bijections F
K̂i

: S̃ → K̂i with FK . The triangulation T M of Ω obtained in this way realizes

a decomposition of Ω into (curvilinear) quadrilaterals, and the element maps satisfy (Melenk,

2002, Def. 2.4.1).

3. (Generate the geometric boundary layer mesh.) The refinement pattern for each K ∈ T M is

determined since K falls into exactly one of the categories 3—7 of Definition 2.2 as can be seen

by the following observations: a) At most 2 edges of K are on ∂Ω (since the two edges that meet

in the barycenter of the parent triangle cannot be on ∂Ω ). b) If two edges of K are situated on

∂Ω , then they have to be subsets of the two edges of the parent triangle with common vertex VVV ;

since T 0 is a regular triangulation, the common vertex VVV has to be a vertex of Ω . Additionally,

if necessary, the assumptions on where the reference element vertex 000 and/or the edges {ỹ = 0},

{x̃ = 0} are mapped can be ensured by suitably adjusting the element map with the aid of an

orthogonal transformation of S̃. Finally, condition 8 of Def. 2.2 is satisfied by step 1.

It remains to see that after selecting the refinement patterns the resulting triangulation satisfies (Melenk,

2002, Def. 2.4.1). This follows from the fact that the parameters σ , L, n are the same for all macro

elements and the structure of the refinement patterns: If an edge e of the macro triangulation inherits a

further refinement from a refinement pattern, then the edge either lies on ∂Ω (which is immaterial for

the question of satisfying (Melenk, 2002, Def. 2.4.1)) or it is in Ω and exactly one of its endpoints VVV

lies on ∂Ω . This edge e is shared by two macro elements. If VVV is a vertex of Ω , then the refinement

patterns are such that the induced 1D-mesh on e is the same geometric mesh with n layers for both macro

elements. If VVV ∈ ∂Ω is not a vertex of Ω , then the induced 1D-mesh on e is the same geometric mesh

with L layers for both macro elements. Hence, the resulting mesh satisfies (Melenk, 2002, Def. 2.4.1).
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2.5 Properties of the mesh patches

We note that parts of the mixed patch, the tensor patch, and the corner patch are identical or at least

structurally similar. For the analysis of the approximation properties of hp-FEM on geometric boundary

layer meshes it is therefore convenient to single out these meshes:

DEFINITION 2.4 (half-patches, cf. Fig. 3) The mixed half-patch T̃
M,half,L,n

geo,σ and the corner half-patch

T̃
C,half,n

geo,σ on T̃ = {(x̃, ỹ) |0 < x̃ < 1,0 < ỹ < x̃} are obtained by restricting T̃
M,L,n

geo,σ and T̃
C,n

geo,σ to T̃ . The

flipped corner half-patch T̃
C,half,flip,n

geo,σ on T flip := {(x̃, ỹ) |0 < x̃ < 1, x̃ < ỹ < 1} is obtained by reflecting

T̃
C,half,n

geo,σ at the diagonal {(x̃, x̃) | x̃ ∈ (0,1)} of S̃.

We will approximate functions on boundary layer meshes T
L,n

geo,σ with the aid of an elementwise

defined operator Πq. To estimate the total error in L2-based norms, the elemental error contributions are

summed up on each mesh patch separately. The following Lemma 2.1 provides tools to conveniently

do that. In order to formulate Lemma 2.1, we introduce some additional notation, which represents the

pull-back of the parts of the boundary of the reference patch that is mapped to ∂Ω and is marked by

bold lines or dots in Figs. 2 and 3:

Γ C := Γ C,half := Γ C,half,flip := {000}, (2.1a)

Γ BL := Γ M := Γ M,half := {ỹ = 0}, (2.1b)

Γ T := {ỹ = 0}∪{x̃ = 0}∪{000}. (2.1c)

LEMMA 2.1 (properties of mesh patches) The reference patches (cf. Def. 2.1) and half patches (cf.

Def. 2.4) have the following properties:

(i) The triangular elements K̃ of the reference patches are shape regular with shape regularity constant

depending solely on σ . For the rectangular elements K̃ of the reference patches, the element maps

A
K̃

: K̂ → K̃ are affine with

A′
K̃
=

(
h

K̃,x̃

h
K̃,ỹ

)
,

where h
K̃,x̃, h

K̃,ỹ 6 1 are the side lengths (in ỹ and x̃-direction) of K̃. We denote

h
K̃,min

:= min{h
K̃,x̃,hK̃,ỹ}, h

K̃,max
:= max{h

K̃,x̃,hK̃,ỹ}. (2.2)

(ii) There is cdist > 0 depending only on σ such that for all triangular elements K̃ of a reference patch

T̃ or a half-patch T̃ the following dichotomy holds: with h
K̃
= diam(K̃),

either K̃ ∩Γ 6= /0 or dist(K̃,Γ )> cdisthK̃
,

and

Γ ∈ {Γ C,Γ C,half,Γ C,half,flip,Γ T,Γ M,Γ M,half,Γ BL}
for

T̃ ∈ {T̃ C,n
geo,σ ,T̃

C,half,n
geo,σ ,T̃

C,half,flip,n
geo,σ ,T̃ T,n

geo,σ ,T̃
M,L,n

geo,σ ,T̃ M,half,L,n
geo,σ ,T̃ BL,L

geo,σ},
respectively.
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(iii) There is cdist > 0 depending only on σ such that for all rectangular elements K̃ of a reference patch

T̃ or half-patch T̃ , the following dichotomy holds:

Either K̃ ∩Γ = /0 or dist(K̃,Γ )> cdisthK̃,min
,

where

Γ ∈ {Γ T,Γ M,Γ M,half,Γ BL}
for

T̃ ∈ {T̃ T,n
geo,σ ,T̃

M,L,n
geo,σ ,T̃ M,half,L,n

geo,σ ,T̃ BL,L
geo,σ},

respectively.

(iv) There is cdist > 0 depending only on σ such that for all rectangular elements K̃ of a mixed patch,

a mixed half-patch, or a tensor patch there holds dist(K̃,000)> cdisthK̃,max
.

(v) There is C > 0 depending only on σ such that for all elements K̃ of a reference patch or half-patch

there holds dist(K̃,000)6C diam K̃.

(vi) Let δ > 0 and consider a reference patch or half-patch. Let T̃ △ be the collection of triangles of

that reference patch or half-patch that do not abut on the vertex 000. Then, there exists a constant

C > 0 depending solely on δ and σ such that

∑
K̃∈T̃ △

hδ
K̃
6C.

(vii) Let δ > 0 and consider a reference mixed patch, tensor patch, mixed half-patch or corner half-

patch. Let T̃ � be the collection of rectangles of that reference patch. Then there exists a constant

C > 0 depending solely on δ and the parameter σ such that

∑
K̃∈T̃ �

h
K̃,min

h
K̃,max

hδ
K̃,max

6C.

(viii) Let δ ∈ (0,1], α > 0, and consider a reference patch or half-patch. Let T̃ △ be the collection of

triangles of that reference patch or half-patch that do not abut on the vertex 000. Then, there holds,

with a C > 0 depending solely on δ , α , and σ ,

∀ε ∈ (0,1] : ∑
K̃∈T̃ △

(h
K̃
/ε)δ e−αh

K̃
/ε 6C.

(ix) Let δ ∈ (0,1], α > 0, and consider a reference mixed patch, mixed half-patch, or a reference tensor

patch. Let T̃ � be the collection of rectangles of that reference patch. Then there exists a constant

C > 0 depending solely on δ , α , and σ such that

∀ε ∈ (0,1] : ∑
K̃∈T̃ �

h
K̃,min

h
K̃,max

(h
K̃,max

/ε)δ e
−αh

K̃,max
/ε

6C.
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Proof. Items (i)–(v) follow by construction.

Since items (vi), (vii) are shown by similar arguments, we only prove the case of (vii) for the specific

case of the mixed patch as shown in Fig. 2, bottom right panel. Inspection of that panel shows that for

each K̃ ∈ T̃ � we have h
K̃,min

= h
K̃,ỹ and h

K̃,max
= h

K̃,x̃. Additionally, the elements can be enumerated

as Ki, j, i = 1, . . . ,L, j = 1, . . . , i with hKi, j ,x ∼ σL−i, hKi, j ,y ∼ σL− j. Hence,

∑
K̃∈T̃ �

h
K̃,min

h
K̃,max

hδ
K̃,max

.
L

∑
i=1

i

∑
j=1

σL− j

σL−i
σ (L−i)δ .

L

∑
i=1

σδ (L−i) . 1. (2.3)

The proof of items (viii), (ix) is also done in similar ways. Therefore, we will only show (ix). The key

observation is that by comparing sums with integrals, there is a constant C > 0 depending solely on δ ,

α , and σ such that

∀ε ∈ (0,1] :
∞

∑
i=0

(σ i/ε)δ e−ασ i/ε 6C. (2.4)

The proof of (ix) now follows by a reasoning similar to that in (2.3). �

3. Approximation on the reference elements and on the reference configurations

In Sec. 3.1 we construct polynomial approximation operators on the reference square and triangle that

coincide with the Gauss-Lobatto interpolant on the edges, which affords convenient H1-conforming

approximations. Sec. 3.2 studies the approximation properties of spaces of piecewise polynomials on the

reference patches. It is shown that functions of boundary layer or corner layer type can be approximated

at exponential rates, robustly in the parameter ε that characterizes the strength of the layer.

3.1 Polynomial approximation operators on the reference element

We introduce polynomial approximation operators on the reference triangle T̂ in Lemma 3.1 and the

reference square Ŝ in Lemma 3.2. Before actually doing so, we highlight a technical detail: the triangular

elements (on the reference patches) are shape-regular so that isotropic scaling arguments can be brought

to bear; only the rectangles (of the reference patches) may be anisotropic, for which tensor product

polynomial approximation operators (specifically, the Gauss-Lobatto interpolation operator) are used

for their favorable anisotropic scaling properties.

LEMMA 3.1 (element-by-element approximation on triangles) Let T̂ be the reference triangle. Then for

every q ∈ N, there exists a linear operator Π̂
△
q : C0(T̂ )→ Pq with the following properties:

(i) For each edge e of T̂ , (Π̂△
q u)|e coincides with the Gauss-Lobatto interpolant iq(u|e) of degree q

on edge e.

(ii) (projection property) Π̂
△
q v = v for all v ∈ Pq.

(iii) (stability) There exists a constant C > 0 such that for every q ∈ N there holds

∀u ∈W 1,∞(T̂ ) : ‖u− Π̂△
q u‖

W 1,∞(T̂ ) 6Cq4‖∇u‖
L∞(T̂ ),

∀u ∈C0(T̂ ) : ‖u− Π̂△
q u‖

L∞(T̂ ) 6Cq2‖u‖
L∞(T̂ ).
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(iv) Let AAA be one of the vertices of T̂ and β ∈ [0,1). Then there is C > 0 (depending only on β ) such

that, provided the right-hand side is finite,

‖u− Π̂△
q u‖

L∞(T̂ )+‖u− Π̂△
q u‖

H1(T̂ ) 6Cq4‖dist(·,AAA)β ∇2u‖
L2(T̂ ).

(v) Let u ∈C∞(T̂ ) satisfy, for some Cu, γ > 0 and for some h, ε ∈ (0,1],

∀n ∈ N0 : ‖∇nu‖
L∞(T̂ ) 6Cuγnhn max{n+1,ε−1}n.

