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Abstract

Robustly manipulating waves on subwavelength scales can be achieved by, firstly, designing a
structure with a subwavelength band gap and, secondly, introducing a defect so that eigenfrequencies
fall within the band gap. Such frequencies are well known to correspond to localized modes. We study
a one-dimensional array of subwavelength resonators, proving that there is a subwavelength band gap,
and showing that by introducing a dislocation we can place localized modes at any point within the
band gap. We complement this analysis by studying the stability properties of the corresponding finite
array of resonators, demonstrating the value of being able to customize the position of eigenvalues
within the band gap.

Mathematics Subject Classification (MSC2000): 35J05, 35C20, 35P20.

Keywords: subwavelength resonance, subwavelength phononic and photonic crystals, topological meta-
materials, protected edge states, dislocation.

1 Introduction

Recent breakthroughs in the field of wave manipulation have led to the creation of structures that can
guide, localize, and trap waves at subwavelength scales (i.e. at spatial scales that are significantly smaller
than the operating wavelength) [2, 4, 6, 11, 37, 44–47, 49, 54, 55]. The building blocks of these structures
are subwavelength resonators: objects exhibiting resonant phenomena in response to wavelengths much
greater than their size. Examples include plasmonic particles, Minnaert bubbles, and high-index dielectric
particles. The highly contrasting material parameters (relative to the background medium) of these
objects are the crucial mechanism responsible for their subwavelength response (see e.g. [5]). The goal
for researchers, now, is to develop robust versions of these designs, that retain their wave-manipulation
properties even in the presence of structural imperfections [3, 38, 39, 58, 59].

An approach to creating materials with low-frequency localized modes is to start with an array of
subwavelength resonators that exhibits a subwavelength band gap, that is, a range of frequencies within
the subwavelength regime that cannot propagate through the material. We then introduce a defect to
the structure. If done correctly, this perturbation creates subwavelength resonant frequencies that are
inside the band gap and correspond to resonant modes whose amplitude decays exponentially away from
the defect [6, 11, 16, 45, 51]. We will refer to these resonant frequencies as mid-gap frequencies and the
associated modes as localized modes.

It is widely understood that both the rate at which the localized mode decays and the stability of the
mid-gap frequency depend on the location of the frequency within the band gap [18, 43]. Typically, the
localization is stronger if the frequency is closer to the middle of the band gap. Moreover, eigenvalues
in the middle of the band gap are more robust to imperfections of the material, particularly since a
small perturbation is likely to keep the eigenvalue inside the band gap. With this in mind, our aim is to
introduce defects in such a way that we are able to place a mid-gap frequency at any given point in the
subwavelength band gap, enabling controllable and robust wave guiding at subwavelength scales.

In this work, we will begin with a one-dimensional array of pairs of subwavelength resonators which,
we prove, exhibits a band gap within the subwavelength regime. We will then introduce a defect by
adding a dislocation within one of the resonator pairs (see Figure 1). We will see that, as a result of this
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Figure 1: We start with an array of pairs of subwavelength resonators, known to have a subwavelength band gap.
A dislocation (with size d > 0) is introduced to create mid-gap frequencies.

dislocation, mid-gap frequencies enter the band gap from either side and converge to a single frequency,
within the band gap, as the dislocation becomes arbitrarily large (see Figure 2).

The localized modes studied in this work are, in particular, edge modes. Localized modes are known
as edge modes when the defect responsible for their existence is the interface between two materials with
different bulk indexes. Edge modes will propagate along the interface without entering the bulk of the
material. The bulk index of a material is a topological quantity associated with a periodic structure
and it is well known that the interface of two such materials supports robust edge modes [3, 14, 30–
32, 48, 50, 53, 57, 60]. A typical example of an edge mode is that occurring at the edge of a material
with nonzero bulk index (which is the interface with the absence of material, which has a bulk index of
zero). It is in this sense that the two localized modes studied here are edge modes, since it was proved in
[3] that the corresponding array of resonator pairs has nonzero bulk index.

There are a plethora of different ways to introduce an interface capable of supporting edge modes. An
example from the setting of the Schrödinger operator, which is the quantum mechanical analogue of the
structure analysed here, is to introduce dislocations to periodic potentials. This has been widely studied
in both one [19, 22, 40, 41] and two dimensions [33–36]. There are some important differences between the
dislocation of an array of resonators (as studied here) and the dislocation of a periodic potential. Most
notably, when a periodic potential is dislocated the original configuration will be recovered periodically.
Then, a quantity of interest is the edge index, which can be defined as the net number of eigenvalues
which cross a band gap over a period of dislocation (see for example [15, 19]) If the edge index is nonzero,
it means that a mid-gap frequency can be placed at any given position within the band gap (which, we
said, is our goal). Moreover, according to the bulk-edge correspondence [19–21, 26–28], the edge index
coincides with the bulk index of the structure without dislocation.

In our setting we will not periodically recover the original structure as we increase the dislocation and
will, instead, produce two coupled half-space arrays. As the dislocation is increased, the coupling between
the two halves will diminish and both mid-gap frequencies will converge to a single frequency. This single
frequency corresponds to the edge mode of a half-space array, the existence of which is predicted by the
bulk-edge correspondence. There are two main results of our analysis of the dislocated infinite structure.
Firstly, we will show that when a dislocation is introduced, a mid-gap frequency enters the band gap
from each edge (Theorem 3.17). Following this, we prove that there are two mid-gap frequencies which
converge to a single frequency within the band gap as the dislocation becomes large (Theorem 3.35).
These two frequencies correspond to the hybridized modes of two semi-infinite arrays.

Physical realizations of the infinite structures studied here are arrays of finitely many resonators, cor-
responding to truncated versions of the infinite structures. To complement the aforementioned analysis,
we also study a finite array of resonator pairs to which a dislocation is introduced (Section 4). We show
that, similar to the infinite structure, the finite array decouples into two half-systems as the dislocation
increases which hybridize for intermediate dislocations. We also conduct a stability analysis to demon-
strate that the edge-mode frequencies are the most stable (with respect to physical imperfections) and
achieve optimal stability when the frequency is in the middle of the band gap.

2 Preliminaries

In this section, we briefly review the layer potential operators and Floquet-Bloch theory that will be used
in the subsequent analysis. More details on this material can, for example, be found in [7].
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Figure 2: As the dislocation size d increases from zero, a mid-gap frequency appears from each edge of the
subwavelength band gap. These two frequencies converge to a single value within the subwavelength band gap as
d → ∞.

2.1 Layer potential techniques

Let Ω ∈ R
3 be a bounded domain such that ∂Ω is of class C1,s for some 0 < s < 1. Let G0 and Gk be

the Laplace and outgoing Helmholtz Green’s functions, respectively, defined by

Gk(x, y) := − eik|x−y|

4π|x− y| , x, y ∈ R
3, x 6= y, k ≥ 0.

We define the single layer potential Sk
Ω : L2(∂Ω) → H1

loc
(R3) by

Sk
Ω[φ](x) :=

∫

∂Ω

Gk(x, y)φ(y) dσ(y), x ∈ R
3.

Here, the space H1
loc

(R3) consists of functions that are square integrable on every compact subset of
R

3 and have a weak first derivative that is also square integrable. It is well known that the trace
S0
Ω : L2(∂Ω) → H1(∂Ω) is an invertible operator. Here H1(∂Ω) denotes the set of functions that are

square integrable on ∂Ω and have a weak first derivative that is also square integrable.
We also define the Neumann-Poincaré operator Kk,∗

Ω : L2(∂Ω) → L2(∂Ω) by

Kk,∗
Ω [φ](x) :=

∫

∂Ω

∂

∂νx
Gk(x, y)φ(y) dσ(y), x ∈ ∂Ω,

where ∂/∂νx denotes the outward normal derivative at x ∈ ∂D.
The following so-called jump relations describe the behaviour of the trace of Sk

Ω on the boundary ∂Ω
(see, for example, [7]):

Sk
Ω[φ]

∣∣
+
= Sk

Ω[φ]
∣∣
−,

and
∂

∂ν
Sk
Ω[φ]

∣∣∣
±
=

(
±1

2
I +Kk,∗

Ω

)
[φ],

where |+ and |− are used to denote the limits from outside and inside Ω, respectively, and I is the identity.

2.2 Floquet-Bloch theory and quasiperiodic layer potentials

A function f(x) ∈ L2(R) is said to be α-quasiperiodic, with quasiperiodicity α ∈ R, if e−iαxf(x) is
periodic. If the period is L ∈ R

+, the quasiperiodicity α is an element of the torus Y ∗ := R/ 2π
L Z ≃

(−π/L, π/L], known as the Brillouin zone. Given a function f ∈ L2(R), the Floquet transform of f is
defined as

F [f ](x, α) :=
∑

m∈Z

f(x− Lm)eiLαm.

F [f ] is always α-quasiperiodic in x and periodic in α. Let Y0 = [−L/2, L/2) be the unit cell for the
α-quasiperiodicity in x. The Floquet transform is an invertible map F : L2(R) → L2(Y0 × Y ∗), with
inverse (see, for instance, [7, 42])

F−1[g](x) =
1

2π

∫

Y ∗

g(x, α) dα, x ∈ R,

where g(x, α) is the quasiperiodic extension of g for x outside of the unit cell Y0.
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We will consider a three-dimensional problem which is periodic in one dimension. Define the unit cell
Y as Y := Y0×R

2. The quasiperiodic Green’s function Gα,k(x, y), for x, y ∈ R
3, is defined as the Floquet

transform of Gk(x, y) in the x1 direction with fixed y, i.e.,

Gα,k(x, y) := −
∑

m∈Z

eik|x−y−(Lm,0,0)|

4π|x− y − (Lm, 0, 0)|e
iαLm.

