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Abstract

The classical Feynman—Kac identity builds a bridge between stochastic analysis and partial
differential equations (PDEs) by providing stochastic representations for classical solutions
of linear Kolmogorov PDEs. This opens the door for the derivation of sampling based Monte
Carlo approximation methods, which can be meshfree and thereby stand a chance to approx-
imate solutions of PDEs without suffering from the curse of dimensionality. In this article
we extend the classical Feynman—Kac formula to certain semilinear Kolmogorov PDEs. More
specifically, we identify suitable solutions of stochastic fixed point equations (SFPEs), which
arise when the classical Feynman—Kac identity is formally applied to semilinear Kolmorogov
PDEs, as viscosity solutions of the corresponding PDEs. This justifies, in particular, em-
ploying full-history recursive multilevel Picard (MLP) approximation algorithms, which have
recently been shown to overcome the curse of dimensionality in the numerical approximation
of solutions of SFPEs, in the numerical approximation of semilinear Kolmogorov PDEs.
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1 Introduction

The classical Feynman—Kac identity (see, e.g., [15], 18] 28, B38]) builds a bridge between stochastic
analysis and partial differential equations (PDEs) by providing stochastic representations for clas-
sical solutions of linear Kolmogorov PDEs. The fact that certain solutions of linear Kolmogorov
PDEs can be expressed as appropriate averages of 1td processes associated with these PDEs opens
the door for the derivation of sampling based Monte Carlo approximation methods, which can be
meshfree and thereby stand a chance to approximate solutions of PDEs without suffering from
the curse of dimensionality. Since PDEs in applications are not always linear, an extension of
the classical Feynman—Kac formula to nonlinear PDEs is desirable. One approach to nonlinear
Feynman—Kac type formulas passes through backward stochastic differential equations (BSDEs);
see, e.g., |7, 135] for references on BSDEs and see, e.g., [2] 3] [19, 20, 32} 33], [34], 36} 37) 38| 39, 411 43]
for references on the connection between BSDEs and PDEs. The approach which is pursued in
this article is to identify suitable solutions of stochastic fixed point equations (SFPEs), which arise
when the classical Feynman—Kac identity is formally applied to semilinear Kolmorogov PDEs by
treating the nonlinearity as mere inhomogeneity, as viscosity solutions of the corresponding PDEs;
see, e.g., [8, 9, 10] 18] 26] for references on viscosity solutions of PDEs. More specifically, we es-
tablish in this article a one-to-one correspondence between viscosity solutions of certain semilinear
Kolmogorov PDEs and solutions of the associated SFPEs (see Theorem in Section below).
This justifies, in particular, employing full-history recursive multilevel Picard (MLP) approxima-
tion algorithms (see [6} 12} 16, 21], 22, 23], 24 25] for references on MLP approximation algorithms),
which have been shown to overcome the curse of dimensionality in the numerical approximation
of solutions of SFPEs, in the numerical approximation of semilinear Kolmogorov PDEs. MLP
approximation algorithms are the first and up to now only methods which have been shown to
overcome the curse of dimensionality in the numerical approximation of solutions of semilinear
Kolmogorov PDEs. To illustrate the findings of this article, we now present in Theorem below
a special case of Theorem which is the main result of this article.

Theorem 1.1. Let d e N, L,T € (0,00), let u: R? — R? and o: R? — R be locally Lipschitz
continuous, let f € C(R? x R,R), g € C(R% R) be at most polynomially growing, let ||| : R —
[0,0) be the standard Euclidean norm on RY, let (-,->: R x R? — R be the standard Euclidean
scalar product on R%, assume for all x,y € R?, v,w € R that {x, u(z)) < L(1 + |z|?), |lo(z)y| <
L1+ |z[)]y|, and |f(z,v) = f(z,w)| < Llv —w|, let (Q, F,P, (Ft)iwe[o,r]) be a stochastic basz’ﬂ
and let W: [0,T] x Q@ — R? be a standard (Fy)ejo 11-Brownian motion. Then

(i) there exists a unique at most polynomially growing viscosity solution u € C([0,T] x R% R) of
(Lu)(t,z) + 1 Trace(o(z)[o(x)]* (Hess, u) (¢, ) + (), (Vau)(t, 2)) + f(z,u(t,z)) = 0 (1)
with w(T,x) = g(z) for (t,x) € (0,T) x R,

(ii) for everyte [0,T], x € R? there exists an up to indistinguishability unique (Fy)sep 71-adapted
stochastic process X% = (X5%) sy [¢, T]x Q2 — R with continuous sample paths satisfying

INote that we say that a filtered probability space (€2, F,P, (Ft)tefo,r]) is a stochastic basis if and only if we
have for all ¢ € [0,T') that {A e F: P(A) = 0} € F; = (nse@,mFs); cf.,, e.g., Liu & Réckner [31], Definition 2.1.11].
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that for all s € [t,T] we have P-a.s. that

Xt =t | (x| o) aw, &
t t

(iii) there exists a unique at most polynomially growing v € C([0,T] x R% R) which satisfies for
all t € [0,T], x € RY that E[|g(X2")| + § |f(X5%,v(s, Xb%))| ds] < oo and

T
olta) = B[ + [ 700 ol X0 s, ®)
t
and
(iv) we have for all t € [0,T], x € R? that u(t,z) = v(t,z).

Theorem above is an immediate consequence of Corollary Corollary in turn,
follows from Corollary which itself is a special case of Theorem the main result of this
article. Let us comment on some of the mathematical objects appearing in Theorem [I.1] The real
number L € (0,0) in Theorem above is used to formulate a growth condition, a coercivity
type condition, and a Lipschitz continuity condition on the functions p: R? — R?, g: R? — R4*4,
and f: R? x R — R. The real number T € (0, 00) specifies the time horizon of the PDE in in
Theorem|L.1]above. The functions y: R — R? and o: R? — R%*? in Theorem [1.1]above determine
the random dynamics in and specify the linear part of the PDE in . The assumption that
the functions p: R — R? and o: R? — R%*? in Theorem are locally Lipschitz continuous, the
assumption that o is at most linearly growing, and the assumption that u satisfies a coercivity type
condition, i.e., the assumption that for all 2 € R? we have that (z, u(z)) < L(1 + |z]?), roughly
speaking, prevent local solutions of the stochastic differential equation (SDE) in ({2)) from blowing
up (see, e.g., Gyongy & Krylov [I7]). The function f € C(R?x R, R) in Theorem |1.1{represents the
nonlinearity of the semilinear Kolmogorov PDE in (1)). The function g € C(R% R) in Theorem ,
in turn, specifies the terminal condition of the semilinear Kolmogorov PDE in (|1}). Theorem [1.1
proves, in particular, the unique existence of an at most polynomially growing viscosity solution u
of the PDE in (1) and, moreover, shows that u is the unique at most polynomially growing solution
of the SFPE in (3)). Related results can be found, e.g., in El Karoui et al. [13, Theorem 8.5],
Kalinin |27, Theorem 2.3|, Ma & Zhang |33, Theorem 4.2], Pardoux [34, Theorem 4.6], Pardoux
& Peng [36, Theorem 4.3], Pardoux & Tang |39, Theorem 5.1|, Pardoux et al. [37, Theorem 4.1],
and Peng [41, Theorem 3.2]. Note that, roughly speaking, these results are, on the one hand,
more general than Theorem above with regard to the assumptions on the nonlinearity f in
Theorem and, on the other hand, less general than Theorem above with regard to the
assumptions on the coefficients 1 and o of the SDE in in Theorem above. In addition,
observe that in general the viscosity solution u € C([0,T] x R% R) of the PDE in fails to be
a classical solution of the PDE in (1. Indeed, Hutzenthaler et al. [I8] implies that there exist
admissible choices for the functions u, o, and ¢ in Theorem such that the unique at most
polynomially growing viscosity solution of the PDE in with f = (R xR 3 (z,a) — 0 € R) is
not locally Holder continuous (cf., e.g., Elworthy [14] and Li & Scheutzow [30] for related results).
Next we comment on the proof of Theorem . Item is well-known in the scientific literature
(see, e.g., Gyongy & Krylov [17]) and Item follows from [5, Corollary 3.10|. In order to prove
Items (fi) and we first show in Proposition in Section (see also the proof of Theorem
in Section that the unique at most polynomially growing solution of the SFPE in (3] is a
viscosity solution of the PDE in and, thereafter, we show in Proposition in Section
that there is at most one at most polynomially growing viscosity solution of the terminal value
problem in Item .



The remainder of this article is organized as follows. Section [2]is concerned with a Feynman-—
Kac representation result for viscosity solutions of linear inhomogeneous Kolmogorov PDEs; see
Proposition [2.23] in Section [2.5] Proposition [2.23] is proved by combining a well-known approxi-
mation argument (see Corollary in Section with a well-known result for Feynman-Kac
representations of classical solutions of linear inhomogeneous Kolmogorov PDEs (see Lemma @
in Section and an essentially well-known approximation result for SDEs (see Lemma [2.21]
in Section . The notion of viscosity solutions as well as some basic properties of viscosity
solutions are recalled in Section [2.2] Section [3] deals with existence, uniqueness, and Feynman—
Kac representation results for viscosity solutions of semilinear Kolmogorov PDEs. In Section [3.]]
we establish suitable uniqueness results for suitable viscosity solutions of semilinear Kolmogorov
PDEs (see Proposition in Section . In Section we reprove an essentially well-known
existence result for solutions of SDEs which is originally due to Gyongy & Krylov [17]. Finally, in
Section [3.3] we combine the existence and uniqueness result for SFPEs in [5, Theorem 3.8], the
Feynman—Kac representation result for viscosity solutions of linear inhomogeneous Kolmogorov
PDEs in Proposition [2.23] and the uniqueness result in Proposition [3.5] to establish Theorem [3.7]
the main result of this article. We conclude this article by presenting in Corollary and Corol-
lary in Section [3.3] below a few illustrative applications of Theorem

2 Linear inhomogeneous Kolmogorov partial differential equa-
tions (PDEs)

In this section we recall the definitions of a viscosity subsolution (see Definition [2.5[in Section
below), of a viscosity supersolution (see Definition [2.6]in Section [2.2|below), and of a viscosity solu-
tion (see Definition [2.7)in Section [2.2| below) in the case of a suitable class of degenerate parabolic
PDEs, which in particular includes linear inhomogeneous Kolmogorov PDEs as special cases, and
we establish in Proposition in Section below a Feynman—Kac type representation result
for viscosity solutions of such linear inhomogeneous Kolmogorov PDEs. The Feynman—Kac type
representation result in Proposition [2.23] in Section [2.5] will be employed in our proof of Theo-
rem [3.7 in Section [3.3] below, the main result of this article. Our proof of Proposition [2.23] in
turn, is based on the combination of the following three essentially well-known results: (i) the
existence and Feynman-Kac type representation result for classical solutions of certain linear in-
homogeneous Kolmogorov PDEs in Lemma in Section below, (ii) the approximation result
for viscosity solutions of degenerate parabolic PDEs in Corollary [2.20] in Section [2.3] below, and
(iii) the approximation result for solutions of SDEs in Lemma in Section [2.4] below.

In Section [2.1] we establish in the essentially well-known result in Lemma that a linear
inhomogeneous Kolmogorov PDE with smooth and compactly supported drift and diffusion coef-
ficients, with a smooth terminal condition, and with a smooth inhomogeneity admits a classical
solution. For the sake of completeness we also provide in Section [2.1]a detailed proof for Lemma /2.2
In Section [2.2] we specify in Definitions 2.4 and 2.7] below the well-known notions of a degenerate
elliptic function and of a viscosity solution (cf. also, for example, Crandall et al. [0, Sections 2
and 8|, Hairer et al. [I8], Section 4.1 and Definition 4.1|, and Peng [40, Definition 1.2 in Appendix
C]) which are used in this article. In addition, in Section we also briefly recall in Lemma [2.8]
Lemma [2.9] Lemma [2.10], Lemma [2.16] and Lemma [2.17] some elementary and well-known prop-
erties of viscosity solutions which are employed later on in this article. In particular, Lemma [2.§]
recalls that every classical solution is also a viscosity solution, Lemma [2.9] recalls an equivalent
characterization for the notion of a viscosity subsolution, Lemma [2.10| proves, roughly speaking,
that under suitable assumptions the notion of a viscosity subsolution in Definition [2.5|is consistent
with the notion of a viscosity subsolution in Hairer et al. [I8, Definition 4.1], and Lemma [2.16]
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and Lemma provide an equivalent characterization for the notion of a viscosity subsolution
based on the notion of a parabolic superjet, which we briefly recall in Definition (cf. also
Crandall et al. [9] Section 8] and Peng [40, Appendix C]). In Section [2.3| we establish in the essen-
tially well-known results in Lemma Corollary , and Corollary (cf., e.g., Crandall et
al. [9, Lemma 6.1], Hairer et al. [I8, Lemma 4.8], and Imbert & Silvestre [26, Proposition 2.3.11])
approximation results for viscosity subsolutions, viscosity supersolutions, and viscosity solutions.
Our proof of Lemma m is strongly inspired by Hairer et al. [18, Lemma 4.8| (cf. also Barles &
Perthame [4, Theorem A.2]), Corollary is a rather direct consequence of Lemma and
Corollary [2.20] follows immediately from Lemma [2.18] and Corollary 2.19] In Section [2.4] we recall
in Lemma an essentially well-known result on the continuous dependence of solutions of SDEs
on their initial values. In Section |2.5|we establish in Proposition [2.23|an existence result for viscos-
ity solutions of linear inhomogeneous Kolmogorov PDEs. Our proof of Proposition [2.23| employs
Lemma [2.22] together with the approximation result for viscosity solutions of degenerate parabolic
PDEs in Corollary 2.20f Lemma [2.22] in turn, uses the existence and Feynman-Kac type repre-
sentation result for classical solutions of linear inhomogeneous Kolmogorov PDEs in Lemma [2.2]
the approximation result for viscosity solutions of degenerate parabolic PDEs in Corollary
and the approximation result for solutions of SDEs in Lemma

2.1 Existence results for classical solutions of linear inhomogeneous Kol-
mogorov PDEs

Lemma 2.1. Let d,m € N, L,T € (0,0), £ € R?, let |-| : R? — [0,00) be the standard Eu-
clidean norm on R?, let ||-|| : R¥>™ — [0,00) be the Frobenius norm on R¥>™  let ue C([0,T] x
R% RY), o0 € C([0,T] x RY, R¥*™) satisfy for all t € [0,T], z,y € R? that |u(t,z) — u(t,y)| +
llo(t,z) —o(t,y)|| < L|z—yl, let g: RT - R be B(R?) /B(R)-measurable, let h: [0,T] x RT — R
be B([0, T]xR?) /B(R)-measurable, let O < R? be an open set which satisfies (supp(u)usupp(o)) S
[0,T] x O, assume that sup({|g(x)| + |h(t,z)|: t € [0,T],z € O} U{0}) < w0, assume for all z € R?
that Sg \h(t,x)|dt < oo, let (2, F, P, (Fi)epor)) be a stochastic basis, let W: [0,T] x Q@ — R™ be
a standard (Fy)sepo,m-Brownian motion, and let X = (Xy)wpor: [0,T] x Q@ — R be an (F¢)tefo,-
adapted stochastic process with continuous sample paths satisfying that for all t € [0, T] we have

P-a.s. that .

X, =§+Lu(s,Xs)ds+La(s,XS)dWS. (@)

Then .
]E|:|g(XT)‘ +JO |h(t, Xy)| dt] < 0. (5)

Proof of Lemma 2.1 To prove we distinguish between the case £ € R?\O and the case £ € O.
We first prove in the case £ € RN\O. Note that the assumption that (supp(u) u supp(c)) <
[0, T]x O ensures that P(V¢ € [0,T]: X; = &) =1 (cf., e.g., |5, Item (i) in Lemma 3.4|). Combining
this with the assumption that for all x € R? we have that Sg |h(t,z)| dt < oo shows that

T T
E|loX0) + [ e Xl de| = lo(@)) + [ 19l < . (6)
0 0
This establishes in the case £ € RY\O. Next we prove in the case { € O. Observe that the
assumption that (supp(u) usupp(o)) < [0,T] x O yields that P(Vt € [0,7]: X; € O) =1 (cf,, e.g.,
[5, Item (ii) in Lemma 3.4]). Combining this with the assumption that sup({|g(z)| + |h(t,z)|: t €



[0,T],z € O} U {0}) < o assures that we have that

T
El\g(XT)| —i—f \h(t, X¢)| dt] < [sup\g(xﬂ] +T [ sup sup |h(t,:c)|] < 0. (7)
0 €0 t€[0,T] 2e0
This establishes in the case ¢ € O. This completes the proof of Lemma O

Lemma 2.2. Let d,m e N, T € (0,0), let {-,-): R x R — R be the standard Euclidean scalar
product on R?, let p: [0, T] x RY — RY and o: [0, T] x R? — R¥>™ be infinitely often differentiable
functions with compact support, let g: RY — R and h: [0,T] x RY — R be infinitely often differen-
tiable functions, let (0, F, P, (F;)we[o,17) be a stochastic basis, let W: [0,T] x Q2 — R™ be a standard
(Ft)iefo,r)-Brownian motion, for every t € [0,T], z € R? let X" = (X5")sepr: [6,T] x Q — RY
be an (Fy)seem-adapted stochastic process with continuous sample paths satisfying that for all
s € [t,T] we have P-a.s. that

X§’$=x+f

t

S

p(r, X5%) dr + J o(r, XH") dW,, (8)
¢

and let u: [0,T] x R? — R satisfy for all t € [0, T], x € R¢ that
T
u(t,z) = Elg(X;x) + J h(s, X5*) ds] (9)
¢

(cf. Lemmal[2.1). Then
(i) we have that u e CY2([0,T] x R4, R) and

(ii) we have for all t € [0,T], x € R? that u(T,x) = g(z) and

(Lu)(t,z)+1 Trace(o(t, z)[o(t, z)]* (Hess, u) (¢, z)) +{u(t, ), (Vou) (¢, 2))+h(t, z) = 0. (10)

Proof of Lemma[2.7. Throughout this proof let o € (0,%0), o € (0,0), assume that (supp(u) U
supp(c)) € [0, T] x (—0,0)%, let (-, -)): R xR — R be the standard Euclidean scalar product
on R let m: R4 — R+ 5: R+ RUEFDxm g RA+L L R and h: R — R be infinitely
often differentiable functions with bounded derivatives which satisfy for all ¢ € [0,T], z € R,
y € [—o0,0]? that

1 d+1 _ 0 c d+1)xm
m(t,x) = (u(t,x)) e R, s(t,x) = <a(t,x)> R(@+1)xm (1)
g(t,y) =g(y)eR, and  b(t,y) =h(t,y)eR

(cf., for instance, Seeley [42]), for every s € [0, T], t € R, x € R let Y* ") = (Y}s’(t’x))re[&ﬂ s, T %
Q — R¥! be an (IFy)refs,r-adapted stochastic process with continuous sample paths satisfying
that for all r € s, T] we have P-a.s. that

S

(cf., e.g., Karatzas & Shreve [28, Theorem 5.2.9]), for every t € [0,T], z € R? let Zt* =
(Z5%)serery: [8.T] x Q@ — R satisfy for all s € [¢,T] that Z5" = (s, X!"), and let v: [0,T] x
R — R and w: [0, 7] x R4 — R satisfy for all s € [0,T], t € R, z € R? that

v(s,t,x) = E[g(Y;’(t’x))] and  w(s,t,r) = ]E[h (Y;’(t’:”))]. (13)
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Note that the assumption that (supp(p) usupp(e)) < [0, 7] x (—o, 0)¢ ensures that for all ¢t € [0, T,
z € R%\(—0,0)* we have that P(Vs € [t,T]: X* = z) = 1 (cf,, e.g., [5, Item (i) in Lemma 3.4]).
This implies that for all t € [0, T], x € R%\(—0,0)? we have that

u(t,z) = Elg(X;‘r) + LTh(s,Xz’x) ds] =g(x) + JtT h(s,x)ds. (14)

The assumption that g and h are infinitely often differentiable and the fact that (supp(u) v
supp(c)) < [0,T] x (—o,0)? therefore assure that for all ¢ € [0,T], z € R%\[—o0,0]¢ we have that
Ujo,77x &\ =00}ty € CT2([0, T] x (R!\[~0,0]?), R) and

Zu)(t,x) + h(t, )

( 3 1 N (15)
= (Su)(t,x) + 5 Trace(o(t, z)[o(t, 2)]* (Hess, u)(t, x)) + {u(t, ), (Vau)(t, 2)) + h(t, z).

