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Abstract

We present a comprehensive and variational approach to the coupling of elec-

tromagnetic field models with circuit-type models. That coupling relies on inte-

gral non-local quantities like voltage and current for electric ports, magnetomo-

tive force and magnetic flux for magnetic ports, and linked currents and fluxes for

“tunnels” in the field domain. These quantities are closely linked to non-bounding

cycles studied in algebraic topology and they respect electromagnetic power bal-

ance laws. We obtain two dual variational formulations, called E-based and

H-based, which provide a foundation for finite-element Galerkin discretization.

Keywords. field-circuit coupling, (M)ECE models, relative co-homology, electric
and magnetic ports, finite elements

1 Introduction

A central issue in computional electromagnetics is the coupling of full field descrip-
tions of electromagnetic phenomena used in one region of space (“field domain”) with
“lumped-element” circuit models (network models/graphical models) in another region
of space (“circuit domain”). Both talk to each other through well-defined zones on the
interface, known as ports. Details are given in Section 2.

In this article we present a comprehensive and variational treatment of this coupling
based on the two ideas that have emerged as the underpinning of modern field-circuit
coupling approaches:

(I) Electric and/or magnetic coupling between field and circuity domain is entirely
channeled through the ports. We discuss the profound consequences in Sec-
tion 3.1.

(II) The coupling through ports can completely be described by integral/non-local
field quantities, see Section 5 for explanations.

In particular, this approach paves the way for introducing any kind of “lumped param-
eter excitations” into full Maxwell field models both in time and frequency domain. It
permits us to imposed voltages, currents, and linked fluxes in the most general fashion.

Of course, also this work stands on the shoulders of giants, in particular on those of
Alain Bossavit, whose 2000 seminal article on “Most general non-local boundary con-
ditions for the Maxwell equations in a bounded region” [2] developed several key ideas
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that also pervade this work. The most important is the insight that non-local coupling
quantities are of topological nature and closely connected to profound mathematical
concepts investigated in (co-)homology theory a field of algebraic topology. We will
explain this in Section 3.2. It is a pity that, probably owing to “inscrutable mathemat-
ics”, A. Bossavit’s topology-centered perspective has not received due attention. An
exception is the work by L. Kettunen and S. Suuriniemi [17, 18]. What their work has
in common with ours is the appreciation of the role of the fine structure of homology
spaces, see Section 3.2.

Another fundamental idea from [2] is the connection between topological (Poincaré)
duality and integration by parts, which we will discuss in Section 4. As a consequence,
energy/power balance laws naturally emerge, commensurate with their central role in
field-circuit coupling, highlighted, for instance, in [1] and [11].

We also point out that the above coupling “axioms” (II) and (I) have also been
proposed by G. Ciuprina, D. Ioan and co-workes to lay the foundations of the so-
called (M)ECE-technique for defining and classifying port conditions, see [4, 13] and
[5, Sect. 5.2.1]. These works, extending the final paragraph of [2], also link non-local
boundary conditions with discretizations of Maxwell’s equations. We will address this
in Section 6.

Our main contribution consists in the synthesis of all these ideas and their elabora-
tion in a function-space variational framework, leading to the all-encompassing varia-
tional equations (37, “E-based”) and (40, “H-based”), which serve as a natural starting
point for Galerkin discretization. We deliberately opted for a rather mathematical
treatment and hope that we have kept the right balance of intuitive and rigorous ar-
guments. In any case, in the final Section 7 we discuss a very concrete circuit-field
coupling problem in frequency domain, in order to demonstrate how to extract a rele-
vant E-based finite-element model employing our general ideas.

2 Geometric Setting

We consider the linear Maxwell’s equations governing the evolution of electromagnetic
fields on a bounded Lipschitz domain Ω ⊂ R3, which we call the “field domain”. As in
the introduction of [2], it is coupled to the rest of the universe through its boundary
Γ := ∂Ω, which is partitioned into four different parts:

Γ = ΓE ∪ ΓM ∪ ΓI ∪ ΓR ,

with mutually disjoint interior and piecewise smooth boundaries. They are meant to
designate:

• ΓE is the area occupied by Electric contacts,

• ΓM stands for Magnetic contacts,

• ΓI is an Insulated part of the boundary,

• and ΓR is an artificial boundary on which Radiation conditions are to be imposed.

The contact boundaries have to be topologically simple in the sense of the following
assumption.

Assumption 1. (i) Both ΓE and ΓM are the union of topologically trivial ports

ΓE = Γ1
E ∪ · · · ∪ ΓNE

E , ΓM = Γ1
M ∪ · · · ∪ ΓNM

M , NE , NM ∈ N0 ,

all of which have a positive distance from each other.
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(ii) The radiation boundary is strictly separated from the other parts of Γ.

Here, topogically trivial means that the ports are simply connected (homeomorphic
to a disk). The reader can imagine them as images of disks under bi-Lipschitz mappings.

ΩC
Ω

ΓE
1

ΓE
2

ΓM
1

ΓM
2

ΓI

ΓR

ΓR

ΓR

Figure 1: A typical situation compliant with Assumption 1 (NE = NM = 2): radiation
conditions are imposed on the surface ΓR of the artificial computational domain Ω
(black box), the other boundary parts couple to the “circuit domain” ΩC (blue hollow
cylinder).

A typical situation is sketched in Fig. 1. Complicated electric circuits occupy a
region of space, the “circuit domain” ΩC , which is tiny compared to the characteris-
tic electromagnetic wavelength. They interact with the electromagnetic fields outside,
where wave propagation cannot be neglected. The unbounded domain R3 \ΩC is trun-
cated to Ω and the impact of truncation is taken into account by absorbing boundary
conditions on ΓR.

Of course, the situation could be reversed with Ω a bounded cavity in ΩC , see Fig. 2.
This can be appropriate when using the full Maxwell’s equations locally in order to
take into account both capacitive and inductive effects, though wave propagation may
not be important. In Section 7 we will document a numerical simulation in such a
setting.

For the bulk of our considerations the truncation by ΓR does not matter much,
and, thus, in large parts of the remainder of this article we just ignore the radiation
boundary: We assume ΓR = ∅. In addition, for the sake of simplicity we deal with
connected circuit domains only, which implies that Γ = ΓE ∪ ΓM ∪ ΓI = ∂ΩC is
connected, too.
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Figure 2: Another situation covered by Assumption 1 (NE = NM = 2): The cir-
cuit domain ΩC is the unbounded complement of the bounded field domain ΩC , here
represented by the blue hollow cylinder.

3 Boundary Conditions

3.1 Function Spaces for Electromagnetic Fields

Recall that the space of finite-energy electric and magnetic fields in Ω is the Sobolev
space1

H(curl,Ω) := {v ∈ L2(Ω) : curl v ∈ L2(Ω)} .

To take into account the ports in a variational setting, we rely on two special closed
subspaces. Their definition involves the two tangential traces

γtu(x) := n(x)× (u(x)× n(x)) , γ×u(x) := u(x)× n(x) , x ∈ Γ ,

first defined for smooth vectorfields and then extended to continuous surjective map-
pings γt : H(curl,Ω) → H− 1

2 (curlΓ,Γ) and γ× : H(curl,Ω) → H− 1

2 (divΓ,Γ), respec-
tively [3, Thm. 1]. Note that products of these two traces yield “Poynting vectors”,
that is power-flux two-forms: γtE · γ×H = (E×H) · n|Γ. This is closely related to
the integration by parts formula

∫

Ω

U · curlV − curlU ·V dx =

∫

∂Ω

γ×U · γtV dS ∀U,V ∈ H(curl,Ω) , (1)

and the fact that the trace spaces H− 1

2 (curlΓ,Γ) and H− 1

2 (divΓ,Γ) are in duality with
respect to the L2(Γ)-inner product [3, Thm. 2].