Let Ω be as above but with the additional assumption that Ω ⋐ Y . The quasiperiodic single layer
potential Sα,k

Ω is defined analogously to Sω
Ω, by

Sα,k
Ω [φ](x) :=

∫

∂Ω

Gα,k(x, y)φ(y) dσ(y), x ∈ R
3.

It is known that Sα,0
Ω : L2(∂Ω) → H1(∂Ω) is invertible if α 6= 0 [7]. There are also jump relations for the

quasiperiodic single layer potential, given by

Sα,k
Ω [φ]

∣∣
+
= Sα,k

Ω [φ]
∣∣
−, (2.1)

and
∂

∂ν
Sα,k
Ω [φ]

∣∣∣
±
=

(
±1

2
I + (K−α,k

Ω )∗
)
[φ] on ∂Ω, (2.2)

where (K−α,k
Ω )∗ is the quasiperiodic Neumann-Poincaré operator, given by

(K−α,k
Ω )∗[φ](x) :=

∫

∂Ω

∂

∂νx
Gα,k(x, y)φ(y) dσ(y).

The quasiperiodic single layer potential satisfies the following low-frequency expansion [7]:

Sα,k
Ω = Sα,0

Ω +O(k2). (2.3)

3 Infinite dislocated system

We will now study the problem of the dislocation of an infinite array of resonators. We will show that, in
the case corresponding to nonzero bulk index, there are two mid-gap frequencies. These cover an interval
in the middle of the band gap as the dislocation is varied. In Section 3.1 we study the periodic system,
i.e. the system without dislocation, and prove that it has a subwavelength band gap. In Section 3.2
we study the dislocated system in the asymptotic case when the dislocation d is arbitrarily small. We
show that as the dislocation increases from zero, two mid-gap frequencies appear, one from each edge of
the band gap. In Section 3.3 we study the case when the dislocation size is an integer number of unit
cell lengths, using the fact that this special case is equivalent to removing a finite number of resonators
from the periodic structure. Here, we prove the existence of two mid-gap frequencies in the simplest case
d = L, which corresponds to removing two resonators. We also show that as d → ∞, the two mid-gap
frequencies must converge to a single value. Finally, in Section 3.4, we study the dislocated system for
a general dislocation that is larger than the width of one resonator. These values of d include those in
Section 3.3, but the corresponding integral operator is much harder to analyse. The main goal of this
section is to prove that for these dislocations all mid-gap frequencies will be bounded away from the edges
of the band gap, meaning that the mid-gap frequencies found in Section 3.3 will remain within the band
gap. Moreover, these frequencies, as functions of d, will fill an interval in the middle of the band gap.

We first describe the geometry of the periodic structure, i.e. the case without dislocation, depicted
in Figure 3. Let Y = [−L,L]×R

2 be the unit cell, Y1 = [−L, 0]×R
2, and Y2 = [0, L]×R

2. For j = 1, 2,
we assume that Yj contains a resonator Dj such that ∂Dj ∈ C1,s for some 0 < s < 1. We denote a pair
of resonators, a so-called dimer, by D = D1 ∪ D2. We assume that the resonators in each dimer are
separated by distance l, and that each individual resonator has reflection symmetry. More precisely, we
assume that

R1D1 = D1, R0D = D, (3.1)

where R1 is the reflection in the plane {−l/2}×R
2 and R0 is the reflection in the plane {0}×R

2. Observe
that R2 := R0R1R0 describes reflection in the plane {l/2}×R

2, and therefore the assumptions (3.1) also
imply that

R2D2 = D2.
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Figure 3: Example of the array in the case d = 0. The resonators are drawn to illustrate the symmetry assumptions.

Starting from the periodic system, we assume that half of this structure is dislocated along the x1-
axis. Let v = (1, 0, 0) and let d denote the dislocation size. We then define the periodic and dislocated
systems, respectively, as

C0 =
⋃

m∈Z

j=1,2

Dm
j , Cd =

(
⋃

m∈Z
−

j=1,2

Dm
j

)
∪
(
⋃

m∈N

j=1,2

Dm
j + dv

)
.

Here, we use the notation
Dm

j = Dj +mLv, j = 1, 2, m ∈ Z,

for the resonators in the mth unit cell. We introduce the notation l0 = l/L, i.e. l0 is the ratio of the
separation of the resonators to the unit cell length. There are two fundamentally different cases: l0 < 1/2
and l0 > 1/2. In the first case, the dislocation occurs between dimers of resonators, keeping each pair of
resonators intact. The second case corresponds to the dislocation occurring within a dimer, splitting one
pair of resonators into two “edge” resonators. The case l0 > 1/2 was illustrated in Figure 1, and we will
show that this is the only case with mid-gap frequencies.

Wave propagation inside the infinite dislocated system is modelled by the Helmholtz problem




∆u+ ω2u = 0 in R
3 \ ∂Cd,

u|+ − u|− = 0 on ∂Cd,

δ
∂u

∂ν

∣∣∣∣
+

− ∂u

∂ν

∣∣∣∣
−
= 0 on ∂Cd,

u(x1, x2, x3) satisfies the outgoing radiation condition as
√
x22 + x23 → ∞.

(3.2)

Here, ∂/∂ν denotes the outward normal derivative and |± indicates the limits from outside and inside
D, respectively. Moreover, ω is the frequency of the incident waves which is assumed to be small, such
that we are in a subwavelength regime. We refer to [1, 29] for the definition of the outgoing radiation
condition for the scattering from compactly perturbed periodic structures. The material parameter δ
represents the material contrast between the resonators and the background.

In order for subwavelength resonant modes to exist, we assume that δ satisfies the high-contrast
condition

δ ≪ 1.

We say that a resonant frequency ω is subwavelength if ω scales as O(
√
δ) as δ → 0.

We denote the spectrum corresponding to the problem (3.2) by Λ(d). By a mid-gap frequency, we
mean a value ω > 0 that is in the subwavelength regime and is such that ω ∈ Λ(d) but ω /∈ Λ(0).
Here, the condition ω /∈ Λ(0) means that ω is within the band gap of the periodic system. It is worth
emphasizing that, due to radiation in x2- and x3-directions, the resonant frequencies are complex with
negative imaginary parts. Nevertheless, as we will see in Theorem 3.2, the resonant frequencies are real
at leading order so we consider only their real parts in this work.

3.1 Periodic system

This section concerns the infinite system in the case of no dislocation. We first state some preliminary
results from [3] concerning the capacitance matrix. In Section 3.1.2 we prove the existence of a band gap
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between the first and the second band, which is a strengthening of a result from [3]. Moreover, we derive
the asymptotic behaviour of the integral operator corresponding to the periodic problem as the frequency
ω approaches the first or the second band.

Taking the Floquet transform of the solution u to (3.2), the α-quasiperiodic component uα satisfies
the Helmholtz problem





∆uα + ω2u = 0 in Y \ ∂D,
uα|+ − uα|− = 0 on ∂D,

δ
∂uα

∂ν

∣∣∣∣
+

− ∂uα

∂ν

∣∣∣∣
−
= 0 on ∂D,

e−iα1x1uα(x1, x2, x3) is periodic in x1,

uα(x1, x2, x3) satisfies the α-quasiperiodic outgoing radiation condition

as
√
x22 + x23 → ∞.

(3.3)

We refer to [7] for the definition of the α-quasiperiodic outgoing radiation condition. Next, we formulate
the quasiperiodic resonance problem (3.3) as an integral equation. The solution uα of (3.3) can be
represented as

uα(x) =





Sω
D1

[φα,i1 ](x), x ∈ D1,

Sω
D2

[φα,i2 ](x), x ∈ D2,

Sα,ω
D [φα,o](x), x ∈ Y \D,

for some densities φα,i1 ∈ L2(∂D1), φ
α,i
2 ∈ L2(∂D2) and φα,o ∈ L2(∂D) (here, the superscripts i and o

indicate inside and outside, respectively). Throughout, we will identify L2(∂D) = L2(∂D1) × L2(∂D2).
With this identification, we write φα,i = (φα,i1 , φα,i2 ).

Using the jump relations (2.1) and (2.2), it can be shown that (3.3) is equivalent to the boundary
integral equation

Aα(ω, δ)[Φα] = 0,

where

Aα(ω, δ) =

(
Ŝω
D −Sα,ω

D

− 1
2I + K̂ω,∗

D −δ
(

1
2I +

(
K−α,ω

D

)∗)
)
, Φα =

(
φα,i

φα,o

)
, (3.4)

and

Ŝω
D =

(
Sω
D1

0
0 Sω

D2

)
, K̂ω,∗

D =

(Kω,∗
D1

0
0 Kω,∗

D2

)
. (3.5)

Remark 3.1. Here, we use the standard single-layer potential to represent the solution inside the res-
onators. This leads to a block 2 × 2 integral equation, which might seem more complicated than the
scalar integral equation studied in [3]. However, this representation will, in fact, simplify the analysis of
the fictitious sources used later in this paper. Another advantage of this representation is that it easily
generalizes to the case of different wave speeds inside and outside the resonators.

3.1.1 Quasiperiodic capacitance matrix

In this section, we state some results from [3] on the quasiperiodic capacitance matrix. Let V α
j be the

solution to 



∆V α
j = 0 in Y \D,

V α
j = δij on ∂Di,

e−iα1x1V α
j (x1, x2, x3) is periodic in x1,

V α
j (x1, x2, x3) = O

(
1√

x2

2
+x2

3

)
as
√
x22 + x22 → ∞, uniformly in x1,

where δij is the Kronecker delta. We then define the quasiperiodic capacitance matrix Cα = (Cα
ij) by

Cα
ij :=

∫

Y \D
∇V α

i · ∇V α
j dx, i, j = 1, 2.