Next note that, e.g., Da Prato & Zabczyk [11, Theorem 7.4.5 and Theorem 7.5.1] (cf. also, e.g.,
Gihman & Skorokhod [I5, Theorem 2.8.1 and Corollary 2.8.1] and Andersson et al. [I, Theorem
1.1]) and guarantee that

(I) we have that v, w € CY2([0,T] x R¥*1 R),
(IT) we have for all s € [0,7T], t € R, z € R? that
— (§v)(s,t,2)

= 1 Trace(s(t, z)[s(t, z)]* (Hess 0 v) (s, ¢, 7)) + (m(t, z), (Vieov)(s, t,2))) (16)
= L Trace(o(t, z)[o(t,z)]*(Hess, v)(s,t,2)) + (2v)(s,t,2) + {u(t, z), (Vo) (s, t, 2)),

and

(ITI) we have for all s € [0,T], t € R, x € R? that

— (a—iw)(s,t,x)

1 Trace(s(t, z)[s(t, ) ]* (Hess 0 w)(s, t,2)) + {m(t, ), (Vnw)(s,t,z))) (17)
= 1 Trace(o(t, z)[o(t,z)]* (Hess, w)(s, t,2)) + (Sw)(s, t,z) + (u(t, z), (Vw) (s, t, z)).

Moreover, observe that (§)), (L1), and the fact that for all ¢ € [0,T], s € [¢t,T], x € R? we have
that Z1® = (s, X1®) ensure that for all t € [0,T], s € [t,T], x € R? we have P-a.s. that

te s (t 5 1 5 0
Zs ‘@?)‘Q)ﬁ[@mﬁ%)”fﬁ@mm@)mﬁ
_ (t) +J m(Z4*) dr+f s(Z5%) dW,.
oy t t

Combining this with the fact that for all t € [0, T], z € R? we have that Z** is an (F,) e r)-adapted
stochastic process with continuous sample paths, , e.g., Karatzas & Shreve [28, Theorem 5.2.5],
and demonstrates that for all ¢ € [0,T], z € R? we have that

(18)

P(Vse[t,T]: 2" = YEE2)) = 1. (19)

The fact that for all t € [0,T], z € (—0,0)? we have that P(Vs € [t,T]: Xt € [~o0,0]?) = 1, (11)),
and therefore yield that for all t € [0,T], x € (—0,0)? we have that

v(t,t,z) = E[g(Yz )] = E[g(Zy")] = E[a(T, X5")] = E[9(X}")]. (20)
7



Furthermore, note that , , , the fact that for all t € [0,T], x € (—o0,0)¢ we have that
P(Vse[t,T]: Xi® e [—o,0]?) =1, and the fact that for all t € [0,T], s € [t,T], z € R?, B € B(R)
we have that P(Y;"") € B) = P(Y}"“"), € B) (cf., e.g., Klenke [2, Theorem 26.8]) demonstrate
that for all t € [0,T], s€ [t,T], x € (—o0,0)? we have that

w(T — s +t,t,2) = B[p(vy T0D)] = E[p(vHE)]

t hov] tw (21)
=E[h(2;")] = E[h(s, X;")] = E[h(s, X;")].
This, (9), and show for all t € [0,T], x € (—o0,0)¢ that
T
u(t,z) = v(t,t,x) + J w(T — s+t t,x)ds. (22)

Combining this with the fact that v,w e C12([0, T] x R¢"!, R) and the chain rule ensures that for
all t € [0,T], z € (—o0,0)* we have that u|p 17x(—o0 € C*([0,T] x (—0,0)%, R) and

(%u)(t,x) = (a—iv)(t,t,a:) + (%v)(t,t,x) + (%) lﬁ w(T —s+t,t,x)ds|. (23)

Furthermore, note that and yield that for all t € [0, 7], s € [t,T], x € R? we have that

(%v)(t,t,m) + (%v)(t,t,x)

= —1 Trace(o(t, z)[o(t, z)]* (Hess, v) (¢, t, ) — {u(t, z), (V,0)(t, T, 2)) (24)
and
(%w)(s, t,x) + (%w)(s,t,:v) (25)
= —% Trace(o(t, z)[o(t, z)]* (Hess, w)(s,t,z)) — {u(t, x), (Vow)(s, t,x)).
This ensures for all t € [0, 7], x € R? that
(£) [L w(T —s+t,t,x) ds]
=—w(T,t,x) + f (Zw) (T —s+tt,x)+ (Zw)(T —s+ttz)) ds
. (26)

=—w(T,t,x)— Jt 1 Trace(o(t,z)[o(t,z)]* (Hess, w)(T — s + t,t,2)) ds

- L lu(t,x), (Vow)(T — s+ t,t,x))ds.

Next observe that the fact that w e C12([0,T] x R4 R) proves that for all t € [0,T], z € R? we
have that

L 1 Trace(o(t, z)[o(t, z)])* (Hess, w) (T — s + t,¢,z)) ds

and
T

£T<u(t, x), (Vow)(T — s+ t,t,2))ds = <p(t, 2),V, (L w(T — s +1t,t,2) ds)> . (29)

8



Moreover, note that and ensure for all t € [0,T], x € (—o,0)? that
w(T,t,z) = E[h(t, X" (2))] = h(t,z). (29)
Combining this with (22)(28)) shows for all t € [0, 7], z € (-0, 0)¢ that
(Zu)(t,2) = —3 Trace(o (1, 2)[o (t, 0)]* (Hess, w)(t, 2)) — (p(t, 2), (V) (t,2)) — hi(t,2).  (30)
This and demonstrate for all t € [0, T], x € R? that u e CY2([0,7] x R% R) and
(Lu)(t,z) = —1 Trace(o(t, 2)[o(t, z)]*(Hess, u)(t, ) — {u(t, z), (Vou)(t,z))y — h(t,z).  (31)

This establishes Item . Furthermore, observe that and @ demonstrate that for all z € R?
we have that u(T,x) = g(z). Combining this with establishes Item (). This completes the
proof of Lemma [2.2] O

2.2 Basic properties of viscosity solutions of suitable PDEs

Definition 2.3 (Symmetric matrices). Let d € N. Then we denote by Sy the set given by
Sq = {A e R A* = A}

Definition 2.4 (Degenerate elliptic functions). Let d € N, T' € (0, c0), let O < R? be a non-empty
open set, and let (-,-): R? x R? — R be the standard Euclidean scalar product on R%. Then we
say that G is degenerate elliptic on (0,7) x O x R x R? x S; (we say that G is degenerate elliptic)
if and only if

(i) we have that G: (0,7) x O x R x R¢ x S; — R is a function from (0,7) x O x R x R? x S,
to R and

(i) we have for all t € (0,7), 2€ O, re R, pe R4 A B e S, with Yy € R?: (Ay,y) < (By,y)
that G(t,x,r,p, A) < G(t,z,r,p, B)

(cf. Definition [2.3).

Definition 2.5 (Viscosity subsolutions). Let d € N, T € (0, ), let O < R be a non-empty open
set, and let G: (0,T)x OxRxR?xS; — R be degenerate elliptic (cf. Definitions[2.3|and[2.4). Then
we say that u is a viscosity solution of (Zu)(t, z)+G(t, z, u(t, z), (V,u)(t, z), (Hess, u)(t, ) = 0 for
(t,z) € (0,T) x O (we say that u is a viscosity subsolution of (Zu)(t, )+ G(t, z,u(t, z), (V,u)(t, z),
(Hess, u)(t,x)) = 0 for (¢,x) € (0,7) x O) if and only if there exists a set A such that

(i) we have that (0,7") x O < A,
(ii) we have that u: A — R is an upper semi-continuous function from A to R, and

(iii) we have for all t € (0,T), z € O, ¢ € CH2((0,T) x O,R) with ¢(t,z) = u(t,z) and ¢ > u that

(59)(t,2) + G(t,z, (. ), (V20)(t,x), (Hess, ¢)(t, ) = 0. (32)

Definition 2.6 (Viscosity supersolutions). Let d € N, T € (0, 0), let O < R< be a non-empty open
set, and let G: (0,T)x OxRxR¥xS,; — R be degenerate elliptic (cf. Deﬁnitionsand. Then
we say that u is a viscosity solution of (Zu)(t, z)+G(t, z, u(t, z), (V,u)(t, ), (Hess, u)(t, z)) < 0 for
(t,z) € (0,T)x O (we say that u is a viscosity supersolution of (Zu)(t, 2)+G(t, z, u(t, ), (V,u)(t, z),
(Hess, u)(t,x)) = 0 for (¢,x) € (0,7) x O) if and only if there exists a set A such that
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(i) we have that (0,7) x O < A,
(ii) we have that u: A — R is a lower semi-continuous function from A to R, and
(iii) we have for all t € (0,T), x € O, ¢ € CY2((0,T) x O, R) with ¢(¢,z) = u(t,z) and ¢ < u that
(%(b) (t,x) + G(t,z, o(t, ), (V.0)(t, z), (Hess, ¢)(t, x)) < 0. (33)

Definition 2.7 (Viscosity solutions). Let d € N, T € (0,00), let O < R? be a non-empty open set,
and let G: (0,T) x O x R x R% x S; — R be degenerate elliptic (cf. Definitions and . Then
we say that u is a viscosity solution of (Zu)(t,z) + G(t, z, u(t, z), (V,u)(t, ), (Hess, u)(t, ) = 0
for (t,2) € (0,T) x O if and only if

(i) we have that u is a viscosity subsolution of (Zu)(t, z)+G(t, z, u(t, z), (V,u)(t, z), (Hess, u)(t,
x)) =0 for (t,x) € (0,7) x O and

(i) we have that u is a viscosity supersolution of (Zu)(t, z)+G(t, z, u(t, z), (V,u)(t, z), (Hess, u)(t,
x)) =0 for (t,xz) € (0,T) x O
(cf. Definitions [2.5] and [2.6).

Lemma 2.8. Letde N, T € (0,0), let O < R? be a non-empty open set, and let G: (0,T) x O x
R x R? x Sy — R be degenerate elliptic (cf. Deﬁm’tions and . Then

(i) we have for every u e C*2((0,T) x O,R) with Vt € (0,T),z € O: (Zu)(t,z) + G(t, z,u(t, z),
(Veu)(t, x), (Hess, u)(t,x)) = 0 that u is a viscosity solution of
(Lu)(t,z) + G(t, z,u(t,z), (Vu)(t, z), (Hess, u)(t, x)) =0 (34)
for (t,z) € (0,T) x O,
(ii) we have for every u e C**((0,T) x O,R) withVte (0,T),z € O: (Lu)(t,z) + G(t, z,u(t,z),
(Vyu)(t,x), (Hess, u)(t,x)) < 0 that u is a viscosity solution of
(Lu)(t,z) + G(t, z,u(t,z), (Vou)(t, z), (Hess, u)(t,z)) <0 (35)
for (t,x) e (0,T) x O, and
11) we have for every u e CH*((0,7) x O, withVte (0,T),xe O: (Fu)(t,x)+ Gt z,ult, ),
have f CH2((0,T) x O,R) with ¥ T O: (2 G
(Vyu)(t,x), (Hess, u)(t,x)) = 0 that u is a viscosity solution of

(Lu)(t,x) + G(t, z,u(t, ), (Vou)(t, z), (Hess, w)(t,z)) = 0 (36)

for (t,x) e (0,T) x O

(cf. Definitions .

Proof of Lemma[2.8 First, note that establishes Item (). Next observe that proves
Item . Moreover, note that Item (fij) and Item establish Item . This completes the proof
of Lemma O

Lemma 2.9. Let d € N, T € (0,), t € (0,T), let O < R? be an open set, let x € O, ¢ €
CH2((0,T)xO,R), let G: (0,T) x OxRxR4xS; — R be degenerate elliptic, letu: (0,T)xO — R
be a wiscosity solution of (Zu)(t,z) + G(t,z,u(t,z), (V,u)(t, z), (Hess, u)(t,z)) = 0 for (t,x) €
(0,7) x O, and assume that u— ¢ has a local mazimum at (t,x) € (0,T) x O (cf. Definitions (2.5~

[2.5). Then
(£0)(t,1) + Gt r,ut,x), (Vo0)(t 1), (Hess, ¢)(t, 1)) = 0. (37)
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Proof of Lemma[2.9. First, observe that the fact that w is upper semi-continuous implies that
there exist 1 € C*2((0,7) x O,R) and a non-empty open set U < (0,7) x O which satisfy that

(i) we have that (t,r) e U,

(i) we have for all t € (0,T"), x € O that u(t,r) — ¥ (t,r) = u(t,x) — (t, z), and
(iii) we have for all (¢t,z) € U that ¥(t, z) = ¢(t,x).
Hence, we obtain that

(£6)(t,1) + G, 1, u(t,x), (V.0)(t, 1), (Hess, ¢)(t,))
= (Z¥)(t,x) + G(t,r,u(t,x), (Vo) (4 1), (Hess, ¥)(t, 1)) = 0.

This completes the proof of Lemma [2.9 O

(38)

Lemma 2.10. Let d e N, T € (0,0), let O < R be a non-empty open set, let G: (0,T) x O x
R x RY x S; — R be degenerate elliptic and upper semi-continuous, let u: (0,T) x O — R be
upper semi-continuous, and assume for all t € (0,T), x € O, ¢ € {¢p € C*((0,T) x O,R): (u —
Y has a local mazimum at (t,x) € (0,T) x O)} that

(59)(t,2) + G(t,x,ult, ), (Vo0)(t,x), (Hess, ¢)(t, 2)) = 0 (39)
(cf. Definitions and . Then u is a viscosity solution of
(Lu)(t,x) + G(t, z,u(t, ), (Vou)(t, x), (Hess, u)(t,2)) = 0 (40)

for (t,x) € (0,T) x O (cf. Definition[2.5).

Proof of Lemma[2.10. Throughout this proof let |-| : R? — [0,00) be the standard Euclidean
norm on RY, let ||-]| : R™*? — [0, 00) be the Frobenius norm on R4 let ty € (0,T), 29 € O, ¢ €
CL2((0,T) x O, R) satisfy for all s € (0,T), y € O that ¢(s,y) = u(s,y) and ¢(ty, x9) = u(to, o), let
o € CH2((0, T)x O, R) satisfy for all s € (0,T), y € O that (s, y) = (s, y)+|s—to|*+|ly—zo|*, let
n € (0, 0) satisfy that {(s,y) € RxR%: max{|s—to|, |y — zo[} <71} < (0,T)xO, and let I, € [0, 0),
r € (0,n], satisfy for all r € (0,n] that I, = $inf{gh(s,y) — u(s,y): (s,y) € (0,T) x O,r? <
|s — to]* + |ly — zo|* < n?}. Observe that the fact that for all (s,y) € [(0,T) x O\{(to, z0)}
we have that ¥y(s,y) > ¢(s,y) ensures that for all (s,y) € [(0,T) x O\{(to,z0)} we have that
Yo(s,y) > u(s,y) and y(to, xo) = u(to, o). The assumption that w is upper semi-continuous
hence guarantees that for all » € (0,n] we have that I, € (0,00). Moreover, note that there exist
U, € C?((0,T) x O,R), n € N, which satisfy for all non-empty compact K < (0,7) x O that

lim sup [(sup (|(%¢n)(s,y) = (5%0) (s, 9)| + (s, y) — vo(s,y)]

n—00 5,9)ek

+[(Vatbn) (s, 9) — (Vatbo) (s, y)|| + || (Hessy n) (s, y) — (Hess, ¢o)(8,y)|>] =0. (41)

This implies that there exists n = (n.).e0,00): (0,0) — N which satisfies that for all ¢ € (0,0),
n e N n [n., o0) we have that

sup{[n(s,y) — vo(s,9)l: (5,9) € (0,T) x O, [s —tol* + |y —wo|* < 7’} < e. (42)
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The fact that I, € (0,00) and hence ensure that there exist (¢,,x,) € (0,7) x O, n € N,
which satisfy for all n € N [ng,00), s € (0,7), y € O with |s — to]* + |y — xo[? < n* that
|tn — tol? + |z — wol* < 0 and

U(tn, Tn) = Yn(tn, Tn) = uls,y) — Yuls,y). (43)
Combining this with proves that for all n € [n,,0) we have that
(§0n) (s ) + Gty Ty ultn, ©0), (Vatdn) (tn, T0), (Hessy ) (tn, 2)) = 0. (44)

Moreover, note that and imply that for all r € (0,7), n € [n;,,00) we have that |t, —to|? +
|z, — xo|* < r2. Therefore, we obtain that limsup,, .. (|t, — to|* + |z. — 2o]?) = 0. Combining
this with , , and the assumption that u is upper semi-continuous shows that

0 > lim Sup[u(tm xn) - u(t07 1'0)] > lim 1nf[u(tna xn) - u(t07 SL'())]
n—00 n—00
45
> lim inf ¢y, (tn, £,) — ¥n(to, z0)] = 0. (43)
n—oo

The fact that limsup,,_,.(|t, — to|* + |2, — 20]?) = 0, the fact that 19 € C¥2((0,T) x O,R), (41,
the assumption that G is upper semi-continuous, and hence demonstrate that

(%Cb) (th 1’0) + G(th o, U(to, '1:0)7 (qub) (th xU)? (Hessx ¢) (th Qfo) (46)
= (%%)(to, LE()) + G(t(b Lo, u(to, -1'0), (Vx%)(to, xO)a (HGSSx ¢o)(t0> 3:0) = 0.
This establishes (40). This completes the proof of Lemma [2.10] O

Definition 2.11 (Parabolic superjets). Let d € N, T' € (0,0), let O < R? be a non-empty open
set, let t € (0,T), x € O, let {-,-): R? x RY — R be the standard Euclidean scalar product on
R, let ||-| : RY — [0,00) be the standard Euclidean norm on R%, and let u: (0,7) x O — R be a
function. Then we denote by (P ou)(t,z) (we denote by (P*u)(t,x)) the set given by

('ijou)(t,x) = (PTu)(t,z) = {(b,p, A)eR x R? x Sy:

u(s,y)—u(t7x)—b(s—t)—<p,y—x>—%<A(y_$)’y_x>] < 0} (47)

|t—s|+[a—y|*

lim sup [
[(0.7)x ON{(t.x)}3(s,y)— (L)

(cf. Definition [2.3).

Definition 2.12 (Parabolic subjets). Let d € N, T' € (0,0), let O < R be a non-empty open set,
let t e (0,7), € O, let {-,-y: R? x R — R be the standard Euclidean scalar product on R?, let
|| : R4 — [0, 00) be the standard Euclidean norm on R?, and let u: (0,T) x O — R be a function.
Then we denote by (P, ou)(t, z) (we denote by (P~u)(t,x)) the set given by

('P(;Tpu)(t,x) = (P u)(t,x) = {(b,p, A)eR x R? x Sy:

lim inf [u(s,y)—u(t,x)—b(s—t)—<p,y—z>—%(A(y—z),y—x}] >0 (48)
[(0,7) x OI\{(£,2) }3(5.9) — (£,2) [t=sl+lo—yl” -

(cf. Definition [2.3).
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Definition 2.13 (Generalized parabolic superjets). Let d € N, T € (0,0), let O < R? be a
non-empty open set, let t € (0,7), z € O, let {-,-): R x R? — R be the standard Euclidean
scalar product on RY, let |- : R — [0,90) be the standard Euclidean norm on R? and let
u: (0,7) x O — R be a function. Then we denote by (B, ou)(t,z) (we denote by (Ptu)(t,z))
the set given by

(‘BIT,OU)(L:E) = (§B+u)(t’x) = {(b,p, A) eR x R? x Sq:

(VneN: (by,pn, An) € (PTu)(t,, x,)) and

3 (tns Ty Oy Py An)nen € (0,T) x O x R x R x §y:
hmnﬁoo(tfma:n?u(tnuxn)ubnupnaAn) = (t,x,u(t,x),b,p, A)

(cf. Definitions [2.3| and [2.11]).