Now we can introduce the key function spaces

• for electric fields (space “E” in [2])

VE := {E ∈ H(curl,Ω) : γtE = 0 on ΓE , curlΓ γtE = 0 on ΓI} , (2)

1Concerning function spaces we adhere to notational conventions widely adopted in the mathe-
matical analysis of numerical methods in computational electromagnetism, see [16, Ch. 3] and also [3,
Sect. 2] for more exotic trace spaces.
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• and for the magnetic field (space “H” in [2])

VM := {H ∈ H(curl,Ω) : γ×H = 0 on ΓM , divΓγ×H = 0 on ΓI} , (3)

Recall that the scalar-valued surface differential operators curlΓ and divΓ for tangential
traces are defined as

curlΓ(γtV) = divΓ(γ×V) = γn(curlV) for V ∈ H(curl,Ω) , (4)

γn the normal components trace, which immediately gives them a meaning for tangen-
tial vectorfields in the trace spaces H− 1

2 (curlΓ,Γ) and H− 1

2 (divΓ,Γ), respectively, as
hinted by the notations.

What motivates the choice of the spaces VE and VM? As for an electric contact
Γℓ
E ⊂ ΓE you may think of a perfect conductor being attached to Ω, from which any

electric field is expelled: γtE|ΓE
= 0 for the electric field E ∈ H(curl,Ω). Similarly,

the magnetic field is blocked at the magnetic contact zone: γ×H|ΓM
= 0. Conversely,

the insulating interface ΓI cannot be penetrated by any fluxes, neither magnetic nor
electric, which, in light of (4), is enforced by the boundary conditions built into the
definitions (2) and (3) of VE and VM .

Remark 2. At the radiation boundary we assume general linear impedance boundary
conditions

γtE = Z(γ×H) on ΓR , (5)

where Z is a suitable invertible linear operator, possibly non-local both in space and
time, meant to offset the effect of truncation approximately. Therefore, (5) is often
called an absorbing boundary condition. Note that the boundary conditions at ΓR do
not show up neither in the space VE nor in VM .

3.2 Tool: (Co-)Homolgy

Co-homology and its dual theory, homology, is key to understanding obstructions to
the existence of potential representations for functions in the kernel of differential
operators, that is, obstructions to being in the range of other differential operators.
This issue arises here, because both (2) and (3) define VE and VM as kernels of the
surface differential operators curlΓ and divΓ, respectively.

(Co-)homology centers around the concepts of “cycle” and “boundary”. We give
an intuitive and geometric description, which, nevertheless captures their essence. A
slightly more formal treatment from the perspective of chain calculus is offered in the
introduction of [2].

Consider a non-degenerate2 subset Σ ⊂ Γ with sufficiently regular boundary. In
addition, let σ denote a non-degenerate part of the boundary ∂Σ.

Definition 3 (Cycle). A σ-relative cycle γ ⊂ Σ is a directed curve, which is either a
loop (closed curve) or is open and has both its endpoints located on σ.

Definition 4 (Bounding). A σ-relative cycle γ is bounding, if there is a non-degenerate
area S ⊂ Σ such that γ = ∂S \ σ.

2Non-degenerate means that the closure of the interior of Σ in Γ must coincide with Σ.
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Σ

σ

σ

Figure 3: Γ is the surface of a sphere, Σ the pink area, the dashed - - - sections of its
boundary constitute σ. The blue and green curves are σ-relative cycles in Σ. The blue
cycles are bounding, the green are not bounding, both relative to σ.

Examples of bounding and non-bounding cycles are visualized in Fig. 3 taking the
cue from [2, Fig. 1]. The following is a rephrasing of a fundamental result of (relative)
co-homology theory for 2-surfaces concerning potential representations for the space of
tangential vectorfields

W :=

{
v ∈ H(curlΓ,Σ) :

curlΓ v = 0 in Σ ,
v has vanishing tangential components on σ

}
(6)

based on the space of scalar functions

S := {ϕ ∈ H1(Σ) : ϕ|σ = 0} . (7)

Theorem 5. There is a number N ∈ N0 and a finite set of

(i) non-bounding (relative to σ) fundamental σ-relative cycles γ1, . . . , γN ,

(ii) tangential co-homology vectorfields c1, . . . , cN ∈ W satisfying

∫

γj

cm · ds =

{
1 for m = j ,

0 else,
j,m ∈ {1, . . . , N} , (8)

such that, with W and S as in (6) and (7),

W := gradΓ S + span{c1, . . . , cN} . (9)

Remark 6. The “ π
2
-rotated setting”: If curlΓ in (6) is replaced with divΓ, then curlΓ

should substitute gradΓ in (9).

Remark 7. We point out that Theorem 5 remains valid when replacing H(curlΓ,Σ)

with H− 1

2 (curlΓ,Σ) in (6) and H1(Σ) with H
1

2 (Σ) in (7), though zero boundary con-
ditions on σ have to be rephrased as the existence of a zero extension in this case.
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Figure 4: Torus-shaped ΩC (NT = 2); NE = 3 electric ports in pink, NM = 2 magnetic
ports in yellow, fundamental cycles for the relative homology space H1(ΓI , ∂ΓE) are
the “topological cycles” τ1, τ2 of class (T) in blue, the “electric connector cycles” γE2 , γ

E
3

of class (CE) in purple, and the “magnetic port cycles” ∂Γ2
M of class (PE) in green.

Remark 8. In homology theory the cycles γ1, . . . , γN mentioned in Theorem 5 are
introduced as 1-chains that form a basis of the relative homology space H1(Σ, σ).
From this perspective, the vector fields c1, . . . , cN should be regarded as 2D Euclidean
1-form vector proxies of representatives of a basis of the relative co-homology space
H1(Σ, σ), [12, Sect. 2 & 5].

Let us return to the geometric setting outlined in the introduction and to the
space VE from (2). Using the notation established above, as regards the application of
Theorem 5 to VE we face the situation Σ = ΓI and σ = ∂ΓE . We need a precise char-
acterization of the σ-relative cycles γi. As has already been realized in [18, Sect. III.C],
the fundamental cycles non-bounding relative to ∂ΓE fall into three different classes,
see Fig. 4 (also for the color code):

(T) Fundamental non-bounding cycles (“topological cycles”)

τ1, . . . , τNT
, NT := 2β1(ΩC) ,

of Γ, where β1(ΩC) is the first Betti number of ΩC , that is, the number of han-
dles/tunnels of both the circuit domain ΩC and the field domain Ω.

(CE) NE − 1 directed curves γE2 , . . . , γ
E
NE

⊂ ΓI connecting Γ1
E with the other electric

ports Γ2
E , . . . ,Γ

NE

E (“electric connector cycles”),

(PE) the NM − 1 oriented boundaries ∂Γℓ
M , ℓ = 2, . . . , NM , of the magnetic ports

Γ2
M , . . . ,Γ

NM

M (“magnetic port cycles”).

Hence, the number of ΓE-relative fundamental cycles is

N := NT +max{NM , 1}+max{NE , 1} − 2 , (10)

and, by Theorem 5, it takes that many co-homology tangential vectorfields to fill the
gap between VE and gradients of functions that vanish on ∂ΓE .