Then there are δ , C, C′, η , b > 0 depending solely on γ such that, under the provision that the

scale resolution condition
h

qε
6 δ (3.1)

is satisfied, there holds

‖u− Π̂△
q u‖

W 1,∞(T̂ ) 6C′Cu

((
h

h+η

)q+1

+

(
h

qεη

)q+1
)

6CCue−bq min{1,h/ε}.

Proof. The operator Π̂
△
q is taken as the one defined in (Melenk, 2002, Thm. 3.2.20), where items

(i)–(iii) are shown (the W 1,∞-estimate follows with an additional polynomial inverse estimate). Item (iv)

is taken from (Melenk, 2002, Prop. 3.2.21). For Item (v), we note that the projection property of (ii)

and the stability assertions (iii) reduce the error estimate to a best approximation problem, which can be

taken from (Melenk & Sauter, 2010, Lemma C.2). �

LEMMA 3.2 (approximation properties of the Gauss-Lobatto interpolant) Let Ŝ be the reference square.

For each q ∈ N the tensor-product Gauss-Lobatto interpolation operator Π̂✷

q : C0(Ŝ)→ Qq satisfies the

following:

(i) (projection property) Π̂✷

q v = v for all v ∈Qq.

(ii) For each edge e, the restriction (Π̂✷

q u)|e coincides with the univariate Gauss-Lobatto interpolant

iq(u|e) on e.

(iii) (stability)

∀u ∈C0(Ŝ) : ‖u− Π̂✷

q u‖
L∞(Ŝ) 6Cq‖u‖

L∞(Ŝ),

∀u ∈C1(Ŝ) : ‖∂x̂(u− Π̂✷

q u)‖
L∞(Ŝ) 6Cq4‖∂xu‖

L∞(Ŝ),

∀u ∈C1(Ŝ) : ‖∂ŷ(u− Π̂✷

q u)‖
L∞(Ŝ) 6Cq4‖∂yu‖

L∞(Ŝ).

(iv) Let u ∈C∞(Ŝ) satisfy for some Cu, γ > 0, εx, εy, hx, hy ∈ (0,1] and all (n,m) ∈ N2
0

‖∂ m
x̂ ∂ n

ŷ u‖
L∞(Ŝ) 6Cuγn+mhm

x hn
y max{n+1,ε−1

y }n max{m+1,ε−1
x }m. (3.2)

Then there are constants δ , C, η , b > 0 depending solely on γ such that under the scale-resolution

condition
hx

qεx

+
hy

qεy

6 δ (3.3)
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there holds

‖∂x̂(u− Π̂✷

q u)‖
L∞(Ŝ)

6CCu

hx

εx

[
εx

(
hx

hx +η

)q

+

(
hx

εxqη

)q

+

(
hy

hy +η

)q+1

+

(
hy

εyqη

)q+1
]
,

‖∂ŷ(u− Π̂✷

q u)‖
L∞(Ŝ)

6CCu

hy

εy

[(
hx

hx +η

)q+1

+

(
hx

εxqη

)q+1

+ εy

(
hy

hy +η

)q

+

(
hy

εyqη

)q
]
,

‖u− Π̂✷

q u‖
L∞(Ŝ)

6CCu

[(
hx

hx +η

)q+1

+

(
hx

εxqη

)q+1

+

(
hy

hy +η

)q+1

+

(
hy

εyqη

)q+1
]
.

Proof. Items (i), (ii) are well-known. We let Λq denote the Lebesgue constant of the univariate Gauss-

Lobatto interpolation operator of polynomial degree q ∈ N (cf. Lemma A.2). The L∞-stability in (iii)

follows from tensor product arguments, viz. ‖Π̂✷

q u‖
L∞(Ŝ) 6Λ 2

q ‖u‖
L∞(Ŝ) and the (generous) bound Λ 2

q 6

Cq for q > 1. For the remaining estimates, we introduce the tensor-product Gauss-Lobatto interpolation

operator Π̂✷

q = iq ⊗ iq = ix̂q ⊗ i
ŷ
q, where we use the superscipts x̂ and ŷ to emphasize the variable with

respect to which the univariate Gauss-Lobatto interpolant acts. From

u− iŷq ⊗ ix̂qu = u− (I⊗iŷq)u+ I⊗iŷq(u− ix̂q ⊗ Iu)

we get in view of the univariate stability bound Lemma A.2

‖∂x̂(u− ix̂q ⊗ iŷpu)‖
L∞(Ŝ) . Λq sup

x̂∈(0,1)
inf

v∈Pq

‖∂x̂u(x, ·)− v‖L∞(0,1)

+q2Λ 2
q sup

ŷ∈(0,1)
inf

v∈Pq

‖∂x̂(u(·, ŷ)− v)‖L∞(0,1); (3.4)

an analogous estimate holds for ∂y(u− ix̂q ⊗ i
ŷ
qu). The estimate (3.4) gives the stability estimates in W 1,∞

of (iii) by selecting v = 0 in the infima. The estimate (3.4) reduces the question of approximation on

Ŝ to questions of univariate polynomial approximation. The pertinent approximation results to prove

item (iv) are given in Lemma A.1. �

3.2 Approximation on the reference patches

In this section, we study the approximation of functions on the reference patches (or the half-patches)

described in Defs. 2.1, 2.4. The non-trivial reference patches consist of meshes that are refined towards

000, which can resolve algebraic singularities at 000, and meshes that are anisotropically refined towards

the edge {ỹ = 0}, which can resolve algebraic singularities at {ỹ = 0} or boundary layers. We show

exponential approximability of functions that have algebraic singularities at 000 or boundary layers at

{ỹ = 0}. Throughout this section, we will use the notation

r̃(·) := dist(000, ·). (3.5)



16 of 40

In this section, we present piecewise polynomial approximations on reference patches using the follow-

ing elementwise defined interpolation operator:

(Π̃q)|K̃u :=

{
Π̂

△
q (u◦A

K̃
) if K̃ is a triangle △

Π̂✷

q (u◦A
K̃
) if K̃ is a rectangle ✷,

(3.6)

where A
K̃

: K̂ → K̃ = A
K̃
(K̂) ⊂ S̃ is the affine bijection between the reference element and the corre-

sponding element on the reference patch. The edge-traces of the interpolators Π̂
△
q and Π̂✷

q coincide

with the univariate Gauss-Lobatto interpolation operator on the edges of K̂. Hence, H1-conformity of

the elementwise defined operator Π̃q is ensured. We will frequently use the stability estimates

‖Π̃qu‖
L∞(K̃) 6Cq2‖u‖

L∞(K̃), ‖∇Π̃qu‖
L∞(K̃) 6Cq4‖∇u‖

L∞(K̃); (3.7)

these estimates are easily seen to hold for triangles with the isotropic scaling property and Lemma 3.1,

(iii). The anisotropic nature of the rectangles is accounted for by separately scaling the bounds for the

partial derivatives in Lemma 3.2, (iii).

3.2.1 hp-FE approximation of corner singularity functions.

LEMMA 3.3 (approximation of corner singularity functions)

(i) Let T̃ ∈ {T̃ M,half,L,n
geo,σ ,T̃ C,half,n

geo,σ ,T̃
C,half,flip,n

geo,σ ,T̃ C,n
geo,σ ,T̃

T,n
geo,σ}. Let O be the region covered by the

elements of T̃ , i.e., let O = S̃ if T̃ ∈ {T̃ C,n
geo,σ ,T̃

T,n
geo,σ} is a full reference patch, O = T̃ if T̃ ∈

{T̃ C,half,n
geo,σ ,T̃ M,half,L,n

geo,σ } is a reference half-patch, and O = T flip if T̃ = T̃
C,half,flip,n

geo,σ . Let ũ be

analytic on O and assume there exist constants ε ∈ (0,1], β ∈ [0,1), γ , Cu > 0 such that for all

p ∈ N0 and all x̃ ∈ S̃

|∇p(ũ(x̃)− ũ(000))|6Cuε−1γ p(r̃(x̃)/ε)1−β r̃(x̃)−p max{p+1, r̃(x̃)/ε}p+1 . (3.8)

Then, there are constants C, b, κ > 0 depending only on γ , σ , and β (in particular, independent of

ε , n, L) such that under the scale resolution condition

qε > κ (3.9)

there holds

‖ũ− Π̃qũ‖L∞(O)+‖∇(ũ− Π̃qũ)‖L2(O) 6CCu

(
q9σn(1−β )+ e−bq

)
. (3.10)

(ii) Let T̃ ∈ {T̃ BL,L, S̃}. Let ũ be analytic on S̃ and assume that there are constants Cu, γ > 0 such

that for all p ∈ N0

‖∇pũ‖
L∞(S̃) 6Cuγ p max{p+1,ε−1}p+1. (3.11)

Then there are constants C, b, κ > 0 depending only on γ and σ (in particular, they are independent

of ε and L) such that under the constraint (3.9) there holds

‖ũ− Π̃qũ‖
W 1,∞(S̃) 6CCue−bq. (3.12)
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Proof. Proof of (i): Step 1: Elements abutting on 000: Only triangles △ may abut on 000. Let K̃ be such a

triangle. From (3.8) and estimating (generously) max{1, r̃(·)/ε}3 . ε−3, we get the existence of C > 0

independent of ε ∈ (0,1] with

∀x̃ ∈ K̃ : |∇2ũ(x̃)|6C(r̃(x̃))−1−β ε−5+β . (3.13)

By scaling this bound and invoking Lemma 3.1, (iv), we get with h
K̃

:= diam K̃ for any fixed β̃ ∈ (β ,1)

‖ũ− Π̃qũ‖
L∞(K̃)+‖∇(ũ− Π̃qũ)‖

L2(K̃) 6Cq4h
1−β̃

K̃
‖r̃β̃ ∇2ũ‖

L2(K̃) (3.14)

(3.13)

6 Cq4h
1−β̃

K̃
ε−5+β h

β̃−β

K̃

qε>κ

6 Cq4+5−β h
1−β

K̃
. q9−β σn(1−β ).

Step 2: Elements not abutting on 000: From Lemma 2.1, (v) we get r̃(·) . h
K̃
= diam K̃ on K̃. The

regularity assumption (3.8) then implies that there exist (suitably adjusted) constants C, γ such that for

all p ∈ N0

‖∇p(ũ− ũ(000))‖
L∞(K̃) 6Cγ pε−3+β h

1−β

K̃
r̃−p max{p+1,ε−1}p . (3.15)

We now consider the approximation on triangles and rectangles separately.

Step 2.1: K̃ is a triangle △. Lemma 2.1, (ii) implies in particular that h
K̃
. r̃(·) on K̃. Scaling the

bounds (3.15) to the reference element K̂ = T̂ therefore gives for û := ũ◦A
K̃

, where A
K̃

: K̂ → K̃ is the

affine element map for K̃, the existence of constants C, γ > 0 such that

∀p ∈ N0 : ‖∇̂p(û− û(000))‖
L∞(K̂) 6Cγ pε−3+β h

1−β

K̃
max{p+1,ε−1}p . (3.16)

In order to be able to apply the approximation properties of Lemma 3.1, we note

max{p+1,ε−1}p = max{(p+1)p,ε−p(p+1)−p(p+1)p}

= (p+1)p max{1,ε−p(p+1)−p}6 (p+1)p max

{
1,

(1/ε)p

p!

}

6 (p+1)pe1/ε
qε>κ

6 (p+1)peq/κ . (3.17)

Inserting (3.17) into (3.16) yields that there are constants C > 0, γ > 0 such that

∀p ∈ N0 : ‖∇p(û− û(000))‖
L∞(K̂) 6Ceq/κ ε−3+β h

1−β

K̃
γ p(p+1)p. (3.18)

We are in a position to apply Lemma 3.1. The parameter δ in (3.1) is determined by γ . In view of

qε > κ , we can ensure condition (3.1) by selecting κ sufficiently large to obtain from Lemma 3.1 with

some b > 0 depending only on γ

‖û− Π̂△
q û‖

W 1,∞(K̂) 6Ch
1−β

K̃
eq/κ ε−3+β e−bq.