Definition 2.14 (Generalized parabolic subjets). Let d € N, T € (0,00), let O < R? be a
non-empty open set, let t € (0,7), x € O, let {-,-): R? x R — R be the standard Euclidean
scalar product on R? let |- : R? — [0,00) be the standard Euclidean norm on R? and let
u: (0,T7) x O — R be a function. Then we denote by (B, ou)(t, z) (we denote by (B~u)(t, r))
the set given by

Barow(t,r) = (B u)t,z) = {(bm, A) e R x R x Sy

(VneN: (by,pn, An) € (P u)(tn, x,)) and

3 (tns Ty b P Annen € (0,T) x O x R x R x Sy
hmn—wo(tnwr?mu(tnal‘n)abnapnvAn) = (taxau(ta$>abapa A)

(cf. Definitions [2.3| and [2.12)).

Lemma 2.15. Letde N, e, T € (0,0), let O < R be a non-empty open set, letu: (0,T)xO — R
be upper semi-continuous, and let t € (0,T), x € O, (b,p,A) € (P*u)(t,x). Then there exists
¢ e CH2((0,T) x O,R) such that

(i) we have that (b,p, A + €ldga) = ((£0)(t, %), (V40)(t, z), (Hess, ¢)(t,z)) and
(11) we have that w — ¢ has a local mazimum at (t,x) € (0,T) x O
(cf. Definition[2.11)).
Proof of Lemma[2.15. Throughout this proof let ®: (0,7") x O — R satisfy for all s € (0,7"), y € O

that (s,y) —u(t,x)—b(s—t)—C )= 3{(Ateldya) (y—2).y—2)
u(s,y)—u(t,x)—b(s—t)—p,y—x)—3 +e d)y—x),y—x
max{ Y —— — ,O} s #L
D(s,y) = = (51)
0 cs=t.
Observe that (47]) ensures that
3 ’LL(S, )7u(t7x)7b(57t)7< ) 7x>7l<A( 733)7 71‘>
lim sup [ Y |s—t\+ﬁyy—xH2 L ] < 0. (52)

(0,7)xO\{(t,2)}3(s,y)— ()
This and the assumption that ¢ € (0, 00) imply that there exists p € (0, 00) which satisfies that
(I) we have that [t — p,t + p] x {y e R?: |y — x| < p} < (0,T) x O and
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(IT1) we have for all se [t — p,t + p], y € {z € R%: |z — 2| < p} that
U(S,y) - U,(t,ZL') - b(S - t) - <p7y - I> - % (A + 6Ide)(y - $)ay - I’> < 8|S - t| (53)

Next let 7: R — R satisfy for all » € R that

77("’) = Sup{q)(svy): (87y> € (07T> X Oa |S - t‘ < ’T’7 Hy - I‘H < p}7 (54)
let ¥: R — R satisfy for all » € R that
2 (2r ¢s
= f)dods 0
\I/(’I") _ JIrld0 SO 77( ) s r# (55)
0 cr =0,

and let ¢: (0,7) x O — R satisfy for all s € (0,7, y € O that ¢(s,y) = b(s—t)+ V(s —t) +{p,y—
zy+ 3{(A+eIdga)(y — ),y — ). Note that the assumption that u is upper semi-continuous, (51)),

, , and ensure that

(a) we have for all r € [0,0), s € [r,00) that n(r) < n(s) < o, n(0) =0, and n(—r) = n(r),
(b) we have that ¥ € C'(R,R),

(c¢) we have that ¥U'(0) = 0,

(d) we have for all s€ [t —p,t + p|, y € {z € R%: |2 — z|| < p} that

u(s,y) —u(t,z) = b(s —t) = (p,y — ) — 5{(A + e ldga)(y — ),y — 2)

(56)
< s = 2@(s,y) < |s = tn(ls — 1)),

and

(e) we have for all r € R that

o JMJ 0)df ds > ‘7«| N fh’ do ds = |r[n(r). (57)

The fact that for all s € (0,7), y € O we have that ¥(s,y) = b(s —t) + U(s — t) + {p,y — x) +
+{(A+ eldga)(y — x),y — =) hence ensures that

(A) we have that ¢ € C*2((0,T) x O,R),

)
(B) we have that (b, p, A + e Idga) = ((%@D)(t, x), (Va0)(t, x), (Hess, ¥)(t,x)), and
)

(C) we have for all se [t —p,t+p], y € {z € R%: ||z — 2| < p} that u(s,y) — ¥(s,y) < u(t,z) =
u(t, x) — ¢(t, ).

This establishes Items (| . ) and ((ii). This completes the proof of Lemma O

Lemma 2.16. Let de N, T € (07 ©), let O < R be a non-empty open set, let G: (0,T) x O x

R x R? x S; — R be degenerate elliptic and upper semi-continuous, and let u: [0,T] x O — R be
a viscosity solution of

(Lu)(t,x) + G(t, z,u(t, ), (Vou)(t, x), (Hess, u)(t,z)) = 0 (58)
(cf. Definitions[2.3{2.5). Then we have for allt € (0,T), x € O, (b,p, A) € (BTu)(t,z) that
b+G<t,l‘7U(t,l’),p,A) =0 (59)

(cf. Definition[2.15).
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Proof of Lemma[2.16. Throughout this proof let (., Z, bn, pn, An) € (0,T) x O x R x R? x Sy,
n € Ny, satisty for all n € N that (b,, pn, An) € (PTu)(t,, x,) and

lim (tma T, u(tma xm)a bm>pm7 Am) = <t07 Zo, U(to, xO)? b07p07 AO) (60)

m—00

Observe that Lemma ensures that there exist ¢., € C?((0,7) x O,R), € € (0,0), n € N,
which satisfy that

(i) we have for all € € (0,00), n € N that

(bn, P, An + € 1dga) = ((%Qbs,n)(tnv Tn), (Vaten) (tn, Tn), (Hessy e ) (tn, T0)) (61)
and
(ii) we have for all € € (0,0), n € N that u — ¢.,, has a local maximum at (¢,,z,) € (0,7) x O.

Lemma therefore demonstrates that for all € € (0,90), n € N we have that

bn + G(tnu Ln, u(tna xn)apnv An te Id]Rd)

= (%qﬁe,n)(tn,xn) + G(tn, Tp, w(ty, Tn), (Veen)(tn, ), (Hessy dep) (tn, 2,)) = 0. (62)

The assumption that GG is upper semi-continuous therefore ensures for all n € N that

bn + G(tm T,y U(tm xn)upna An) > lim sup [bn + G(tm Ly, un(tm xn)upm An + 5Ide)] = 0. (63)

(0,00)3e—0

Combining this with the assumption that G is upper semi-continuous proves that

b+ G(t07 Lo, U(t(], xO)? Po, AO) = lim sup [bn + G(tna Tn, u(tn7 mn))] = 0. (64)
n—0oo
This establishes (59). This completes the proof of Lemma [2.16] O

Lemma 2.17. Let d e N, T € (0,0), let O < R? be a non-empty open set, let G: (0,T) x O x
R x RY x Sg — R be degenerate elliptic, let u: [0,T] x R — R be upper semi-continuous, and
assume for allt € (0,T), x € O, (b,p, A) € (Ptu)(t,z) that

b+ G(t,z,u(t,z),p,A) =0 (65)
(cf. Deﬁnitz’ons and . Then we have that u is a viscosity solution of
(Lu)(t,z) + G(t, z,u(t, ), (Vou)(t, z), (Hess, u)(t,z)) = 0 (66)

for (t,z) € (0,T) x O (cf. Definition .

Proof of Lemma[2.17, First, observe that for all t € (0,T), z € O, ¢ € C**((0,T) x O,R) with
¢ = u and ¢(t,x) = u(t,z) we have that ((2¢)(t,z),(V.0)(t, z), (Hess, ¢)(t,z)) € (Ptu)(t, z).
Hence, we obtain that for all t € (0,T), z € O, ¢ € C12((0,T) x O,R) with ¢ > u and ¢(t,z) =
u(t,z) we have that (2¢)(t,z) + G(t,z, u(t,z), (V.0)(t, ), (Hess, ¢)(t,z)) = 0. This establishes
that u is a viscosity solution of

(Lu)(t,z) + G(t,z,u(t,x), (Vyu)(t, z), (Hess, u)(t, x)) =0 (67)
for (¢,2) € (0,T) x O. This completes the proof of Lemma O
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2.3 Approximation results for viscosity solutions of suitable PDEs

Lemma 2.18. Letde N, T € (0,0), let O < R? be a non-empty open set, let u,: (0,T)x O — R,
n € Ny, be functions, let G,,: (0,T) x O x RxR?xS; — R, n € Ny, be degenerate elliptic, assume
that Gy is upper semi-continuous, assume for all non-empty compact K < (0,T) x O x Rx R% x Sy
that

lim sup [ sup (Jun(t,2) = uo(t, 2)] + Gult, 2,7, p, A) = Golt, 2,7, p, A)|) | =0, (68)
n—00 (t,x,r,p,A)EX
and assume for all n € N that u,, is a viscosity solution of
(Lun)(t, @) + Gult, z, un(t, ), (Vaua) (t, ), (Hess, u, ) (t, ) = 0 (69)

for (t,z) € (0,T) x O (cf. Definitions[2.3H2.5). Then we have that ug is a viscosity solution of

(Luo)(t,z) + Go(t, x,uo(t, ), (Vyuo)(t, x), (Hess, uo)(t, x)) =0 (70)

for (t,z) € (0,T) x O (cf. Definition[2.5).

Proof of Lemma[2.18 Throughout this proof let [-| : R? — [0,00) be the standard Euclidean
norm on R% let ¢ty € (0,7T), 79 € O, (¢e)ee0,0) © CH2((0,T) x O,R) satisfy for all € € (0,0),
€ (0,7), y € O that ¢o(to, o) = uo(to, ¥o), ¢o(s,y) = uo(s,y), and

0-(5,) = do(s,y) + 5(Is — tol* + ly — o[, (71)

and let n € (0, ) satisfy that {(s,y) € RxR?: max{|s—to|, |[y—zo|} <n} S (0,T)xO. Note that
. and the fact that for all n € N we have that u,, is upper semi-continuous ensure that ug is upper
semi-continuous. Moreover, note that (68)) assures that there exists n = (n.).e(0,00): (0,0) = N
which satisfies for all € € (0,0), ne Nn [ng, o) that

SUP{|Un(Say) —ug(s,y)|: (5,9) € (0,T) x O,max{|s —tol, |y — x|} <n} <= (72)
Combining this with (71]) implies that for all € € (0 oo) neNn[n, o), se (0,T),ye O with
s —tol <, |y — x0|| <, and |s — to|* + |y — 20| = n* we have that

2
U (Lo, 2o) — @< (to, Zo) = un(to, 20) — do(to, Zo) = un(to, 20) — uo(to, 20) > —=-

> un(s,y) — uo(s,y) — 5(|s — tol* + |y — ao|*) (73)
= 'Lbn(S,y) - ¢0(Say) - %(‘S - t0‘2 + Hy - $0|’2) = un(say) - ¢5(Say)'

The fact that for every ¢ € (0,0), n € N we have that u,, — ¢. is upper semi-continuous therefore

guarantees that there exist t = (t,(f))(avn)eRxN RxN— (0,7) and ¢ = (;ﬁf))(m kxn: RxN—- O
which satisfy for all € € (0,0), n€ N [n., ), s€ [to—n,to + 7], ye {z € O: |z — xo| < n} that

) € (to — m,to + 1), &) — zo <7, and
U (89, 19) — 6. (89, £9)) = (s, 9) — ¢-(5, 7). (74)

Lemma and hence prove that for all € € (0,0), n € N n [n.,00) we have that

(G0)(67,05)) + Gult) 1, un (), 2)), (Vo) (67, 2), (Hess, 0) () ,217) = 0. (75)
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Moreover, note that , , and imply that for all £ € (0, 00) we have that

0 = lim sup [ug(to, o) — un(to, zo)] = limsup [de(to, o) — un(to, To)]

n—00 n—w
> lim sup [¢s ©.19) n(tgzs)7;7(ze)>]
n—aoo
ﬂﬁymw% 50167 — bl + 16l — 20l”) — ua (£, 6] (76)
> lim sup [uO ff 27) = un(67,67) + 5167 — o + [ — 0[*)]
n—o0
- liinj;}p [% — to|* + [ — z0[?)].

The fact that ug is upper semi-continuous and hence ensure that for all € € (0,0) we have
that

lim sup [un(tgf), ng)) — ug (2o, m0)]

n—oo
= limsup [u, (65, 2) = uo (¢, 25) + wo (5, 1)) — wo(to, o)] (77)
n—aoo

= lim sup [uo(t( ) 1)) — uo(to, )] < 0.

n
n—0o0

Moreover, note that the fact that ¢y € CY2((0,7) x O,R), , and prove that for all
€ (0,00) we have that

lim inf [un(tgf), ng)) — ug(to, 1’0)]

n—0o0 o (78)
hgilnf [un(to, T0) — uo(to, zo) + ¢ (t 1) — ¢ (to, zo)| = 0.
This and show for all € € (0, 00) that
lim sup [u, (87, 257) — uo(to, 20)| = 0. (79)

n—o0

The assumption that Gy is upper semi-continuous, the fact that ¢y € CY2((0,7) x O,R), ,
)

, and hence imply that for all € € (0,20) we have that limsup,,_,, |(%¢6)(t§1€)7x516
(£%0)(to, zo)| = 0 and

Go(to, zo, Po(to, 7o), (Vedo)(to, xo), (Hess, ¢o)(to, zo) + €I)
= Go(to, 20, uo(to, o), (Va ¢s)(t0,$0) (Hess, ¢2)(to, o))

> limsup [Go(t9, '), u, (¢, 1), (Vo) (612, £9), (Hess, ¢.) (£, 1))] (80)
= limsup [Go (67, 17 ua (7, 5), (Vo) (67, 117), (Hess, 60 (17, 117)].

Combining this with assures for all € € (0,00) that

(£¢0)(to, x0) + Go(to, zo, do(to, To), (Vaco)(to, o), (Hess, o) (to, wo) + & Idga) = 0. (81)

The assumption that G is upper semi-continuous therefore demonstrates that

(£0)(to, mo) + Go(to, o, uo(to, z0), (Vo) (to, 7o), (Hess, ¢o)(to, z0)) = 0. (82)
This establishes . This completes the proof of Lemma m n
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Corollary 2.19. Letde N, T € (0,0), let O € R? be a non-empty open set, let u,: (0,T) x O —
R, n € Ny, be functions, let G,,: (0,T)x OxRxR¢xS; — R, n € Ny, be degenerate elliptic, assume
that Gy is lower semi-continuous, assume for all non-empty compact KK < (0,T) x O x R x R% x Sy
that

n_>w (t7I7r7p7A)€]C

lim sup [ sup <\un(t,x) —uo(t,z)| + |Gu(t, z, 7, p, A) — Go(t, z, 7, p, A)|)] =0, (83)

and assume for all n € N that u,, is a viscosity solution of
(Lup)(t,2) + Gt 2, un(t, x), (Vou,) (¢, ), (Hess, uy) () < 0 (84)

for (t,z) € (0,T) x O (cf. Definitions and @) Then we have that uy is a viscosity
solution of

(%uo)(t, x) + Go(t, x,uo(t,x), (Vaue)(t, ), (Hess, ug)(t, z)) <0 (85)

for (t,x) € (0,T) x O (cf. Definition[2.6).

Proof of Corollary[2.19. Throughout this proof let v,: (0,7) x O — R, n € Ny, and H,: (0,T) x
OxRxRIxS; — R, ne Ny, satisfy for all n e Ng, t € (0,7), 1€ O, re R, pe RY Ae Sy
that v, (t,2) = —u,(t, ) and H,(t,z) = —G,(t,z, —r, —p, —A). Observe that the assumption that
G is lower semi-continuous ensures that Hj is upper semi-continuous. Moreover, note that the
assumption that for all n € Ny we have that G, is degenerate elliptic shows that we have for all
n € Ny that H, is degenerate elliptic. Furthermore, observe that assures that for all n € N
we have that v, is a viscosity solution of

(L) (t,2) + Ho(t, 2,0, (¢, ), (Vau,)(t, ), (Hess, v,) (¢, 2)) = 0 (86)
for (t,x) € (0,T) x O. In addition, note that proves that for all non-empty compact K <
(0,T) x O x R x R? x S; we have that

nmsup[ sup (|vn<t,x>—vo<t,x>|+\Hnu,x,r,p,m—Ho<t,x,r,p,A>|)]=o. (87)

n_>m (t7x7r7p7A)€’C

Combining this, , the fact that Hy is upper semi-continuous, and the fact that for all n € Ny we
have that H,, is degenerate elliptic with Lemma demonstrates that vy is a viscosity solution
of

(Lvo)(t, x) + Ho(t, z, vo(t, ), (Vo) (t, x), (Hess, vo)(t,z)) = 0 (88)
for (t,2) € (0,T) x O. Hence, we obtain that wg is a viscosity solution of

(Luo)(t,z) + Golt, m,uo(t, ), (Vyuo)(t, z), (Hess, uo)(t, x)) <0 (89)
for (¢,2) € (0,T) x O. This completes the proof of Corollary [2.19] O

Corollary 2.20. Letde N, T € (0,0), let O < R be a non-empty open set, let u,: (0,T) x O —
R, n € Ny, be functions, let G,: (0,T) x O x R x RY x Sy — R, n € Ny, be degenerate elliptic,
assume that Go: (0,T) x O x R x RY x Sy — R is continuous, assume for all non-empty compact

K< (0,T) x OxR xR xS, that

lim sup
n—o0

sup <‘Gn(t,$,T,p,A) —Go(t,l’,’/’,p,A)| + ‘un(twr) —Uo(t,l‘)|>] = 07 (90)
(t,x,r,p,A)EK
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and assume for all n € N that u,, is a viscosity solution of
(Lup)(t,2) + Gu(t, 2, un(t, x), (Vou,) (¢, ), (Hess, uy ) (t, ) = 0 (91)
for (t,z) € (0,T) x O (cf. Definitions and . Then we have that ug is a viscosity

solution of
(Luo)(t,z) + Go(t, x,uo(t, ), (Vyuo)(t, x), (Hess, uo)(t, x)) = 0 (92)

for (t,z) € (0,T) x O (cf. Definition[2.7).