The considerations for VM invoke ΓM -relative homology. Again, three different
classes of ΓM -relative fundamental cycles can be identified in addition to class (T)
from above, see Fig. 5:

(CM) NM−1 directed curves γM2 , . . . , γ
M
NM

from Γ1
M to every other magnetic port (“mag-

netic connector cycles”),
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Γ2
E

Γ3
E

Γ1
M

Γ2
M

τ1

τ2

∂Γ3
E∂Γ2

E

γM2

Figure 5: Torus-shaped Γ (β1(ΩC) = 1); electric ports in pink, magnetic ports in yellow,
ΓM -relative fundamental cycles in ΓI are τ1, τ2 of class (T) colored blue, γM2 of class
(CM) in green, ∂Γ2

E , ∂Γ
3
E of class (PM) in purple.

(PM) the NE − 1 boundaries ∂Γk
E , k = 2, . . . , NE, of the electric ports Γ2

E , . . . ,Γ
NE

E

(“electric port cycles”).

Since ∂ΓI = ∂ΓE ∪ ∂ΓM , Poincaré-Lefschetz duality of homology theory guaran-
tees that the ΓE-relative fundamental cycles for VE can be put in duality with the
ΓM -relative fundamental cycles for VM . This means that we can find finite sets of fun-
damental cycles of equal cardinality for both spaces and a bijective “pairing” between
both sets that

• pairs the “topological” cycles of class (T) among themselves; these NT cycles
naturally come in pairs of dual cycles3, cf. Assumption 12.

• pairs “connector cycles” of one set with “port cycles” of the other. Note that their
numbers NE − 1 and NM − 1, respectively, agree.

Fig. 6 and [2, Fig. 2] illustrate this relationship. The paired cycles can always be chosen
to intersect transversally; they will be called dual to each other and the unique dual
cycle of a given cycle will be tagged with .̂ Then above statements can be expressed
formally as

τ̂m = τNT−m+1 ⇔ τm = ̂τNT−m+1 , m = 1, . . . , NT , (11a)

γ̂Ek = ∂Γk
E ⇔ γEk = ∂̂Γk

E , k = 2, . . . , NE , (11b)

γ̂Mℓ = ∂Γℓ
M ⇔ γMℓ = ∂̂Γℓ

M , ℓ = 2, . . . , NM . (11c)

3.3 Boundary scalar potentials

As we have seen in Theorem 5, tangential surface fields with vanishing curlΓ/divΓ
can be represented through surface scalar potentials plus contributions from low-
dimensional co-homology spaces. First we focus on γtVE and the co-homology vec-
torfields associated with ∂ΓE-relative non-bounding “electric connector cycles” of class

(CE) . Those co-homology vectorfields have a simple representation:

Let γEk be a ∂ΓE-relative fundamental cycle of class (CE) connecting Γ1
E and Γk

E ,

k = 2, . . . , NE. Then the associated tangential co-homology vectorfield c ∈ VE is given

3On a formal level the duality of (oriented) topological cycles can be expressed through their
intersection numbers, see see [7, Sect. 6.4] and, in particular, Chapter 5 of [8].
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Γ1
E

Γ2
E

Γ3
E

Γ1
M

Γ2
M

τ1 = τ̂2

τ2 = τ̂1

γE3 = ∂̂Γ3
E

γE2 = ∂̂Γ2
E

∂Γ2
M

γ̂E3
γ̂E2

γM2 = ∂̂Γ2
M

Figure 6: Torus-shaped Γ (NT = 2, NE = 3, NM = 2): ΓE-relative fundamental cycles
for VE as in Fig. 4 are drawn with solid lines, their dual ΓM -relative fundamental cycles
are drawn with dashed lines and are marked with a .̂

by

c := gradΓ ϕ
k
E with ϕk

E ∈ H1(Γ) , ϕk
E

∣∣
Γk
E

≡ 1 , ϕk
E

∣∣
(ΓE∪ΓM )\Γk

E

≡ 0 . (12)

That c satisfies condition (8),
∫
γE
n
c·ds =

{
1 for n = k ,

0 else
, is an immediate consequence

of the fundamental theorem of calculus and the fact that the cycle γEk connects the two
electric ports Γk

E and Γ1
E with ϕk

E

∣∣
Γ1

E

≡ 0. Moreover, let us write

• cE2 , . . . , c
E
NM

∈ H(curlΓ,Γ) ∩ VE for the NM − 1 tangential co-homology vector-
fields belonging to the ΓE-relative non-bounding “magnetic port cycles” ∂Γℓ

M ,

ℓ = 2, . . . , NM , in ΓI of class (PE) ,

• and tE1 , . . . , t
E
NT

∈ H(curlΓ,Γ) ∩ VE for the tangential co-homology vectorfields
corresponding to the “topological” ΓE-relative non-bounding cycles τ1, . . . , τNT

in

ΓI of class (T) . As will become clear in Section 3.4, those can be chosen to

vanish on ΓM ∪ ΓE.

These co-homology vectorfields will be examined more closely in Section 3.4. Now we
are in a position to characterize the tangential trace space of VE as

γtVE = {m ∈ H− 1

2 (curlΓ,Γ) : curlΓm = 0 onΓI , m = 0 onΓE}

= gradΓ SE +

NM∑

ℓ=2

span{cEℓ } +

NT∑

m=1

span{tEm} + H̃− 1

2 (curlΓ,ΓM) ,
(13)

with the space of scalar potentials

SE := H̃
1

2

ΓE
(Γ) +

NE∑
k=2

span{ϕk
E} , H̃

1

2

ΓE
(Γ) := {ψ ∈ H

1

2 (∂Ω) : ψ|ΓE
= 0} , (14)

and H̃− 1

2 (curlΓ,ΓM) standing for the space of tangential traces supported in ΓM :

H̃− 1

2 (curlΓ,ΓM) := {v ∈ H− 1

2 (curlΓ,Γ) : supp v ⊂ ΓM} . (15)

An analogous representation holds for the magnetic space VM :

γ×VM = {j ∈ H− 1

2 (divΓ,Γ) : divΓj = 0 onΓS, j = 0 on ΓM}

= curlΓSM +

NE∑

k=2

span{cMk }+
NT∑

m=1

span{tMm }+ H̃− 1

2 (divΓ,ΓE) ,
(16)
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with the scalar potential space given by

SM := H̃
1

2

ΓM
(Γ) +

NM∑

ℓ=2

span{ϕℓ
M} , H̃

1

2

ΓM
(Γ) := {ψ ∈ H

1

2 (∂Ω) : ψ|ΓM
= 0} , (17)

and a space H̃− 1

2 (divΓ,ΓE) defined in analogy to (15). The other building blocks
correspond to those in (13):

• The functions ϕℓ
M ∈ H1(Γ), ℓ = 2, . . . , NM , are constant ≡ 1 on a single magnetic

port Γℓ
M and vanish on all other ports.

• The tangential co-homology vectorfields cM2 , . . . , c
M
NE

∈ H(divΓ,Γ) ∩ VM belong
to the ΓM -relative non-bounding boundaries ∂Γk

E , k = 2, . . . ., NE.

• The functions tmM , m = 1, . . . , NT are π
2
-rotated versions of tmE .