The main motivation for studying the capacitance matrix is given in the following theorem, proved in
[8, 10, 12].
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Theorem 3.2. The characteristic values ωα
j = ωα

j (δ), j = 1, 2, of the operator Aα(ω, δ), defined in (3.4),
can be approximated as

ωα
j =

√
δλαj
|D1|

+O(δ),

where λαj , j = 1, 2, are eigenvalues of the quasiperiodic capacitance matrix Cα.

In other words, this theorem says that the continuous spectral problem (3.3) can be approximated,
to leading order in δ, by the discrete eigenvalue problem for Cα.

Lemma 3.3. The matrix Cα is Hermitian with constant diagonal, i.e.,

Cα
11 = Cα

22 ∈ R, Cα
12 = Cα

21 ∈ C.

Using the jump conditions, in the case α 6= 0, it can be shown that the capacitance coefficients Cα
ij

are also given by

Cα
ij = −

∫

∂Di

ψα
j dσ, i, j = 1, 2,

where ψα
j are defined by

ψα
j = (Sα,0

D )−1[χ∂Dj ].

Since Cα is Hermitian, the following lemma follows directly.

Lemma 3.4. The eigenvalues and corresponding eigenvectors of the quasiperiodic capacitance matrix are
given by

λα1 = Cα
11 − |Cα

12| ,
(
a1
b1

)
=

1√
2

(
−eiθα
1

)
,

λα2 = Cα
11 + |Cα

12| ,
(
a2
b2

)
=

1√
2

(
eiθα

1

)
,

where, for α such that Cα
12 6= 0, θα ∈ [0, 2π) is defined to be such that

eiθα =
Cα

12

|Cα
12|
.

Using these eigenvectors, we define bases {uα1 , uα2 }, {χα
1 , χα

2 } of ker
(
− 1

2I +
(
K0,−α

D

)∗)

and ker
(
− 1

2I +K0,α
D

)
, respectively, as

uα1 =
1√
2

(
−eiθαψα

1 + ψα
2

)
, uα2 =

1√
2

(
eiθαψα

1 + ψα
2

)
,

χα
1 =

1√
2

(
−eiθαχ∂D1

+ χ∂D2

)
, χα

2 =
1√
2

(
eiθαχ∂D1

+ χ∂D2

)
.

Observe that 〈χα
i , u

α
j 〉 = −δi,jλαi for i, j = 1, 2. Here, 〈·, ·〉 denotes the L2(∂D) inner product

〈u, v〉 =
∫

∂D

u(y)v(y) dσ(y).

In the dilute regime, the capacitance coefficients can be computed explicitly. In this regime, we assume
that the two resonators can be expressed as a rescaling of the two fixed domains B1 and B2:

D1 = εB1 −
l

2
v, D2 = εB2 +

l

2
v, (3.6)

for some small parameter ε > 0.
We define the capacitance CapBi

of the fixed domains as

CapBi
:= −

∫

∂Bi

ψBi
dσ,
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where ψBi
:= (S0

Bi
)−1[χ∂Bi

]. Due to symmetry, the capacitance is the same for the two cases i = 1, 2,
and therefore will simply be denoted by CapB . Rescaling the domain, we have that

CapεBi
= εCapB i = 1, 2.

Similarly, by rescaling, we find that the capacitance coefficients satisfy

|Cα
i,j | ≤ εC i, j = 1, 2, (3.7)

for some constant C independent of α ∈ Y ∗.

Lemma 3.5. We assume that the resonators are in the dilute regime specified by (3.6). Then, for every
ε0 > 0 and p ∈ N there exists a constant Ap such that we have the following asymptotics of the capacitance
matrix Cα

ij for ε < ε0:

Cα
11 = εCapB − (εCapB)

2

4π

∑

m 6=0

eimαL

|mL| + o(ε2),

Cα
12 = − (εCapB)

2

4π

∞∑

m=−∞

eimαL

|mL+ l| + o(ε2),

uniformly in α for |α| ≥ Apε
p.

Lemma 3.5 is a slight generalisation of a result from [3], and shows, essentially, that for smaller ε, the
asymptotic formulas are valid for α closer to 0. Lemma 3.5 can be proved by following the steps in [3]
under the additional observation that the sums have a logarithmic behaviour as α→ 0:

∑

m 6=0

eimαL

|m| = − log
(
2− 2 cos(αL)

)
.

3.1.2 Bandgap opening and singularity of Aα

The next theorem describes the subwavelength band gap opening and the edge points of the bands.

Theorem 3.6. In the dilute regime, we have

max
α∈Y ∗

λα1 = λ
π/L
1 , min

α∈Y ∗

λα2 = λ
π/L
2 ,

for ε small enough.

Proof. Observe first that if l0 > 1/2, we can redefine the unit cell so that l0 < 1/2, without changing the
band structure. Therefore, it is enough to consider the case l0 ≤ 1/2. We have

λα1 = Cα
11 − |Cα

12|
≤ Cα

11 + Re (Cα
12)

=
1

2
Capα

D,

where Capα
D is the capacitance of D defined by

Capα
D =

∫

∂D

(Sα
D)

−1
[χ∂D] dσ.

Using the variational characterization of Capα
D, in the same way as in [12], it is shown that the maximum

of Capα
D is attained at α = π/L. Moreover, in the dilute regime, C

π/L
12 is a non-positive real number [3].

We therefore have

λ
π/L
1 =

1

2
Cap

π/L
D ,

so the maximum of λα1 is attained at α = π/L.
We now turn to the second eigenvalue λα2 . Similarly, we have

λα2 = Cα
11 + |Cα

12|
≥ Cα

11 − Re (Cα
12) . (3.8)
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We can formulate a variational characterization for Cα
11−Re (Cα

12) in terms of the Dirichlet energy. Let C∞
α

be the set of functions in C∞(Y ) that can be extended to α-quasiperiodic functions in C∞(R3) decaying
as O

(
(x22 + x23)

−1/2
)
as
√
x22 + x23 → ∞. Let

H =

{
v ∈ H1

loc
(Y )

∣∣∣ v(x1, x2, x3) = O

(
1√

x22 + x23

)
as
√
x22 + x23 → ∞

}

and let Hα be the closure of C∞
α in H. Then define (see, for instance, [52])

Vα =

{
v ∈ Hα

∣∣∣ v = − 1√
2

on ∂D1, v =
1√
2

on ∂D2

}
.

We then have the variational characterization

Cα
11 − Re (Cα

12) = min
v∈Vα

∫

Y \D
|∇v|2 dx. (3.9)

Indeed, the minimizer v0 satisfies ∆v0 = 0 in Y \D, and therefore v0 = 1√
2
(−V α

1 + V α
2 ). Equation (3.9)

then follows by expanding the integral.
Define V = ∪α∈Y ∗Vα. From (3.9) we find

min
α∈Y ∗

[
Cα

11 − Re (Cα
12)

]
= min

v∈V

∫

Y \D
|∇v|2 dx.

Because of the symmetry of D, the corresponding minimizer v1 is an odd function in x1. In other words,
v1 is a π/L-quasiperiodic function, and so

min
α∈Y ∗

[
Cα

11 − Re (Cα
12)

]
= C

π/L
11 − Re

(
C

π/L
12

)
. (3.10)

At α = π/L, (3.8) is an equality. This, together with (3.10), proves that the minimum of λα2 is attained
at α = π/L.

Corollary 3.7. In the dilute regime and with δ is sufficiently small, there exists a subwavelength band
gap between the first two bands if l0 6= 1/2, i.e.

max
α∈Y ∗

ωα
1 < min

α∈Y ∗

ωα
2 ,

for ε and δ small enough.

Proof. From [3], we know that if l0 6= 1/2 then λ
π/L
1 < λ

π/L
2 . Hence, Theorem 3.6 gives us that

max
α∈Y ∗

λα1 < min
α∈Y ∗

λα2 .

The result then follows from Theorem 3.2, provided that δ is sufficiently small.

Next, we will explicitly describe the behaviour of (Aα(ω, δ))
−1

as ω approaches the edge of the first
or the second band. The results are similar to Lemmas 4.1 and 4.2 of [11], but generalized to the case
when D consists of two connected domains of general shape. Throughout the remainder of this section,
we assume that |α| > α0 > 0 for some α0.

Using uα1 , u
α
2 , χ

α
1 , and χα

2 as defined in Section 3.1.1, we decompose the operator 1
2I + (K−α,0

D )∗ as

1

2
I + (K−α,0

D )∗ = Pα +Qα,

where

Pα = −〈χα
1 , ·〉
λα1

uα1 − 〈χα
2 , ·〉
λα2

uα2 , Qα =
1

2
+ (K−α,0

D )∗ − Pα.

Then it follows that Qα[u
α
i ] = 0 and Q∗

α[χ
α
i ] = 0 for i = 1, 2. Here, ∗ denotes the adjoint operator. As

we will see, the reason for using this decomposition is that Qα will only contribute to higher-order terms
when computing the inverse (Aα(ω, δ))

−1
.
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We consider the limit as δ goes to zero. Recall that for ω inside the corresponding band gap, we have
ω = O(

√
δ). Then we can decompose the operator Aα(ω, δ) as

Aα(ω, δ) =

(
Ŝω
D −Sα,ω

D

− 1
2I + K̂ω,∗

D 0

)
− δ

(
0 0
0 Pα

)
− δ

(
0 0
0 Qα

)
+O(δ3).

We define

A0(ω) =

(
Ŝω
D −Sα,ω

D

− 1
2I + K̂ω,∗

D 0

)
, A1(ω, δ) = I − δA−1

0

(
0 0
0 Pα

)
.