Proof of Corollary[2.20. First, observe that Lemma [2.18] ensures that ug is a viscosity solution of
(%uo)(t, x) + Go(t, x,ug(t, z), (Vaug)(t, x), (Hess, ug)(t,z)) = 0 (93)

for (t,x) € (0,7) x O. Next note that Corollary proves that wug is a viscosity solution of
(Zuo)(t, ) + Go(t, z,uo(t, ), (Vauo)(t, z), (Hess, uo)(t, ) <0 (94)

for (t,x) € (0,T7) x O. Combining this with establishes (92)). This completes the proof of
Corollary [2.20] O

2.4 Approximation results for solutions of stochastic differential equa-
tions (SDEs)

Lemma 2.21. Let d,me N, T € (0,0), let |-| : R — [0,0) be the standard Euclidean norm on
RZ, let ||| : R*™ — [0,00) be the Frobenius norm on RY>™ et O < R? be an non-empty open
set, let pi,, € C([0,T] x O,R?), n € Ny, and o, € C([0,T] x O,R>*™) n e Ny, satisfy for all n € Ny

that
n ta - Mn ta n t) — Un t,
. (u (t,2) = pn(t )] + o (t, 7) = o y>||) o %5)
t€[0,T] z€0 yeO\{x} |z -y
assume that
lim sup [ sup sup ( [pn(t 2) — pio(t, )| + flon(t, x) — oo(t, )| )] =0, (96)
n—00 te[0,T] zeO

let (Q, F, P, (Ft)iwefo,r)) be a stochastic basis, let W: [0,T] x Q& — R™ be a standard (Fy)seqo,1-
Brownian motion, and for everyn € Ny, t € [0,T], x € O let X" = (X)) seppry: [, T]xQ — O
be an (Fy)seem-adapted stochastic process with continuous sample paths satisfying that for all
s € [t,T] we have P-a.s. that

XM = g 4 J fn (1, X0T) dr + J o (r, XHT) dW,. (97)
t t
Then
limsup | sup sup sup (E[HX;”I — ngtv”fHQD = 0. (98)
n—0o0 te[0,T] s€[t,T] z€O

Proof of Lemma[2.21 Throughout this proof let L € R satisfy for all t € [0,T], z,y € O that

lo(t, ) = po(t, y) | + lloo(t, ) = oot y)|| < Lz —y]. (99)

Note that, e.g., Karatzas & Shreve [28, Theorem 5.2.9| ensures that for all n € Ny, ¢ € [0,T],

x € O we have that )

sup B[ | X2 | < oo (100)
]

selt, T
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Next observe that proves that for all n e N, t € [0,T], s € [¢t,T], € O we have P-a.s. that
X0 X0 [, X)X k[ o X70) = ol X200 W (100)
t t

Minkowski’s inequality and It6’s isometry hence ensure that for all n € N, ¢ € [0,T], s € [t,T],

x € O we have that
(B[l = x0 ) < [ ([l Xe) = ol X0 7])
t
1)
(102)
1/2

| toutrxzem) — oot x2) aw,
t

(4
< | (B[l X2 -t x2)P]) ar

- ( J;SE[H’UTL(T, X7 — o (r, XB,t,x)‘HQ:l dr)

The fact that for all a,b € R we have that (a +b)? < 2a® + 2b* and the Cauchy-Schwarz inequality
therefore show that for all n e N, t € [0,T], s € [t,T], z € O we have that

el ] <2 [ (Bt x4 - st X2 F]) |
t
f E |l (r. X2%) = oo X0 ar
<2T L IE[Hpm(r, XY — ig(r, X,W)yﬁ] dr

o2 [ B[l X24%) — o X055 ]
t

This and the fact that for all a,b € R we have that (a + b)? < 2a® + 2b* prove that for all n € N,
t€[0,T], s€[t,T], x € O we have that

E|
< QTJ <2E[Hun(r, XH) = po(r, Xf’t’x)!f] + QE[HHO(ra XH) = po(r, Xf’t’x)HZ] ) dr(104)
t

42 f <2 E[Man(r, XET) gy (, X ) Hﬂ 42 E[mao(r, XY oo (r, Xf,”t"”*")\HQ] ) dr
t

Combining this with demonstrates that for alln e N, t € [0,T], s € [¢,T], x € O we have that

n,t,x 0,t,x 2
Xmbe X0t }

B[ Xt — x0te|*| < 422(T + 1) J B[ |zt — x| ar
(105)

+4T(T + 1) [ sup sup (| (r,y) = po(r,9)|* + [lon(r, y) — oo(r, y)W)]-
re[0,T] yeRd

Gronwall’s inequality and (100) hence imply that for all n € N, t € [0,T], s € [t,T], x € O we
have that

B[ |z - x00 ]

) (106)
< 4T(T + 1) [ sup sup (H:un(ra y) - MO(TJ y)HQ + H‘Un({ru y) - UO(Tv y)”’2)] 64L T(TJrl).
TE[O,T] ye]Rd
This and establish . This completes the proof of Lemma m n
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2.5 Existence results for viscosity solutions of linear inhomogeneous
Kolmogorov PDEs

Lemma 2.22. Let d,me N, T € (0,0), let {-,->: R x R — R be the standard Euclidean scalar
product on R?, let ||-| : RY — [0, 00) be the standard Euclidean norm on R?, let ||| : R>*™ — [0, 00)
be the Frobenius norm on R™>™  let ue C([0,T] x R4 RY), o € C([0,T] xR? R¥>*™), g e C(R% R),
he C([0,T] x R4 R), assume that u and o have compact supports, assume that

sup sup sup

w(t — (t + |[|o(t —o(t
te[0,T] zeR4d yeRa\ {x}

< 0,
|z =yl

let (2, F,P, (Ft)iwefor)) be a stochastic basis, let W: [0,T] x @ — R™ be a standard (Fy)ie[o.1)-
Brownian motion, for every t € [0,T], x € R? let X" = (X'")sepery: [, T] x @ — R? be an
(Fs) s, 11-adapted stochastic process with continuous sample paths satisfying that for all s € [t, T

we have P-a.s. that
X =g+ J
t

and let u: [0,T] x RY — R satisfy for all t € [0,T], x € R? that

S

p(r, X505 dr + J o(r, X2") dW,, (108)
¢

u(t,z) = E[g(X;I) + LT h(s, Xb7) ds] (109)

(cf. Lemma . Then we have that u is a viscosity solution of
(Lu)(t,z) + § Trace(o(t, z)[o(t, z)]* (Hess, u)(t, ) + {u(t, z), (Vou)(t,z)) + h(t,z) = 0 (110)

with w(T,z) = g(x) for (t,z) € (0,T) x R? (cf. Definition [2.7).

Proof of Lemma[2.29. Throughout this proof let KX = (supp(u) U supp(c)) < [0,7] x R, let
p € (0,00) satisfy K < [0,T] x (—p, p)¢, let m,, € C°([0,T] x R4, RY), n e N, and 5, € C°([0,T] x
RY, R™>™) n e N, satisfy |, .y[supp(m,) U supp(s,)] < [0,T] x (—p, p)* and

1nnsup|:sup up (Wnnu,x>—-uawx>+—nsn@,x>—-au,x>u)] —o,
n—00 te[0,T] zeR4
let g, € C°(R4,R), neN, and b, € C°([0,T] x R4, R), n € N, satisfy for all n € N that

SUD4e[0.7] SUPerd [o|<n (|00 (2) = g(x)| + [Ba(t, ) — h(t,2)]) < 2, (112)

let G™F: (0,T) x R x R x RY x Sy — R, n, k € Ny, satisfy for all n,k e N, t € (0,7), z € R?,
reR,peRY AeS, that

GOt 2,1, p, A) = Y Trace(o(t, 2)o(t, 2)* A) + (u(t, 2), p) + h(t, 2), (13)
GY*(t,z,r,p, A) = L Trace(o(t, )0 (t,x)*A) + (u(t, ), p) + he(t, z), (114)

and
G™ (t,z,r,p, A) = L Trace(s, (t,2)s,(t, 2)* A) + (m, (¢, ), p) + be(t, z), (115)

for every t € [0,T], z € RY n e N let X" = (X2 seperys [8,T] x Q — R¢ be an (Fs) seqe,11-
adapted stochastic process with continuous sample paths satisfying that for all s € [t,T] we have
P-a.s. that

%g,t,x =T+ J mn(rv %:L’t’x) dr + J 5n(,ra %Z}’t’m) dWT <116)
t t
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(cf., for example, Karatzas & Shreve |28, Theorem 5.2.9]), and let u™*: [0,T] x R — R, n € N,
k e N, satisfy for all n,k e N, t € [0,T], x € R? that

rT
umr(t x) = E[gk(%f}m) + br(s, X2H7) ds] (117)
Jt
and
rT
() = B[ X5+ [l X2 a] (118)
Jt

(cf. Lemma [2.1). Note that Lemma (applied with g « gg, h <« b, p «— m,, 0 «— 5,
Xb* — Xm0 for n € N, t € [0,T], z € O in the notation of Lemma establishes that for all
n,keN, te[0,T], z e R we have that u™* e C12([0,T] x R%, R), u™*(T, x) = gi(), and

(Lu™*)(t, z) + § Trace(s,(t, z)[s,(t, 2)]* (Hess, u"*)(t, ) + (m, (¢, 2), (V,u™*)(t, z))
+ bi(t,z) = 0. (119)

Lemma hence implies that for all n, k € N we have that u™* is a viscosity solution of

(a%u"’k)(t, x) + %Trace(ﬁn(t, z)[5,(t, 2)]* (Hess, u™*)(t, x)) +{m, (¢, ), (Vu™")(t, z))
+ f)k(t,l’> =0 (120)

for (t,z) € (0,7) x R%. Next note that (108, (116)), and the fact that for all n € N we have
that (supp(m,,) U supp(s,) U supp(u) U supp(a)) < [0,T] x (—p,p)? demonstrate that for all
neN, tel0,T], zeRN\(—p,p)¢ we have that P(Vs € [t,T]: X¥* = z = XI®) = 1 (cf, e.g.,
[5, Ttem (i) in Lemma 3.4]). Hence, we obtain for all n,k € N, ¢t € [0,T], z € R\ (—p, p)? that
vk (t,2) = u%*(¢, ). Combining this with and assures that for all n,k € N we have
that

sup_sup [[u (¢, 2) —w(t )| | = sup sup (@) — w0t 2)]|
t€[0,T] zeR4 t€[0,T] z€(—p,p)*

T
< sup  sup (E[|gk<ae%“>—gk<x;f>|]+EU \bk(sa%?’t’”“’)—bk(S7X§””)|dSD-
t

t€[0,T] ze(—p,p)?

(121)

Moreover, observe that the fact that for all k € N we have that g, € C*(R? R), the fact that
for all k € N we have that b, € C*([0,T] x R R), the fact that (—p, p)? is convex, the fact
that [—p, p]? is compact, and the fact that for all n € N, ¢t € [0,T], x € (—p, p)? we have that
P(Vse [t,T]: X'® € [—p,p]Y) = P(Vs € [t,T]: X% € [—p,p]¢) = 1 (cf., e.g., |5 Ttem (i) in
Lemma 3.4]) yields that for all n, k € N we have that

sup  sup  (E[|gr(X7") — ax(X7)]])

te[0,T] ze(—p,p)?
( sup |(V9k)(?/)|> [ Xfr’x”])
ye(—p,p)? (122)

<| sup [(Var)®)] || sup sup (B[|XF" — Xz7]])
ye(—p,p)? te[0,T] xe(—p,p)?
<0

< sup  sup E
te[0,T] ze(—p,p)?

.
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and

T
wp s (EU |nk<s,ae:“>—bk<s,xz»w>|ds])

te [OvT] z€(—p,p d

T
< sup  sup EJ sup  [(Vabe)(s,9)| | 1X55 — X07| ds (123)
te[0,T] ze(—p,p)¢ t \ye(-p.,p)?

T
(s s [(Tbo)ta)l) | sup  sup (E[ [ aezm—xz@\dsb.
te[0,T] ze(—p,p)? te[0,T] ze(—p,p)? t

Furthermore, note that Lemma [2.21] ensures that

T
limsup [ sup  sup (E“%;m - X7°|] + E[J |xnbT — X5 ds]) =0. (124)
n—00 te[0,T] ze(—p,p)? t
Combining this with (121))—(123) guarantees that for all k € N we have that
limsup | sup sup <\u"’k(t, x) — uo’k(t,x)|> =0. (125)
n—00 te[0,T] zeR4

Moreover, observe that (120) proves that for all n, k € N we have that u™* is a viscosity solution
of
(GuE) (@) + GME(E 2 wE (E @), (Vu™F)(E @), (Hess, ™) (t, 7)) = 0 (126)

x) € (0,7) x RY Furthermore, observe that (111]) yields that for all non-empty compact

for (t,z) €
c (0,T) x O xRdedewehavethat

lim sup sup ‘G”’k(t,w,r,p,A)—Go’k(t,$,r,p,A)|

n—00 (t,x,r,p,A)eC

<hmsup[ sp (u(t.2) = m(t,2)] ||p||)] (127)
n—00 (t,x,r,p,A)eC

+ lim sup [ sup (Hlﬁn(t,x)[sn(tw)]* —o(t,z)[o(t, )] HIz‘HH)

n—ao (t,x,r,p,A)eC

This, - the fact that G°Y is continuous, and Corollary [2.20) - 0| demonstrate that for all
ke N we have that u* is a viscosity solution of

(gt R (t, 2) + GOF(t, 2, u (¢, x), (V,u"F) (L, ), (Hess, u®*)(t,2)) = 0 (128)

for (t,z) € (0,T) x R% Moreover, observe that (112)) ensures that for all compact C < [0,7] x R?
we have that

lim sup [(SUP E[|gr(X7") —Q(X%I)H] <limsup | sup E[|gn(X7z") — g(X7")]

k—00 t,x)eC k—0o0 (t,x)eC,
x| <k
<limsup | sup  sup  E[[ge(X7") — g(X7")|] (129)
k—0o0 tE[O,T] xeCU(—p7p)d7
[z|<k

1

<limsup | sup sup |gi(z) —g(x)| | < limsup <—) =0
k—00 te[0,T] zeR4, k—o0 k

lzl<k




and

lim sup [ sup E[J ‘hk LX) — ,Xﬁ’”)‘ dsu
k—00 t,z)eC
= limsup | sup E[J ‘bk s, Xb) — (s,sz)‘ ds]
k—o0 (t,x)eC,
| Jzl<k
B (130)
< limsup | sup sup EU }f)k Xtac _ 7X§,z)‘ ds]
k—o0 te[0,T] zeRd,
<k
. 3 T
<limsup | T sup sup |bi(t,z) — h(t,z)| | <limsup (_) = 0.
k—o0 te[0,T] zeR<, k—o0 k
lz|<k

Combining this with (109)), (118]), and (129)) proves that for all compact C < (0,T) x R? we have
that

lim sup [ sup [u”¥(t,z) — u(t,m)‘] =0. (131)
k—00 (t,z)eC
Corollary [2.20} the fact that for all non-empty compact C < (0,T) x R? x R x R? x S; we have that

lim SUPg o0 [Sup(t,x,r,p,A)EC |G07k(ta T, T,Dp, A) -G (tv T, 7, D, A)H = 07 '. and " show that u
is a viscosity solution of

(Lu)(t,x) + GOt 2, u(t, ), (V,u)(t, x), (Hess, u)(t, x)) = 0 (132)
for (t,z) € (0,T) x RY. This assures that u is a viscosity of
(Lu)(t,z) + § Trace(o(t, z)[o(t, z)]* (Hess, u)(t, ) + {u(t, z), (Vou)(t,z)) + h(t,z) =0 (133)

for (t,z) € (0,T) x R% Next note that (108) and (109) ensure that for all x € R? we have
that u(7T,z) = g(z). Combining this with (133)) establishes (110)). This completes the proof of
Lemma 2.22] [l

Proposition 2.23. Let d,me N, T € (0,0), let O < R? be a non-empty open set, let {-,-y: R? x
R? — R be the standard Euclidean scalar product on R?, let |-| : R? — [0,00) be the standard
Euclidean norm on R%, let ||-|| : R>™ — [0,00) be the Frobenius norm on R¥*™  for every r €
(0,0) let O, < O satisfy O, = {x € O: (|Jz| < r and {y € R%: |y—z| < Yr} < O)}, let
ge C(O,R), he C([0,T]xO,R), ue C([0,T]xO,R%), 0 € C([0, T] x O,R¥>™), V e C12([0, T] x
O, (0,)), assume for all r € (0,00) that

lutt, ) = p(t, )l + llo(t,2) = o(t, )]
sup({

|z — |

:te |0, T]xyeOT,x#y}u{O})<oo, (134)
assume for allt € [0,T], x € O that
(LV)(t,z) + 4 Trace(o(t, z)[o(t, )]*(Hess, V)(t,2)) + (u(t, z), (V,V)(t,z)) <0, (135)

assume that sup,¢ ) [infiefor) infreoro, V(8 2)] = 00 and inf,e(o,.0)[SUDsefo 7] SUPze0\0, (3 o ((Ti!) +

l‘]}((ttiy)] 0, let (Q, F,P, (Ft)iefo,r)) be a stochastic basis, let W: [0,T] x Q& — R™ be a standard
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(Fy)tefo,ry-Brownian motion, for every t € [0,T], x € O let X" = (X0")sepry: [t,T] x Q@ — O
be an (Fy)sepr-adapted stochastic process with continuous sample paths satisfying that for all
s € [t,T] we have P-a.s. that

Xst’z:QJ-i-J

t

S S

u(r, XY dr + J o (r, XY AWV, (136)

t

and let u: [0,T] x RY — R satisfy for all t € [0,T], x € R? that

T
u(t,z) = ]E[g(X;m) + f h(s, X*) ds]. (137)

Then we have that u is a viscosity solution of
(Lu)(t,z) + § Trace(o(t, z)[o(t, z)]* (Hess, u)(t, 2)) + {u(t, z), (Vou)(t,2)) + h(t,z) =0 (138)

with w(T,z) = g(z) for (t,z) € (0,T) x O (cf. Definition [2.7).

Proof of Proposition[2.23. Throughout this proof let g, € C(R4,R), n € N, and h,, € C([0,T] x
R% R), n € N, be compactly supported functions which satisfy [J,ysupp(bn)] <= [0,T] x O,

[ Uven supp(gn)] < O, and

imsup | sup su |9n() —g(@)|  |ba(t,2) = R 2)[) | _
: n—>oop [tG[O,I:I)“] xe(IQ) ( V(T, .CE) * ‘/(jf7 3;) )] 0, (139)

let m, € C([0,T] x RY, RY), ne N, and 5, € C([0,T] x R R>*™) n e N, satisfy that

(I) we have for all n € N that

(£ ) = (t, )| + st ) —5n<t»y>”] <, (140)

10.7] 5.y RE l [z — ]

te[0,T] z,yeRe -y
(IT) we have for all n e N, t € [0, T], z € O that
Lyt @) [[mn(t, 2) — p(t, ) + llsn(t, 2) — o, 2)[]] = 0, (141)
and
(III) we have for all n e N, t € [0,T], z € R\{V < n + 1} that |m,(t,z)| + ||s.(¢,2)|| =0,

for every n € N, t € [0,T], x € R? let X" = (X"0%) cupy: [6,T] x Q@ — R? be an (Fy)sep7-
adapted stochastic process with continuous sample paths satisfying that for all s € [t,T] we have
P-a.s. that

X = f (1, X707) drr + f 5, (r, X07) W, (142)
t t

(cf., for instance, Karatzas & Shreve [28, Theorem 5.2.9]), let u™*: [0, T] x R? — R, n € Ny, k € N,
satisfy for all n,k e N, t € [0,T], x € R? that

rT
ut(t x) = E[gk(%gm) + br(s, XTH") ds] (143)
Jt
and
rT
uo’k(t, x) = E[gk(X}x) + br(s, X07) ds} (144)
Ji
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(cf., e.g., |5, Lemma 2.1]), and for every n € N, t € [0,T], x € O let 75%: Q — [t,T] satisfy
bt = inf({s € [¢,T]: max{V (s, X2"*),V (s, Xt")} = n} u{T}). Next observe that Lemma

n

(applied with g «— m,, 0 < s,, g < gg, h < bi for k,n € N in the notation of Lemma [2.22)
ensures that for all n, k € N we have that u™* is a viscosity solution of

(L) (8, 2) + L Trace(s, (¢, ) [s,(t, 2)]* (Hess, wF) (¢, 2)) + (my, (L, 2), (Vu"F) (¢, 2))
+ be(t,z) =0 (145)

for (t,z) € (0,T) x R%. Moreover, observe that Items ([)-([II) and (142) assure that for all n € N,
t €[0,T], x € O we have that

IP’(Vs € [, T]: Lyyeyp, X0 = 1 {ngz,x}X?x) —1 (146)
(cf., e.g., |5, Lemma 3.5]). This implies that for all n,k e N, t € [0, T], x € O we have that
E[lgx (X7"") — or(X7")]]

= B cnlon(65°) ~ 03] <2 suploto)l | P < 7)
ye

(147)

and

T
f E[Jfe(s, E1%) — by (s, X5%)[] ds
. (148)
= [ gyl 220) = s, X2 | s < 2
t

SUp sup |hk(8,y)|] P(r," <T).
s€[0,T] yeO

Combining this with the fact that for all ¢ € [0, T], x € O, n € N we have that E[V (757, X:txx)] <
V(t,z) (cf.,, e.g., [B, Lemma 3.1]|) proves that for all n,k € N we have that

[u (¢, 2) —u®(t,2)| < 2| suplgi(y)| + T sup_sup [bi(s,y)| | P(ry" < T)

_yeO s€[0,T"] yeO ]
< 2 |sup|ge(y)| + T sup sup |hr(s,y)| ]P’(V(Tf;x,thz) > n)
yeO s€[0,T] ye© ™
- - (149)
2 o
< = [suplan(y)| + T sup sup ou(s, y)| | E[V(rie, X5
1| veo s€[0,T] yeO | n
i -
< — |sup|ge(y)| + T sup sup |bi(s,y)| | V(¢ x).
1| veo s€[0,T] yeO |
This demonstrates that for all £ € N and all compact K < [0,7] x O we have that
limsup | sup <\un’k(t,x) - uo’k(t,x)|>] =0. (150)
k—0o0 (t,x)ek

In addition, note that the assumption that sup, ¢ (g o) [infieo,r7,2ert0, V (t,2)] = 00 and (141)) ensure
that for all compact K < [0,7] x O we have that

lim sup [(sup (Hmn(t,a:) —u(t, )| + [lsn(t, z) — o(t, )| )] ~ 0. (151)

n—00 t,z)elC
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Corollary [2.20}, (145]), and (150]) yield that for all £ € N we have that u®* is a viscosity solution of

(%uo’k)(t, x) + % Trace(a(t, x)[o(t, 2)]* (Hess, u®*)(t, m)) + {u(t, z), (Vu") (L, )
+hP(t,z) =0 (152)

for (t,x) € (0,T) x O. Moreover, note that (137)), (139)), and (144) prove that for all compact
K < (0,T) x O we have that

limsup | sup [u®*(¢,z) — u(t,2)|| =0 (153)
k—o0 (t,x)ek

(cf., e.g., |5, Item (iv) in Lemma 2.2|). This, (139), (152), and Corollary demonstrate that u
is a viscosity solution of

(Lu)(t,z) + § Trace(o(t, z)[o(t, z)]* (Hess, u)(t, ) + {u(t, z), (Vou)(t,z)) + h(t,z) =0 (154)

for (t,z) € (0,T) x O. Next note that (137)) ensures that for all x € R? we have that u(T, z) = g(x).
This and (154) establish (138)). This completes the proof of Proposition [2.23] O

3 Semilinear Kolmogorov PDEs

In this section we establish in Theorem in Section below, the main result of this article, a
one-to-one correspondence between suitable solutions of certain SFPEs and suitable viscosity solu-
tions of certain semilinear Kolmogorov PDEs and we thereby obtain an existence, uniqueness, and
Feynman—Kac type representation result for viscosity solutions of semilinear Kolmogorov PDEs.
Our proof of Theorem employs the following four constituents: (i) the existence and unique-
ness result for solutions of SFPEs in [5, Theorem 3.8], (ii) the Feynman-Kac type representation
result for viscosity solutions of linear inhomogeneous Kolmogorov PDEs in Proposition [2.23]in Sec-
tion above, (iii) the uniqueness result for viscosity solutions of suitable degenerate parabolic
PDEs in Proposition in Section below, and (iv) the existence and uniqueness result for
solutions of SDEs in Proposition in Section below.