3.4 Construction of tangential co-homology vectorfields

Having settled the case of scalar potentials, we focus on the co-homology vectorfields

cE2 , . . . , c
E
NM

and tE1 , . . . , t
E
NT

. Their construction obeys an common principle. Each

one of them is associated with a ΓE-relative non-bounding cycle ∂Γ2
M , . . . , ∂Γ

NM

M of class

(PE) or τ1, . . . , τNT
of class (T) , respectively, as we have learned in Section 3.2. There

we also identified their dual cycles γMℓ = ∂̂Γℓ
M , ℓ = 2, . . . , NM , and τ̂m = τNT−m+1,

m = 1, . . . , NT , see Fig. 5.
Dual cycles, also called “cuts” in this context, are key ingredients for our con-

struction. Write cE ∈ {cE2 , . . . , c
E
NM

, tE1 , . . . , t
E
NT

} for a generic tangential co-homology
vectorfield in VE , γ for its associated ∂ΓE-relative fundamental cycle, and γ̂ ⊂ ΓI for
the corresponding dual cycle. Then we can set

cE :=

{
g̃radΓψ

E on Γ \ ΓM ,

arbitrary on ΓM ,
with

ψE ∈ H1(Γ \ (ΓM ∪ γ̂)) ,
ψE = 0 on ΓE ,q
ψE

y
γ̂
= 1 ,

(18)

where JψKγ̂ denotes the jump of a function across the oriented curve γ̂ and g̃radΓ is

the (piecewise) surface gradient on Γ \ γ̂. We have enough flexibility in choosing ψE to
ensure that supp cE is inside a neighborhood of γ̂.

We skip the details of the construction of the co-homology vectorfields cMk ∈

H− 1

2 (divΓ,Γ), k = 2, . . . , NE , for VM , which follows similar lines and just involves
a role reversal of ΓM and ΓE , and replacing NM with NE and gradΓ with curlΓ, cf.
Remark 6

4 Variational Formulations

The evolution of the electric field E = E(x, t) and of the magnetic field H = H(x, t)
in Ω is governed by the transient Maxwell’s equations:

∂t(ǫE) +σE − curlH = 0 , (AL)

∂t(µH) + curlE = 0 . (FL)

with uniformly positive, possibly spatially varying material coefficients ǫ = ǫ(x) and
µ = µ(x), and σ = σ(x) ≥ 0. These partial differential equations can be cast in weak
form in two different ways. In both cases we take for granted that E(t) ∈ VE and
H(t) ∈ VM for all times.
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4.1 E-based weak formulation

We test Ampere’s law (AL) with E′ ∈ VE, integrate over Ω and then integrate by parts
by (1), which yields

∫

Ω

(
∂t(ǫE) + σE

)
· E′ −H · curlE′ dx−

∫

∂Ω

γ×H · γtE
′ dS = 0 ∀E′ ∈ VE . (19)

Appealing to (16) and (13), we can write

γtE
′ = gradΓ ϕ

′
E +

NM∑

ℓ=2

αℓc
E
ℓ +

NT∑

m=1

βmt
E
m + m̃′ ; (20)

with ϕ′
E ∈ SE , αℓ, βm ∈ R, m̃′ ∈ H̃− 1

2 (curlΓ,ΓM), see (15).
We examine the boundary term in (19) and start with the observation that the

integrand vanishes on ΓM ∪ΓE so that we can confine integration to ΓI . Then we plug
in the representation (20), note that the contribution m̃′ does not matter, and get

∫

ΓI

γ×H · γtE
′ dS =

∫

ΓI

γ×H ·
(
gradΓ ϕ

′
E +

NM∑

ℓ=2

αℓc
E
ℓ +

NT∑

m=1

βmt
E
m

)
.

Next, embarking on “formal computations”, we use the integration by parts formula

∫

ΓI

v · gradΓ ψ dS = −

∫

ΓI

ψ divΓv dS +

∫

∂ΓI

ψ (n× v) · ds (21)

for all ψ ∈ H
1

2 (ΓI), v ∈ H− 1

2 (divΓ,ΓI), which yields a sum of circulation integrals

∫

ΓI

γ×H · gradΓ ϕ
′
E dS = −

∫

ΓI

ϕ′
E divΓ(γ×H)︸ ︷︷ ︸

=0

dS +

∫

∂ΓE

ϕ′
E H · ds

=

NE∑

k=1

ϕ′
E |Γk

E

∫

∂Γk
E

H · ds .

(22)

Again, we use integration by parts according to (21) to deal with the contribution of
the co-homology vectorfields cEℓ and tEm. Parallel to the construction in Section 3.4, we
consider a generic co-homology vectorfield cE given by the formula from (18). Refer
to that formula for notations.

∫

ΓI

γ×H · cE dS =

∫

ΓI

γ×H · g̃radΓψ
E dS

= −

∫

ΓI

divΓγ×H︸ ︷︷ ︸
=0

ψE dS +

∫

∂(ΓI\γ̂)

ψE γtH · ds

(∗)
=

∫

γ̂

q
ψE

y
γ̂
γtH · ds =

∫

γ̂

γtH · ds ,

(23)

because ψEγtH has vanishing tangential component on both ∂ΓE and ∂ΓM . We point
out that integration in

∫
∂(ΓI\γ̂

. . . visits both sides of γ̂ which accounts for the emergence

of the jump in step (∗).
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Faraday’s law (FL) is kept in “strong form” and just tested with H′ ∈ VM . This
results in the final E-based spatial variational formulation: seek E : [0, T ] → VE ,
H : [0, T ] → VM , such that

∫

Ω

(
∂t(ǫE) + σE

)
· E′ −H · curlE′ dx−

NE∑

k=2

ϕ′
E |Γk

E

∫

∂Γk
E

H · ds

−
NM∑

ℓ=2

αℓ

∫

γM
ℓ

γtH · ds−
NT∑

m=1

βm

∫

τ̂m

γtH · ds = 0 ,

∫

Ω

(
∂t(µH) + curlE

)
·H′ dx = 0

(24)

for all E′ ∈ VE with γtE
′ according to (20), and for all H′ ∈ VM . We point out that

the dualities (11) have been used to rewrite the circulation integrals.

4.2 H-based variational formulation

Now, we test Faraday’s law (FL) with H′ ∈ VM and, after integration by parts, arrive
at

∫

Ω

∂t(µH) ·H′ + E · curlH′ dx−

∫

Γ

γtE · γ×H
′ dS = 0 ∀H′ ∈ VM . (25)

For the rotated tangential trace of the test field we use the representation from (16):

γ×H
′ = curlΓϕ

′
M +

NE∑

k=2

αkc
M
k +

NT∑

m=1

βmt
M
m + j̃′ , (26)

where ϕ′
M ∈ SM , αk, βm ∈ R, and j̃ ∈ H̃− 1

2 (divΓ,ΓE). Parallel to the developments of
Section 4.1 we can convert the boundary term into

∫

Γ

γtE · curlΓϕ
′
M dS =

NM∑

ℓ=1

ϕ′
M |Γℓ

M

∫

∂Γℓ
M

E · ds , (27)

∫

Γ

γtE · cMk dS =

∫

∂Γk
E

γtE · ds ,

∫

Γ

γtE · tMm dS =

∫

τ̂m

γtE · ds . (28)

This yields the so-called H-based variational formulation, which involves Ampere’s law
(AL) in strong form: seek E : [0, T ] → VE and H : [0, T ] → VM such that

∫

Ω

(
∂t(ǫE) + σE) · E′ − curlH ·E′ dx = 0 ,

∫

Ω

∂t(µH) ·H′ + E · curlH′ dx−
NM∑

ℓ=1

ϕ′
M |Γℓ

M

∫

∂Γℓ
M

E · ds−

NE∑

k=2

αk

∫

∂Γk
E

γtE · ds−
NT∑

m=1

βm

∫

τ̂m

γtE · ds = 0 ,

(29)

for all E′ ∈ VE and H′ ∈ VM . For the latter we have plugged in the representation
(26).
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Remark 9. If ΓR 6= ∅, the impedance boundary conditions give rise to extra terms

∫

ΓR

(
Z
−1(γtE)

)
(t) · γtE

′ dS and

∫

ΓR

(
Z(γ×H)

)
(t) · γtH

′ dS (30)

entering the first equation of (24) and (29), respectively.