We may assume that κ is so large that 1/κ −b 6−b/2 to estimate eq/κ e−bq 6 e−qb/2. Finally, in view

of qε > κ , we can also absorb the factor ε−3+β . q3−β in the exponentially decaying one by adjusting

b. Upon scaling from K̂ to K̃ we get the existence of constants b, C > 0 such that

∀q ∈ N : ‖ũ− Π̃qũ‖
L∞(K̃)+‖∇(ũ− Π̃qũ)‖

L2(K̃) 6Ch
1−β

K̃
e−bq. (3.19)
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Step 2.2: K̃ is a rectangle ✷. We argue as in the case of a triangle in Step 2.1. Starting point is

again the regularity assertion (3.8). The rectangle K̃ has side lengths h
K̃,ỹ 6 h

K̃,x̃ 6 1. From Lemma 2.1,

(iv) we have h
K̃,ỹ 6 h

K̃,x̃ 6Cr̃(·) on K̃. Hence, the (anisotropic) scaling to the reference square Ŝ of the

estimates (3.8) yields, for all (n,m) ∈ N2
0, in view of (3.17)

‖∂ m
x ∂ n

y (û− û(000))‖
L∞(Ŝ) 6Cε−3+β h

1−β

K̃,x̃
γn+mhm

K̃,x̃
hn

K̃,ỹ
h
−(n+m)

K̃,x̃
eq/κ(n+m)n+m

(A.9)

6 ε−3+β h
1−β

K̃,x̃
γn+meq/κ n!m!, (3.20)

where we again suitably adjusted the value of γ . Lemma 3.2 (with hy = h
K̃,ỹ/h

K̃,x̃ 6 1 and εx = εy = 1

there) yields with the regularity estimates (3.20) the existence of constants C, b > 0 such that for all

q ∈ N0

‖û− Π̂✷

q û‖
L∞(K̂)+‖∂x̂(û− Π̂✷

q û)‖
L∞(K̂) 6Cε−3+β h

1−β

K̃,x̃
e−bq,

‖∂ŷ(û− Π̂✷

q û)‖
L∞(K̂) 6Cε−3+β h

1−β

K̃,x̃

h
K̃,ỹ

h
K̃,x̃

e−bq,

where the factor eq/κ was absorbed again in the exponentially decaying term by taking κ sufficiently

large. We obtain on S̃

‖∂x̃(ũ− Π̃qũ)‖
L2(S̃) 6Cε−3+β

√
h

K̃,x̃h
K̃,ỹh−1

K̃,x̃
h

1−β

K̃,x̃
e−bq

qε>κ

6 C
√

h
K̃,ỹ/h

K̃,x̃h
1−β

K̃,x̃
e−bq, (3.21a)

‖∂ỹ(ũ− Π̃qũ)‖
L2(S̃) 6C

√
h

K̃,ỹ/h
K̃,x̃h

1−β

K̃,x̃
e−bq, (3.21b)

‖(ũ− Π̃qũ)‖
L∞(S̃) 6Ch

1−β

K̃,x̃
e−bq, (3.21c)

where again we adjusted the values of the constants b, C in the estimates to absorb algebraic factors in

q.

Step 3: Summation of the elemental errors: We note that the element size h
K̃

of the elements abutting

on 000 is h
K̃
∼ σn. For the finitely many contributions from the (triangular) elements K̃ touching 000 we

have by (3.14) the existence of C > 0 such that for every q > 1

∑
K̃ : 000∈K̃

‖ũ− Π̃qũ‖2

H1(K̃)

(3.14)

6 Cq18σ2n(1−β ).

The sum of squared error contributions over all triangular elements not touching 000 is also bounded by

e−2bq by combining (3.19) and Lemma 2.1, (vi). Likewise, the sum over all rectangular elements is

bounded by e−2bq by combining (3.21) and Lemma 2.1, (vii).

Proof of (ii): The proof is similar to the proof of case (i) and can be obtained from it by formally

setting β = 0 and r̃ ≡ 1 and dropping the error contribution q9σn(1−β ) that is due to the small elements

touching 000. �

3.2.2 hp-FE approximation of boundary layer functions.

LEMMA 3.4 (approximation of boundary layer functions) Fix c1 > 0.



19 of 40

(i) Let T̃ ∈ {T̃ M,half,L,n
geo,σ ,T̃ BL,L

geo,σ}. Let T̃ ′ ⊂ T̃ and let O := interior
(
∪{K̃ | K̃ ∈ T̃ ′}

)
be the union of

the elements of T̃ ′. Let ũ be analytic on O and satisfy for some Cu, γ , α > 0, ε ∈ (0,1] and for all

(m,n) ∈ N2
0 and all x̃ = (x̃, ỹ) ∈ O

|∂ m
x̃ ∂ n

ỹ ũ(x̃)|6Cuγn+mm!max{n,ε−1}ne−α ỹ/ε . (3.22)

Assume that L is such that the scale resolution condition

σL 6 c1ε (3.23)

is satisfied. Then there are constants C, b > 0 depending only on γ , α , c1, σ such that

∀q ∈ N : ‖ũ− Π̃qũ‖L∞(O)+ ε‖∇(ũ− Π̃qũ)‖L∞(O) 6CCue−bq. (3.24)

(ii) Let T̃ ′′ ⊂ T̃
C,half,n

geo,σ or T̃ ′′ ⊂ T̃
C,half,flip,n

geo,σ . Let O := interior
(
∪{K̃ | K̃ ∈ T̃ ′′}

)
be the union of the

elements of T̃ ′′. Let ũ be analytic on O and satisfy for some Cu, γ , α > 0, ε ∈ (0,1]

∀p ∈ N0 ∀x̃ ∈ O : |∇pũ(x̃)|6Cuγ p max{p,ε−1}pe−α r̃(x̃)/ε . (3.25)

Assume that n is such that c1 > 0, n ∈ N satisfies the scale scale resolution condition

σn 6 c1ε (3.26)

is satisfied. Then, there are constants C, b > 0 (depending only on γ , α , c1, σ ) such that

∀q ∈ N : ‖ũ− Π̃qũ‖L∞(O)+ ε‖∇(ũ− Π̃qũ)‖L∞(O) 6CCue−bq. (3.27)

Proof. Proof of (ii): We only consider the case T ′′ ⊂ T̃
C,half,n

geo,σ as the case T ′′ ⊂ T̃
C,half,flip,n

geo,σ is handled

similarly. We note that the patch T̃
C,half,n

geo,σ consists of triangles only, which are all shape-regular. Let

K̃ ⊂ O be a triangle and let h
K̃
= diam K̃. In the case that K̃ touches 000, the condition (3.26) implies that

h
K̃
. σn . c1ε so that

h
K̃

qε
.

1

q
. (3.28)

Hence, for every fixed choice of the constant c1 there exists q0 = q0(c1) ∈ N (independent of ε) such

that for every q > q0 one has the scale resolution condition (3.1). Then, Lemma 3.1, (v) implies for

suitable b > 0 (independent of ε)

‖ũ− Π̃qũ‖
L∞(K̃)+ ε‖∇(ũ− Π̃qũ)‖

L∞(K̃) . e−bq. (3.29)

If K̃ does not touch 000, we distinguish between two further cases. In the first case, we assume that

h
K̃
/(qε)6 δ and proceed as above: The scale resolution condition (3.1) is satisfied, and we arrive again

at (3.29). In the case h
K̃
/(qε) > δ , we note that Lemma 2.1, (ii) implies dist(K̃,000) > c2h

K̃
> c2δqε .

Hence, by the decay properties of ũ in (3.25) we have

‖ũ‖
L∞(K̃)+ ε‖∇ũ‖

L∞(K̃) 6Ce−αc2h
K̃
/ε 6Ce−αc2qδ . (3.30)
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In view of the stability properties (3.7), we conclude

‖ũ− Π̃qũ‖
L∞(K̃)+ ε‖∇(ũ− Π̃qũ)‖

L∞(K̃) . e−bq. (3.31)

Proof of (i): We distinguish between triangular and rectangular elements.

Approximation of ũ on triangular elements K̃: Triangular elements do not appear in boundary layer

patches T̃
BL,L

geo,σ but only in T̃
M,half,L,n

geo,σ . For patches T̃
M,half,L,n

geo,σ inspection (cf. Fig. 3) shows that two types

of triangles occur: the first type are the triangles K̃ in T̃ \ T̃1 on which one has r̃(x̃, ỹ) ∼ ỹ (uniformly

in L, n). The second type are the triangles in T̃1. For the first type, we have from (3.22) the regularity

assertion (with suitably adjusted Cu, γ , α independent of ε)

∀x̃ ∈ K̃ ∀n ∈ N0 : |∇nũ(x̃)|6Cuγn max{n,ε−1}ne−α r̃(x̃)/ε .

This is the same regularity assumption that underlies the proof of part (ii) of the lemma so that the

same arguments can be brought to bear as in the case of part (ii). For the second type of triangles, i.e.,

K̃ ⊂ T̃1 ⊂ (0,σL)2, the resolution assumption (3.23) implies for the element size h
K̃
. σL . ε . Hence,

again Lemma 3.1, (v) is applicable and yields the desired exponential approximation.

Approximation of ũ on rectangular elements K̃: The case of rectangular elements K̃ with side lengths

h
K̃,x, h

K̃,y is similar to the case of triangles. We note that the patches T̃
BL,L

geo,σ and T̃
M,half,L,n

geo,σ are such that

h
K̃,ỹ 6 h

K̃,x̃ 6 1. The anisotropic scaling from K̃ to K̂ and the regularity assumption (3.22) show that the

pull-back û to K̂ satisfies for all (m,n) ∈ N2
0

‖∂ m
x̂ ∂ n

ŷ û‖
L∞(K̂) 6Ce−α dist(K̃,{ỹ=0})/ε hm

K̃,x̃
hn

K̃,ỹ
γn+mm!max{n+1,ε−1}n .

That is, û satisfies the analytic regularity condition (3.2) with εy = ε , εx = 1, hx = h
K̃,x̃, hy = h

K̃,ỹ and

Cu = Ce−α dist(K̃,{ỹ=0})/ε . We observe that the resolution condition (3.3) can be achieved if K̃ touches

the line {ỹ = 0} in view of (3.23) provided that q > q0 > 1 for suitable q0 (depending on c1, σ , γ). If

K̃ does not touch the line {ỹ = 0}, then two cases may occur: If the resolution condition (3.3) is still

satisfied then we obtain again exponential convergence. If not, we note that h
K̃,ỹ 6 h

K̃,x̃ and that we may

assume h
K̃,x̃/q 6 δ/2 by assuming q > q0 > 1 (note: trivially, h

K̃,x̃ 6 1 so that q0 > 2/δ will work).

Furthermore, Lemma 2.1, (iii) reveals again that dist(K̃,{ỹ = 0}) > c3h
K̃,ỹ; since h

K̃,ỹ/(εq) > δ/2 we

get dist(K̃,{ỹ = 0})/ε > qc3δ/2. Hence, exp(−α dist(K̃,{ỹ = 0})/ε)6 exp(−qαc2δ/2) and we may

argue as in the case of triangles that ũ is exponentially (in q) small on K̃. The stability of Π̃q given in

(3.7) then concludes the argument. �

3.2.3 hp-FE approximation of corner layer functions.