In Section [3.1] we establish in Proposition [3.5] under suitable assumptions that a semilinear
Kolmogorov PDE with Lipschitz continuous nonlinearity possesses at most one viscosity solution
which satisfies a certain growth condition. Proposition generalizes Hairer et al. [I8, Corollary
4.14] with respect to the possible time dependence of the drift and diffusion coefficient functions
of the PDE as well as with respect to the possible appearance of a one-sided Lipschitz continuous
nonlinearity in the PDE. Our proof of Proposition is strongly inspired by Hairer et al. [18]
Section 4.3]. Our proof of Proposition employs the comparison result for viscosity sub- and
supersolutions of suitable degenerate parabolic PDEs in Corollary [3.4] Corollary [(3.4] in turn, is
a rather direct consequence of Lemma [3.3] Our proof of Lemma [3.3] is strongly inspired by, e.g.,
Crandall et al. [9, Section 8], Hairer et al. [I8, Corollary 4.11|, and Imbert & Silvestre [26, Section
2.3]. For completeness we provide in Section a detailed proof for Lemma . Our proof of
Lemma [3.3]is based on the well-known result in Crandall et al. [9, Proposition 3.7| (cf. also Hairer
et al. [I8, Lemma 4.9]), which we recall in Lemma below, and on a special case of the result
in Crandall et al. [9, Theorem 8.3] (cf. also Peng [40, Theorem 2.1 in Appendix C|), which we
recall in Lemma below. In Section |3.2| we establish in Proposition [3.6| an existence result for
solutions of SDEs with drift and diffusion coefficient functions which satisfy certain Lipschitz and
coercivity type conditions. Proposition is essentially well-known in the scientific literature (see,
e.g., Gyongy & Krylov [17, Corollary 2.6]). For completeness we provide in Section a detailed
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proof for Proposition [3.6] In Section [3.3] we establish in Theorem [3.7]an existence, uniqueness, and
Feynman—Kac type representation result for viscosity solutions of semilinear Kolmogorov PDEs.
Our proof of Theorem [3.7] is based on the existence and uniqueness result for solutions of SFPEs
in [5, Theorem 3.8], the Feynman—Kac type representation result for viscosity solutions of linear
inhomogeneous Kolmogorov PDEs in Proposition in Section the uniqueness result for
viscosity solutions in Proposition in Section 3.1} and the existence and uniqueness result for
solutions of SDEs in Proposition in Section [3.2l We conclude this article by providing in
Corollary [3.8, Corollary [3.9 and Corollary below several sample applications of Theorem

3.1 Uniqueness results for viscosity solutions of semilinear Kolmogorov
PDEs

Lemma 3.1. Let d e N, let ||-| : R? — [0,0) be a norm on R%, let O < R? be a non-empty set,
let n: O — R be upper semi-continuous, let ¢p: O — [0,0) be lower semi-continuous, assume that
infae(0,00) [SUPLeo (M(Y) — ad(y))] € R, and let x = (xa)ae(o w): (0,00) — O satisfy that

imsup |sup (1)~ a9(3)) = (n(z.) ~ ad(z.) | =0 (155)

a—00 yeO
Then
(i) we have that limsup,_,,[ad(z,)] =0 and

I

(i1) we have for all ¥ € O and all ay, € (0,00), n € N, with limsup,,_,., [|Ta, — 2] = 0 < ©
liminf,, o, v, that ¢(x) = 0 and 9(x) = lima—ew[sup,eo(n(y) = ad(y))] = sup,es-10) 1(y)-

Proof of Lemma (3.1 Throughout this proof let S, € (=0, ], @ € (0,0), and &, € [0, 0], «
(0, 00), satisty for all « € (0,00) that

So = sup (n(y) —aoly))  and o =sup (n(y) — ad(y)) — (n(za) — ad(za)).  (156)

yeO

m

Observe that ([156]) assures that for all & € (0, c0) we have that S, = n(z,)—ad(xr,)+e.. Moreover,
note that ((155)) ensures that lim, ., S, € R and liminf, o e, = limsup,_, e, = 0. Hence, we
obtain that there exists a € (0, 0) such that (|J,. (a.00) 1060 €a}) < R. This ylelds that

0 < limsup (%Qb(xa)) = hin_‘igp [(77(%) - %gb(xa)) - (77(%) - Ofgb(xa))]

a—0
157
< timsup [sup (1(5) — 26(0) — (1(00) — ad(za)) | = Timsup (Sus— 5o +20) =0,
a—0 yeO a—0
This establishes Item . It remains to establish Item . For this let r € O and let o, € (0, 0),
n € N, satisfy liminf, ,, a,, = o0 and limsup,,_,, ||z, — 2| = 0. Note that ensures that
liminf, ., ¢(x,) = limsup,_,, #(z,) = 0. Combining this with the assumption that ¢ is lower
semi-continuous demonstrates that

0 < ¢(x) < liminf é(z,,) = 0. (158)

The assumption that 7 is upper semi-continuous and the fact that for all y € O we have that
®(y) = 0 hence imply that

n(x) = limsup n(z,, ) = limsup (n(xan) — anqS(xan)) = limsup (S, — €a,,)

n—oo n—00 n—0o
: 159
= lim S,, = sup n(y) = n(r). (159)
o ved=1(0)
This and ([158) establish Item (). This completes the proof of Lemma [3.1] O
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Lemma 3.2. Let d,k € N, ¢,T € (0,0), let ||| : (UmenR™) — [0,00) satisfy for all m € N,
= (21,22,...,2y) € R™ that |z| = (O, |2:]?)"?, let ||- H| (UmenR"™™) — [0, 0) satisfy for
allme N, A€ Rme that [|Al] = sup,egm (0 (| Az| lz|71), let © < R be a non-empty open
set, let @ = (D(L, %)) weoryxor € CV2((0,T) x OF R), let G;: (0,T) x O x R x R? x §§ — R,
i€ {1,2,...,k}, satisfy for all i € {1,2,...,k} that G; is degenerate elliptic and upper semi-
continuous, let u;: (0,7) x O — R, i € {1,2,...,k}, satisfy for all i € {1,2,...,k} that u; is a
viscosity solution of

(Lw;)(t, z) + Gi(t, m,ui(t, x), (Vau) (t, x), (Hess, u) (t, ) =0 (160)
for (t,x) € (0,T) x O, and let (t,r) = (t,r1,¥2,...,5) € (0,T) x OF be a global mazimum
point of (0,T) x OF 3 (t,x) = (t,x1,29,...,7%) — [Sh, wi(t,z;)] — ®(t,21,29,...,7%) € R

(cf. Definitions . Then there exist bl,bQ,.. b € R A, Ag oo A € Sy such that for
alli e {1,2,...,k} we have that (b, (V.,®)(t,1), A;) € (P ui)(t, ), S b = (£®)(t,r), and

A ... 0
1
— [g + || (Hess, @)(, )| | Idgea < | = -+, | < (Hess, ®)(t,z) + [(Hess, ®)(t,1)]* (161)
0 ... A
(cf. Definition[2.15).

Proof of Lemma([3.Z Throughout this proof let v;: (0,7) x O — R, i € {1,2,...,k}, satisfy for
allie {1,2,...,k}, te (0,7), z € O that v;(t,z) = u;(T —t,x) and let ¥: (0,T) x O — R satisfy
for all t € (0,7), x = (z1,79,...,2;) € OF that

U(t,x1, T, .., x) = (T —t, 21,29, ...,%x). (162)
Observe that guarantees that
(i) we have for all i € {1,2,...,k} that v; is upper semi-continuous,
(ii) we have that ¥ € C12((0,T) x O%,R), and

(iii) we have that (T—t, 11,2, . ., k) is a global maximum point of (0, 7)xO% 5 (t, 21, o, ..., 7%)
(Zf:1 vi(t,x)) = U(t,x1,29,...,2%) €R.

In addition, note that ensures that for all ¢ € {1,2,...,k}, t € (0,T), € O we have that
(Pru)(t,x) = {(b,p, A) e R x R? x Sy: (=b,p, A) € (P*u;)(T —t,x)} and

(B v)(t,2) = {(b,p, A) e R x RY x S¢: (=b,p, A) € (¥ w)(T — t,2)}. (163)
The fact that for all i € {1,2,...,k} we have that u; is a viscosity solution of
(Lw;)(t, z) + Gi(t, @, ui(t, x), (Vau) (t, x), (Hess, u) (¢, ) =0 (164)

for (t,x) € (0,7) x O and Lemma hence imply that for all i € {1,2,...,k}, t € (0,7), z € O,
(b,p, A) € (P*v;)(t, z) we have that

b—Gi(T —t,x,vi(t,x),p, A) = —[-b+ G;{(T — t,z,u;(T — t,z),p, A)] < 0. (165)

This and the assumption that for all i € {1,2,... k} we have that G, is upper semi-continuous
ensure that for all i € {1,2,... k}, M € (0,00) and all compact K < (0,7") x O we have that

sup{b eR: (b,p, A) € (Pv)(t,x), (t,x) € K, |vi(t, 2)| + |p]| + || A]] < M}
< sup{Gi(T —t,x,v(t,x),p, A): ( (b.p, A) € (PTvy)(t, z), (¢, z) € K, )} (166)

[oit, )] + | + 1Al < M
<sup{Gi(s,y.7,p, A): (T = s,y) € K, |r| + |p] + [| Al < M} < 0.
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Crandall et al. [9, Theorem 8.3] (applied with k « k, u; < v;, O; « O, ¢ «— W, t T —t, & « ¢
forie {1,2,...,k} in the notation of Crandall et al. [9, Theorem 8.3]) hence guarantees that there
exist ay, as,...,ar € R, Ay, Ao, ..., Ax € Sy which satisfy that

(I) we have for all i € {1,2,... k} that (a;, (V,¥)(T —t,x1,...,2%), 4i) € (BTu) (T — t,13),

(II) we have that

1
— |z + || (Hess, W)(T — t,2)|| | Idgwa

A .0 (167)
< | i 0t | < (Hess, U)(T — t,x) + e[ (Hess, U)(T — t,1)]%,
0 ... A

and
(IIT) we have that 3¢ | a; = (LUNT = t, 11,52, -, Tk)-

This and (163]) prove that
(A) we have for all i € {1,2,... k} that (—a;, (V.,P)(t,11,. .., 1), 4i) € (BTu) (4, 1),

(B) we have that

1
— [E + || (Hess, @) (t,1)|| | Idgra

A .0 (168)
< | ¢ 0t | < (Hess, @) (1) + e[ (Hess, @)(t,1)]?,
0 ... A
and
(C) we have that 37 (—a;) = (Z®)(t, 11,52, ..., 2k)-
This establishes (161]). This completes the proof of Lemma [3.2] O

Lemma 3.3. Let d,k e N, T € (0,00), let {-,-y: R? x R — R be the standard Euclidean scalar
product on R, let |-| : RY — [0,00) be the standard Euclidean norm on R%, let O < R be a
non-empty open set, for every r € (0,00) let O, < O satisfy O, = {x € O: (|Jz|| < r and {y €
R |y —z| <V} € O)}, let Gi: (0,T) x O x Rx R xSy — R, ie{l,2,...,k}, satisfy for all
i€{1,2,...,k} that G; is degenerate elliptic and upper semi-continuous, let u;: [0,T] x O — R,
i€{1,2,...,k}, satisfy for all i€ {1,2,... k} that u; is a viscosity solution of

(Lw;)(t,x) + Gi(t, z,ui(t, x), (Vau) (L, x), (Hess, w) (t, ) =0 (169)

for (t,z) € (0,T) x O, assume that

k
sup [Z wi (T, x)] <0 and lim [sup sup ( ui(t,x)>
n—o0
) i=1

<0, (170)
te(0,T) 2eO\On

and assume for all t™ e (0,T), n € Ny, and all (x(»"),ri(n),A(")) e O xR xSy n e Ny,

3 (2

i e {1,2,...,k}, with limsup, [t — O + |2\ — 2| + yn X, |2 — 2] = 0 <
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lim inf,,_o0 [ > r(n)] — limsup, _,[>* r(n)] < Supnd\I[Zf”:1 |r§n)|] <wandV(neN,z,... 2, €

i=1"1 i=1"1

RY): — 530, aif® < 38 (o, A2y <5 X0 2 — zica|® that

(2

k
limsup | Y Gi(t™, 2™ " (L ()2 — 2] + ey ()2 — 20]), nAM) | <0 (171)
=1

7
n—aoo

cf. Definitions|2. ). en we have for allt € (0,1, x € O that >, u;(t,z) <0.
f. Definitions|2.912.5). Th have for all t € (0,T O that ¥ 0

Proof of Lemma[3.5 We intend to prove that for all t € (0,77], x € O we have that Zf;l w;(t, x) <
0 by showing that for all § € (0,0), ¢t € (0,T], x € O we have that Zf;l ui(t,r) < %. Throughout
this proof let § € (0,00), let v;: [0,T] x O — [—w0,0), i € {1,2,...,k}, satisfy for all i €
{1,2,...,k}, t€[0,T], z € O that

. _9 .
wilt, ) = u(t,r) —¢ >0 (172)
—00 11 =0,

let Hi: (0,T) x OxR xR xSy — R, ie{l,2,...,k}, satisfy for all i € {1,2,...,k}, t € (0,T),
reO,reR, peR? AeS, that

Hi(t,z,r,p, A) = Gi(t,z,r + 2,p,A) — &, (173)

let ®:[0,7] x O — [0,0) and n: [0,T] x OF — [—o0,®) satisfy for all t € [0,T], z =
(21, 29,...,2) € OF that n(t,z) = Zf;l v;(t, z;) and

2(t,7) = 5 'Z i — ||] (174)

let S € (—oo, 0] satisfy § = SUDyeq0,7] SUPer[ZL vi(t, )], let S,, € (—w0,0], a,r € [0,00),
satisfy for all «,r € [0, 00) that

Sa,r = Sup sup [n(ta ZE') - Oé(I)(t, .’L’)], (175)
te[0,T] ze(O,)*
and let ||| : R*D*kd) [0 00) satisfy for all A € RED*(kd) that
kd V2 T ka —/2 x = (T1,T,...,75) € RF\{0},
IA]| = sup [Z |in2] [Z |$i|2] : y=(y1,92, - Yra) € R™, . (176)
i=1 i=1 y = Ax
Observe that (170), the fact that sup,.o [Zf;l vl-(O,:U)] = —o0, and the fact that for all i €
{1,2,...,k} we have that v; < u; yield that
k k
sup Z%‘(T, z)| <0 and limsup | sup sup Zvi(t,x) < 0. (177)
ze0 | ;3 n—00 te[0,T] zeO\On ;—1
Moreover, observe that the assumption that for all i € {1,2,... k} we have that wu; is upper
semi-continuous implies that for all 7+ € {1,2...,k} we have that v; is upper semi-continuous.

Furthermore, note that (173 shows that for all i € {1,2,...,k} we have that v; is a viscosity
solution of
(Lv;)(t, ) + Hy(t, z, v;(t, z), (Vo) (¢, ), (Hess, v;) (¢, ) = 0 (178)
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for (t,z) € (0,7) x O. Next we claim that for all t € [0,T], x € O we have that

S = sup sup [Z vi(t,x)] < 0. (179)

te[0,7] zeO | ;5

We intend to prove (179) by contradiction. For this assume that S € (0,0]. Observe that the
hypothesis that S € (0,00] and (177)) ensure that there exists N € N which satisfies that

(i) we have that Oy # &,
(ii) we have that Oy is compact, and
(iii) we have that sup;co 7 SUpP,co, 35 it x)] = S.