5 Port Conditions

The electric and magnetic time-dependent port quantities in circuit models are

• The electric potentials Uk = Uk(t) at the electric ports Γk
E , k = 2, . . . , NE, Γ1

E

assumed to be grounded.

• The electric currents Jk = JK(t) at the electric ports Γk
E , k = 1, . . . , NE. Their

sum is zero.

• The magnetomotive forces (M.M.F.) Fℓ = Fℓ(t) at the magnetic ports Γℓ
M ,

ℓ = 2, . . . , NM , Γ1
M as reference.

• The magnetic fluxes Ḃℓ = Ḃℓ(t) at the magnetic ports, ℓ = 2, . . . , NM . Those
add to zero.

• The linked magnetic fluxes ḂT
m = Ḃm(t), m = 1, . . . , NT , for loops of the

circuit domain ΩC .

• The linked electric currents JT
m = JT

m(t), m = 1, . . . , NT , associated with loops
of ΩC , too.

We hark back to the representations of traces:

(13) ⇒ γtE(t) = gradΓ ϕE(t) +

NM∑

ℓ=2

αE
ℓ (t)c

E
ℓ +

NT∑

m=1

βE
m(t)t

E
m + m̃(t) ; (31)

(16) ⇒ γ×H(t) = curlΓϕM(t) +

NE∑

k=2

αM
k (t)cMk +

NT∑

m=1

βM
m (t)tMm + j̃(t) . (32)

From them and Maxwell’s equations we extract a comprehensive set of expressions for
the port quantities, for

port voltages: Uk(t) = ϕE(t)|Γk
E

=

∫

γ̂M
k

=γE
k

E(t) · ds , (33a)

port currents: Jk(t) = αM
k (t) =

∫

∂Γk
E

H(t) · ds , (33b)

port M.M.F.: Fℓ(t) = ϕM(t)|ΓM
ℓ

=

∫

γ̂E
ℓ
=γℓ

M

H(t) · ds , (33c)

port magnetic fluxes: Ḃℓ(t) = αE
ℓ (t) =

∫

∂Γℓ
M

E(t) · ds , (33d)

linked magnetic fluxes: ḂT
m(t) = βE

m(t) =

∫

τ̂m

E(t) · ds , (33e)

linked electric currents: JT
m(t) = βM

m (t) =

∫

τ̂m

H(t) · ds , (33f)
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for all k = 2, . . . , NE , ℓ = 2, . . . , NM , m = 1, . . . , NT . The formulas in the left column
we may call essential port conditions, because they are directly imposed on the fields
through (31) and (32), whereas the formulas in the right column may be called weak
port conditions, because they permit us to enforce them in a variational sense.

Remark 10. For the port quantities (33) the indices k and ℓ run from 2. Don’t we
neglect fluxes, thus? No, because owing to div curlH = div curlE = 0, and the
boundary conditions inherent in VE/VM we find the flux balance law

NE∑

k=1

∫

∂Γk
E

H(t) · ds =
NM∑

ℓ=1

∫

∂Γℓ
M

E(t) · ds = 0 , (34)

which makes it possible to recover the “missing flux” from the others.

In order to endow port conditions with their “natural meaning” in circuit theory we
have to impose constraints on the cycles:

(I) The concept of generic port voltages and port M.M.F.s entails the existence of
global electric and magnetic scalar potentials, which, however, cannot be recon-
ciled with non-zero linked fluxed given as circulations along topological cycles
τm, m−1, . . . , NT . This difficulty can be resolved by treating the tological cycles
as “cuts”, which render Γ \

⋃
m τm topologically trivial. Therefore, once we re-

strict all connector cycles to that complement, path integrals along them define
meaningful voltages/M.M.F.s.

Assumption 11. None of the connector cycles γE1 , . . . , γ
E
NE

and γM1 , . . . , γ
M
NM

intersects any of the topological cycles τ1, . . . , τNT
.

τ1
τ2

γE2

γ

Γ1
E

Γ2
E

Figure 7: Torus-shaped ΩC with two electric ports, NT = 2, NE = 2: The connector
cycle γE2 stays clear of the topological cycles and fulfills Assumption 11, whereas γ is
not admissible given how τ2 is chosen.

We can always find connector cycles with this property, because Γ \
⋃

m τm is
still connected. The arrangements displayed in Fig. 4 and Fig. 5 comply with
Assumption 11, and another illustration is given in Fig. 7.

The reader must be aware that in the case NT > 0 the choice of the connec-
tor cycle is a modeling decision, which will have a big impact on the resulting
electromagnetic fields; simulation results covered in Section 7 will demonstrate
this.

(II) We have already taken for granted that the “topological cycles” τm,m = 1, . . . , NT ,
come in dual pairs, recall Section 3.2. They are needed to define the linked fluxes
ḂT

m and currents JT
m as non-local coupling quantities in (33e) and (33f). In order

to give these quantities their “natural meaning”, we have to make the following
assumption:
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Assumption 12. Half of the cycles τm are bounding with respect to ΩC, whereas
their duals are bounding with respect to Ω.

In fact, this “assumption” could also have been labeled a proposition, because we
can always obtain the topological cycles as boundaries of NT /2 “cuts” in ΩC and
Ω, respectively [6, 8, 14]. In [15] it was established that these cuts can be chosen
so that they come in pairs whose boundaries constitute dual topological cycles.

Summing up, Assumption 12 will permit us to view ḂT
m as the electromotive force

around a loop of ΩC and JT
m the current flowing in a section of it. For an in-depth

discussion of this classification of topological cycles refer to [10].

5.1 Ports in E-based Model (24)

In light of the definition (2) of VE and (31) we write the time-dependent electric field
E = E(t) as direct sum (Colors indicate the related cycle classes as in Section 3.2.)

E(t) = E0(t) + grad(XρE(t))+

NE∑
k=2

Uk(t) gradXνkE +
NM∑
ℓ=2

Ḃℓ(t)C
E
ℓ +

NT∑
m=1

ḂT
m(t)T

E
m , (35)

where

• E0(t) ∈ HΓ\ΓM
(curl,Ω) := {V ∈ H(curl,Ω) : γtV = 0 on Γ \ ΓM} is the

electric field in the interior of the field domain Ω,

• ρE(t) ∈ H̃
1/2
ΓE

(ΓI) := {ψ ∈ H
1

2 (ΓI ∪ ΓE) : ψ = 0 on ΓE} is the scalar surface
potential on the insulating parts of the boundary,

• X : H
1

2 (ΓI ∪ ΓE) → H1(Ω) is a continuous extension operator,

• νkE ∈ H
1

2 (∂Ω) satisfies νkE
∣∣
Γk
E

≡ 1, νkE
∣∣
Γm
E

= 0 for m 6= k, that is, the function νkE

attains the value 1 on the electric port Γk
E , is “continuous”, and vanishes on all

other ports,

• CE
ℓ ∈ H(curl,Ω), is an extension of the co-homology tangential surface vector-

field cEℓ into Ω, ℓ = 2, . . . , NM ,

• TE
m ∈ H(curl,Ω) extends tEm: γtT

E
m = tEm, m = 1, . . . , NT .