LEMMA 3.5 (approximation of corner layer functions) Fix c1 > 0. Let T̃ ∈ {T̃ M,half,L,n
geo,σ ,T̃ C,half,n

geo,σ ,

T̃
C,half,flip,n

geo,σ ,T̃ C,n
geo,σ ,T̃

T,n
geo,σ}. Let T̃ ′ ⊂ T̃ and let O := interior

(
∪{K̃ | K̃ ∈ T̃ ′}

)
be the union of the

elements of T̃ ′. Let ũ be analytic on O and satisfy for some β ∈ [0,1), ε ∈ (0,1], Cu, γ , α > 0

∀x̃ ∈ O ∀p ∈ N0 : |∇pũ(x̃)|6Cuεβ−1γ p(r̃(x̃))1−β−p p!e−α r̃(x̃)/ε . (3.32)

Assume that n ∈ N is such that the scale resolution condition

σn 6 c1ε. (3.33)
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is satisfied. Then there are constants C, b > 0 depending only on γ , α , c1, σ , and β (in particular, they

are independent of ε , q, n, L) such that for all q ∈ N

‖ũ− Π̃qũ‖L∞(O) 6CCu

(
e−bq +q4εβ−1σn(1−β )

)
, (3.34)

‖ũ− Π̃qũ‖L2(O)+ ε‖∇(ũ− Π̃qũ)‖L2(O) 6CCuε
(

e−bq +q4εβ−1σn(1−β )
)
. (3.35)

In the estimates (3.34), (3.35) the term q4εβ−1σn(1−β ) can be dropped if O does not touch 000.

Proof. The approximation of functions of corner layer type ũ proceeds structurally along the same lines

as in the case of the singularity functions in Lemma 3.3. We distinguish between the elements touching

000 and the remaining ones.

K̃ touches 000: Selecting β̃ ∈ (β ,1) we obtain by arguing as in (3.14)

‖ũ− Π̃qũ‖
L∞(K̃)+‖∇(ũ− Π̃qũ)‖

L2(K̃) . h
1−β̃

K̃
q4‖r̃β̃ ∇2ũ‖

L2(K̃) . q4(h
K̃
/ε)1−β . (3.36)

Since h
K̃
. σn for elements K̃ touching 000, their contributions lead to the term q4εβ−1σn(1−β ).

K does not touch 000: We distinguish between triangular and rectangular elements.

Step 1: K̃ is a triangular element: As in the case of the approximation in Lemma 3.3, we get from

Lemma 3.1, (v) and scaling that (for suitably adjusted C, α)

‖ũ− Π̃qũ‖
L∞(K̃)+‖∇(ũ− Π̃qũ)‖

L2(K̃) 6C(h
K̃
/ε)1−β e−bqe−αh

K̃
/ε . (3.37)

Step 2: K̃ is a rectangular element: We recall h
K̃,ỹ 6 h

K̃,x̃ 6 1. By Lemma 2.1, (iv) we have r̃(·)∼ h
K̃,x̃

on K̃. As in the case of Lemma 3.3 we observe for the pull-back to the reference element K̂

∀(m,n) ∈ N2
0 : ‖∂ m

x̂ ∂ n
ŷ û‖

L∞(K̂) 6C(h
K̃,x̃/ε)1−β e

−αh
K̃,x̃

/ε
γn+mn!m!h

m−(m+n)

K̃,x̃
hn

K̃,ỹ
.

Using Lemma 3.2, (iv) (with εx = εy = 1 and hy = h
K̃,ỹ/h

K̃,x̃, hx = 1 there), we arrive at

‖û− Π̂✷

q û‖
L∞(K̂) 6C(h

K̃
/ε)1−β e−bqe

−αh
K̃,x̃

/ε
, (3.38)

‖∂x̂(û− Π̂✷

q û)‖
L∞(K̂) 6C(h

K̃
/ε)1−β e−bqe

−αh
K̃,x̃

/ε
, (3.39)

‖∂ŷ(û− Π̂✷

q û)‖
L∞(K̂) 6C(h

K̃
/ε)1−β

h
K̃,ỹ

h
K̃,x̃

e−bqe
−αh

K̃,x̃
/ε
. (3.40)

Step 3 (L∞-bound): Since supt>0 t1−β e−t <∞, the L∞-estimates follow easily from (3.36), (3.37), (3.38).

Step 4 (energy norm estimate): Proceeding as in Step 3 of the proof of Lemma 3.3 we set e
K̃

:=

ũ− Π̃qũ and get, using h
K̃
. ε for the elements abutting on 000:

∑
K̃ : K̃ abuts on 000

‖e
K̃
‖2

L2(K̃)
+ ε2‖∇e

K̃
‖2

L2(K̃)

(3.36)

. q8 ∑
K̃ : K̃ abuts on 000

(h2

K̃
+ ε2)(h

K̃
/ε)2(1−β ) . q8ε2β σ2n(1−β ).
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x = (x,y)

ρ j

θ j

AAA j

Ω j

Ω j+1

Γj

Ω j

A j

Γj+1 Ω j+1

Γ̃ ′
j

Γ̃ ′
j+1

Γ ′
j

FIG. 6. Left: boundary fitted coordinates ψ j : (ρ j,θ j) 7→ (x,y). Right: typical situation at a reentrant corner: boundary fitted

coordinates (ρ j,θ j) and (ρ j+1,θ j+1) are valid in the regions Ω j , Ω j+1, respectively. Γ̃j and Γ̃j+1 are analytic continuations of Γj ,

Γj+1. The analytic arc Γ ′
j is such that the angles ∠(Γ ′

j ,Γj) and ∠(Γj+1,Γ
′
j ) are both less than π .

For the remaining elements, we consider the triangular elements and the rectangular ones. In both cases,

we employ the simple observation

‖e
K̃
‖

L2(K̃) . h
K̃
‖e

K̃
‖

L∞(K̃) = ε
h

K̃

ε
‖e

K̃
‖

L∞(K̃). (3.41)

The sum over all triangles, collected in T̃ △, yields by combining (3.37) and (3.41) with Lemma 2.1,

(viii)

∑
K̃∈T̃ △

‖e
K̃
‖2

L2(K̃)
+ ε2‖e

K̃
‖2

H1(K̃)
. ε2e−2bq.

Likewise, the sum over all rectangular elements, collected in T̃ �, yields by combining Lemma 2.1, (ix)

with (3.38), (3.41) for the L2-part and with (3.39), (3.40) for the H1-part

∑
K̃∈T̃ �

‖e
K̃
‖2

L2(K̃)
+ ε2‖e

K̃
‖2

H1(K̃)
. ε2e−2bq.

This concludes the proof. �

4. hp-FE approximation of singularly perturbed problems on geometric boundary layer meshes

The principal result of the present paper is a robust, exponential approximation result for solutions of

the singular perturbation problem (1.1), (1.2) in curvilinear polygonal domains from spaces based on

geometric boundary layer meshes that are able to resolve the length scales present in the problem. The

meshes are independent of ε but subject to the (weak) scale resolution condition (4.1).

THEOREM 4.1 Let the Lipschitz domain Ω ⊂ R2 be a curvilinear polygon with J vertices as described

in Section 1.2. Let A, c, f satisfy (1.2). Fix c1 > 0. Let T
L,n

geo,σ be a geometric boundary layer mesh in

sense of Definition 2.2.

Then there are constants C, b> 0, β ∈ [0,1) depending solely on the data A, c, f , Ω , on the parameter

c1, on the (fixed) macro-triangulation T M , and on σ ∈ (0,1) such that the following holds: If ε ∈ (0,1]
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A6 = A0 AAA1

AAA2
AAA3

AAA4AAA5

Γ1

Γ2

Γ3

Γ4

Γ5

Γ 6
=

Γ 0
Ω1

Ω2

Ω3

Ω4

Ω5

Ω0 = Ω6

FIG. 7. The subdomains Ω j on which the boundary layer expansion uBLε is defined in terms of boundary fitted coordinates (ρ j,θ j).

and L satisfy the scale resolution condition

σL

ε
6 c1, (4.1)

then for every q, n ∈ N the solution uε ∈ H1
0 (Ω) of (1.1) can be approximated from S

q
0(Ω ,T L,n

geo,σ ) such

that

inf
v∈S

q
0(Ω ,T

L,n
geo,σ )

‖uε − v‖ε,Ω 6Cq9
[
εβ σ (1−β )n + e−bq

]
, (4.2)

N := dimS
q
0(Ω ,T L,n

geo,σ )6C
(
L2q2 cardT

M +nq2J
)
. (4.3)

Proof. Before proving the result, let us comment on the scale resolution (4.1) and its relation to

previous scale resolution conditions (3.9), (3.33), and (3.23). Condition (4.1) ensures that L layers of

anisotropic refinement towards the boundary are performed, which is the condition (3.23) needed to

resolve functions of boundary layer type. Since n > L (by Def. 2.2), condition (4.1) also enforces the

condition (3.33), which provides the approximation of corner layer functions. Finally, the situation (3.9)

is of a different nature as in that case, the polynomial degree is so large that already very coarse meshes

can resolve the boundary layers.

We employ the analytic, parametric regularity theory for the solution uε presented in (Melenk, 2002,

Thms. 2.3.1, 2.3.4). The infimum in (4.2) is estimated with the aid of the interpolation operator Πq that

is defined elementwise by

(Πqu)|K ◦FK :=

{
Π̂

△
q (u◦FK) if K is a triangle

Π̂✷

q (u◦FK) if K is a rectangle.

Here, the operator Π̂
△
q is defined in Lemma 3.1 and the operator Π̂✷

q in Lemma 3.2. Since Π̂
△
q and Π̂✷

q

reduce to the Gauss-Lobatto interpolation operator on the edges of the reference element, the operator

Πq indeed maps into S
q
0(Ω ,T L,n

geo,σ ). We recall that the element maps FK have the form

FK = FKM ◦AK ,

where AK : K̂ → K̃ := AK(K̂) = F−1

KM
(K)⊂ S̃ is an affine bijection. Indeed, for triangular elements it is

clear that AK is affine and for rectangular elements, this follows from the special form of the reference

patches (cf. also Lemma 2.1, (i)).
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The notation û denotes the pull-back of u to the reference element, i.e., û := u|K ◦ FK whereas

ũ := (u ◦FKM )|
K̃
= û ◦A−1

K is the corresponding function on K̃. We recall the notation Π̃q from (3.6)

and note that on a macro-element KM we have

(Πqu)◦FKM = Π̃qũ.

For k ∈ N0 we have for all elements K ⊂ KM with K̃ = F−1

KM
(K)

∀v ∈ Hk(K) : ‖v◦FKM ‖
Hk(K̃) ∼ ‖v‖Hk(K), (4.4a)

∀v ∈W k,∞(K) : ‖v◦FKM ‖
W k,∞(K̃) ∼ ‖v‖W k,∞(K), (4.4b)

where in both cases the constants implied in ∼ depend solely on k and the macro-element KM . The

equivalences (4.4) show that the approximation error v−Πqv on K is equivalent to the corresponding

error ṽ− Π̃qṽ on K̃.

The approximation theory distinguishes between the “asymptotic case” qε > κ of large polynomial

degree q and the “preasymptotic case” qε 6 κ , where the parameter κ > 0 (depending only on A, c, f ,

Ω , the macro-triangulation, and σ ) is of size O(1) and will be determined in the course of the analysis

of the “asymptotic case” in Step I.

Step I: Asymptotic case qε > κ . We consider mesh patches KM that abut on a vertex AAA j and those

with a positive distance from the vertices separately in Steps I.1 and I.2.