The fact that for all i € {1,2,...,k} we have that v; is upper semi-continuous hence proves that
S € (0,90). Moreover, note that the fact that for all i € {1,2,..., k} we have that sup .o v;(0,2) =
—o0 yields that § = supye(o 71 SUD,e0, [> . vi(t, x)]. Note that the fact that ® € C([0,T] x OF, R)
and the fact that for all i € {1,2,..., k} we have that v; is upper semi-continuous ensure that for
all a € (0,0) we have that [0,T] x (On)* 3 (¢, 2) = n(t,z) — a®(t,x) € [0, 0) is upper semi-
continuous. This and the fact that Oy is compact prove that there exist ¢t(*) € [0,T], a € (0, 0),
and 2@ = ({23, . ,x,(ga)) € (On)*, a € (0,0), which satisfy for all a € (0,0) that

n(t(a), x(a)) — a@(t(a), x(a)) = sup sup [n(t,z)—ad(t,z)] = San. (180)
t[0,T] 2e(On )

Moreover, note that the fact that for all ¢ € [0,7], y € O we have that n(t,y,y,...,y) =
Zle v;(t,y) and the fact that for all ¢ € [0,T], y € O we have that ®(t,y,y,...,y) = 0 im-
ply that for all a € (0,00) we have that

SaN = &mfmppﬂt%yw.wy)—a®@45%.~7w]= sup sup
te[0,7] yeO te[0,T] yeO

Zw@w]=3>o(mm

i=1

Combining this with the fact that for all a, 5 € (0,00) with o« >  we have that S, nv < Ss
demonstrates that liminf, o, So y = limsup,_,,, Sa.n € [S,0) € R. Moreover, note that
and the fact that for all « € (0,00) we have that sup,.or[7(0,2) — a®(0,z)] = —oo yield that for
all o € (0,00) we have that

Soz,N = Ssup sup [n(ta ZL’) o OZCI)(t,LU)] (182)
te(0,T] ze(On )k

Item in Lemma (apphed with O « (O,T] X (ON)k, n < n‘(O,T]x(ON k., ¢ <« ®‘(O,T]><(ON)’C’
z «— ((0,0) 3 a— (), 2() e (0,T] x (Ox)*) in the notation of Lemma hence ensures that

k
0 = limsup [a® (), 2(*)] = limsup [% Z nga) - mﬁ“W] (183)

a—00 a—0 i=2

In addition, note that the fact that Oy is compact guarantees that there exist t € [0,T], ¢ =
(x1,22,- -, %) € (On)*, (n)nen < N which satisfy lim inf, o o, = o0 and limsup,, . [|t®) — t| +
|z(®») —¢|] = 0. Furthermore, observe that the fact that 7 is upper semi-continuous and the fact
that ® is continuous imply that

n(t,xr) = limsup [n(t(o‘"), 2@y — q, d(ten), @] =8 >o0. (184)

n—o0
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Combining this with the fact that for all x € O* we have that 7(0,2) = —oo shows that t €
(0,T]. Ttem of Lemma m hence ensures that 0 = ®(t,1) = %Zf;z |r; — xio1]? and n(t,x) =
SUD (¢, 2)e[0— (0)]~[(0,T]x (Ox )] 1 (t; ¥). Therefore, we obtain for all i € {1,2,...,k} that r; = r; and

k k
S < lim S,y = sz‘(f, L) =n(t,r) = sup sup [Z vi(t,y)] <S. (185)

a—0 i=1 te[D,T] yeON i=1

Combining this with (177)) ensures that t € (0,77). This implies that there exists j € N such that
for all n € N n [j, c0) we have that t(*») € (0, T'). Hence, we obtain that there exists a non-empty

set A/ € N which satisfies that N' = {a,,: n € N, () € (0,T)}. Note that Lemma (applied

with ¢ « %, O « (O,T) X (’)k’ O nq)‘(o,jﬁoh (Ui)z’e{l,Z ..... k} < (Ui|(0,T)xO)z‘e{1,2 ..... P t("),
3.2)

r — 2™ for n € A in the notation of Lemma guarantees that there exist bg”), bg”), . b}(:) e R,
A AW A e S, which satisfy that

(I) we have for all ne N, i€ {1,2,...,k} that

(B (Vo @) (#™, 207), nAM) € (P o) (1, 2(™), (186)

II) we have for all n e A that S* 5™ — (2
(

i=1"1

(ITT) we have for all n € N that

— (n+ n||(Hess, ®) (t™, x("))m) Idgra

(n)
A7 oo 0 ) (187)
<n| . 0| < n(Hess, ®)(t™, 2™) + n[(Hess, ®)(t™, 2M)]2,
0 ... AW

Observe that the fact that for all ¢t € (0,T), x € OF we have that (Hess, ®)(¢,z) = (Hess, ®)(0,0)
and Item show that for all n € N' we have that

— (1 + ||(Hess, ©)(0,0)||) Idgxa

< © .. | < (Hess, ®)(0,0) + [(Hess, ®)(0,0)]>.
0o ... A"

Moreover, note that Lemma [2.16] Item (I), and (178) ensure that for all n € N, i € {1,2,...,k}
we have that
B + Hy (™ 2™ 0, (t™, 2", (Y, @) (£, 2™, nA™) > 0. (189)

My 1

Combining this and Item with (173) proves that for all n € NV we have that

k
n n 5 n
MG ™, 2™ (1™ 2V) + — (V@) (", 2), nAM) > (190)

[EP

Next let (t<">,x§"),r§”),A§.”)) € (0,T) x O xR xSy, neN, ie{l?2.., k} satisfy for all
i€{l,2,...,k}, neN that

7

(™, 2, (¢, ™) + 5 A ineN (191)
(t, ;h% + %, O) - else.
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Observe that the fact that lim sup -, o, [t —t|+ | 2™ —x|] = lim sup,, _, . [[t@) —t|+ |z —¢[] =
implies that

hmmmhﬂm—ﬂ+4mﬁ—¢ﬂ]=o. (192)

n—o0

Moreover, note that the fact that for all i € {1,2,...,k} we have that r; = 1, , and (191])
ensure that

— 1/2
k 2
omMJWZm—xq=mMszﬂhﬁw
n—0o0 n—a =
=2 _ (193)
_ 1/2
< Vklim sup nZHx —X ||2 = 0.
n—0oo

In addition, observe that (191)) and the fact that lim sup,,, ., [7(t™, ™) — S| = 0 prove that
o) S ko
lim inf E r;/ | = limsu E r,; /| =S8+ —>0. 194
e L—l Z ] Pty [i—l ' ] t (154

Furthermore, note that the fact that {(t™,x™) e (0,T) x OF: n e N} U {(t,x)} is compact and
the fact that for all 7 € {1,2,...,k} we have that v; is upper semi-continuous guarantee that

sup{r("): neNjie{l,2,... k}} <o, (195)

Moreover observe that ( ensures that sup{| S

b)) implies that

"|:n e N} < co. Combining this with

zlz

sup [Z ]r ] (196)

neN i—1

Next note that (174) ensures that ||(Hess, ®)(0,0)|| < 4 (cf., for instance, (4.41) in Hairer et
al. [I8]). This, (191)), and (188)) imply that for all n € N, 21, 20, ..., 2, € R? we have that

=9 [Z \Zi2] Z 2 Az <5 [Z B Zz'—1|!2]~ (197)

=1

In addition, observe that (174)) guarantees that for all t € (0,T), z = (21,2, ...,7;) € OF we have
that

T1 — Ta l=i<k
20; — Ti_1 — T l<i<k
(Va@)(t,a) = 4 0 e
Tk — Tho1 l<i=k (198)
0 l=1=k

= Iy ()]s — wimq] + L1y (9) [25 — 2iga]-

Combining (171)) and - with - . hence ensures that

ko
0<— hm sup Z G; (t(” (”), rgn),n(l[zk] (i)[xf—n) — Xl@l]

e 5 < llm sup

k
[t™] -0

+ gy (6)[x" — xﬁii]),nAE"))] <0. (199)

This contradiction implies that S < 0. Therefore, we obtain that for all ¢t € (0,7], y € O we have
that Zle wi(t,y) < ’%‘s. This completes the proof of Lemma ]
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Corollary 3.4. Let d e N, T € (0,0), let {-,->: R? x R — R be the standard Fuclidean scalar
product on R, let |-| : RY — [0,00) be the standard Euclidean norm on R%, let O < R be a
non-empty open set, for every r € (0,00) let O, < O satisfy O, = {x € O: (x| < 7 and {y €
Re: |y —z| <} < O)}, let Ge C((0,T) x O x Rx R? x Sy, R), u,v e C([0,T] x O,R), assume
that

sup (u(T,z) —v(T,x)) <0 and inf | sup sup (u(t,z) —o(t,z))| <0, (200)
z€0 r€(0,00) | t€(0,T) ze®\O»

assume that G is degenerate elliptic, assume that u is a viscosity solution of

(Lu)(t,z) + G(t, z,u(t, ), (Vou)(t, z), (Hess, u)(t,z)) = 0 (201)
for (t,z) € (0,T) x O, assume that v is a viscosity solution of

(Lo)(t,z) + G(t,z,v(t, z), (Vov)(t, z), (Hess, v)(t,2)) <0 (202)

for (t,z) € (0,T) x O, and assume for all t,, € (0,T), n € Ny, all (x,,7n,An) € O x R x Sy,
n € No, and all (tp,tn,2A,) € O x R xSy, n € Ny, with limsup,,_,.[|t. — to] + |z, — 0| +
Ve, — ] = 0 < liminf, 0 (r, — t,) = limsup,, ., (r, — t,) < sup,en(|7a] + |tn]) < 0 and
V(neN, z3eRY: (z, A2 — G, Unz) <5z — 3 that

imsup [G(tn, Tn, 7o, (20 — Tn), NAL) — G(tn, Bn, Ty 020 — Ta), n2A,)] <0 (203)

n—o0

(cf. Definitions[2.3{2.6). Then we have for allt € [0,T], x € O that u(t,x) < v(t,z).

Proof of Corollary[3.4. Throughout this proof let H: (0,T) x O x R x R? x S; — R satisfy for all
te(0,T), 2O, reR, peRY AeS, that

H(ta x, P, A) = _G<t’ Z,—=r,—Dp, _A) (204)

Note that (204) ensures that H is degenerate elliptic. Moreover, observe that (204 and the
assumption that G € C((0,T) x O x RxR? x Sy, R) assure that H € C((0,T) x O x Rx R? xSy, R).
In addition, note that (204]) implies that —v is a viscosity solution of

(5(=0)(t,2) + H(t, 2, (—v)(t, @), (Va(=0))(t,2), (Hess,(—v))(t, 2)) =0 (205)

for (t,z) € (0,7) x O. Moreover, observe that guarantees that for all ¢, € (0,7), n €
N, all (z,, 70, An) € O x R xSy, n € Ny, and all (g,,v,,2,) € O x R xSy, n € Ny, with
lim sup,,_, ., [|tn —to| +[|zn — zo| +4/7 |Tn — ull] = 0 < liminf, (7, +t,) = limsup,,_,, (1, +t,) <
SUP,ery (7] + [ta]) < 00 and ¥ (n e N, z,5 € RY): =52 + [31°) < (2, Auz) + G, Ang) < 52 =3
we have that

limsup [G(tn, Tp, oy 0 — ), nAR) + H(bn, s T, (0 — 24), 12U, |

e (206)
= lim sup [G(tna Tns Ty n(xn - Pn)a nAn) - G(tna Tn, —Tp, n(xn - ;n)y _nmn)] < 0.

n—a0
Lemma (applied with k& «— 2, uy <« u, ugs <« —v, G; « G, Gy < H in the notation of
Lemma hence ensures that for all ¢ € (0,7T], € O we have that u(t,z) — v(t,z) < 0. The

assumption that u,v € C([0,T] x O,R) therefore ensures that for all ¢t € [0,7], z € O we have
that u(t,z) < v(t,z). This completes the proof of Corollary O
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Proposition 3.5. Let d,m e N, L,T € (0,0), let {-,->: R x R — R be the standard Euclidean
scalar product on R?, let || : RY — [0, 0) be the standard Euclidean norm on R4, let ||-|| : R™>*™ —
[0,00) be the Frobenius norm on R¥™>™ et O < R? be a non-empty open set, for every r € (0,00)
let O, < O satisfy O, = {x € O: (|z| <7 and {y e RY: ||y — z|| < 1} < O)}, let pe C([0,T] x
O,R%), o € O([0, T]xO,R>™), fe C([0, T|xOxR,R), g € C(O,R), V e CY2([0, T|x O, (0, x0)),
assume for all r € (0,0) that

a4 18t 2) — pt y)| + llolt,2) — ot y)ll ., v 1 g
p({ T :te|0,T],z,y € O,, #y} {O})<oo, (207)

assume for all t € [0,T], v € O, v,w € R that (f(t,z,v) — f(t,z,w))(v —w) < Llv — wf?,

. $,y,0
lim SUpP,_, o0 [Supse[O,T] SupyEO\OT ( ‘fXE'(s:L{y)” )] = 0; and

(LV)(t,x) + L Trace(o(t, z)[o(t, 2)]*(Hess, V)(t,2)) + (u(t, z), (V. V)(t, z)) <0, (208)

and let uy,up € {ue C([0,T] x O,R): limsup,_,,[supefo 7y super\Or(%)] = 0} satisfy for all
i€ {1,2} that u; is a viscosity solution of

(Lw;)(t, ) + L Trace(o(t, z)[o(t, )]* (Hess, w;) (¢, ) + {u(t, z), (Vu)(t, z))
+ f(t,z,ui(t,z)) =0 (209)

with uw,(T,z) = g(z) for (t,z) € (0,T) x O (cf. Definition [2.7). Then we have for all t € [0,T],
z € O that ui(t,x) = us(t, x).

Proof of Proposition[3.5. Throughout this proof let [-]: (Uible“Xb) — [0,00) satisfy for all
a,be N, A= (Ai;)ij)ef1,2. .aix{1,2,..b} € R**® that

[Al =

a b Y2
» |Am‘|2] , (210)

i=1j=1

let V: [0,T] x O — (0, 0) satisfy for all t € [0,T], x € O that V(t,z) = e XV (¢, z), let v;: [0, T] x
O — R, i€ {1,2}, satisfy for all i € {1,2}, t € [0,T], z € O that v;(t,z) = 1{;‘((;’;)), let G: (0,T) x
O xRxRYxS; — R satisfy for all t € (0,7), r€ O, re R, pe RY AeS, that

G(t,z,r,p, A) = %Trace(a(t,:c)[a(t, x)]*A) +{u(t,x),py + f(t,z, 1), (211)

and let H: (0,T) x O x R x R4 x Sy — R satisfy for all t € (0,7), 7€ O, re R, peR¢ AeS,
that
H(t, 2,7, A) = 725 (2V)(t,2) + s Gt 2, 7V(1,2), Yt 2)p + 1TV (),
V(t, ) A+ p[(V,V)(t,2)]* + (V. V)(t, 2)p* + r(Hess, V)(t,2)). (212)

Observe that (210)) proves that for all A € R™™ we have that [A] = ||A||. Next note that (208
implies that for all ¢ € [0,T], z € O we have that Ve C**([0,T] x O, (0,0)) and

(£V)(t,z)+ 1 Trace(o(t, z)[o(t, )]*(Hess, V)(t, z)) +{u(t, ), (V. V) (t,2))+ LV(t, z) < 0. (213)

Moreover, observe that (211]) ensures that G € C'((0,T) x O x R x R? x S, R) is degenerate elliptic.
In addition, note that (212]) proves that H € C((0,T) x O x R x R? x Sy, R) is degenerate elliptic.
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Next observe that the assumption that for all i € {1,2}, x € O we have that u;(T,z) = g(x) shows
that for all x € O we have that

v(T,z) < va(T,x) < (T, ). (214)

\ul(t,:v)|+|u2(t,z)\)] -0

In addition, note that the assumption that limsup,_,.[Supsep ) SUPse0\0, ( )

implies that

limsup | sup sup |vi(t,z) — va(t,x)| | = 0. (215)
r—00 te[0,T] zeO\O-

Furthermore, observe that (209) and (212) ensure that for all i € {1,2} we have that v; is a
viscosity solution of

(Lvi)(t, ) + H(t,z,v;(t, z), (Vov)(t, ), (Hess, v;) (¢, 2)) =0 (216)

for (t,2) € (0,T) x O (cf., for example, Hairer et al. [I8, Lemma 4.12]). We intend to prove that
uy = ug by applying Corollary- 3.4] to obtain that v; < vy and vy < v;. Next let e, e5,...,6, € R™
satisfy e; = (1,0,...,0), eo = (0,1,0,...,0), ..., ey = (0,...,0,1), let ¢, € (0,T), n € Ny, satisfy
limsup,, ., |[tn — t0] =0, and let (a:mrn,An) € (’) X R x Sy, n € Ng, and (r,, v, 2,) € O x R x Sy,
n € Ny, satisfy limsup,,_,.[|tn — to| + |zn — ol + v/7llzn —2n]] = 0 < 7o = liminf, o (r, —v,) =
limsup,, ., (1n — tn) < sup,en(|7n] + [ta]) < o0 and V(n € N, 2,3 € RY): (2, A,2) — (3,3 <
5]z — 3| Observe that and the fact that limsup,,_, . [|t, —to|+|xn — o] ++/n |xn —2a]] =0
ensure that

limsup | n [l (tn, 20) = ot 5| | = 0. (217)

n—o0
This, the fact that for all B € Sy, C € R™™ we have that Trace(CC*B) = >" (Ce;, BCe;), and
the assumption that for all n € N, z,3 € R? we have that (z, A4,2) — (3,2,3) < 5]z — 3/° prove
that
lim sup [% Trace(O(t"’x")[a(t"’m")]*V(tm Tn)NA, — O(t"’;")[a(t"’g")]*V(tm an)annﬂ

n—00 V(tnﬂ:n) V(tnaﬁn)

= lim sup [g Trace(o(t,, xn)[0(tn, n)]* A — 0 (tn, ta) [0 (L, z:n)]*an)]

n—o0

= lim sup [% ((o(tn, xn)ei, Ano(tn, xn)ei) — {o(tn, tn)es, ana(tn,zcn)ei>)] (218)

< lim sup [Z gn |o(tn, xn)e; — a(tn,pn)ei\|2] = glim sup [n o (tn, xn) — a(tn,xn)W]

n—0o0 i=1 n—0o0
= 0.

Next observe that (207) and the fact that V.e C*2([0,T] x O, (0, 0)) ensure that for all compact
K = O we have that there exists ¢ € R such that for all s € [0,T], y1,y2 € K we have that

o(s,y1) [o(s,y0)]"  o(s,92) [0(s,92)]"
— V. V) (s,91) — (V. V)(s, < — sl (219
[ ot 2P TS (V) ) = (V)] < el =l (219)
The fact that lim sup,,_, . [|t, —to| + |zn — zo|] = 0 and the fact that limsup,,_, [v/n |z, — ta|] =
hence guarantee that

. n,@n) [0 (tn,zn)]* o (tnkn) [0 (tnkn)]*

hmsup[ Hxn—zcnl\ﬂ sl — sl M

n—0 (220)
=0 = limsup [n [z, — 2| [(Va V) (tn, 20) — (Va V) (0, 20) ] -

n—0o0
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Combining this with the fact that for all B € Sy, v,w € R? we have that Trace(Bvw*) =
Trace(w*Bv) = w*Bv = {(w, Bv) = {(Bw,v) = (v, Bw) = v*Bw = Trace(v* Bw) = Trace(Bwv*)
yields that

lim sup [% Trace <U(tnw’%7()t[7‘:gf:)@n)]* (n(zn — t)[(Va V) (s ) + (Vo V) (bn, 20) (2 — 10)¥)

n—ao0

ettt lolasall® (5, — 6 )[(VoV) (s 1)) + (T29) (b 0} — m*))]

= hm sup [ <U(tn’2%?()t[:;$:)7mn)]* n(xn - ;n)u <VzV) (tn; $n>>

n—0o0

0 (tn,tn) [0 (tn,tn)]*
_< (t i/gt[n,():tn)x )l n(l‘n _;n)a(va>(tn’;n)>:|

= lim sup l<<a(t"’a%’,‘()5$:)’$”)]* — J(t”’;&)t[:’(xt:)’gn)]*) n(ﬂvn - ?n)a (VxV)(tm 5En)> (221)

n—00

+ <U(tn I{;(t:(xt:)ln) (xn _ ?n)’ (VIV) (tn’ mn) — (VzV) (tna XTL)>:|

: O(ln,Tn)[0(ln,Tn * O(ln,In nsfn
<wgy[ﬂ“vii)”——“%£if | e = wall I072V) (ta, )]

+WW%$ﬁﬂnmﬁ%WVWme<mwm%M

= 0.

Moreover, note that the fact that (0,7) x O 3 (s,y) — W(Hes&C V)(s,y) € R¥>*? is

continuous, the fact that limsup,,_,.[v/7 ||z, — &a]]] = 0, and the fact that limsup,,_,[|tn — to] +
|n — xo]] = 0 guarantee that

0 = lim sup ’Trace( oltnen)loltnan)l® (Hegg, V)(t,, 2,) — Zhezolotosoll® Hegg V) (¢, 91;0)) ’

o V(tn,zn) V(to,xo0)

(222)

= lim sup )Trace( (t"’g”)t[”(t”’x")]* (Hess, V)(tn, tn) — W(Hes&c V) (to, xo)) ’ :

oo V(tn tn)

This and the fact that 0 < ro = liminf, . (r,—t,) = limsup,,_, ., (7, —t,) < sup,cn(|70|+|tn]) < 0
ensure that

lim sup | 4 Trace (2ol (Hess, V)(t,, z,) — otplolntoll’e, (Hess, V) (1, ra)) |

V(tn,zn tn,In
msu () itwen)

= £ limsup |:</r'n — 1) Trace(”(t"’x")[a(t"’gﬁ"ﬂ* (Hess, V)(tn, a3n)) (223)

oo V(tn,zn)

O'nyxno"ruxn* Un;nUn,n*
+ t, Trace( U V()t[n,gn) I% (Hess, V) (ty, x,) — 2 %'()t[n,(xtn)x A (HessmV)(tn,xn)>]

= Flicmo) Trace(o(to, zo)|o(to, xo)]* (Hess, V)(to, z0)) -
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Combining this with (218]) and (221)) demonstrates that

mnam[éwhme(“%@””m“W“(VamxanAﬂ+nwxn—;m[azxoumxmr

oo V(tn,zn)

+ (Vo V) (tn, xp)n(x, — tn)* + ron(Hess, V) (L, xn)))

(224)

— I Trace <U<tn{ggt[:§:)’?n” (V(tn, )02, + n(2 — 1) [(VaV) (s 20)]

+ (Vo V) (t, )0 (2 — 1n)™ + to(Hess, V) (¢, xn))>]
< Ficze) Trace (o (to, zo)[o (o, 0)]*(Hess, V)(to, 20)).