Analogously to uα1 and uα2 , we introduce the basis {u1, u2} of ker
(
− 1

2I + K̂ω,∗
D

)
as follows

u1 =
1√
2

(
−eiθαψ1 + ψ2

)
, u2 =

1√
2

(
eiθαψ1 + ψ2

)
,

where ψj are defined by
ψj = (S0

Dj
)−1[χ∂Dj ].

We then have the following result.

Lemma 3.8. (i) For ω 6= 0, A0 :
(
L2(∂D)

)2 →
(
L2(∂D)

)2
is invertible, and as ω → 0,

A−1
0 =




0 −〈χ∂D1
, ·〉ψ1 + 〈χ∂D2

, ·〉ψ2

ω2|D1|
+O

(
1

ω

)

−
(
Sα,0
D

)−1

+O(ω2) −〈χ∂D1
, ·〉ψα

1 + 〈χ∂D2
, ·〉ψα

2

ω2|D1|
+O

(
1

ω

)


 ,

where |D1| denotes the volume of D1.

(ii) For ω 6= ωα, A1 : L2(∂D) → L2(∂D) is invertible, and as ω → 0 and δ → 0,

A−1
1 =

(
I −P

(
P⊥
α

)−1

0
(
P⊥
α

)−1

)
+O(ω),

where

P =
δ

ω2|D1|
(
〈χα

1 , ·〉u1 + 〈χα
2 , ·〉u2

)
, P⊥

α = I +
δ

ω2|D1|
(
〈χα

1 , ·〉uα1 + 〈χα
2 , ·〉uα2

)
.

Proof of (i). Using block matrix inversion, we find that

A−1
0 =




0

(
−1

2
I + K̂ω,∗

D

)−1

− (Sα,ω
D )

−1
(Sα,ω

D )
−1 Ŝω

D

(
−1

2
I + K̂ω,∗

D

)−1


 , (3.11)

which is well-defined since − 1
2I +Kω,∗

Di
: L2(∂D) → L2(∂D) is invertible for ω 6= 0 for both i = 1, 2, see,

for instance, [7]. Here, Ŝω
D and K̂ω,∗

D are defined in (3.5).
From the low-frequency expansion (2.3) of Sα,ω

D we have

(Sα,ω
D )

−1
=
(
Sα,0
D

)−1

+O(ω2). (3.12)

The operator
(
− 1

2I +Kω,∗
Di

)−1
is known to be singular as ω → 0, see [7]. Explicitly, we have

(
−1

2
I +Kω,∗

Di

)−1

= −〈χ∂Di
, ·〉

ω2|Di|
ψi +Ri(ω),

where Ri(ω) = O(1) as ω → 0. Since |D1| = |D2|, we have

(
−1

2
I + K̂ω,∗

D

)−1

= −〈χ∂D1
, ·〉ψ1 + 〈χ∂D2

, ·〉ψ2

ω2|D1|
+O (1) , (3.13)
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where we identify L2(∂D) = L2(∂D1)× L2(∂D2). Moreover, we know that Sω
Di

[ψi] = χ∂Di
+O(ω), and

so

(Sα,ω
D )

−1 Ŝω
D

(
−1

2
I + K̂ω,∗

D

)−1

= −〈χ∂D1
, ·〉ψα

1 + 〈χ∂D2
, ·〉ψα

2

ω2|D1|
+O

(
1

ω

)
. (3.14)

Combining equations (3.11), (3.12), (3.13) and (3.14) proves (i).

Proof of (ii). We can compute

(
−1

2
I + K̂ω,∗

D

)−1

Pα = −〈χα
1 , ·〉u1 + 〈χα

2 , ·〉u2
ω2|D1|

+O

(
1

ω

)
.

Similarly, we have

(Sα,ω
D )

−1 Ŝω
D

(
−1

2
I + K̂ω,∗

D

)−1

Pα = −〈χα
1 , ·〉uα1 + 〈χα

2 , ·〉uα2
ω2|D1|

+O

(
1

ω

)
.

We then find that

A1 =



I

δ

ω2|D1|
(
〈χα

1 , ·〉u1 + 〈χα
2 , ·〉u2

)

0 I +
δ

ω2|D1|
(
〈χα

1 , ·〉uα1 + 〈χα
2 , ·〉uα2

)


+O(ω).

Define

P =
δ

ω2|D1|
(
〈χα

1 , ·〉u1 + 〈χα
2 , ·〉u2

)
,

and

P⊥
α = I +

δ

ω2|D1|
(
〈χα

1 , ·〉uα1 + 〈χα
2 , ·〉uα2

)
.

The leading order of A1 is invertible precisely when P⊥
α is invertible. This occurs precisely when P⊥

α u
α
i 6= 0

for i = 1, 2, i.e. when

ω 6=
√
δλαi
|D1|

= ωα
i for i = 1, 2.

Moreover, we have

A−1
1 =

(
I −P

(
P⊥
α

)−1

0
(
P⊥
α

)−1

)
+O(ω).

This shows (ii).
The following result can be proved by using the same arguments as those in [11].

Lemma 3.9. For ω 6= ωα, and as ω → 0 and δ → 0, we have

(Aα(ω, δ))−1 = A−1
1 A−1

0

(
I +O(δ)

)
.

Explicitly, we have

(Aα(ω, δ))
−1

= A−1
1 A−1

0

(
I +O(δ)

)

=

(
I −P

(
P⊥
α

)−1

0
(
P⊥
α

)−1

)



0 −〈χ∂D1
, ·〉ψ1 + 〈χ∂D2

, ·〉ψ2

ω2|D1|
+O

(
1

ω

)

−
(
Sα,0
D

)−1

+O(ω2) −〈χ∂D1
, ·〉ψα

1 + 〈χ∂D2
, ·〉ψα

2

ω2|D1|
+O

(
1

ω

)




=



P
(
P⊥
α

)−1
(
Sα,0
D

)−1

+O(ω) −〈χ∂D1
, ·〉ψ1 + 〈χ∂D2

, ·〉ψ2

ω2|D1|
+ P

(
P⊥
α

)−1 〈χ∂D1
, ·〉ψα

1 + 〈χ∂D2
, ·〉ψα

2

ω2|D1|
+O

(
1

ω

)

−
(
P⊥
α

)−1
(
Sα,0
D

)−1

+O(ω) −
(
P⊥
α

)−1 〈χ∂D1
, ·〉ψα

1 + 〈χ∂D2
, ·〉ψα

2

ω2|D1|
+O

(
1

ω

)


 .

We will simplify the upper right element in the above expression, which is the part of (Aα)
−1

that is
relevant for the rest of the work. Define

(Aα(ω, δ))
−1

=

(
A11 A12

A21 A22

)
.
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We can compute

(
P⊥
α

)−1
ψα
1 = −e

−iθα

√
2

(
ω2

ω2 − (ωα
1 )

2

)
uα1 +

e−iθα

√
2

(
ω2

ω2 − (ωα
2 )

2

)
uα2 ,

(
P⊥
α

)−1
ψα
2 =

1√
2

(
ω2

ω2 − (ωα
1 )

2

)
uα1 +

1√
2

(
ω2

ω2 − (ωα
2 )

2

)
uα2 .

Then we obtain

Puα1 = − (ωα
1 )

2

ω2
u1, Puα2 = − (ωα

2 )
2

ω2
u2.

Consequently, we have

A12 = −〈χ∂D1
, ·〉ψ1 + 〈χ∂D2

, ·〉ψ2

ω2|D1|
+ P

(
P⊥
α

)−1 〈·, χ∂D1
〉ψα

1 + 〈χ∂D2
, ·〉ψα

2

ω2|D1|
+O

(
1

ω

)

= −〈χ∂D1
, ·〉ψ1 + 〈χ∂D2

, ·〉ψ2

ω2|D1|
− 〈χα

1 , ·〉u1
ω2|D1|

(
(ωα

1 )
2

ω2 − (ωα
1 )

2

)
− 〈χα

2 , ·〉u2
ω2|D1|

(
(ωα

2 )
2

ω2 − (ωα
2 )

2

)

+O

(
1

ω

)
, (3.15)

and

A22 = −
(
P⊥
α

)−1 〈χ∂D1
, ·〉ψα

1 + 〈χ∂D2
, ·〉ψα

2

ω2|D1|
+O

(
1

ω

)

= −〈χα
1 , ·〉uα1
ω2|D1|

(
ω2

ω2 − (ωα
1 )

2

)
− 〈χα

2 , ·〉uα2
ω2|D1|

(
ω2

ω2 − (ωα
2 )

2

)

+O

(
1

ω

)
.

The singularity of Aα as ω → ωα
1 or ω → ωα

2 is, to leading order, described by the operator P⊥
α . Defining

Ψα
j =

(
uj
uαj

)
Φα

j =

(−δuαj
χα
j

)
,

the above computations imply the following result.

Proposition 3.10. As ω → ωα
j , j = 1, 2, we have

(
Aα(ω, δ)

)−1
= − 1

2ωα
j |D1|

〈Φα
j , ·〉Ψα

j

ω − ωα
j

+Rα
j (ω),

where Rα
j (ω) is holomorphic for ω in a neighbourhood of ωα

j .

3.2 Dislocated system for small dislocation

In this section, we study the problem when a dislocation is introduced so that half of the array of
resonators is translated in the x1-direction. We will model the defect problem using the fictitious source
superposition method [6].