Step I.1: KM abuts on a vertex AAA j: The regularity of (Melenk, 2002, Thm. 2.3.1) asserts the ex-

istence of C, γ > 0, β j ∈ [0,1) such that with r j(·) := dist(·,AAA j), there holds for every p ∈ N0 and for

every 0 < ε 6 1

|∇p(uε(·)−uε(AAA j))|6Cγ pε−1 min{1,r j(·)/ε}1−β j(r j(·))−p max{p+1,r j(·)/ε}p+1. (4.5)

Recall from (3.5) that r̃(·) = dist(·,000). Set ũε := uε ◦FKM . Note FKM (000) = AAA j and r̃(x̃)∼ r j(FKM (x̃)).
The analyticity of FKM and Lemma A.2 imply, for suitably modified constants C, γ independent of

ε ∈ (0,1], for every p ∈ N0 holds on K̃

|∇p(ũε(·)− ũ(000))|6Cγ pε−1 min{1, r̃/ε}1−β j(r̃(·))−p max{p+1, r̃(·)/ε}p+1. (4.6)

Lemma 3.3 then yields

‖ũε − Π̃qũε‖L∞(KM )+‖∇(ũε − Π̃qũε)‖L∞(KM ) 6Cq9
(

σ (1−β j)n + e−bq
)

provided that κ is chosen sufficiently large (depending on γ).

Step I.2: KM does not abut on a vertex AAA j: (Melenk, 2002, Thm. 2.3.1) asserts

∀x ∈ KM ∀p ∈ N0 : |∇pu(x)|6Cγ p max{p+1,ε−1}p+2 (4.7)

for constants C, γ > 0 independent of ε ∈ (0,1]. Since KM is a trivial patch, it consists of a single

(curvilinear) quadrilateral. The analyticity of FKM = FK and Lemma A.2 imply, for suitably modified

C, γ independent of ε ∈ (0,1], that

∀x̂ ∈ Ŝ ∀p ∈ N0 : |∇pû(x̂)|6Cγ p max{p+1,ε−1}p+2 . (4.8)
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Lemma 3.2 then implies that there are C, b > 0 such that for sufficiently large, fixed κ and for every

ε ∈ (0,1] and every q ∈ N holds

‖û− Π̂qû‖L∞(KM )+‖∇(û− Π̂qû)‖
L∞(Ŝ) 6Ce−bq .

Step I.3: Combining the approximation results of Steps I.1, I.2 for the finitely many patches leads to

the desired estimate (4.2).

Step II: Preasymptotic case qε 6 κ . The parameter κ has been fixed in Step I through the appeal

to Lemmas 3.3 and 3.2. In the regime qε 6 κ , we employ the regularity theory of (Melenk, 2002,

Thm. 2.3.4), which furnishes the decomposition uε = wε + χBLuBL
ε + χCLuCLε + rε into a smooth part

wε , a boundary layer part uBL
ε , a corner layer part uCL

ε , and a small remainder rε ; the functions χBL, χCL

are suitable localizations near the boundary and the vertices of Ω . We approximate each of these four

contributions in turn.

Step II.1: Approximation of wε . By (Melenk, 2002, Thm. 2.3.4) the smooth part wε is analytic on Ω
with constants independent of ε . Therefore, one can show ‖wε −Πqwε‖W 1,∞(Ω) 6Ce−bq using similar

techniques as in the asymptotic case above (essentially, setting ε = 1 there and ignoring the special

treatment of the elements abutting on the vertices of Ω ).

Step II.2: Approximation of χBLuBLε .

Step II.2.a: Regularity of uBL
ε : The regularity of uBLε in (Melenk, 2002, Thm. 2.3.4) is described in

terms of boundary fitted coordinates (cf. Fig. 6). Associated with each edge Γj are fitted coordinates

(ρ j,θ j), where ρ j is the distance from the analytic continuation Γ̃j of the boundary arc Γj, and θ j is

a parametrization of Γj. The map ψ j : (ρ j,θ j) 7→ (x,y) ∈ Ω is analytic with an analytic inverse. An

analytic arc Γ ′
j emanates from each vertex AAA j, which can be chosen arbitrarily but is assumed to be

such that the angles between Γj and Γ ′
j and between Γj+1 and Γ ′

j are both less than π . Condition 8 of

Definition 2.2 ensures that Γ ′
j can be chosen to be a meshline of a boundary layer mesh since it can be

chosen as the image of an edge of S̃ or a diagonal of S̃ under a patch map.

The regions Ω j ⊂ {x ∈ Ω | dist(x,Γj)< δ} for a sufficiently small δ are confined by the lines Γj, Γ ′
j ,

and Γ ′
j−1 as shown in Fig. 7. By (Melenk, 2002, Thm. 2.3.4), the function uBL

ε is analytic on each Ω j

and satisfies there, for constants C, γ , α > 0 independent of ε ∈ (0,1] and all (m,n) ∈ N0,

|∂ n
ρ j

∂ m
θ j

uBLε ◦ψ j(ρ j,θ j)|
(Melenk, 2002, Thm. 2.3.4)

6 Cε−nγn+mm!e−αρ j/ε

6Cγn+m max{n+m,ε−1}n+me−αρ j/ε . (4.9)

Finally, the cut-off function χBL is supported by ∪ jΩ j and is identically 1 near ∂Ω .

Step II.2.b: Approximation of χBLuBLε far from ∂Ω : In the interest of simplicity of notation, we

make the assumption that patches KM touching ∂Ω are fully contained in the tubular neighborhood

∪ jΩ j of ∂Ω . Since patches KM not touching ∂Ω have a positive distance from ∂Ω , the function

χBLuBLε is exponentially small (in 1/ε) there; in view of the stability (3.7) (and thus the stability of Πq)

‖χBLuBLε −Πp(χ
BLuBLε )‖W 1,∞(K) 6Ce−b/ε for K ∈ KM . Since q/κ 6 1/ε the error contribution of these

patches is controlled in the desired fashion.

Step II.2.c: Approximation of χBLuBLε near ∂Ω : Let KM be a patch touching ∂Ω . Consider, for a

fixed j the pull-back F−1

KM
(KM ∩Ω j). By the assumptions of the boundary layer mesh (Def. 2.2) this

pull back is either empty, the full square S̃, half the square T̃ = {x̃ = (x̃, ỹ) |0 < x̃ < 1,0 < ỹ < x̃}, or the

other half T flip = {x̃ = (x̃, ỹ) |0 < x̃ < 1, x̃ < ỹ < 1}.
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To fix ideas, let us assume that KM is a mixed patch. The reference mixed patch restricted to T̃ is

the half-patch T̃ M,half,L,n and its restriction to T flip is T̃ C,half,flip,n. We approximate (χBLuBLε )◦FKM on

these two parts separately, starting with the approximation on T̃ . The assumptions on boundary layer

meshes (Def. 2.2) allow us to assume that FKM (T̃ )⊂ Ω j for some j. We recall that FKM maps the edge

{ỹ = 0} of T̃ to (a subset of) ∂Ω , which corresponds to ρ j = 0 in the boundary fitted coordinates. The

shape-regularity of FKM implies that ψ−1
j ◦FKM has the form

T̃ ∋ (x̃, ỹ) 7→ (ρ j,θ j) = (ỹρ(x̃, ỹ),θ(x̃, ỹ)) (4.10)

for a pair of functions ρ , θ with ρ > ρ0 > 0. The analyticity of ψ−1
j and FKM implies that ρ and θ are

in fact analytic on T̃ . Hence, the transformed function

ũBL

ε := uBLε ◦FKM = uBLε ◦ψ j ◦ (ψ−1
j ◦FKM ) (4.11)

admits by Lemma A.1 and (4.9) the analytic regularity

∀(m,n) ∈ N2
0 ∀(x̃, ỹ) ∈ T̃ : |∂ m

x̃ ∂ n
ỹ ũBLε (x̃, ỹ)|6Cγm+nm!max{n+1,ε−1}ne−bỹ/ε , (4.12)

where the constants C, γ , b > 0 are independent of ε ∈ (0,1]. We decompose the set of elements

T̃ M,half,L,n into two sets T̃1 := {K̃ ∈ T̃
M,half,L,n

geo,σ | χ̃BL|
K̃
≡ 1} and T̃2 := T̃

M,half,L,n
geo,σ \ T̃1. For the ele-

ments of T̃1, Lemma 3.4, (i) and (4.12) give that there are C, b > 0 such that for every q ∈ N and every

K̃ ∈ T̃1

‖χ̃BLũBLε − Π̃q(χ̃
BLũBLε )‖

L∞(K̃)+ ε‖∇(χ̃BLũBL

ε − Π̃q(χ̃
BLũBLε ))‖

L∞(K̃) 6Ce−bq. (4.13)

For the elements of the set T̃2, we use (4.10) to see that K̃ ∈ T̃2 implies dist(K̃,{ỹ = 0}) > c for

some c > 0 that depends solely on FKM and ψ j. Hence, the smoothness of χ̃BL and (4.12) provide

‖χ̃BLũBLε ‖
W 1,∞(K̃) 6 Ce−b/ε for suitable C, b > 0 and every K̃ ∈ T̃2. Hence, the stability properties of

Π̃q provided in (3.7) and q/κ 6 1/ε imply for all K̃ ∈ T̃2

‖χ̃BLũBLε − Π̃q(χ̃
BLũBLε )‖

L∞(K̃)+ ε‖∇(χ̃BLũBL

ε − Π̃q(χ̃
BLũBLε ))‖

L∞(K̃) 6Ce−bq. (4.14)

Let us now sketch the arguments for the approximation of χ̃BLũBLε on T flip. For notational simplicity,

assume that FKM (T flip) ⊂ Ω j. (If FKM (T flip) ⊂ Ω j′ for some different j′, then replace j with j′ in

what follows.) The regularity assertion (4.12) is still valid. Next, one observes that on T flip, one has

ỹ∼ r̃(x̃, ỹ) = dist((x̃, ỹ),000). Hence, recalling (4.12), ũBL
ε satisfies, for suitable C, b> 0 and for all p∈N0,

|∇pũBLε (·)|6C max{p+1,ε−1}pe−br̃(·)/ε on T flip. (4.15)

Replacing the appeal to Lemma 3.4, (i) with a reference to Lemma 3.4, (ii), we may argue as above to

obtain

‖χ̃BLũBLε − Π̃qχ̃BLũBLε ‖L∞(T flip)+ ε‖∇(χ̃BLũBL

ε − Π̃qχ̃BLũBL

ε )‖L∞(T flip) 6Ce−bq.

This concludes the arguments for the approximation of ũBLε on a mixed patch T̃
M,L,n

geo,σ . The approxima-

tion on corner patches T̃
C,n

geo,σ , tensor patches T̃
T,n

geo,σ , or boundary layer patches T̃
BL,L

geo,σ is similar.
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Step II.3: Approximation of χCLuCLε : Structurally, the proof is similar to the procedure in Step II.2.

From (Melenk, 2002, Thm. 2.3.4) we have in a neighborhood B j of vertex AAA j that uCL
ε satisfies on

(B j ∩Ω j)∪ (B j ∩Ω j+1) with r j(·) = dist(·,A j)

∀p ∈ N0 : |∇puCLε (·)|6Cγ p p!εβ j−1(r j(·))1−p−β j e−αr j(·)/ε , (4.16)

where C, α > 0 and β j ∈ [0,1) are independent of ε ∈ (0,1]. Let KM be a patch abutting on AAA j. Such

a patch has to be either a corner patch or a mixed patch. Then KM ∩Ω j (and similarly KM ∩Ω j+1)

consists of one or two half-patches that are push-forwards of T̃ ′ ∈ {T̃ M,half,L,n
geo,σ ,T̃ C,half,n

geo,σ ,T̃
C,half,flip,n

geo,σ }.