Moreover, observe that the fact that (0,7) x O 3 (s,y) — m(%V)(s y) € R is continuous and

the fact that 0 < ro = liminf,_,.(r, —t,) = limsup,,_, ., (r, — t,) < sup,cn(|7n| + |tn]) < 00 show
that

lim sup [m (%V) (tn, Tn) — m (%V) (tmln)]

n—00
(225)
Tn—tn 0 (@V)(tn@n) (iv)(tn&n) . " 0
= hinjogpl Tty (V) (bns ) +tn( Ty~ Finwn) ) | = Tomw (& V) (fos 20)-

Next note that (207)), the fact that limsup,_,[|tn — to| + [|zn — zo|] = 0, and the fact that
lim sup,,_, . [v/7 ||z, — £n|] = 0 imply that

tim sup |t 20) = ot 50 [z = 5l | = 0. (226)

n—aoo

This, the fact that (0,7) x O 3 (s,y) — @ ) ,(V.V)(s,y)) € R is continuous, and the fact that

0 < rg=liminf, ,(r, —t,) = lim supnaoo( —t,) < Sup,en(|7n] + [ta]) < oo yield that
mmw[ il ), Vit 7)1 — £0) + 70T V) (b, 20)

Tingy Uty 80), Vo, £)1(20 — 1) + (V2 V) (tn,zcn)>]

= lim sup [(u(tn, Tp) = p(tn, &n), 00 — £0))

n—0o0
tn J?n tn n
+ rn<v(t s (Vo V) (tn, 2 >_ It”<V(tn§c )’ (Vo V)(t "’x”)>] (227)
< limsup [ |p(tn, o) — ptp, x0) | 1 20 — 20 ]
n—0o0
: o w(tn,zn)
+ hgljololp [(rn t,) <V(t o , (Vs V)(tn,xn)>]

+ limjup [tn (<“(t" Zn) (Vo) (tn, p > <u(tn o) <t”’x")>>]
= ez tto, 20), (Vo V) (to, 0))-

Furthermore, note that the assumption that f € C([0,T] x O x R,R) proves that for all compact
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K < [0,7] x O x R we have that

(817y1> al), (327y2> GQ) ek,
limsup | sup | f(s1:51,a1) — f(82, 42, a2)]: a1 — az| + |51 — s2f <¢, v {0}
(0,00)3e—0 Hy1 _ y2|| <e

—0. (228)

This and the assumption that for all s € [0,T], y € O, a,b € R we have that (f(s,y,a) —
f(s,y,b))(a—0b) < L|a — b|* imply that

: f(tn,Zn,mnV(tn,zn)) _ f(tnkn,tnV(tn,tn))
hgl_)s;lp [ V(tnymn) V(thn) ]
. f(tn7xn7rnV(tnyxn)) f(tru nﬂ"nv(t'ru n)) f(tn, nyrnV(tru n)) f(tn7 n, nV(tny n))
= lim E(Ep [ S _ ;V(tn,;n) In)) o IV(tn,zcn) tn)) FV(;n,?:n) r
" (229)
g hm sup [f(tnyx§£::Zit;7xn)) o f(tn,§§&::Z£gn7?n))] + llm sup I:L(T‘nV(tn‘z];r&l;:SV(tn,Fn))]
n—oo n—ao0
= limsup [L(r, — t,)] = Lro.
n—0o0
Combining (212), (213)), (224)), (225)), and (227) hence demonstrates that
lim sup [H (t,,, Ty Ty 0(Tr, — En)y nAR) — H(tn, Eny Ty 0@, — 1), 02 ]
n—0o0
< sy [(%V) (to, mo) + 1 Trace(o(to, zo)[o(to, To)]* (Hess, V) (to, z0)) (230)

+ <,U(t0, ZL’()), (va) (to, ZL‘Q)> + LV(to, ZL‘Q):| < 0.

This, (214)), (215)), and Corollary guarantee that v; < vy and vy < vy. Therefore, we obtain
that v; = vy. This establishes u; = us. This completes the proof of Proposition [3.5 O

3.2 Existence results for solutions of SDEs

Proposition 3.6. Letd,m e N, T € (0,0), let(-,->: RIxR? — R be the standard Euclidean scalar
product on R%, let || : R — [0, 0) be the standard Euclidean norm onRY, let ||-|| : R™>*™ — [0, o0)
be the Frobenius norm on RY™ let O < R? be a non-empty open set, for everyr € (0,0) let O, S
O satisfy O, = {x € O: (|z]| < r and {y e R*: |y — x| < Yo} = O)}, let p e C([0,T] x O,R?),
o€ C([0,T] x O,R™™) satisfy for all r € (0,0) that

a4 18 2) — pt Y| + llolt,2) — ot y)ll -, v 1 g
p({ T :te|0,T],z,y € O,, #y} {O})<oo, (231)

let Ve CY2([0,T] x O, (0,00)) satisfy limsup,_,.., [infiefor) infreo0, V()] = 0, assume for all
te[0,T], x € O that

(ZV)(t,z) + 4 Trace(o(t, z)[o(t, z)]*(Hess, V) (¢, 2)) + (u(t, z), (V,V)(t,2)) <0, (232)

let (Q, F, P, (Ft)iwefo,r) be a stochastic basis, let W: [0,T] x Q& — R™ be a standard (Fy)seqo,1-
Brownian motion, and let { € O. Then there exists an up to indistinguishability unique (Fy)seqo,r-

adapted stochastic process X = (X¢)sejo,r1: [0,T] x Q@ — O with continuous sample paths such that
for all t € [0,T] we have P-a.s. that

t

Xe=¢&+ Jotu(s,Xs) ds + Jo o(s, Xs) dWs. (233)
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Proof of Proposition[3.6, Throughout this proof let m, € C([0,T] x O,R%), n € N, and s, €
C([0,T] x O,R¥>*™) n e N, satisfy that

(A) we have for all n € N that

n t, - tin t; n t, — In t?
| [N EELN 0 ETHCET) B
t€[0,T] €0 yeO\{z} |z — vl

(B) we have for all ne N, t € [0,T], x € O that

Ly ny () [lmn(t, 2) = p(t, 2) | + llsn(t, 2) = o(t, 2)|[] = 0, (235)
and

(C) we have for all n e N, t € [0,T], z € O that

Lyensay (t, @) [lmn(t, 2) | + [lsn(t, 2)[] = 0. (236)

Note that Items and ensure that there exist (IF;)[o,r1-adapted stochastic processes X =

(%t )te 7 [0,7] x Q@ — O, n € N, with continuous sample paths satisfying that for all n € N,
t € [0,T] we have P-a.s. that

t
x™ §+J m,, (s, X d5+f n(s, XY ds (237)

0
(cf., e.g, Karatzas & Shreve [28, Theorem 5.2.9] and [B, Item (ii) in Lemma 3.4]). Next let
7a: Q= [0,T], n € N, satisty for all n € N that 7, = inf({t € [0,7]: V(£, X)) > n} U {T}).
Moreover, observe that Item ensures that for all m € N, n € N n [m,00) we have that
P(Vt e [0,T]: ﬂ{t@m}%i”) = ]l{thm}%gm)) = 1 (cf, e.g, |5, Lemma 3.5]). Combining this with
and Item proves that for all n € N, ¢t € [0, 7] we have P-a.s. that

( rmin{7,,t} min{7,,t}
%r:m{m n = =&+ m, (s, %gn)) ds + J Sn(s, f{g")) AW
JO 0
rmin{7,,t} min{7y,t}
=¢+ (s, XMWY ds + f o(s, X)) dW, (238)
JO 0
rt t (n)
=¢+ Jo ]l{5<7'n}[j’(5 xmm{f s}) ds + J;) ﬂ{ngn}o-(S %mln{‘rn s}) dW.

[to’s formula hence guarantees that for all n € N, ¢ € [0,7] we have P-a.s. that

min{7,,t}
V(min{r,, t}, 2" )= V(0,6) + L (V) (s, X0 ) o, X0 ) AWV )

min{y,,t} min{7,,t}
+L (aaV)(S ‘%mm{r s})dS +JO < (S %mm{q— s}) (Vzv %f:m{T 5} >d8 (239)

min{ry,,t}
+J %Trace( (s, %mm{T S})[ o(s, %mm{T S})] (Hess, V') (s, %mm{Tn S})) ds.
0

This and (232]) show that for all n € N, ¢ € [0, T] we have P-a.s. that

min{7y,t}
V(min{r,, t}, x V(0,€) + f (VL V)(s, 7)), o (s, M) aW,). (240)

min Tn )
) .
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Hence, we obtain for all n € N, t € [0,T] that

E[V (min{r,, t}, %mm{T t})] < V(0,¢). (241)

This implies for all n € N that
E[V (7., )] < V(0,€). (242)

Markov’s inequality and the fact that X(™: [0,T] x Q — O, n € N, are stochastic processes with
continuous sample paths hence ensure that for all n € N we have that

4CH5)

n

P(r, < T) < P(V(7,, X)) = n) < %E[V(Tn, 2] < (243)

Therefore, we obtain that
e¢] a0 1
<T) — 244
Z Tn2 [Z n2 ] ( )
The Borel-Cantelli lemma hence yields that P(3n € N: 7, = T') = 1. This demonstrates that
there exists an (IF;).e[0,r1-adapted stochastic process X: [0,T] x Q — O with continuous sample

paths satisfying that liminf, ., P(Vt e [0,T]: X, = I{E")) = 1. Item hence yields that for all
t € [0,T] we have that

n—0o0

limsupE[min{ f 5 (s, £) — o (s, X, | ds}] —0. (245)

This, the fact that for all ¢ € [0, T] we have P-a.s. that

¢
lim sup f m, (s, ") ds —f w(s, Xs)ds| =0, (246)
n—00 0
and (237)) guarantee that for all ¢ € [0, T] we have P-a.s. that
¢ ¢
X, =&+ f w(s, Xs)ds + J o(s, Xs) dWs. (247)
0 0

This and, e.g., Karatzas & Shreve [28, Theorem 5.2.5] establish (233]). This completes the proof
of Proposition [3.6] O

3.3 Existence results for viscosity solutions of semilinear Kolmogorov

PDEs
Theorem 3.7. Letd,me N, L,T € (0,0), let {,-): R¢xR? — R be the standard Euclidean scalar
product on R?, let ||-| : RY — [0, ) be the standard Euclidean norm on R?, et ||| : R>*™ — [0, o0)

be the Frobenius norm on RY>*™ et O < R? be a non-empty open set, for every r € (0,0) let O, <
O satisfy O, = {x € O: (|2 <r and {y e R%: |y —z| < Y} = O)}, let pe C([0,T] x O,RY),
o€ C(0,T] x O,R™™) fe C(0,T] x O xR,R), ge C(O,R), Ve C"¥(I0,T] x O,(0,x)),
assume for all r € (0,0) that

([t 2) = )l + o) — oty
(1

|z =yl

€0, T],z,ye O,,x # y} v {O}) < oo, (248)
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assuMe SUP,. (o) linfiepo, 7 infzeor0, V (L, x)] = 0 and inf,c o 00 [Supte[o,T] supgceo\or(|f(t(txg£0))|+ Ig(( )I))]
=0, assume for allt € [0,T], z € O, v,w € R that |f(t,z,v) — f(t,z,w)| < Llv — w| and

(%V)(t, x) + %Trace(a(t, x)[o(t,x)]*(Hess, V)(t,x)) + {u(t, z), (V. V)(t,x)) <0, (249)
let (2, F, P, (Ft)wefor)) be a stochastic basis, and let W: [0,T] x Q — R™ be a standard (Fy)se[o.11-
Brownian motion. Then

(i) there exists a unique viscosity solutionu € {u e C([0,T]xO,R): limsup,_,,[SupPsc[o 77 SUPLe0\0,

CE

(Lu)(t,z) + 3 Trace(o(t, )[o(t,z)]*(Hess, u)(t, x)) + (u(t, ), (Vou)(t, z))
+ f(t,z,u(t,z)) =0 (250)

with w(T, x) = g(x) for (t,x) € (0,T) x O,

(ii) for everyte [0,T], x € O there exists an up to indistinguishability unique (F)sep,r-adapted

stochastic process X% = (X0%)epm: [, T x Q — O with continuous sample paths satisfying
that for all s € [t, T] we have P-a.s. that

X =g+ J p(r, X5%) dr + J o(r, XH") dW,, (251)
t ¢
(111) there exists a unique v € C(0,T] x O,R) which satisfies for all t € [0,T], x € O that
lim Supraoo[supse[o T] Supye(’)\OT(|\1;s )] - 0 E[‘Q(th ’ + St ‘f Xﬁ’m>v(37X§’m))’ dS] < O,
and
=]E[g X5+ J f(s, X" v sX”“’))d], (252)
and

(iv) we have for allt € [0, T], v € O that u(t,z) = v(t, x)

(cf. Definition[2.7).

Proof of Theorem[3.7. First, observe that Proposition (applied with d <« d, m «— m, T «
T—t0« 0, u< ([0,T—t] xO>(s,z) — p(t+s1x)eR), o« ([0,T —t] x O3 (s,x) —
ot +s,2) e R*™)V «— ([0,T —t] x O 3 (s,2) = V(t+s,1) € (0,0)), (Q,F,P) — (Q, F,P),
(Fo)seror) < (Fost)sepor—e, (We)sepor) < West — Wi)sefor—q for £ € [0,T] in the notation of
Proposition establishes Item . Next we prove Item . Note that Item ensures
that there exists a unique v € C([0,T] x O,R) which satisfies for all ¢ € [0,T], z € O that

. v(s \T T x T
lim Supr—»oo[supsem,T] SupyeO\Or(‘v((sl;))')] = O EHg(Xt ’ + St |f S7X§7 7U(S7X? >)| dS] < @0, and

olt ) = E| (1) + f P X2 o0, X1 | (253)
(cf., e.g., [Bl Theorem 3.8]). This establishes Item (iii). In the next step we prove Items (i) and

(iv)). For this let h: [0,T] x O — R satisty for all t € [0,T], x € O that h(t,z) = f(t,x,v(t,z)).
Observe that h e C([0,T] x O,R) and

limsup | sup sup <|h<t’x)|> = limsup | sup sup <|f<t’$7v(’x>)|)
%0 tE[OT] zeO\Or V(t :c) r—o | te[0,T] ze®\O. V(t,a;)

< limsup | sup sup ( 6,z 0+ £tz v(t, 7)) - f(t,x,O)\)] (254)

r—00 te [0,T] zeO\O, V<t7 SL’)

F(t,z,0) |+L\v(t x)\)] o

< limsup | sup sup
r—0 | te [0,T] zeO\O»-
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Proposition Item (i), and (253) hence guarantee that v is a viscosity solution of
(Zv)(t,z) + 1 Trace(o(t, z)[o(t, 2)]* (Hess, v)(t, ) + {u(t, z), (Vo) (¢, z)) + h(t,z) =0 (255)

for (t,x) € (0,T) x O. This implies that for all t € (0,T), x € O, ¢ € CY%((0,T) x O,R) with
¢ = v and ¢(t,z) = v(t, x) we have that

(50)(t,x) + 3 Trace(a(t, z)[o(t, 2)]* (Hess, ¢)(, x)) + (u(t, ), (Va9)(t, 2)) + f(t,x, ¢(t, ))
= §¢)(t x)+ 5 Trace( (t,x)[o(t, z)]" (Hess, ¢)(t, z)) + {u(t, x), (V.0)(t,x)) + h(t,x) (256)

In addition, note that proves that for all t € (0,7), x € O, ¢ € CY*((0,T) x O,R) with
¢ <wvand ¢(t,r) = v(t, x) we have that

(59)(t,x) + 5 Trace(o(t, )[o(t, )] (Hess, ¢)(t, 2)) + {u(t, x), (Vad)(t, 2)) + f(t, z, 6(t, 7))
L0)(t, ) + L Trace(o(t, z)[o(t, 2)]* (Hess, @) (t, x)) + (u(t, x), (Va0)(t,2)) + h(t,z) (257)

| Q’|Q)

(
0.

A

Combining this with (256]) shows that v is a viscosity solution of

(Lv)(t, z) + L Trace(o(t, z)[o(t, z)]* (Hess, v)(t, 2)) + (u(t, z), (V,0)(t, z))
+ f(t,z,v(t,x)) =0 (258)

for (¢,x) € (0,T) x O. Combining this and the fact that v € {u e C([0,T] x O,R): limsup,_,.,
[Supyeqo 1 supxeo\or(“'j((tt’?)l)] = 0} with Proposition (applied with u; < v in the notation of

Proposition establishes Items (fif) and . This completes the proof of Theorem . O

Corollary 3.8. Let d,m € N, T € (0,0), L,p € R, let {-,->: RT x R — R be the standard
Euclidean scalar product on R?, let ||-| : RT — [0,00) be the standard Euclidean norm on R?, let
-l - RE™ — [0,00) be the Frobenius norm on RY>*™ et O < RY be a non-empty open set, for
every r € (0,00) let O, < O satisfy O, = {z € O: (HxH rand {y € R |y —z| < Y} € O)},
let e C([0,T] x O,RY), o € C([0,T] x O,R¥™*™), f e C([0,T] x O x R,R), g € C(O,R),
Ve C%*0,(0,0)), assume for all r € (0,00) that

a4 10 2) — pt y)| + llo(t 2) — ot y)ll
(]

|z =yl

e[0,T),z,y€ O,z # y} U {o}) <o, (259)

assume that sup,¢( oo [infreo\0, V(2)] = 00 and inf e o0) [SUDsepo 17 SpreO\OT(W)] =0,

assume for all t € [0,T], x € O, v,w € R that |f(t,x,v) — f(t,z,w)| < Ljv —w| and

3 Trace(o(t, z)[o(t, 2)]* (Hess V) (x)) + (ult, z), (VV)(2)) < pV (2), (260)
let (2, F, P, (Fy)we[o,r)) be a stochastic basis, and let W: [0,T] x Q — R™ be a standard (Fy)se[o.1]-

Brownian motion. Then
(i) there exists a unique viscosity solutionu € {u € C([0,T]xO,R): limsup,_,,[Supsc[o 7] SUPye0\0,
(Sesd)] = 0} of
(Lu)(t,x) + L Trace(o(t, z)[o(t, z)]* (Hess, u)(t, z)) + {u(t, z), (Vou)(t, z))
+ f(t,z,u(t,x)) =0 (261)
with w(T, z) = g(x) for (t,x) € (0,T) x O,
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(ii) for everyt e [0,T], x € O there exists an up to indistinguishability unique (Fy)qepm-adapted
stochastic process X" = (X" ) ez [t, T x Q — O with continuous sample paths satisfying
that for all s € [t, T]| we have P-a.s. that

X o | X dr |t X, (262)
t t

(111) there exists a unique v € C([0,T] x O,R) which satisfies for all t € [0,T], x € O that
thlleroo[SUpSe[t T SupyEO\Or(%ﬂ =0, E[’g(X’?xﬂ + StT ‘f(S,X;’x,U(S,Xg’m))’ dS] < &,
and

v(t,z) =R [ X5+ f f(s, X" v sX”))d], (263)
and
(1v) we have for allt € [0, T], z € O that u(t,z) = v(t, x)

(cf. Definition[2.7).

Proof of Corollary[3.8 Throughout this proof let V: [0,7] x O — (0, o) satisfy for all ¢ € [0, 77,
z € O that V(t,z) = e "V (x). Observe that (260]) ensures that for all ¢t € [0,T], z € O we have
that

(O%V)(t, x) + %Trace(a(t,m)[a(t, x)|*(Hess, V)(t,x)) + {u(t, z), (V.V)(t,z)) <0 (264)

(cf., e.g, [3, Lemma 3.2]). Moreover, note that the hypothesis that sup,¢( o [infzco\0, V(7)] = o0
assures that

su inf inf V(t,z)| = 0. 265
re(QEO) LE[O T] zeO\O» ( )] ( )

In addition, observe that the hypothesis that inf,c( ) [Supte[O,T] SUPLe0\0, (W)] =0

guarantees that

<\f(t,x,0)\ N \9(33)\) —0. (266)

V(t, z) V(T,x)

inf sup sup
r€(0,00) | te[0,T] zO\O».