3.2.1 Fictitious sources for dislocated resonator with a small dislocation

Here, we briefly describe the method of fictitious sources for a single translated resonator, in the asymp-
totic limit when the translation d→ 0. This will be developed for use on a dislocated array in Section 3.2.2.
Throughout this subsection, Ω denotes a bounded domain such that ∂Ω ∈ C1,s, Ωd := Ω + dv, and U is
a neighbourhood of Ω ∪ Ωd. Although this subsection is phrased for a general domain Ω, we think of Ω
as a pair of resonators in the dislocated array.

We define the map p : ∂Ω → ∂Ωd, x 7→ x + dv and the map q : L2(∂Ω) → L2(∂Ωd), q(φ)(y) =
φ(p−1(y)).
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Ω

f, g

d

f, g

Ωd

d

U

Figure 4: A dislocated pair of resonators in the case of a small dislocation d. Legend: resonator with fictitious
sources, dislocated resonator.

Lemma 3.11. Let x ∈ ∂Ω, let νx be the outward unit normal to ∂Ω at x and let p, q be defined as above.
For φ ∈ L2(∂Ω), we have

(i) If νx · v ≥ 0, then
Sω
Ω [φ](p(x)) = Sω

Ω [φ](x) + dv · ∇Sω
Ω [φ]

∣∣
+
(x) +O(d2).

(ii) If νx · v < 0, then
Sω
Ω [φ](p(x)) = Sω

Ω [φ](x) + dv · ∇Sω
Ω [φ]

∣∣
−(x) +O(d2).

These estimates are valid uniformly in x ∈ ∂Ω in the following sense: There is a constant C, independent
of d, such that ∥∥∥∥Sω

Ω [φ] ◦ p−
(
Sω
Ω [φ] + dv · ∇Sω

Ω [φ]
∣∣
±
)∥∥∥∥

L2(∂Ω)

≤ Cd2

for d small enough.

Proof. The cases νx ·v > 0 or νx ·v < 0 correspond, respectively, to the cases when p(x) is inside or outside
Ω for small enough d. In these cases, pointwise in x, the estimates follow by Taylor series expansions. If
x ∈ ∂Ω is such that νx · v = 0 we have [17]

v · ∇Sω
Ω [φ]

∣∣
+
(x) = v · ∇Sω

Ω

∣∣
−[φ](x).

For a fixed d, we define U ⊂ ∂Ω as the set of points x such that p(x) /∈ Ω but νx · v < 0, and V ⊂ ∂Ω
as the set of points x such that p(x) ∈ Ω but νx · v > 0 for some d0 < d. Since ∂Ω ∈ C1, we have
νx · v = O(d) uniformly for x ∈ U ∪ V , and so

v · ∇Sω
Ω [φ]

∣∣
+
(x) = v · ∇Sω

Ω [φ]
∣∣
−(x) +O(d),

uniformly for x ∈ U ∪ V . This proves the claim.

We now assume Ω = Ω1 ∪ Ω2 for two connected domains Ωi, i = 1, 2. To study the problem for the
dislocated resonator, we consider the problem when the resonator Ω has its original position, along with
fictitious sources f, g on the boundary. Explicitly, we consider the problem





∆ũ+ ω2ũ = 0 in U \ ∂Ω,
ũ|+ − ũ|− = f on ∂Ω,

δ
∂ũ

∂ν

∣∣∣∣
+

− ∂ũ

∂ν

∣∣∣∣
−
= g on ∂Ω.

(3.16)

We assume we have a reference solution u satisfying





∆u+ ω2u = 0 in U \ ∂Ωd,

u|+ − u|− = 0 on ∂Ωd,

δ
∂u

∂ν

∣∣∣∣
+

− ∂u

∂ν

∣∣∣∣
−
= 0 on ∂Ωd.

(3.17)
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We want to determine the fictitious sources f, g such that

u = ũ in U \ (Ω ∪ Ωd) , (3.18)

u = ũ in Ω ∩ Ωd. (3.19)

Inside U , the two solutions u and ũ can be respectively represented as

u =

{
Ŝω
Ωd

[φi,d] in Ωd,

Sω
Ωd

[φo,d] +H in U \ Ωd,
(3.20)

and

ũ =

{
Ŝω
Ω [φ

i] in Ω,

Sω
Ω [φ

o] + H̃ in U \ Ω,
(3.21)

for some functions H and H̃ satisfying ∆H + ω2H = 0 and ∆H̃ + ω2H̃ = 0 in U . H and H̃ can be
thought of as background solutions, while the single layer potentials account for the local effect of the
resonators. From (3.18) it follows that H = H̃. Using the jump relations and the boundary conditions
in (3.17) and (3.16) we find that

Ad(ω, δ)Φd =

(
H
∣∣
∂Ωd

δ∂νH
∣∣
∂Ωd

)
, A(ω, δ)Φ =

(
H
∣∣
∂Ω

δ∂νH
∣∣
∂Ω

)
−
(
f
g

)
, (3.22)

where

Ad(ω, δ) =

(
Ŝω
Ωd

−Sω
Ωd

− 1
2I + K̂ω,∗

Ωd
−δ
(
1
2I +Kω

Ωd
)∗
)
)
, A(ω, δ) =

(
Ŝω
Ω −Sω

Ω

− 1
2I + K̂ω,∗

Ω −δ
(
1
2I + (Kω

Ω)
∗)
)
,

and

Φd =

(
φi,d

φo,d

)
, Φ =

(
φi

φo

)
.

Ω Ωd

by Lemma 3.11

Ω Ωd

Figure 5: In the fictitious sources approach, for the case of a small dislocation, we seek solutions that match on
the shaded region. In (3.23) and (3.24), equality is imposed on the region highlighted in the left image. Using
Lemma 3.11 this is mapped to a subset of ∂Ω. After this transformation, the length of the part of ∂Ω not included
will be O(d), where d is the size of the dislocation. Legend: original resonator, dislocated resonator,

region of enforced equality.

By equations (3.18) and (3.19), we have

Ŝω
Ωd

[φi,d](x̃) = Ŝω
Ω [φ

i](x̃), x̃ ∈ ∂Ωd ∩ Ω, (3.23)

Ŝω
Ωd

[φi,d](x) = Ŝω
Ω [φ

i](x), x ∈ ∂Ω ∩ Ωd. (3.24)

We decompose the boundaries of the resonators as ∂Ωi
d = ∂Ωd ∩ Ω and ∂Ωo

d = ∂Ωd \ ∂Ωi
d, and define

∂Ωi = ∂Ωi
d − dv and ∂Ωo = ∂Ωo

d − dv. Because of translation invariance, we have Ŝω
Ωd

[
φi,d

]
(x̃) =

Ŝω
Ω

[
q−1(φi,d)

]
(x), where x̃ = p(x). Therefore, using Lemma 3.11, we obtain

{
Ŝω
Ω

[
q−1(φi,d)

]
= Ŝω

Ω [φ
i] + dv · ∇Ŝω

Ω [φ
i]
∣∣
− +O(d2) on ∂Ωi,

Ŝω
Ω

[
q−1(φi,d)

]
− dv · ∇Ŝω

Ω

[
q−1(φi,d)

] ∣∣
− = Ŝω

Ω

[
φi
]
+O(d2) on ∂Ω ∩ Ωd.

This transformation is depicted in Figure 5. The boundary ∂Ω is decomposed into disjoint parts ∂Ωi and
∂Ωo, and the length of the “missing” part of the boundary, ∂Ωo \ (∂Ω ∩ Ωd), scales as O(d). Moreover,
on this part (3.24) holds to order O(d). Using the Neumann series, we can invert the second equation to
obtain

q−1(φi,d) = φi + d
(
Ŝω
Ω

)−1

v · ∇Ŝω
Ω [φ

i]
∣∣
− +O(d2) on ∂Ω.
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We define Q : L2(∂Ω)2 → L2(∂Ωd)
2 by

Q(u, v) =

(
q(u)
q(v)

)
.

By analogous computations for Sω
Ω [φ

o,d](x) as those for Ŝω
Ω [φ

i,d](x), we find that

Q−1Φd = P1Φ, P1 = I + d



(
Ŝω
Ω

)−1

v · ∇Ŝω
Ω

∣∣
− 0

0 (Sω
Ω)

−1
v · ∇Sω

Ω

∣∣
+


+O(d2), (3.25)

where P1 : L2(∂Ω) → L2(∂Ω). We denote the linear term in d by P(1)
1 , i.e., P1 = I + dP(1)

1 +O(d2).
We now use Taylor series expansions to relate H|∂Ω and H|∂Ωd

. We have that

H|∂Ω = H|∂Ωd
− dv · ∇H|∂Ωd

+O(d2)

= H|∂Ωd
− d

(
(v · ν) ∂

∂ν
H|∂Ωd

+
∂

∂T
H|∂Ωd

)
+O(d2),

where ∂
∂T := (v − (v · ν)ν) · ∇ is the tangential derivative in the direction specified by v. Moreover,

∂

∂ν
H|∂Ω =

∂

∂ν
H|∂Ωd

− d

(
(v · ν) ∂

2

∂ν2
H|∂Ωd

+
∂2

∂T∂ν
H|∂Ωd

)
+O(d2).

The Laplacian in local coordinates defined by the normal and tangential directions of ∂Ωd can be written
as

∆ =
∂2

∂ν2
+ 2τ(x̃)

∂

∂ν
+∆∂Ωd

,

where τ denotes the mean curvature of ∂Ωd and ∆∂Ωd
denotes the Laplace-Beltrami operator on ∂Ωd.

Since H satisfies the Helmholtz equation (∆ + ω2)H = 0, we get

∂2

∂ν2
H|∂Ωd

= −
(
ω2 +∆∂Ωd

)
H|∂Ωd

− 2τ
∂

∂ν
H|∂Ωd

.