Next, we use the “weak expressions” for the port currents Jk from (33b), for the mag-
netomotive forces Fℓ from (33c), and for the linked currents from (33f) to replace the
special integrals in (24):

∫

∂Γk
E

H · ds −→ Jk ,

∫

γ̂E
ℓ

γtH · ds −→ Fℓ ,

∫

τ̂m

γtH · ds −→ JT
m . (36)

Another change compared to (24) is that we relax the smoothness requirements for the
magnetic field to H(t) ∈ L2(Ω) and also H′ ∈ L2(Ω), because no extra regularity is
required to render the variational formulation well-defined.

As already done in the derivation of (24), the splitting (35) is also applied to the
test field E′, and this yields

(i) two variational equations corresponding to testing with E′
0 ∈ HΓ\ΓM

(curl,Ω)

and ρ′E ∈ H̃
1/2
ΓE

(ΓI),
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(ii) and, from (10), N := NT +max{NM , 1}+max{NE , 1}−2 equations from testing
with gradXνkE , CE

ℓ , and TE
m, k = 2, . . . , NE , ℓ = 2, . . . , NM , m = 1, . . . , NT .

Eventually, we end up with the variational problem:

Seek E0 : [0, T ] → HΓ\ΓM
(curl,Ω), ρE : [0, T ] → H̃

1/2
ΓE

(ΓI), Uk : [0, T ] → R, Ḃℓ :

[0, T ] → R, Uk; [0, T ] → R, Fℓ : [0, T ] → R, ḂT
m : [0, T ] → R, H : [0, T ] → L2(Ω) such

that
∫

Ω

(
∂t(ǫE)(t) + σE(t)

)
· E′

0 −H(t) · curlE′
0 dx = 0 , (37a)

∫

Ω

(
∂t(ǫE)(t) + σE(t)

)
· gradXρ′E dx = 0 , (37b)

∫

Ω

(
∂t(ǫE)(t) + σE(t)

)
· gradXνkE dx −Jk(t) = 0 , (37c)

∫

Ω

(
∂t(ǫE)(t) + σE(t)

)
·CE

ℓ −H(t) · curlCE
ℓ dx −Fℓ(t) = 0 , (37d)

∫

Ω

(
∂t(ǫE)(t) + σE(t)

)
·TE

m −H(t) · curlTE
m dx −JT

m(t) = 0 , (37e)
∫

Ω

(
∂t(µH)(t) + curlE(t)

)
·H′ dx = 0 (37f)

for all E′
0 ∈ HΓ\ΓM

(curl,Ω), ρ′E ∈ H̃
1/2
ΓE

(ΓI), k = 2, . . . , NE , ℓ = 2, . . . , NM , m =
1, . . . , NT , and H′ ∈ L2(Ω).

Note that in (37) E has to be read as an expression depending affine-linearly on
E0, ρE , Uk,Ḃℓ, and ḂT

m according to (35).
Formally, there is a mismatch of the number of equations and unknowns in (37)

(“Six equations for nine unknowns”), which leaves freedom to imposed values for port
quantities or relationships between them. This is how we can introduce sources and
circuit relations into the model.

Remark 13 (Elimination of magnetic field). Assume that none of the material coeffi-
cients ǫ, σ, and µ depends on time. Then we can

1. differentiate (37a)–(37e) with respect to time t, which amounts to replacing

∂(ǫE)(t) → ǫ∂2tE(t) , σE(t) → σ∂tE(t) , H(t) → ∂tH(t) .

2. move ∂t right in front of H in (37f): ∂t(µH)(t) → µ∂tH.

Subsequently, we can test (37e) with µ−1 curlE′
0, µ

−1 curlCE
ℓ , and µ−1 curlTE

m, re-
spectively, and use the resulting equation to eliminate H(t) in (37a), (37d), and (37e).
We end up with an evolution equation for the electric field E alone, second-order in
time, which retains all the coupling quantities.

5.2 Ports in H-Based Model (29)

Of course, the approach to (29) runs parallel to the developments of Section 5.1. From
(3)/(32) we get the direct-sum representation

H(t) = H0(t) + gradXρM (t)+
NM∑

ℓ=2

Fℓ(t) gradXνℓM +

NE∑

k=2

Jk(t)C
M
k +

NT∑

m=1

JT
m(t)T

M
m , (38)

where
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• H0(t) ∈ HΓ\ΓE
(curl,Ω) := {V ∈ H(curl,Ω) : γ×V = 0 on Γ \ ΓE} is the

magnetic field in the interior of Ω and at the electric ports,

• ρM(t) ∈ H̃
1/2
ΓM

(ΓI) := {ψ ∈ H
1

2 (ΓI ∪ ΓM) : ψ = 0 on ΓM} is a magnetic scalar
surface potential on ΓI ,

• νℓM ∈ H
1

2 (∂Ω) is equal to 1 on Γℓ
M , and zero on all other magnetic parts and all

electric ports.

• CM
k ∈ H(curl,Ω) extends the surface co-homology vectorfield cMk : γ×C

M
k = cMk ,

k = 2, . . . , NE .

• TM
m is an H(curl,Ω)-extension of tHm: γ×T

M
m = tMm .

The expressions (33d) and (33a) allow the following replacements of integral expressions
in (29):

∫

∂Γℓ
M

E · ds −→ Ḃℓ ,

∫

γM
k

γtE · ds −→ Uk ,

∫

τ̂m

γtE · ds −→ ḂT
m . (39)

As before, the smoothness requirements for E and E′ in (29) are relaxed and we merely
demand E,E′ ∈ L2(Ω). This leads to the final H-based variational formulation taking
into account port quantitites:

Seek H0 : [0, T ] → HΓ\ΓE
(curl,Ω), ρM : [0, T ] → H̃

1/2
ΓM

(ΓI), Fℓ : [0, T ] → R, Jk :
[0, T ] → R, JT

m : [0, T ] → R, H : [0, T ] → L2(Ω)

∫

Ω

∂t(µH)(t) ·H′
0 + E(t) · curlH′

0 dx = 0 , (40a)
∫

Ω

∂t(µH)(t) · gradXρ′M dx = 0 , (40b)
∫

Ω

∂t(µH)(t) · gradXνℓM dx −Ḃℓ(t) = 0 , (40c)
∫

Ω

∂t(µH)(t) ·Ck
M + E · curlCk

M dx −Uk(t) = 0 , (40d)
∫

Ω

∂t(µH)(t) ·Tm
M + E(t) · curlTm

M dx −ḂT
m(t) = 0 , (40e)

∫

Ω

(
∂t(ǫE)(t) + σE(t)) ·E′ − curlH(t) · E′ dx = 0 (40f)

for all H′
0 ∈ H(curlΓ,Γ)Γ \ ΓE , ρ′M ∈ H̃

1/2
ΓM

(ΓI), ℓ = 1, . . . , NM , k = 2, . . . , NE,
m = 1, . . . , NT , E′ ∈ L2(Ω), and H = H(H0, ρM , Fℓ, Jk, J

T
m) as in (38).