For simplicity of exposition, assume that KM ⊂ B j. By the analyticity of the patch-map FKM , the shape

regularity of FKM together with FKM (000) =AAA j, and by Lemma A.2, we get that ũCLε := uCLε ◦FKM satisfies

on O := F−1

KM
(KM ∩Ω j)

∀p ∈ N0 : |∇pũCL

ε (·)|6Cγ p p!εβ j−1(r̃(·))1−p−β j e−α r̃(·)/ε , (4.17)

with possibly adjusted values for C, γ , α > 0. We also note that the pull-back χ̃CL is smooth and

identically 1 near 000. Hence, using Lemma 3.5 we obtain

‖χ̃CLũCLε − Π̃q(χ̃
CLũCLε )‖L2(O)+ ε‖∇

(
χ̃CLũCLε − Π̃q(χ̃

CLũCLε )
)
‖L2(O)

6C
(

εe−bq + εβ j q4σn(1−β j)
)
.

Step II.4: Approximation of rε : We approximate rε by zero. We note that (Melenk, 2002, Thm. 2.3.4)

asserts that rε |∂Ω = 0 and that ‖rε‖H1(Ω) 6Ce−b/ε for suitable C, b > 0 independent of ε ∈ (0,1]. �

COROLLARY 4.1 Assume the hypotheses on Ω and the data A, c, f as in Theorem 4.1. Let T
L,n

geo,σ be a

geometric boundary layer mesh as in Definition 2.2.

Then, for every fixed 0 < σ < 1 and c1 > 0 there exist constants C, b > 0 such that, for every

0 < ε 6 1, with the choices q ≃ n > L > c1| logε|, the solution uε ∈ H1
0 (Ω) of (1.1) can be approximated

from S
q
0(Ω ,T L,n

geo,σ ) at an exponential rate:

inf
v∈S

q
0(Ω ,T

L,n
geo,σ )

‖uε − v‖ε,Ω 6C exp(−b
4
√

N) , N = dim(Sq
0(Ω ,T L,n

geo,σ )).

REMARK 4.1 In addition to the approximation in the energy norm in Cor. 4.1, exponential approxima-

tion results in the so-called “balanced norm” ‖v‖2√
ε

:= ε‖∇v‖2
L2(Ω)

+ ‖v‖2
L2(Ω)

(or even in H1(Ω)) are

possible under slightly stronger conditions: for sufficiently large C1, the constraint q≃ n> L>C1| logε|
yields

inf
v∈S

q
0(Ω ,T

L,n
geo,σ )

‖uε − v‖√ε,Ω 6C exp(−b′ 4
√

N)

for suitable b′ > 0 since a factor ε−1/2 can be compensated by the exponentially decaying terms e−b
4√

N

in Cor. 4.1.

Theorem 4.1 is restricted to ε ∈ (0,1]. For ε > 1, (1.1) is a regularly perturbed elliptic boundary

value problem and exponential convergence of hp-FEM with mere geometric corner refinement follows

by standard results Schwab (1998); Melenk (2002).
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PROPOSITION 4.2 Assume the hypotheses on Ω and the data A, c, f as in Theorem 4.1. Let T
L,n

geo,σ be

a geometric boundary layer mesh. Then, there are constants C, b > 0, β ∈ [0,1) depending solely on A,

c, f , the analyticity properties of the patch maps for the macro-triangulation, and σ such that for any

ε > 1, the solution uε of (1.1) satisfies for every n, L, q ∈ N

inf
v∈S

q
0(Ω ,T

L,n
geo,σ )

‖uε − v‖H1(Ω) 6Cε−2
(

q9σ (1−β )n + e−bq
)
. (4.18)

Proof. The solution uε ∈ H1
0 (Ω) satisfies

−∇ · (A∇uε)+ ε−2cuε = ε−2 f in H−1(Ω). (4.19)

For ε > 1, the term ε−2c represents a regular perturbation and the analytic regularity theory for linear,

second order elliptic boundary value problems (e.g. Babuška & Guo (1988) and the references there)

is applicable. The resulting regularity assertions are then those employed in the “asymptotic case” in

the proof of Theorem 4.1 with ε = 1 there. The factor ε−2 in (4.18) is a reflection of the fact that the

right-hand side of (4.19) include the factor ε−2. �

5. Numerical experiments

5.1 ε-independent discretizations for single scale examples

For 0 < ε 6 1 and f ≡ 1 we consider the Dirichlet problem: find uε ∈ H1
0 (Ω) such that

−ε2∆uε +uε = f in H−1(Ω).

Here, the domain Ω is either the unit square Ω1 = (0,1)2, the so-called “L-shaped domain” Ω2 ⊂ R2

determined by the vertices {(0,0),(1,0),(1,1),(−1,1),(−1,−1),(0,−1)}, the square domain with a

slit Ω3 = (−1,1)2 \ (−1,0]×{0}, or the quadrilateral Ω4 with corners the same as Ω1 but with curved

sides depicted in Figure 11. The curved sides are cubic splines, e.g., one of the sides is the cubic spline

going through the points (0,0), (0.5,0.25), and (1.0,0.0). The other three sides are determined by the

corners and the additional points (0.75,0.5), (0.5,0.75) and (0.25,0.5).
In Figures 8–11 we show examples of the meshes used in our computations on the four domains.

These are constructed using the NGSolve/Netgen package Schöberl (1997). For the square domain

Ω = Ω1 the resulting mesh is the geometric boundary layer mesh T
L,L

geo,σ with L = 4 and σ = 0.25.

The same parameters are used in NGSolve/Netgen to construct the meshes for the other three domains,

with the resulting meshes differing slightly from the strict definition of T
L,L

geo,σ near the re-entrant cor-

ners. Nevertheless, we denote these meshes also by T
L,L

geo,σ and make use of the finite element spaces

S
q
0(Ω ,T L,L

geo,σ ). We also mention that in accordance with Remark 2.2, the meshes shown in Figs. 8–11

do not satisfy requirement 8 of Definition 2.2.

For each p = 1,2,3, . . . , we use the finite element space S
q
0(Ω ,T L,L

geo,σ ) with uniform polynomial

order q = p and with L = p refinement levels towards boundaries and corners with refinement factor

σ = 0.25. We denote by uh
ε ∈ S

p
0(Ω ,T p,p

geo,σ ) the corresponding finite element solution. We measure the

error in energy norm

error =
(

ε2‖∇(uε −uh
ε)‖2

L2(Ω)+‖uε −uh
ε‖2

L2(Ω)

)1/2

, (5.1)
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FIG. 8. Right panel: Convergence in the energy norm (5.1) for the square domain for different values of ε and q = L = n = p.

Left panel: a Netgen-generated mesh used for the computations.

where uh
ε denotes the discrete solution. In place of the (unknown, for the considered examples) exact

solution uε we use a numerical approximation on a sufficiently fine mesh. The plots of the estimated

numerical errors for the four domains are depicted in Figures 8–11. Evidently, exponential convergence

occurs. In agreement with the theoretical analysis, the experimentally observed exponential convergence

has two regimes: (i) an asymptotic regime in which the scale resolution condition σ p . ε is satisfied

and (ii) a pre-asymptotic regime with σ p & ε .

The observed exponential convergence in the preasymptotic regime (not rigorously shown in Theo-

rem 4.1) is plausible for the following reason: the approximation error for boundary layer functions is

dominated by the error on the elements touching the boundary and is of size O(σ p/2) for every p ∈ N.

The approximation error of the corner layer functions is likewise dominated by the error on the elements

abutting on the vertices of Ω and is of size O(σ p(1−β )) for every p ∈ N and some fixed β ∈ [0,1).

5.2 Fractional Laplacian – a multiscale example

One of our main motivations in investigating the singularly perturbed reaction diffusion equations is to

be able to prove exponential convergence of hp-FEM in Ω for spectral fractional diffusion combined

with discretized Caffarelli-Silvestre extension or the Balakrishnan representation. For details we refer

the reader to Banjai et al. (2020). Here we describe how application of a quadrature formula to the

Balakrishnan representation leads to a sequence of singularly perturbed problems with a range of scale

parameters ε and then apply the hp-FEM to each of the problems.

Let L :=−∇ ·A∇ with A symmetric and uniformly positive definite in Ω . We denote by {λk,ϕk}k∈N⊂
R>0 ×H1

0 (Ω) a sequence of eigenpairs of L , normalized such that {ϕk}k∈N is an orthonormal basis of
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FIG. 9. Right panel: Convergence in the energy norm (5.1) for the L-shaped domain for different values of ε and q = L = n = p.

Left panel: a Netgen-generated mesh used for the computations.

FIG. 10. Right panel: Convergence in the energy norm (5.1) for the slit domain for different values of ε and q = L = n = p. Left

panel: a Netgen-generated mesh used for the computations.
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FIG. 11. Right panel: Convergence in the energy norm (5.1) for the domain with curved boundaries for different values of ε and

q = L = n = p. Left panel: a Netgen-generated mesh used for the computations.

L2(Ω) and an orthogonal basis of H1
0 (Ω) under the respective inner products

(u,v)L2(Ω) :=

ˆ

Ω
u(x)v(x)dx and a(u,v) :=

ˆ

Ω
A∇u(x) ·∇v(x)dx.

We introduce, for σ ∈ R, the spaces

Hσ (Ω) =

{
v =

∞

∑
k=1

vkϕk : ‖v‖2
Hσ (Ω) :=

∞

∑
k=1

λ σ
k v2

k < ∞

}
. (5.2)

For σ > 0, the spaces Hσ (Ω) are domain spaces of the fractional powers of L and H−σ (Ω) are the cor-

responding dual spaces. Namely, for s ∈ (0,1], the spectral fractional operator L s : Hs(Ω)→H−s(Ω)
is defined by

L
sv :=

∞

∑
k=1

λ s
k vkϕk, for v ∈Hs(Ω).

The fractional diffusion problem may now be stated as: Given a fractional order s ∈ (0,1) and

f ∈H−s(Ω), find u ∈Hs(Ω) such that

L
su = f in Ω . (5.3)

One approach to this problem going back to Balakrishnan (1960) utilizes the following representation

of the solution operator of (5.3):

L
−s = π−1 sin(πs)

ˆ ∞

0

λ−s(λ I +L )−1 dλ = π−1 sin(πs)

ˆ ∞

−∞

e−sy(I + e−y
L )−1 dy. (5.4)

In Bonito et al. (2019); Bonito & Pasciak (2015) an exponentially convergent, so-called sinc quadrature

approximation of (5.4) (see, e.g., Stenger (1993) for details) and an h-version Finite Element projec-

tion in Ω was used to obtain numerical approximations of (5.3). The result of the quadrature is the
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approximation

Q−s
k (L ) f := cBk ∑

| j|6K

ε2s
j

(
I + ε2

j L
)−1

f , (5.5)

where K ∈ N, k = K−1/2, and ε j := e− jk/2. In (Bonito et al., 2019, Thm. 3.2) it is shown that for

f ∈ L2(Ω) and for every 0 6 β < s, s ∈ (0,1)

‖(L −s −Q−s
k (L )) f‖H2β (Ω) 6C exp(−b

√
K)‖ f‖L2(Ω)

for some constants b, C > 0 depending on β , s, and Ω .