Hence, we have (
H
∣∣
∂Ω

δ∂νH
∣∣
∂Ω

)
= P2Q

−1

(
H
∣∣
∂Ωd

δ∂νH
∣∣
∂Ωd

)
, (3.26)

where the operator P2 : L2(∂Ω)2 → L2(∂Ω)2 is given by

P2 = I + dP(1)
2 +O(d2), P(1)

2 =

(
−∂T − (v·ν)

δ
δ(v · ν)

(
ω2 +∆∂Ω

)
2τ − ∂T

)
.

Since Ωd and Ω only differ by a translation, we have that

Ad = QAQ−1. (3.27)

Combining (3.22), (3.25), (3.26) and (3.27), we arrive at the following result.

Proposition 3.12. The layer densities φi and φo and the fictitious sources f and g satisfy
(
f
g

)
= B(ω, δ, d)

(
φi

φo

)
, B(ω, δ, d) = P2AP1 −A.

3.2.2 Integral equation for the dislocated system

In this section, we use Proposition 3.12 to derive an integral equation for the dislocated system when the
dislocation size is small.

To study the dislocated problem (3.2), we consider the problem with periodic geometry, along with
fictitious sources fm, gm placed on the boundary of Dm = Dm

1 ∪Dm
2 . Explicitly, we consider the problem





∆ũ+ ω2ũ = 0 in R
3 \ ∂C,

ũ|+ − ũ|− = fm on ∂Dm,m ∈ N,

δ
∂ũ

∂ν

∣∣∣∣
+

− ∂ũ

∂ν

∣∣∣∣
−
= gm on ∂Dm,m ∈ N,

ũ(x1, x2, x3) satisfies the outgoing radiation condition as
√
x22 + x23 → ∞.

(3.28)
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· · ·
f0, g0

d

f0, g0 f1, g1 f1, g1

· · ·

Figure 6: The dislocated system is equivalent to the original array with the addition of so-called fictitious sources
fm, gm, on the boundary of Dm for m ∈ N. Legend: untouched resonator, resonator with fictitious
sources, dislocated resonator.

Assume we have a nonzero solution u to (3.2). Inside Y m := Y +mdv, we can represent the solution as
in (3.20) with the choices Ω = Dm and U = Y m. In this way, we define the layer densities φi,d and φo,d.
Since P1 is invertible for small enough d, we can define the layer densities φim and φom as

(
φim
φom

)
= (P1)

−1
Q−1

(
φi,d

φo,d

)
.

We then set the fictitious sources as

(
fm
gm

)
=





0, m < 0,

Bm

(
φim
φom

)
, m ≥ 0,

(3.29)

where Bm is defined as in Proposition 3.12 with the choice Ω = Dm. We then define the solution ũ by

(3.21) with H̃ = H, and because of (3.29) this coincides with u in
(
Y m \

(
Dm ∪ (Dm + dv)

))
∪
(
Dm ∩

(Dm + dv)
)
.

Conversely, if we have a nonzero solution ũ to (3.28), represented as (3.21) in Y m and with sources
satisfying (3.29), we can define φi,d and φo,d to get a nonzero solution u to (3.2) coinciding with ũ in(
Y m \

(
Dm ∪ (Dm + dv)

))
∪
(
Dm ∩ (Dm + dv)

)
.

From the above arguments, it follows that the spectral problem (3.2) is equivalent to (3.28). So, in
the remainder of this subsection we will only study the latter problem. For simplicity, since the solutions
coincide, we will omit the superscript˜and simply write u for ũ.

We define uα as the Floquet transform of u, i.e.,

uα =
∑

m∈Z

u(x−mLv)eiαm.

The transformed solution uα satisfies





∆uα + ω2uα = 0 in R
3 \ ∂D,

uα|+ − uα|− = fα on ∂D,

δ
∂uα

∂ν

∣∣∣∣
+

− ∂uα

∂ν

∣∣∣∣
−
= gα on ∂D,

e−iαx1uα(x1, x2, x3) is periodic in x1,

uα(x1, x2, x3) satisfies the α-quasiperiodic outgoing radiation condition

as
√
x22 + x23 → ∞,

(3.30)

where
fα =

∑

m∈Z

fme
−iαm, gα =

∑

m∈Z

gme
−iαm. (3.31)

From now on, we identify functions um ∈ L2(∂Dm), for any m, with u0 ∈ L2(∂D) by translating the
argument, i.e., by u0(x) = um(x+mLv). Observe that under this identification, all operators Bm,m ∈ N

coincide and will be denoted by B0.
The solution uα can be represented using quasiperiodic layer potentials as

uα =

{
Ŝω
D[ψα] in D,

Sα,ω
D [φα] in Y \D,
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where the pair (φα,i, φα,o) ∈ L2(∂D)2 is the solution to

Aα(ω, δ)

(
ψα

φα

)
=




Ŝω
D −Sα,ω

D

−1

2
I + K̂ω,∗

D −δ
(
1

2
I +

(
K−α,ω

D

)∗
)


(
φα,i

φα,o

)
=

(
−fα
−gα

)
. (3.32)

Then the original solution u can be recovered by the inverse Floquet transform,

u(x) =
1

2π

∫

Y ∗

uα(x) dα.

Because of the quasiperiodicity of uα, the solution u inside the region Dm satisfies

u = Ŝω
Dm

[
1

2π

∫

Y ∗

eiαmφα,i dα

]
. (3.33)

Similarly, inside the region Y m \Dm, we have

u =
1

2π

∫

Y ∗

Sα,ω
D [φα,o] dα

= Sω
Dm

[
1

2π

∫

Y ∗

eiαmφα,o dα

]
+

1

2π

∫

Y ∗

∑

n∈Z,n 6=m

Sω
D[φα,o]( · − nLv)einα dα. (3.34)

The last term in the right-hand side of (3.34) satisfies the homogeneous Helmholtz equation (∆+ω2)u = 0

in Y m. Therefore, combining (3.33) and (3.34) together with (3.21), we can identify φm, ψm and H̃ as
follows:

φα,im =
1

2π

∫

Y ∗

eiαmφα,i dα, φα,om =
1

2π

∫

Y ∗

eiαmφα,o dα, (3.35)

and

H̃ =
1

2π

∫

Y ∗

∑

n∈Z,n 6=m

Sω
D[φα,o]( · − nLv)einα dα.

We define the operator Im : L2(∂D × Y ∗) → L2(∂D), by

Im[ϕ](x) =
1

2π

∫

Y ∗

ϕ(x, α)eiαm dα.

Since the operator Aα is invertible for ω in the band gap, we have from (3.32) that
(
φα,i

φα,o

)
= Aα(ω, δ)−1

(
−fα
−gα

)
.

Combining this together with (3.35) and (3.31), we obtain the following result.

Proposition 3.13. As d→ 0, the mid-gap frequencies of (3.2) are precisely the values ω such that there
is a nonzero solution φα,i, φα,o ∈ L2(∂D × Y ∗) to the equation

(
φα,i

φα,o

)
= −

(
Aα(ω, δ)

)−1

( ∞∑

m=0

e−imαB0Im

)(
φα,i

φα,o

)
. (3.36)

It is clear that B0 = O(d). As d → 0, it follows from Proposition 3.10 that any characteristic value
ω = ω(d) satisfies ω(d) → ωα

j for some ωα
j . Denote

ω⋄
1 = max

α∈Y ∗

ωα
1 , ω⋄

2 = min
α∈Y ∗

ωα
2 .

The following lemma follows from Theorem 3.6.

Lemma 3.14. To leading order in δ, the critical values ω⋄
1 and ω⋄

2 are attained at α⋄ = π/L, and for α
close to α⋄ we have

ωα
1 = ω⋄

1 − c1(α− α⋄)2 +O
(
|α− α⋄|3 + δ

)
, ωα

2 = ω⋄
2 − c2(α− α⋄)2 +O

(
|α− α⋄|3 + δ

)
,

for some constants c1, c2.
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In what follows, we will consistently use the superscript ⋄ to denote corresponding quantity evaluated
at the critical point α⋄ = π/L, to leading order in δ.

Lemma 3.15. Assume that D1 and D2 are strictly convex. Then, in the dilute regime, we have the
following:

Case l0 < 1/2 : 〈Φ⋄
1,B0Ψ

⋄
1〉 < 0 and 〈Φ⋄

2,B0Ψ
⋄
2〉 > 0,

Case l0 > 1/2 : 〈Φ⋄
1,B0Ψ

⋄
1〉 > 0 and 〈Φ⋄

2,B0Ψ
⋄
2〉 < 0,

for small enough ε, δ and d.

We refer to Appendix A.1 for the proof of Lemma 3.15. We will also need the following lemma.

Lemma 3.16. We have

Re

(
1

2π

∞∑

m=0

e−imα

∫ 2π

0

eimα′

1 + c2(α′ − π)2
dα′
)

=
1

2

(
1

1 + c2(α− π)2
+

1

πc
arctan(πc)

)
.

Proof. Define I(α) as

I(α) =
1

2π

∞∑

m=0

e−imα

∫ 2π

0

eimα′

1 + c2(α′ − π)2
dα′.

Completing the Fourier series, we have

I(α) + I(α)− 1

2π

∫ 2π

0

1

1 + c2(α′ − π)2
dα′ =

1

1 + c2(α− π)2
.

Since I(α) + I(α) = 2Re(I(α)), and since

1

2π

∫ 2π

0

1

1 + c2(α′ − π)2
dα′ =

1

πc
arctan(πc),

the lemma follows.

From Lemma 3.16 we find that

1

2π

∞∑

m=0

(−1)m
∫ 2π

0

eimα′

1 + c2(α′ − π)2
dα′ =

1

2
+

1

2πc
arctan(πc). (3.37)

The next theorem, which is the main result of this section, describes how the mid-gap frequencies
emerge from the edges of the band gap.