Also here we face “six equations versus nine unknowns” and either fixing port quan-
tities, aka, imposing excitation through sources, or adding circuit equations will remedy
this imbalance. I goes without saying that here we can eliminate the electric field E,
cf. Remark 13.

5.3 Power Balance

Conservation of energy is a guiding principle in the coupling of fields and circuits [1,
11]. It is also respected in the variational formulations (37) and (40). We elaborate
this for the E-based formulation (37).
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The idea is to set E′ := E(t) and H′ := H(t) in (24) and add both resulting
equations taking into account (33) and (35)

Jk(t) =

∫

∂Γk
E

H(t) · ds , Fℓ(t) =

∫

γ̂E
ℓ

H(t) · ds , JT
m(t) =

∫

τ̂m

H(t) · ds .

This gives us the power balance relation

d

dt

∫

Ω

1
2
ǫE(t) ·E(t) + 1

2
µH(t) ·H(t) dx+

∫

Ω

σE(t) · E(t) dx

=

∫

Ω

∂t(ǫE)(t) · E(t) + ∂t(µH)(t) ·H(t) + σE(t) ·E(t) dx

=

NE∑

k=1

Uk(t)Jk(t) +

βM∑

ℓ=1

Ḃℓ(t)Fℓ(t) +

NT∑

m=1

JT
m(t)Ḃ

T
m(t) . (41)

The products of the port quantities give the power flux through each port, which is
offset by a change in the electromagnetic field energies and Ohmic losses. The same
argument can be made for the H-based model.

Remark 14. In the case ΓR 6= ∅ another term of the form

∫

ΓR

(
Z
−1(γtE)

)
(t) · γtE(t) dS =

∫

ΓR

(
Z(γ×H)

)
(t) · γ×H(t) dS (42)

emerges on the right-hand side of (41). Straightforwardly, it arises from (30). It
represents the power carried off by electromagnetic radiation.

6 Finite-Element Exterior Calculus (FEEC) Discretiza-

tion

The variational problems (37) and (40) immediately lend themselves to a Galerkin
discretization by means of discrete differential forms on a tetrahedral mesh M of Ω,
which resolve the ports in the sense that every Γk

E and Γℓ
M is the union of faces of mesh

cells. All geometric entities of the mesh are to be endowed with an intrinsic orientation.
We restrict the discussion to the E-based model (37) and leave the analogous con-

siderations for the H-based model (40) to the reader. We also focus on lowest-order
FEEC approximation, known as edge elements/Whitney-1-forms in the case of finite-
element subspaces of H(curl,Ω) [9, Sect. 3]. Their locally supported basis functions,
dubbed “edge basis functions” in the sequel, are associated with edges of M. We re-
mind that FEEC offers discrete potentials and the relevant discrete scalar potentials
are provided by M-piecewise linear continuous functions. Those can be written as
linear combinations of node-associated locally supported basis functions. We refer to
them as “tent functions”.

The following finite-dimensional trial and test space can be used in (37):

• HΓ\ΓM
(curl,Ω) is replaced with the space Eh spanned by edge basis functions

associated with Ω-interior edges of M plus edges in the interior of magnetic ports.

• The finite element subspace of H̃
1/2
ΓE

(ΓI) is generated by the traces of those tent
functions belonging to the nodes located in the interior of ΓI and on ∂ΓM . We
write Sh for their span.
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• For the finite-element approximation of L2(Ω) we simply use the space Ch of
M-piecewise constant vectorfields.

The equations (37b) and (37c) feature the extension operator X. In the finite-
element setting we use simple nodal truncation: extension of a M|Γ-piecewise linear
function is done by keeping all nodal values on Γ and setting the contributions of all
tent functions at nodes in the interior of Ω to zero.

The next isssue is the representation of the special functions νkE and CM
ℓ occurring

in (37c) and (37d), respectively. Those are defined in the paragraph following (35).
The function νkE is simply given as the sum of all tent functions belonging to mesh

nodes contained in Γ
k

E. Note the closure of the set! The partition-of-unity property
of the tent function yields the desired properties of the resulting M-piecewise linear
function XνkE .

The construction of CE
ℓ and TE

m is more challenging. It follows recipes already
developed in [10]: As explained in Section 3.4 to every CE

ℓ there is an associated dual
cycle γMℓ of class (CM), which is an oriented curve. The same applies to every TE

m and
its dual cycle is also of class (T).

Assumption 15. We assume that every cycle γMℓ , ℓ = 2, . . . , NM , γEk , k = 2, . . . , NE,
and τm, m = 1, . . . , NT , is a chain of edges of M.

This assumption can always be met, provided that the mesh resolves the topology
of Ω. Given a dual cycle γ̂/τ̂m as an edge chain ⊂ Γ, we can choose the associated
co-homology vector fields cEℓ /tEm as so-called collar fields supported in the triangles
adjacent to the dual cycle γ̂ on “the right side”. For details refer to Fig. 8 and [10].
Afterwards we employ simple nodal truncation to extend them to finite-element vec-
torfields on Ω.

Remark 16. Note that collar fields are extremely sparse under the reasonable as-
sumption that the edge cycles do not behave like surface-filling curves: viewed as
finite-element functions only a few degrees of freedom will be non-zero in the edge
basis representations of the collar fields.

Then, given the collar fields cEℓ , we obtain CE
ℓ by simply retaining the weights of

the edge basis functions on Γ and setting all those for interior edge basis functions to
zero, which is the “trivial finite-element extension procedure”. The same construction
applies to TE

m.
Finally, let us exhibit the structure of the semi-discrete evolution problem for the E-

based formulation, an ordinary differential equation for the basis expansion coefficients
of the unknown fields plus the port quantities. To that end we introduce the time-
dependent coefficient vectors

• ~E = ~E(t) ∈ RnE for the edge-basis expansion coefficients of E0,h : [0, T ] → Eh,

• ~ρ = ~ρ(t) ∈ RnS for the tent-basis expansion coefficient vector of XρE,h : [0, T ] →
Sh,

• ~H = ~H(t) ∈ RnH for the vector of cell values of Hh : [0, T ] → Ch,

• ~U(t) := (U2(t), . . . , UNE
(t))⊤ ∈ RNE−1,

~B(t) = (Ḃ1(t), . . . , ḂNM−1(t))
⊤ ∈ RNM−1,

~L(t) = (ḂT
1 (t), . . . , Ḃ

T
NT

(t)) ∈ RNT ,

• ~J(t) = (J2(t), . . . , JNE
(t))⊤ ∈ RNE−1,

~F (t) = (F2(t), . . . , FNM
(t))⊤ ∈ RNM−1,

~I(t) = (JT
1 (t), . . . , J

T
NT

(t))⊤ ∈ RNT .
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γ̂

Figure 8: Close-up of the collar field cE skirting the dual cycle γ̂. The red arrows
indicate the edges whose edge basis functions will contribute to cE with weight +1.
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Bρ MBU MBB MLB O

M⊤
LE M⊤

Lρ M⊤
LU M⊤

LB MLL O

O O O O O MHH




d

dt




~E
~ρ
~U
~B
~L
~H




+
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

REE RρE RUE RBE RLE O
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ρE Rρρ RUρ RBρ RLρ O

R⊤
UE R⊤

Uρ RUU RBU RLU O

R⊤
BE R⊤

Bρ RBU RBB RLB O

R⊤
LE R⊤

Lρ R⊤
LU R⊤

LB RLL O

O O O O O O







~E
~ρ
~U
~B
~L
~H




+




O O O O O −C

O O O O O O

O O O O O O

O O O O O −Q

O O O O O −P

C⊤ O O Q⊤ P⊤ O







~E
~ρ
~U
~B
~L
~H




=




0
0
~J
~F
~I
0




.