Theorem hence establishes Items f. This completes the proof of Corollary O

Corollary 3.9. Let d,m e N, L,T € (0,0), p e C([0,T] x R:,RY), 0 € C([0,T] x R, R™),
€ e C([0,0),[0,0)), let f e C([0,T] x R xR, R), g e C(R% R) be at most polynomially growing,
let (-,-: RT¥x R — R be the standard Euclidean scalar product on R?, let ||-| : RY — [0, o0) be the
standard Euclidean norm on R?, let ||-|| : R&*™ — [0, 00) be the Frobenius norm on R&>™  assume
forallt € [0,T], 2,y € RY, v,w € R that |u(t, ) — u(t, 9)|+ o (t,) — o(t, )| < (la] + Jyl) o -
yl, o p(t,2)) < LA+ |2)*), lo(t,2)|| < L(L + |z]), and [f(t,2,v) = f(t,2,w)] < Llv — wl, let
(0, F, P, (Fi)iefor)) be a stochastic basis, and let W: [0,T] x Q@ — R™ be a standard (Fy)iwe[o.1]-

Brownian motion. Then

(i) there exists a unique at most polynomially growing viscosity solution u € C([0,T] x RYR) of

(Lu)(t,x) + L Trace(o(t, z)[o(t, 2)]* (Hess, u)(t, z)) + {u(t, z), (V,u)(t, z))
+ f(t,x,u(t,z)) =0 (267)

with u(T, z) = g(z) for (t,z) € (0,T) x RY,
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(i) for everyte [0,T], x € R? there exists an up to indistinguishability unique (Fy)sep r1-adapted
stochastic process X% = (X5%) s [¢, Tx Q2 — R with continuous sample paths satisfying
that for all s € [t, T]| we have P-a.s. that

X =t |l X dr [ ol X0 (268)
t t

11) there exists a unique at most polynomaially growing v € , x R%, which satisfies for
1) th ] ] [ all ‘ C([0,T] x R4, R) which ]
all t € [0,T), x € RY that E[|g(X")| + §, | £ (s, X%, v(s, X1%))| ds] < o0 and

T
olta) = B (xy7) o+ [ o000, X0 | (269)
t
and
(iv) we have for all t € [0,T], x € RY that u(t,z) = v(t, )

(cf. Definition[2.7).
Proof of Corollary[3.9. Throughout this proof let V,: R? — (0,0), ¢ € (0,0), satisfy for all
qe (0,00), x € R? that

Vy(z) = [1+ []*]". (270)
Observe that the assumption that f is at most polynomially growing and the assumption that g
is at most polynomially growing ensure that there exists p € (0, 00) which satisfies that

lg(x)| + | f(t,2,0)]
Sup :SR%( V() ) = 271)

Hence, we obtain for all ¢ € (p, o0) that

1. (1501 ot
1m Sup Sup Sup
roo | te[0.T] seRez]>r Va()

Moreover, note that ([270)), the assumption that for all ¢ € [0, 7], x € R? we have that (x, u(t,z)) <
L(1+|z|?), and the assumption that for all ¢ € [0, 7], z € R? we have that ||o(t, z)|| < L(1+ |z])
guarantee that there exist p, € [0,0), ¢ € R, which satisfy for all ¢ € (p, ), t € [0,T], z € R? that

L Trace(o(t, @) o (t,)]* (Hess V) (2)) + (ult, 2), (VVy)(@)) < p,Vy(a) (273)

(cf., e.g., [, Lemma 3.3]). In addition, observe that demonstrates for all ¢ € (0,00) that
liminf, o [inf epa o= Vo(2)] = 0. Ttem in Corollary %(applied with p <« pg,, O «— RY
V <« Vj, in the notation of Corollary , , and (273) therefore ensure that for every
t € [0,T], x € R? there exists an up to indistinguishability unique (F;)se:,r-adapted stochastic
process X = (X5)cpp 0 [, 7] x © — R? with continuous sample paths satisfying that for all
s € [t,T] we have P-a.s. that

Xﬁ’xzzz,‘#—J
t

This establishes Item . Next we prove Item . Note that Item (i]) in Corollary (applied with

p < pap, O «— R4V « Vy, in the notation of Corollary7 (272), and (273]) prove that there ex-
ists a unique viscosity solution u € {u € C([0,T] xR?,R): limsup, . [supcjo 7y Supxeo\or(“}sit(;mﬂ)cg )]

= 0} of

~ 0. (272)

S

(e, XY dr + f o (r, XY WV, (274)
t

(Lu)(t,x) + L Trace(o(t, z)[o(t, x)]*(Hess, u)(t, z)) + {u(t, z), (Vou)(t, z))
+ f(t,x,u(t,z)) =0 (275)
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with u(T,z) = g(x) for (t,z) € (0,7) x R% Next let v € C([0,7] x RY,R) be an at most
polynomially growing viscosity solution of

(Lv)(t,z) + 3 Trace(o(t, z)[o(t, 2)]* (Hess, v)(t, z)) + {u(t, z), (V,0) (¢, )
+ f(t,x,v(t,x)) =0 (276)

with v(T,z) = g(x) for (t,x) € (0,T) x R% Note that the fact that v is at most polynomially
growing guarantees that there exists « € [2p, c0) which satisfies that

t
lim sup [ sup  sup (M)

r—0 | te[0,T] zeRe,|z|>r Va(z)

—0. (277)

Item (i . ) in Corollary . (applied with p « p,, O « R? V « V,, in the notation of Corollary .
and - hence ensure that u = v. ThlS establishes Item . In the next step we prove Items
and (iv]). Observe that Item (iii) in Corollary (3.8 . guarantees for all t € [0,7], v € R4 that

E[lg(X7")| + §, |f(s, X0, (&Xﬁ”’))\dé‘] < o and

u(t,z) = E [ X4 f (s, X5 0 Xﬁ’”’))ds]. (278)

Next let w € C([0,T] x R4 R) be an at most polynomially growing function satisfying for all
€ [0,T], x € R? that

w(t,a) = E| (X4 f o X2 (s, X1 ds (279)

Observe that the fact that w is at most polynomially growing yields that there exists 3 € [«, 0)

which satisfies that
t
lim sup [ sup  sup <|w( ,x)|>] =0. (280)

r—w | te[0,T] zeR4,||z|>r V()

Combining Items and in Corollary (applied with p « pg, O <« RY V «— V5 in
the notation of Corollary with (275 and (278) hence demonstrates that u = v = w. This
establishes Items and . This completes the proof of Corollary . m

Lemma 3.10. Let d,m e N, ¢,T € (0,0), a,c e [0,0), let {-,->: R? x R — R be the standard
Euclidean scalar product on R?, let ||-| : RT — [0,00) be the standard Euclidean norm on R?, let
B:[0,T] x RY — R¥™ satisfy sup{{&, B(t,z)[B(t,z)]*¢): t € [0,T],z,£ e RE €] = 1} = ¢ < «,
and let V: [0,T] x RY — (0, 0) satisfy for all t € [0,T], v € R¢ that

Vt,x) = [%(atie)]m exp(Q(lZ‘i)> ) (281)
Then
(i) we have that V € C*([0,T] x R% (0,0)) and
(ii) we have for all t € [0,T], x € R? that

(£V)(t,z) + § Trace(B(t,z)[B(t, z)]*(Hess, V)(t,z)) < 0. (282)
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Proof of Lemma[3.10. Throughout this proof let §; ; € R, i,j € N, satisfy forall7,j e Nwithi < j
that 0, = 1 and &;; = 0;; = 0 and let b;;: [0,T] x R > R, i€ {1,2,...,d}, j € {1,2,...,m},
satisfy for all t € [0, 7], z € R that

b171<t, l‘) b172<t, l‘) e bl,m(ty ZL')
bo1(t,x) boo(t,x) ... bo,(t,x

B(t,x) = 2’1(‘ ) 2’2(‘ ) R ( il (283)
bd71(t, .CE) bdg(t, .CE) e bd7m(t, $)

Observe that (281]) and the chain rule establish Item ({). Moreover, note that (281)) ensures that
forallie {1,2,...,d}, je€{1,2,....,m}, te[0,T], z = (x1,22,...,74) € R we have that

z 2
(FV)(t.2) = a [_ 2(04?—&-5) - Q(lw”raﬁ] V(t,x), (ai,-v)@’f’f) =Vt 2), (284)
wd (VI e) = [t + | Vi)
Hence, we obtain that for all t € [0, T], x = (21,72, ...,24) € R? we have that
(L£V)(t,z) + § Trace(B(t, z)[B(t, z)]* (Hess, V)(t,z))
= (%V)(t,x) [ Zlkzl bix(t, x)bjk(t, m)(agf(3 V)(t,x)]
ij
i m (285)
— o |t - s | Vi) + [-Z% bt 2t ) (s + ) | V(t )
i,j=1k=

— a[_ d o1 ]V(t,gj) i1 [<z,B<t,x>[B(t,x>]*x> N Trace(B(tw)[B(tw)]ﬂ].

at+e o at+e at+e at+e
2 2(at 2 t 2 t

Next note that the assumption that for all ¢ € [0, T, z, & € R? we have that (£, B(t, 2)[B(t, z)]*¢) <
c/|€]? implies that for all t € [0,T], z € R? we have that Trace(B(t, z)[B(t,z)]*) < cd. Combining
this with (285]) and the assumption that ¢ < « ensures that for all ¢ € [0,T], 2 € R? we have that

(6@ )(t, x) + %Trace( (t,2)[B(t, z)]* (Hess, V)(t, x))

//\

d [ 1| _cfz|?
-« [2(at+s) + 2(at+e)? ] t7l' + 2 [ (at+e)? + at+6 V 2 J} (286)

= (—Oé + C) [Q(Ozfﬁl—i-a) + (|)|4:tt-‘i‘-6 ] (t,,CE)

This establishes Item . This completes the proof of Lemma m O

Corollary 3.11. Let d,m € N, B e R™™ o, T € (0,0), ¢, L € R, f € C([0,T] x R x R, R),
g€ C(RLR), let (-, -): RIxRY — R be the standard Euclidean scalar product on R?, let |-| : RY —
[0,00) be the standard Euclidean norm on R?, assume for all t € [0,T], z € RY, v,w € R that
¢ = sup{(y, BB*y): y € RY, Jy| = 1} < 507, [f(t,2,0)| + |g(2)| < Lexp(alz|?), and |f(t, z,v) -
f(t,z,w)| < Llv — w|, let (Q,F,P) be a probability space, and let W: [0,T] x Q@ — R™ be a
standard Brownian motion. Then

[u(t,z

(i) there exists a unique viscosity solution u € (|Jyeg{u € C([0,T] x R, R): Sup{exp(beH mite
[0,T],z € RY} < 0}) of
(Lu)(t,z) + % Trace(BB*(Hess, u)(t,z)) + f(t,z,u(t,z)) = 0 (287)

with u(T, z) = g(z) for (t,z) € (0,T) x RY,
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=]

(ii) there exists a unique v € (UEE(07OO){u e C([0,T] x RY,R): sup{|u(t,x)|exp(—2(ct+5)): t e
[0,T],z € R} < oo}) which satisfies for all t € [0,T], z € R that E[|g(z + BWr_;)| +
StT |f(s,x + BWy_y,v(s,x + BWs_))|ds] < o and

v(t,x) = E[g(x + BWrpr_y) + JT f(s,x + BWs_y,v(s,x + BW,_,)) ds], (288)

and
(iii) we have for all t € [0,T], x € R? that u(t,x) = v(t, )

(cf. Definition[2.7).

Proof of Corollary[3.11. Throughout this let V.: [0, 7] x R — (0,00), € € (0,0), satisfy for all
e (0,0),te[0,T], r € R? that

_ 1 |zl
Ve(t,2) = Griayre eXp(2(ct+5)) (289)

and let V. < C([0,T] x R% R), € € (0,00), satisfy for all € € (0,00) that

V.=<{ueC([0, 7] x RER): [limsup | sup  sup (|u(t,:v)|> =0 . (290)
r—o0 | tefo,7] zeRe jz|>r \ Ve(t, T)

Observe that the assumption that for all t € [0,T], x € R? we have that |f(t,z,0)| + |g(z)| <
Lexp(alz||?) ensures that for all € € (0,0), t € [0,T], z € R? we have that

[f(t, 2, 0)] + |g(x)|
Ve(t, x)

< L{2n(ct +2)]"* exp(alel? — 525

< L[2n(T + )] exp((a — 5tz Iol?) (291)

(ct+e)
< L[2n(cT + €)1 exp((a — m)HxHQ)

Hence, we obtain that for all € € (0, 5= — ¢T) we have that

(w0 o))
< Vo(t, ) +%<T,x>)

lim sup [ sup  sup

r—00 te[0,T] zeR4 ||z | >r

(292)
< 2L [27(cT +¢)]"” [lim sup [exp((a — m)ﬁ)]] =0.

r—00

Moreover, note that (289) demonstrates that for all € € (0,00), t € [0,T], z € R? we have that

1 =)
‘/‘E(t’ Z’) = [27(cT+€)]4/2 eXp (2(CT+6)) : (293)

Hence, we obtain for all € € (0, 00) that

lim inf { inf  inf VE(t,x)] = o0. (294)

r—o0 | te[0,T] zeR4 ||z|>r

In addition, observe that Lemma m guarantees that for all € € (0,0), t € [0,T], z € R? we have
that
(£V2)(t, z) + & Trace(BB*(Hess, V2)(t,z)) < 0. (295)
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Combining this with (292), (294), and Item (i) in Theorem (applied with O « RY, y «
([0, T]xR¥ 5 (t,z) — 0eR), 0 — ([0,T] xR? 5 (t,x) = Be R”™), V «— V. fore € (0,5 —cT)
in the notation of Theorem proves that for every ¢ € (0, i —cT') there exists a unique viscosity
solution U, € V. of

(£U.)(t,z) + & Trace(BB*(Hess, U.)(t,z)) + f(t,z,U(t,x)) = 0 (296)

with U.(T, z) = g(x) for (¢, z) € (0, T)xR%. This, (290), and (293) ensure that for all ¢ € (0, 5= —cT)
we have that

U.(t 1 U.(t
sup sup U ,x2)| < —7 Sup sup [M] < 0. (297)
t€[0,T] zeRd exp(@) [27e]Y? tejo.r) wera | VE(t, 2)
€

Moreover, observe that (289)) yields for all t € [0,T], x € R%, §,¢ € (0,00) with § < & that

V(t, x) 2m(ct + 6) " 5 1 T +6]"
Vilt,x) [2%(0t+€) exp (ol (it — b)) < || (298)

This implies for all d,e € (0,5 — ¢T') with § < € that V. = V;. Combining this with (296
demonstrates that for all §, ¢ € (0, % — cT') we have that U, = Us. This proves that there exists a
unique u € C([0, 7] x R%, R) which satisfies for all € € (0, 5= — ¢T), t € [0,T], z € R? that

u(t,z) = U(t, ). (299)

Note that (296), (297)), and (299) ensure that u € (|J,p{u € C([0,T] x R, R): SuP{e;l;l((zf\]i)H'?):

te[0,T],z € R} < o0}) is a viscosity solution of

(Lu)(t,z) + 5 Trace(BB*(Hess, u)(t,x)) + f(t,z,u(t,z)) = 0 (300)

with w(T, z) = g(z) for (t,z) € (0,T)xR?%. Nextlet v € (|Jyp{ue C([0, T]xR% R): sup{ex‘;‘((;ﬁz)ug) :

t€[0,T],z € R} < o0}) be a viscosity solution of

(£v)(t, ) + 1 Trace(BB*(Hess, v)(t,z)) + f(t,z,v(t,x)) = 0 (301)

with o(T,z) = g(x) for (t,z) € (0,T) x R%, let b € (0,0) satisfy sup;fo supmeRd(%) < 0,
and let 7 < [0, 7] satisty

T ={te[0,T]: U|[t,T]de = U|[t,T]de}- (302)

Observe that and the fact that for all x € R? we have that u(T,z) = g(z) = v(T,x) imply
that T € T. Moreover, note that the fact that u,v € C([0,T] x R? R) assures that 7 is closed.
In addition, observe that and ensure that for all ¢t € [0,T], s € [0, min{¢, ﬁ}L reRY,
e € (0,Y/4p) we have that

1 S,z v(max{t—g- ki
|v(max{t—5=,0}+s,7)] _ [27T(CS + 8)]d/Q I:‘ (max{t—g-,0b+s, )|:| eXp((b _ ﬁ) ||x||2>

Ve(s,z) exp(b|z|?) cs+e

d/2 |v(max{t—$,0}+s,x)| 1 9 (303)
< [27(cT + €)] [ ST ] exp((b - —2€+1/2b) ]| >
Hence, we obtain for all ¢t € [0,T], € € (0,/a) that
- $,x
lim sup sup sup ('v(max{i/ (“Sb;’)O}JF ’ N) = 0. (304)
r—0 se[O,min{t,ﬁ}] zeRe | z|>r =
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Item (fij) in Theorem (applied with T« min{t, 7=}, O « RY, p « ([0, min{t, 7-}] x R* 5
(s,2) > 0eR?), 0« ([0,min{t, =}] x R 3 (s,2) —» Be R™™), f «— ([0,min{t, -} x R xR 3
(s,z,v) — f(max{t—3-,0} +s,2,0) €R), g — (R* 22 —> u(t,z) eR),V « V. for t e T n (0,71,

e € (0,4)n(0, 5= —cT) in the notation of Theorem, the fact that for all e € (0, 5~ —¢T') we have

that U. = u, and (296) therefore demonstrate that for allt € T (0,T], € € (0, 5:) N (0, = —cT') we
have that v 1 oy.qxre = Uelimaxqi— L 0y.¢xre- This and (299) ensure that for all £ € T n (0, T
we have that U|[max{t—ﬁ,0},t]xw - u|[max{t—ﬁ,0},t]><Rd' Hence, we obtain for all ¢ € T n (0,77] that

[max{t — &,0},¢] < T. This implies that T € {A< [0,T]: (Vae A: Je € (0,%): (a—e,a+¢)n
[0,7] < A)}. Combining this with the fact that 7 is non-empty, the fact that 7 is closed, and
the fact that [0, 7] is connected ensures that 7 = [0,7"]. This and establish Item (). Next
we prove Items and (ii). Observe that ([289), (290), (292), (294), (295), (29€), (299), and
Items and in Theorem [3.7] (applied with O « R% p < ([0,7] x R? 5 (t,z) — 0 € RY),
o ([0,T]xR% 5 (t,2) —» Be R™™), V « V. for ¢ € (0, - —T') in the notation of Theorem 3.7)
guarantee that for all ¢ € [0, 7], z € R? we have that

u(t,z) = ]E[g(x + B(Wr — W) + L f(s,x+ B(Wy— W), u(s,z + B(Wy — W,))) ds]. (305)

The assumption that W is a standard Brownian motion and Fubini’s theorem therefore ensure
that for all t € [0,7], z € R? we have that

u(t,x) = E[g(a: + BWr_y) + JT f(s,x + BWs_y,u(s,x + BW,_,)) ds} (306)

Next let w € (UEE(O’OO){u e C([0,T]xR% R): supflu(t, z)| exp(—3 | ): te[0,T),z e R} < o0})

(ct+e)
satisfy for all t € [0, T], x € R? that E[|g(x+ BWr_,)| +StT |f(s,24+BW,_y,w(s,x+BW,_;))|ds] <
oo and

w(t,r) = Elg(m + BWr_) + JT f(s,x + BWy_y,w(s,x + BW,_)) ds] (307)

and let 7 € (0, 00) satisfy sup,c( ) SUP era(|w(t, )| exp(—Q(”jfn))) < o0. Observe that demon-
strates that for all € € (0,7) N (0, 5= — ¢T') we have that w € V.. Combining this, (306)), and
with the fact that W is a standard Brownian motion, the fact that for all € € (0, 5- — ¢T') we have
that v € V., and Item in Theorem proves that v = w. This establishes Items and .

This completes the proof of Corollary [3.11] O]
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