To produce a fully discrete solution we make use of the hp-FEM with the same space S
p
0(Ω ,T p,p

geo,σ )

for all the 2K+1 reaction diffusion problems and choose K proportional to p2. We set wh
j ∈ S

p
0(Ω ,T p,p

geo,σ )
to be the solution of

ε2
j a(wh

j ,v)L2(Ω)+(wh
j ,v)L2(Ω) = ( f ,v)L2(Ω), for all v ∈ S

p
0(Ω ,T p,p

geo,σ ).

The discrete solution of (5.3) is then given by

Q−s
k (Lhp) f := cBk ∑

| j|6K

ε2s
j wh

j .

With this choice of hp-FEM space and f analytic on Ω , it is shown in Banjai et al. (2020) (under the

assumption of analyticity of A(x)) that for given c1 > 0, there are constants b′, C > 0 depending on

σ and s, such that under the scale condition σ p 6 c1e−
√

K/2, the error of the full discretization can be

bounded as

‖L −s f −Q−s
k (Lhp) f‖Hs(Ω) 6C exp(−b′p).

Thus, as K is chosen proportional to p2, the error is O(e−b′′
√

K) with 2K +1 reaction diffusion systems

needed to be solved.

We illustrate this result with a numerical example, where we let Ω = Ω1 = (0,1)2 be the unit square

from the previous section, f ≡ 1, and the diffusion coefficient

A(x) :=

{
1
4

if (x1 − 1
2
)(x2 − 1

2
)> 0

4 otherwise
. (5.6)

The diffusion coefficient is discontinuous, thus the problem at hand is beyond the available theory.

Nevertheless, the elliptic problems I + ε2
j L can be expected to have layers at the boundary as well as

the lines x1 = 1/2 and x2 = 1/2 and singularities at the vertices of Ω as well as (1/2,1/2), Kellogg

(7475). We will see that exponential convergence is again obtained if additional refinement towards

the discontinuity is made. Namely, we again make use of the automatic mesh generation of the NG-

Solve/Netgen package Schöberl (1997), but this time also refine towards the lines of discontinuity of

A, i.e, for x1 = 1/2 and x2 = 1/2. This automatically provides a geometric refinement towards ( 1
2
, 1

2
),

where an algebraic singularity arises. The geometric boundary layer mesh with L = 4 refinements and

σ = 0.25 is shown in the left panel of Figure 12. A plot of the solution for s = 0.2 is shown on the right

of the same figure. It clearly shows the need for the additional refinement.
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FIG. 12. Left: Netgen generated mesh with geometric refinement towards the boundaries as well as the lines of discontinuity of

the diffusion coefficient (5.6). Right: solution of the fractional diffusion problem (5.3) with s = 0.2 and diffusion coefficient (5.6).

Instead of using the symmetric approximation (5.5), we follow Bonito et al. (2019) and use the

refined quadrature rule

uh
k := Q−s

k (L ) f :=
k sin(πs)

π

K2

∑
ℓ=−K1

ε2s
j (I + ε2

j L )−1 f , (5.7)

with ε j = e− jk/2 and the number of quadrature points chosen as

K1 =

⌈
π2

2(1− s)k2

⌉
, K2 =

⌈
π2

sk2

⌉
;

as in Banjai et al. (2020), for the given polynomial order p > 1, we set k = 4
3

p−1.

As the exact solution is not available, we make use of a numerical solution on a finer mesh denoted by

uh
fine and bound the error in the energy norm (5.1) via the computable right-hand side of the interpolation

inequality

‖uh
k −uh

fine‖Hs(Ω).‖uh
k −uh

fine‖1−s

L2(Ω)
‖uh

k −uh
fine‖s

H1(Ω)
.

The results of the numerical experiment for s = 0.2 and s = 0.8 are shown in Figure 13. The exponential

convergence against the polynomial order p and
√

Nls, with Nls being the number of linear systems,

illustrates the fact that the fixed hp-FEM space has good approximation properties for reaction diffusion

problems with a wide range of parameters ε j = e− jk/2. For further numerical examples of exponential

convergence of this approach, we refer to Banjai et al. (2020).

6. Conclusions

We established robust exponential convergence of hp-FEM for solutions of elliptic singular perturbation

problems in polygons. These solutions contain, usually, boundary layers, corner singularities and com-

binations of the two. We admitted possibly multiple length scales, and built the hp-FE approximations

on (patches of) geometric boundary layer meshes as described in Section 2, and depicted in Fig. 2. The

hp-FEM on this class of partitions is capable to resolve exponential boundary- and corner-layers with
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FIG. 13. Convergence in the energy norm (5.1) of the sinc-Balakrishnan, hp-FEM discretization for fractional diffusion (5.3) with

the discontinuous diffusion coefficient (5.6) on the unit square. On the left panel, the convergence is shown against the polynomial

order p and on the right panel against
√

Nls with Nls the number of reaction diffusion problems solved.

multiple physical length scales under a scale resolution condition that incorporates the smallest physical

length scale. The number of geometric mesh refinements to achieve this grows only logarithmically

with respect to the smallest length scale. The proposed, spectral numerical boundary layer resolution by

hp-FEM is based on boundary fitted, structured mesh-patches in the physical domain Ω . They are push-

forwards from a finite catalog P of canonical, highly structured, anisotropic reference mesh patterns.

The key feature of these meshes is the possibly anisotropic geometric refinement towards geometric

entities such as corners and edges. Meshes with such properties are available in industrical CAD/CAM

environments such as NGSolve Schöberl (1997, 2014). For deployment, it only requires (a lower bound

on) the smallest physical length-scale ε . This can often be deduced from heuristic, physical consid-

erations, e.g. scaling or dimensional analysis. The methodology should be contrasted with so-called

“augmented/enriched spectral discretizations” proposed even recently in Gie et al. (2018); Chekroun

et al. (2020) and in references there. For this numerical approach, explicit, functional forms of bound-

ary and corner layer components of the solution are required. The analytic derivation of closed forms

for such solution components in general geometries for possibly nonlinear PDEs requires an elaborate

asymptotic analysis that may be impossible. It is not necessary in the present approach.

As we explained in the numerical experiments section patch-structured meshes as required here can

be generated, in general geometries, by specialized mesh generators such as Netgen Schöberl (1997).

We hasten to add, however, that our analysis can readily be extended to cover more general partitions,

such as geometric boundary layer meshes that also contain anisotropic triangles.

A focus of the present work was on robust exponential convergence rate bounds for singular per-

turbation problems in nonsmooth domains by hp finite element methods. We proved that they afford

robust, exponential convergence on patchwise structured meshes with possibly anisotropic, geometric

refinement towards the “support set” (i.e., the subset of Ω off which the layer components decay ex-

ponentially), of the boundary and corner layers. As a rule, robust exponential convergence requires

genuine hp-FE capabilities, i.e., simultaneous mesh refinement and polynomial degree increase, as fea-

tured in the hp-FE spaces {S
p
0(Ω ,T p,p

geo,σ )}p>1 used in our numerical experiments. Although we mainly

considered the model linear, second order elliptic singular perturbation problem (1.1), corresponding

solution families are known to arise for several common models in solid and fluid mechanics, see, e.g.,
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Arnold & Falk (1996); Gerdes et al. (1998); Chaussade-Beaudouin et al. (2017); Gie et al. (2018) and

the references there.

The present hp-error analysis implies exponential upper bounds on Kolmogorov N-widths of solu-

tion sets {uε : 0 < ε 6 1} of (1.1). We recall that, for a normed linear space X (with norm ‖ ◦ ‖X ) and

for a subset B ⊂ X , the N-width is given by

dN(B,X) = inf
EN

sup
f∈B

inf
g∈EN

‖ f −g‖X , (6.1)

where the first infimum is taken over all subspaces EN of X of dimension N ∈ N. Subspace sequences

{EN}N>1 which attain the rates of dN(B,X) in (6.1) can be realized numerically by non-polynomial,

so-called reduced bases (see Quarteroni et al. (2016)).

In (6.1) we choose (X ,‖ ◦ ‖X ) = (H1
0 (Ω),‖ ◦ ‖ε,Ω ) with the energy norm ‖ ◦ ‖ε,Ω of (1.3). Given

a complex neighborhood G ⊂ C2 of Ω we take B ⊂ X as the set of solutions of (1.1) corresponding

right-hand sides f that admit a holomorphic extension to G with ‖ f‖L∞(G) 6 1. From Corollary 4.1,

with EN = S
q
0(Ω ,T L,n

geo,σ ) we obtain dN(B,X) . exp(−b
4
√

N) with a continuous, piecewise polynomial

interpolant to bound the inner infimum in (6.1). Remark that (Melenk, 2000, Theorem 3.2) stipulates

for (1.1) the (sharp) majorization dN(A,X) . exp(−b′
√

N) with b′ > 0 possibly different from b and

with nonpolynomial EN , but with b′ and the constant hidden in . independent of ε . For analytic ∂Ω
and a single, known boundary layer length scale ε ∈ (0,1], this rate is attained by hp-FEM on so-called

minimal boundary layer meshes (e.g. Schwab et al. (1998a); Melenk & Schwab (1998)) which are

ε-dependent, however.

The underlying concept of using patchwise structured meshes to approximate parametric solution

families to linear, elliptic singularly perturbed boundary value problems extends also to h-version FEM.

Here, in patches abutting on the boundary analogs of so-called “Shishkin meshes”, see, e.g., Shishkin

(1987), (Roos et al., 2008, Sec. 3.5.2), could be employed to achieve robust, algebraic rates of conver-

gence under weaker, finite order differentiability assumptions on the data A, c, and f than the presently

assumed analyticity in Ω of these data. The present results will constitute a foundation for proving

exponential convergence of several hp discretizations of (spectral) fractional diffusion problems as pre-

sented in Banjai et al. (2019) in curvilinear polygonal domains Ω . Details will be developed in Banjai

et al. (2020).

The model problem (1.1) considers homogeneous Dirichlet boundary conditions. The approxima-

tion result Theorem 4.1 relies on the regularity results of Melenk (2002), which decomposes the solution

(1.1) into boundary and corner layer components. Similar decompositions can be expected to hold also

for other boundary conditions. Then the approximation results of Section 3 are applicable indicating that

hp-FEM on similarly patchwise structured meshes will likewise lead to robust exponential convergence.

A. Analytic changes of variables

The following lemma shows how boundary layer functions are transformed under the patch maps if the

edge {ỹ = 0} of S̃ is mapped to a subset of ∂Ω :

LEMMA A.1 Let Gx ⊂ R×R+ be a domain. Let the map M : (x̃, ỹ) 7→ (θ ,ρ) be of the form M(x̃, ỹ) =
(θ̌(x̃, ỹ),yρ̌(x,y)) for some functions θ̌ , ρ̌ > ρ0 > 0 that are analytic on closure(Gx), i.e., there are

constants CM,γM > 0 such that ‖∇nθ̌‖L∞(Gx), ‖∇nρ̌‖L∞(Gx) 6 CMγn
Mn! for all n ∈ N0. Let Ox ⊂ Gx be

open and let O be an open neighborhood of M(Ox). Let u be analytic on O and assume that, for some
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function Cu and some constants b > 0, γ > 0, there holds

∀(m,n) ∈ N2
0 ∀(ρ,θ) ∈ O : |∂ n

ρ ∂ m
θ u(θ ,ρ)|6Cu(θ ,ρ)e

−bρ/ε γn+mm!max{n,ε−1}n.

Then there are constants b′, γ̃ > 0 (depending only on b, γ , and M) such that the function ũ := u ◦M

satisfies with the notation (ρ,θ) = M(x̃, ỹ)

∀(m,n) ∈ N2
0 ∀(x̃, ỹ) ∈ Ox : |∂ n

ỹ ∂ m
x̃ ũ(x̃, ỹ)|6Cu(θ ,ρ)e

−b′ ỹ/ε γn+mm!max{n,ε−1}n.