The mass matrices M∗⋆, ∗, ⋆ ∈ {E, ρ, U,B, L} arise from the Galerkin discretization
of the bilinear form (E,E′) 7→

∫
Ω
ǫ(x)E · E′ dx, with the exception of MHH ∈ RnH ,nH ,

which is a discretization of (H,H′) 7→
∫
Ω
µ(x)H ·H′ dx on Ch ×Ch. The matrices R∗⋆,

∗, ⋆ ∈ {E, ρ, U,B, L} are produced by the Galerkin discretization of the Ohmic loss
blinear form (E,E′) 7→

∫
Ω
σ(x)E · E′ dx on the spaces indicated by the subscripts.

The matrices C ∈ RnE ,nH represent a discrete curl-operator obtained by the
Galerkin discretization of (H,E′) 7→

∫
Ω
H · curlE′ dx on Ch × Eh. The entries of

the matrix Q ∈ RNM−1,nH arise from pluggin the basis functions of Ch into the lin-

20



ear forms H 7→
∫
Ω
H · curlCE

ℓ dx, ℓ = 2, . . . , NM , and we get P ∈ RNT ,nH from the
Galerkin discretization of (H,E′) 7→

∫
Ω
H · curlE′ dx on Ch × span{TE

1 , . . . ,T
E
NT

}.

7 Example: E-Based Formulation, Excitation by Linked

Flux

We discuss a conrete simulation in frequency domain at a fixed frequency f = ω
2π

=
50Hz. We rely on the E-based model (37) and replace ∂t → ·iω and regard all fields
and port quantities as complex-valued phasors. We consider the particular geometry
displayed in Fig. 9, which means NE = 2, NM = 0, and NT = 2. Topologically, this
resembles the situation of Fig. 7.

Conducting loop,
dimensions

Figure 9: Geometry for numerical demonstration: bounded field domain Ω with the
shape of a “cubistic torus” (NT = 2), whose complement represents the unbounded
circuit domain ΩC . Central tunnel surrounded by conducting split loop, connected to
two electric ports (NE = 2). Conductivity σ = 106A/Vm inside loop, σ = 0 outside,
µ = µ0, ǫ = ǫ0 everywhere. The topological cycles τ1, τ2 are marked in blue, an
alternative topological cycle τ ′2 in cyan.

We short-circuit the electric ports, which amounts to imposing U2 = 0 in the
notations of Section 5.1 and drive the system by through a linked magnetic flux ḂT

1 ∈ C

penetrating the surface bounded by τ1. This is equivalent to imposing an electromotive
force along τ1, see (33e). Such excitation can model the effect of a current-carrying coil
outside the field domain.

We end up with a special frequency-domain version of (37). Given ḂT
1 ∈ C seek4

E = E0 + gradXρE + ḂT
1 T

E
1 + ḂT

2 T
E
2 [ +U2 gradXν2E ] (43)

4Unknowns are marked with purple color.
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with E0 ∈ H0(curl,Ω), ρE ∈ H̃
1/2
ΓE

(ΓI), Ḃ
T
2 ∈ C, and H ∈ L2(Ω), JT

2 ∈ C such that

∫

Ω

(
iωǫ(x) + σ(x)

)
E · E′

0 −H · curlE′
0 dx = 0 , (44a)

∫

Ω

(
iωǫ(x) + σ(x)

)
E · gradXρ′E dx = 0 , (44b)

∫

Ω

(
iωǫ(x) + σ(x)

)
E ·TE

2 −H · curlTE
2 dx −JT

2 = 0 , (44c)

∫

Ω

(
iωµ(x)H+ curlE

)
·H′ dx = 0 (44d)

for all E′
0 ∈ H0(curl,Ω), ρ

′
E ∈ H̃

1/2
ΓE

(ΓI), and H′ ∈ L2(Ω). In (43) we have hinted that
the voltage drop between the electric ports is imposed, though in this example U2 = 0.
This removes a degree of freedom from the trial space for E, which forces us to remove
the corresponding one from the test space. As a consequence (37c) does not contribute
to the variational equations.

Next, we eliminate the magnetic field H as discussed in Remark 13 by testing (44d)
with H′ := curlE′

0 and H′ := curlTE
2 , respectively, and obtain: Seek E as defined in

(43) and JT
2 ∈ C such that

∫

Ω

(
iωǫ(x) + σ(x)

)
E ·E′

0 +
1

iωµ(x)
curlE · curlE′

0 dx = 0 , (45a)

∫

Ω

(
iωǫ(x) + σ(x)

)
E · gradXρ′E dx = 0 , (45b)

∫

Ω

(
iωǫ(x) + σ(x)

)
E ·TE

2 +
1

iωµ(x)
curlE · curlTE

2 dx −JT
2 = 0 (45c)

for all E′
0 ∈ H0(curl,Ω) and ρ′E ∈ H̃

1/2
ΓE

(ΓI).
The unknown JT

2 represents the complex amplitude of the total current flowing
through τ2, whereas ḂT

2 is the electromotive force around τ2. The complex amplitude
of the current J2 flowing through the electric ports can be recovered from (37c):

J2 =

∫

Ω

(
iωǫ(x) + σ(x)

)
E · gradXν2E dx , (46)

where ν2E has been specified in Section 5.1.
The finite-element Galerkin discretization of (45) is carried out precisely as de-

scribed in Section 6 using three tetrahedral meshes of increasing resolution. The mutu-
ally dual topological cycles τ1 and τ2 directly enter the model through the co-homology
vector fields TE

1 and TE
2 , which we constructed as “collar fields” skirting the dual cy-

cle according to the algorithm outlined in Fig. 8. We choose both τ1 and τ2 as flat
rectangles as indicated in Fig. 9. For the cycle τ2 we explore two options,

(i) the cycle bounds a flat surface cutting the conductor, τ2 in Fig. 9,

(ii) the cycle runs between the contacts and the associated surface cuts through the
air gap of the split conducting loop, τ ′2 in Fig. 9.

For both choices we visualize the electric currents in Fig. 10 and tabulate J2 for different
meshes in Table 1.
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Figure 10: RMS strength of electric currents in a cross-section of the conducting loop
for two choices of topological cycle bounding in Ω: choice τ2 left, choice τ ′2 right.

No. of tets J2 for τ2 J2 for τ ′2
coarse mesh 298777 1.0034 8.1 · 10−6

medium mesh 347391 1.0023 5.3 · 10−6

fine mesh 599105 0.9999 6.9 · 10−6

Table 1: Currents J2 for different choices of the topological cycles bounding w.r.t. Ω,
see Fig. 9, and computed on tetrahedral meshes with different resolutions. The large
fluctuations of the minute values of J2 are due to discretization errors.

The simulation results compiled in Table 1 strikingly highlights that the choice of
topological cycles with respect to connector cycles is crucial. We offer the following
interpretation of the data of Table 1: The choice τ2 does not intersect the straight
connector cycle between Γ1

E and Γ2
E, directs the electromotive force ḂT

1 along the
conducting part of the split loop and, hence, engenders a strong current. Conversely,
choosing τ ′2 forces the connector cycle γE2 to wind around the tunnel and confines the
electromotive force to the air gap, where it cannot cause a significant current.
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