Theorem 3.17. Assume that D1 and D2 are strictly convex. For small enough d and δ, and in the case
l0 > 1/2, there are two mid-gap frequencies ω1(d), ω2(d) such that ωj(d) → ω⋄

j , j = 1, 2 as d→ 0. In the
case l0 < 1/2, there are no mid-gap frequencies as d, δ → 0.

Proof. We seek solutions to (3.36) as d → 0, corresponding to solutions ω in a small neighbourhood of

ω⋄
j for j = 1 or j = 2. By Proposition 3.10 and Lemma 3.14, (Aα)

−1
has a pole at ω⋄. Recall that we

seek solutions ω = O(
√
δ) as δ → 0. At δ = 0 and ω = 0, the problem (3.2) decouples into a Neumann

problem on each resonator, with constant solution inside each resonator. Since Ŝ0
D[uj ] is constant inside

D, we find that
φα,i = c1(α)u1 + c2(α)u2

for some coefficients c1(α) and c2(α). It follows that the root function is such that the singularity of
(Aα)−1 does not vanish. Hence, from Proposition 3.10 and Lemma 3.14, the solution can be written, for
α close to α⋄, as (

φα,i

φα,o

)
=

Ψ⋄
j

ω − ω⋄
j + cj |α− α⋄|2h(ω, δ, d) +K1(ω, α, δ, d),

where K1(ω, α) is bounded uniformly in d for (ω, α) in a neighbourhood of (ω⋄
j , α

⋄) and h is constant in
α. Applying (3.37), we then find that

∞∑

m=0

e−iαmB0Im

(
φα,i

φα,o

)
=

B0Ψ
⋄
j

2(ω − ω⋄
j )
h(ω, δ, d) +K2

18



for some K2 with norm of order O(d) in a neighbourhood of (ω⋄
j , α

⋄). We then have

−
(
Aα(ω, δ)

)−1
∞∑

m=0

eiαmB0Im

(
φα,i

φα,o

)
=

Ψ⋄
j

ω − ω⋄
j + cj |α− α⋄|2

〈Φ⋄
j ,B0Ψ

⋄
j 〉

4ω⋄
j |D1|(ω − ω⋄

j )
h(ω, δ, d) +K3.

Equation (3.36) then reads

〈Φ⋄
j ,B0Ψ

⋄
j 〉

4ω⋄
j |D1|(ω − ω⋄

j )
= 1 +O

(
d√

ω − ω⋄
j

)
,

which has precisely one solution ω = ω1(d), expanded as

ωj(d) = ω⋄
j +

〈Φ⋄
j ,B0Ψ

⋄
j 〉

4ω⋄
j |D1|

+O(d3/2).

From Lemma 3.15 it follows that ωj(d) is inside the band gap precisely in the case l0 > 1/2.

Remark 3.18. It should be noted that the assumptions of convexity made in this section are not an
intrinsic part of the method. This was only needed to simplify the arguments in the proof of Lemma 3.15.
Indeed, the fictitious source method is repeatedly used in the rest of this work without any assumptions
of convexity.

3.3 Integer unit length dislocation

In this section, we study the problem when the dislocation is an integer number of unit cell lengths.
This is equivalent to the case when an integer multiple of dimers are removed from the original, periodic
structure, thus creating a cavity. We will model this defect cavity problem using the fictitious source
superposition method [6].

3.3.1 Fictitious sources for a removed resonator

Here, we describe the method of fictitious sources when a single resonator is removed. Throughout this
subsection, Ω denotes a connected, bounded domain such that ∂Ω ∈ C1,s, and U denotes a neighbourhood
of Ω. Although the argument can be made for general Ω, we assume that Ω consists of two connected
components Ω = Ω1 ∪ Ω2.

To study this problem, we consider the problem when the removed resonator Ω is reintroduced, along
with fictitious dipole sources g on the boundary. We assume we have a reference solution u satisfying

∆u+ ω2u = 0 in U.

Let ũ satisfy the fictitious source problem




∆ũ+ ω2ũ = 0 in U \ ∂Ω,
ũ|+ − ũ|− = 0 on ∂Ω,

δ
∂ũ

∂ν

∣∣∣∣
+

− ∂ũ

∂ν

∣∣∣∣
−
= g on ∂Ω.

We want to determine the fictitious sources g such that u = ũ inside U . Any solution ũ can be represented
as

ũ =

{
Ŝω
Ω [φ

i] in Ω,

Ŝω
Ω [φ

o] +H in U \ Ω, (3.38)

for some H satisfying ∆H + ω2H = 0 in U . Imposing ũ = u in U is equivalent to

φi =
(
Ŝω
Ω

)−1

[u|∂Ω], φo = 0, H = u.

Moreover, using the jump conditions, we find the following expression of g.

Proposition 3.19. The fictitious sources g and the layer density φi satisfy

g = B(ω, δ)φi, B(ω, δ) = (δ − 1)

(
−1

2
I + K̂ω,∗

Ω

)
.

Conversely, by the unique continuation property of the Helmholtz equation, if g satisfies Proposi-
tion 3.19, then ũ = u in U .
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3.3.2 Integral equation for the dislocated system

· · ·
d = L

· · ·

· · ·
f0, g0 f0, g0

· · ·

Figure 7: The dislocated system with dislocation equals to a multiple of the length of the unit cell (i.e. d = NL)
is equivalent to the original array with the addition of so-called fictitious sources fm, gm, on the boundary of Dm

for m = 0, . . . , N − 1. The case N = 1 is depicted here. Legend: untouched resonator, resonator with
fictitious sources, dislocated resonator.

We now assume that 2N resonators are removed, so that u satisfies (3.2) with

Cd = C0 \
(

N−1⋃

m=0

Dm

)
. (3.39)

Again, we model this using the fictitious source method as in (3.28), following the approach of Sec-
tion 3.2.2. We put fm = 0 for all m. Moreover, gm will be defined as in Proposition 3.19 for all the
removed resonators.

Assume we have a nonzero solution u to (3.2). Inside Y m,m = 0, 1, · · · , N − 1, we can define the
layer density φim as

φim =
(
Ŝω
Ω

)−1
[u|∂Dm ] .

We then set the fictitious sources as

gm = BDφ
i
m, 0 < m < N − 1, (3.40)

and gm = 0 otherwise. Here, BD are the operators defined in Proposition 3.12 with the choice Ω = D.
Then, putting φo = 0 and H = u, we obtain a solution ũ defined by (3.38), which coincides with u on
Y m \Dm.

Conversely, if we have a nonzero solution ũ to (3.28), represented as (3.38) in Y m and with sources
satisfying (3.40), then we can define a nonzero solution u = ũ to (3.2) coinciding with ũ on Y m \Dm.

We introduce the extended operator on
(
L2(∂D)

)2
,

B =

(
0 0
BD 0

)
.

For α ∈ Y ∗, define Bα :
(
L2(∂D)

)2N →
(
L2(∂D)

)2
block-wise as

Bα =
(
B e−iαB · · · e−(N−1)iαB

)
,

and define Eα :
(
L2(∂D)

)2 →
(
L2(∂D)

)2N
block-wise as

Eα =




I
eiαI
e2iαI

...
e(N−1)iαI



.

Next, we follow the approach of Section 3.2.2 to derive the integral equation for the dislocated system.
By taking the Fourier transform, we obtain (3.30) together with the relation (3.35) for φim and φom. Putting

ΦN =




φi0
φo0
...

φiN−1

φoN−1



,
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we then obtain the following result.

Proposition 3.20. For Cd as in (3.39), the mid-gap frequencies of (3.2) are precisely the values ω such

that there is a nonzero solution ΦN ∈
(
L2(∂D)

)2N
to the equation

ΦN = − 1

2π

(∫

Y ∗

Eα
(
Aα(ω, δ)

)−1Bα dα

)
ΦN . (3.41)

In order to analyse (3.41), we will need the following lemma, which is an immediate consequence of
the structure of B.

Lemma 3.21. We have
(
Aα(ω, δ)

)−1
B =

(
A12BD 0
A22BD 0

)
. (3.42)

As δ → 0 and ω = O(
√
δ), the operator A12 can be approximated by (3.15).

Although A22 can be computed explicitly, this will not enter into the remaining arguments and is
therefore omitted. Due to the zero column in (3.42), it is clear that (3.41) reduces to an equation for
φim, · · · , φiN−1 only. In fact, from (3.41), it follows that

Φi
N = − 1

2π

∫

Y ∗




1 eiα · · · e−(N−1)iα

eiα 1 · · · e−(N−2)iα

...
...

. . .
...

e(N−1)iα e(N−2)iα · · · 1







A12BD 0 · · · 0
0 A12BD · · · 0
...

...
. . .

...
0 0 · · · A12BD


Φi

N dα,

(3.43)
where

Φi
N =




φi0
φi1
...

φiN−1


 .

From Lemma 3.21, we obtain that, to leading order, φim is a linear combination of ψ1 and ψ2,

φim = cmψ1 + dmψ2 +O(ω).

Define, for j = 1, 2,

tmi,j =
1

2π

∫

Y ∗

eimα 〈χ∂Di
, (I +A12BD) [ψj ]〉 dα.

Then, taking inner products 〈χ∂Di , ·〉 in equation (3.43) we find

1

2π

∫

Y ∗

eimα

(〈
χ∂D1

, I +A12BD[φin]
〉

〈
χ∂D2

, I +A12BD[φin]
〉
)

dα = Tm

(
cn
dn

)
,

where Tm denotes the 2× 2 matrix
(
tmi,j
)
. We thus have

TN (ω)CN = 0, (3.44)

where we have defined

TN (ω) =




T0 T−1 · · · T−(N−1)

T1 T0 · · · T−(N−2)

...
...