Proof. The proof uses arguments employed in (Melenk, 2002, Sec. 4.3). Consider a fixed (x̃, ỹ) ∈ Ox

and set (θ ′,ρ ′) = M(x̃, ỹ). Then (θ ,ρ) 7→ u(θ ,ρ) is holomorphic on the polydisc

B1/γ(θ
′)×B1/(γe)(ρ

′)⊂ C2

with the bound

|u(θ ′+ζ1,ρ
′+ζ2)|6Cu(ρ

′,θ ′)e−bρ ′/ε 1

1− γ|ζ1|

[
1

1− γe|ζ2|
+ exp(γ|ζ2|/ε)

]
. (A.1)

Since the functions θ̌ , ρ̌ are holomorphic on the closure of M(Gx), there are C1, δ > 0 (independent of

(x̃, ỹ) ∈ G) such that for ζ1, ζ2 ∈ Bδ (0)⊂ C there holds

∣∣θ̌(x̃+ζ1,y+ζ2)− θ̌(x̃, ỹ)
∣∣6C1 [|ζ1|+ |ζ2|] ,

|(ỹ+ζ2)ρ̌(x̃+ζ1, ỹ+ζ2)− ỹρ̌(x̃, ỹ)|6C1 [y(|ζ1|+ |ζ2|)+ |ζ2|] ,

and we may assume that δ > 0 is such that for ζ1, ζ2 ∈ Bδ (0) we have M(x̃+ζ1, ỹ+ζ2) ∈ B1/(2γ)(θ
′)×

B1/(2γe)(ρ
′). This implies in view of (A.1) the bounds

|ũ(x̃+ζ1, ỹ+ζ2)|= |u(M(x̃+ζ1, ỹ+ζ2))| (A.2)

6CCu(θ
′,ρ ′)e−bρ ′/ε exp(C1γ|ζ2|/ε)exp

(
C1γ ỹ

[
|ζ1|+ |ζ2|

]
/ε
)
. (A.3)

For δ1, δ2 < δ Cauchy’s integral formula for derivatives gives

∂
α1

x̃
∂

α2

ỹ
ũ(x̃, ỹ) =−α1!α2!

4π2

ˆ

ζ1∈∂Bδ1
(0)

ˆ

ζ2∈∂Bδ2
(0)

ũ(x+ζ1,y+ζ2)

(−ζ1)α1+1(−ζ2)α2+1
dζ1dζ2

so that
∣∣∣∂ α1

x̃
∂

α2

ỹ
ũ(x̃, ỹ)

∣∣∣6CCu(ρ
′,θ ′)e−bρ ′/ε α1!

δ
α1
1

α2!

δ
α2
2

exp(C1γδ2/ε)exp(C1γy(δ1 +δ2)/ε)

Selecting δ1 = δ := bρ0/(4C1) and δ2 = min{(|α2|+ 1)ε,δ} yields the desired result with b′ = b/2

since C1ỹ(δ1 +δ2)/ε 6 2δC1ỹ/ε 6 2δC1ρ ′/ρ0 = b/2. �

The following lemma shows how functions that may have a singular behavior are transformed under

analytic changes of variables:

LEMMA A.2 ((Melenk, 2002, Lemma 4.3.3)) Let G̃ ⊂ R2 be a domain and M : G̃ → R2 be analytic on

closure(G̃). Let Õ ⊂ G̃ be open and O be an open neighborhood of M(Õ). Let u be analytic on O and

assume that for some (positive) function Λ , r : O → R and some γ > 0 there holds

∀n ∈ N0 ∀x ∈ O : |∇nu(x)|6 Λ(x)γn max{(n+1)/r(x),ε−1}n. (A.4)
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Then the function ũ := u ◦M is analytic on Õ and there are constants C, γ̃ > 0 depending solely on M

and γ such that for each x̃ ∈ Õ there holds with the notation x = M(x̃)

∀n ∈ N0 : |∇nũ(x̃)|6CΛ(x)γ̃n max{(n+1)/r(x),ε−1}n.

Proof. The statement is taken from (Melenk, 2002, Lemma 4.3.3) except that we explicitly allow r to

be a function of x. The proof is similar to that of Lemma A.1. We fix x̃ ∈ G̃ and set x = M(x̃). The

assumption (A.4) implies that u has a holomorphic extension to Bcr(x)(x) ⊂ C2 with c > 0 depending

solely on γ . Additionally, we have the bound for z ∈ Bcr(x)(x)⊂ C2 (we write r = r(x))

|u(x+ z)|6 Λ(x)
∞

∑
n=0

1

n!
|z|n|∇nu(x)|6C

[
1

1−|z|/(cr)
+ exp(C′|z|/ε)

]
.

for suitable C, C′. The analyticity of M on closure(G̃) implies the existence of δ > 0 (independent of

x̃ = (x̃, ỹ) ∈ G̃) such that

M(x̃+Bδ r(0), ỹ+Bδ r(0))⊂ B 1
2 cr(x)(x).

For α ∈ N2
0 let θ := min{δ r(x),(|α|+1)ε}. The Cauchy integral theorem for derivatives gives

∂
α1

x̃
∂

α2

ỹ
ũ(x̃, ỹ) =−α1!α2!

4π2

ˆ

z1∈∂Bθ (0)

ˆ

z2∈∂Bθ (0)

ũ(M(x̃+(z1,z2)))

(−z1)α1+1(−z2)α2+1

so that we get

|∂ α1

x̃
∂

α2

ỹ
ũ(x̃, ỹ)|. α1!α2!θ−|α| [1+ exp(C′θ/ε)

]

. |α|!max{(δ r(x))−1,(|α|+1)−1ε−1}|α| [1+ exp(C′|α|)
]
,

which proves the asserted estimate. �

B. Univariate Approximation

LEMMA A.1 Let I = (−1,1) and u ∈C∞(I) satisfy, for some constants Cu, γu > 0, for some h ∈ (0,1],
ε ∈ (0,1] the bound

∀n ∈ N0 : ‖Dnu‖L∞(I) 6Cu(γuh)n max{n,ε−1}n. (A.1)

Then there are constants C, η , δ > 0 depending solely on γu such that under the constraint

h

εq
6 δ (A.2)

there holds

∀q ∈ N : inf
v∈Pq

‖u− v‖W 1,∞(I) 6CCu

((
h

h+η

)q+1

+

(
h

ηεq

)q+1
)
. (A.3)

Proof. We start with the observation that Taylor’s theorem yields for x > 0

∑
n>q+1

1

n!
xn = ex −

q

∑
n=0

xn

n!
=

1

q!

ˆ x

0

(x− t)qet dt 6
xq+1

q!
ex. (A.4)
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Case 1: Let eγuh < 1/2. Then the Taylor series of u about x0 = 0 converges in I and the Taylor

polyomials Tq ∈ Pq satisfy the error bounds

‖u−Tq‖L∞(I) 6
∞

∑
n=q+1

|Dnu(0)|
n!

6Cu

∞

∑
n=q+1

(γueh)n +
(γuh/ε)n

n!

(A.4)

6 Cu

(
(γueh)q+1

1− (γueh)
+

(γuh/ε)q+1

q!
eγuh/ε

)

(A.8)

6 Cu

(
2(γueh)q+1 +C(γ ′h/(εq))q+1eγuh/ε

)
,

for suitable γ ′ > γu. The assumption (A.2) allows us to estimate eγuh/ε 6 eγuδq and the desired result

follows for the L∞-estimate. An analogous argument applies for the W 1,∞-estimate.

Case 2: Let 1 > h > 1/(2eγu). Introduce for ρ > 1 the ellipse Eρ := {z ∈ C | |z− 1|+ |z+ 1| <
ρ +1/ρ} and set Gκ(I) := ∪x∈IBκ(x). By geometric considerations (e.g., with the aid of (Börm et al.,

2005, Lemma 3.14)) one has E1+κ ⊂ Gκ(I). Taylor’s theorem gives that u is holomorphic on G1/(γuh)(I)
and for every κ < 1/(γuh) we have

‖u‖L∞(Gκ ) 6Cu

∞

∑
n=0

1

n!
(hγuκ)n max{n,ε−1}n 6Cu

[
1

1− eγuhκ
+ exp(κγuh/ε)

]
. (A.5)

Well-established polynomial approximation results (see, e.g., (Apel & Melenk, 2018, Thm. 6)) then

yield for fixed κ > 0 the existence of ρ1 = ρ1(κ)> 1 such that

inf
v∈Pq

‖u− v‖W 1,∞(I) 6CCuρ
−q
1 ‖u‖L∞(Gκ ) 6CCuρ

−q
1 eκγuh/ε 6CCuρ

−q
1 eκγuδq.

Fix 1 < ρ2 < ρ1. Then we may select δ > 0 sufficiently small so that there exists a constant C > 0 such

that

∀q ∈ N : inf
v∈Pq

‖u− v‖W 1,∞(I) 6CCuρ
−q
2 .

Using h > 1/(2eγu) and suitably choosing η , we can estimate

ρ
−q
2 6

(
h

h+η

)q

.

�

LEMMA A.2 (stability of the 1d-Gauss-Lobatto (GL) interpolant) Let I = [−1,1]. There exists a con-

stant C > 0 such that for any q ∈ N, the Gauss-Lobatto interpolation operator iq : C0(I)→ Pq satisfies:

‖u− iqu‖L∞(I) 6 (1+Λq) inf
v∈Pq

‖u− v‖L∞(I), Λq =C ln(q+1), (A.6)

‖(u− iqu)′‖L∞(I) 6C0(1+q2Λq) inf
v∈Pq

‖(u− v)′‖L∞(I). (A.7)

Proof. The bound (A.6) follows from the projection property of the Gauss-Lobatto interpolation; the

logarithmic growth of the Lebesgue constant Λq is shown in Sündermann (1983).
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For (A.7), we estimate for arbitrary v ∈ Pq

‖(u− iqu)′‖L∞(I) 6 ‖(u− v)′‖L∞(I)+‖(iq(u− v))′‖L∞(I)

. ‖(u− v)′‖L∞(I)+q2‖iq(u− v)‖L∞(I) . ‖(u− v)′‖L∞(I)+q2Λq‖u− v‖L∞(I).

Constraining v to satisfy v(−1) = u(−1) the result follows from a Poincaré inequality. � Finally, we

recall two inequalities of Stirling’s type.

∀n ∈ N :
√

2πnn+1/2e−n 6 n! 6 enn+1/2e−n , (A.8)

∀n ∈ N0 ∀α ∈ N0 : α!n! > 2−(α+n)(α +n)! > (2e)−(α+n)(α +n)α+n. (A.9)

(A.8) follows from Robbins (1955). In A.9, the first bound follows from the binomial formula ∑
m
ν=0

(
m
ν

)
xν =

(1+ x)m and the second bound follows from (A.8).

REFERENCES

APEL, T. & MELENK, J. (2018) Interpolation and quasi-interpolation in h- and hp-version finite element spaces.

Encyclopedia of Computational Mechanics (E. Stein, R. de Borst & T. Hughes eds). Chichester, UK: John Wi-

ley & Sons, pp. 1–33. extended preprint at http://www.asc.tuwien.ac.at/preprint/2015/asc39x2015.pdf.

ARNOLD, D. N. & FALK, R. S. (1996) Asymptotic analysis of the boundary layer for the Reissner-Mindlin plate

model. SIAM J. Math. Anal., 27, 486–514.
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