. . .
...

TN−1 TN−2 · · · T0


 , CN =




c0
d0
c1
...

dN−1



.

Observe that TN is a block Toeplitz matrix generated by the symbol ϕ,

ϕ = ϕ(α) =

(
ϕ1,1 ϕ1,2

ϕ2,1 ϕ2,2

)
, ϕi,j =

〈
χ∂Di

, (I +A12BD) [ψj ]
〉
, i, j = 1, 2.

In the following lemma, we compute ϕ.
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Lemma 3.22. We have

ϕ(α) = −CapD1

2

(
Ω1 +Ω2 −eiθα (Ω1 − Ω2)

−e−iθα (Ω1 − Ω2) Ω1 +Ω2

)
, detϕ =

(
CapD1

)2
Ω1Ω2,

where

Ωj =

(
ωα
j

)2

ω2 −
(
ωα
j

)2 , j = 1, 2.

Proof. As computed in [5], we have

〈
χ∂Dj

,

(
−1

2
I +Kω,∗

Dj

)
ψj

〉
= −ω2|D1|+O(ω3),

and therefore,
〈χ∂Di

, BDψj〉 = ω2|D1|δi,j +O(ω3), i, j = 1, 2.

From this, using Lemma 3.21 and (3.15) we find that

A12BD[ψ1] =

(
−1 +

Ω1 +Ω2

2

)
ψ1 − e−iθα

Ω1 − Ω2

2
ψ2 +O(ω),

A12BD[ψ2] = −eiθα Ω1 − Ω2

2
ψ1 +

(
−1 +

Ω1 +Ω2

2

)
ψ2 +O(ω).

The result now follows from the facts that 〈χ∂Di
, ψj〉 = −CapDi

δi,j and CapD1
= CapD2

.

Observe, in particular, that ϕ is a Hermitian matrix, and therefore the Toeplitz matrices TN are also
Hermitian. We define the “exchange” matrix Jm ∈ R

2m,m ∈ N, as

Jm =




0 · · · 0 1
0 · · · 1 0
... . .

. ...
...

1 · · · 0 0


 .

The following lemma describes the centrosymmetry property of Hermitian Toeplitz matrices.

Lemma 3.23. We have
Tm = J1T−mJ1, TN = JNTNJN .

Proof. We have J1ϕJ1 = ϕ, and therefore

Tm =
1

2π

∫

Y ∗

eimαϕ(α) dα

=
1

2π

∫

Y ∗

J1e−imαϕ(α)J1 dα

= J1T−mJ1.

The second equality of the statement follows from the first one together with the Toeplitz structure of
TN .

We will study the solutions to (3.44) in the two cases N = 1 and N → ∞. The following proposition
characterizes the solutions in the case N = 1, corresponding to two removed resonators.

Proposition 3.24. If N = 1, the equation (3.44) has a nonzero solution if and only if ω is a solution to
one of the two equations

1

2π

∫

Y ∗

(
Ω1

(
1± eiθα

)
+Ω2

(
1∓ eiθα

) )
dα = 0. (3.45)

If l0 < 1/2, there are no solution to the equations (3.45), while if l0 > 1/2, each equation has exactly one
solution.
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Proof. In the case N = 1, equation (3.44) reads

T0

(
c0
d0

)
= 0,

which has a nonzero solution if and only if detT0 = 0. We have

detT0 =

(
CapD1

)2

4

(
(I1)

2 − |I2|2
)
,

where

I1 =
1

2π

∫

Y ∗

(Ω1 +Ω2) dα, I2 =
1

2π

∫

Y ∗

eiθα (Ω1 − Ω2) dα.

By time-reversal symmetry, we have ω−α
j = ωα

j , j = 1, 2, which implies I2 ∈ R. Hence detT0 = 0 is
equivalent to

I1 − I2 = 0, or I1 + I2 = 0.

The remaining part of the proof is given in Appendix B. It is shown that that each of these equations
has a unique solution in the case l0 > 1/2, while no solutions in the case l0 > 1/2.

Denote by T (ω) the infinite Toeplitz matrix corresponding to TN (ω), i.e.,

T (ω) =




T0 T−1 T−2 · · ·
T1 T0 T−1 · · ·
T2 T1 T0 · · ·
...

...
...

. . .


 ,

which defines a bounded operator on the space l22 of sequences of two-dimensional vectors. More precisely,
l22 consists of sequences {xn}∞n=0 ∈ l22 of vectors xn ∈ R

2 such that

( ∞∑

n=0

‖xn‖2
)1/2

<∞,

where ‖ · ‖ denotes the Euclidean norm.

Proposition 3.25. Given ω∞ inside the band gap such that T (ω∞) has eigenvalue 0, there are two
frequencies ω1(N), ω2(N) → ω∞ as N → ∞, such that TN is not invertible at ω1(N), ω2(N).

Proof. Let X = {xn}∞n=0 ∈ l22 be an eigenvector with T (ω∞)X = 0, and let x ∈ R
2N be a truncation of

X. Since T (ω∞)X = 0, we have
∞∑

n=0

Tk−nxn = 0 (3.46)

for all k ∈ N. Define z1, z2 ∈ R
4N ,

z1 =

(
x

JNx

)
, z2 =

(
x

−JNx

)
.

Then, using Lemma 3.23 we have

T2N (ω∞)z1 =




...
N−1∑

n=0

Tk−nxn +

N−1∑

n=0

Tk−N−nJNxN−1−n

...




=




...

N−1∑

n=0

Tk−nxn + JN

N−1∑

n=0

T2N−1−k−nxn

...




for k = 0, · · · , 2N − 1.
In view of (3.46), given ε > 0 we can choose N such that

‖T2Nz1‖ < ε,
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which implies that 0 is in the ε-pseudospectrum of T2N (ω∞) (see, for example, [56] for a thorough
discussion on the definition and properties of pseudospectra). Since T2N (ω∞) is Hermitian, it follows that
there is an eigenvalue µ1 of T2N (ω∞) with |µ1| < ε. From this, it follows that there is a characteristic
value ω1 of T2N (ω) with |ω1 − ω∞| < Kε for some K independent on ε [7].

In the same way, we can show that given ε > 0 we can choose N such that

‖T2Nz2‖ < ε,

and therefore there is a characteristic value ω2 of T2N (ω) with |ω2 − ω∞| < Kε for some K independent
on ε.

The above argument shows that ωi(2N) → ω∞ as N → ∞. The case of the sequence ωi(2N − 1),
corresponding to odd indices, follows similarly by choosing the truncation x ∈ R

2N−1 and constructing
z1, z2 analogously.

Remark 3.26. The values of the nonzero solutions CN to (3.44) correspond to the values of the mid-gap
modes inside the dislocation region. The two pseudomodes z1 and z2 can be interpreted as approximations
of the monopole and dipole modes, respectively, arising from the hybridization of the two semi-infinite
half-structures. As the dislocation increases, i.e., as N → ∞, the strength of the hybridization decreases
and the frequencies corresponding to these modes converge to the same value ω∞.

Remark 3.27. The work in the present section shows the intimate connection between localized edge
modes, and the fact that Toeplitz matrices have eigenvectors which are exponentially localized to the
edges of the vector for sufficiently smooth symbols [56].

3.4 Dislocation larger than resonator width

In this section, we assume that the size of the dislocation is at least the width of one resonator. In other
words, this means that each dislocated resonator does not overlap with the original resonator.

We begin by stating some facts from [13] on the eigenfunctions of the Neumann-Poincaré operator
K0,∗

Ω for a domain Ω with ∂Ω ∈ C1,s, 0 < s < 1. We additionally assume that Ω is connected, which

means that Ω can be thought of as a single resonator Dm
j in the dislocated array. The operator K0,∗

Ω is

known to be self-adjoint in the inner product 〈·, ·〉−1/2 on H−1/2(∂Ω) defined by

〈u, v〉−1/2 = −
〈
u,S0

Ω[v]
〉
−1/2,1/2

,

where 〈·, ·〉−1/2,1/2 denotes the duality pairing of H−1/2(∂Ω) and H1/2(∂Ω). Then, by the spectral

theorem, the eigenfunctions ψj
Ω, j = 1, 2, 3, · · · , of K0,∗

Ω form a basis of H−1/2(∂Ω) that is orthonormal

with respect to 〈·, ·〉−1/2, while the functions S0
Ω[ψ

j
Ω] form a basis of H1/2(∂Ω) that is orthogonal with

respect to the inner product 〈·, ·〉1/2 defined by

〈u, v〉1/2 = −
〈(

S0
Ω

)−1
[u], v

〉

−1/2,1/2
.

The following addition theorem gives an expansion of Green’s function Gω(x, z), with the origin shifted
by z /∈ ∂Ω, in terms of Sω

Ω [ψ
j
Ω](x).

Proposition 3.28. For x ∈ ∂Ω, z /∈ ∂Ω and ω small enough, we have

Gω(x, z) = −
∞∑

i=1

Sω
Ω [ξ

i
Ω](z)Sω

Ω [ψ
i
Ω](x),

where ξiΩ = (Sω
Ω)

−1 S0
Ω[ψ

i
Ω].

Proof. The proof follows the same arguments as those in [13], where an analogous result was proven for
Laplace Green’s function G0. We include the proof for the sake of completeness.

Since S0
Ω[ψ

i
Ω] is a basis of H1/2(∂Ω), and since Sω

Ω : H−1/2(∂Ω) → H1/2(∂Ω) is invertible for ω small
enough, we can expand Gω for fixed z as follows,

Gω(·, z) =
∞∑

i=1

ci(z)Sω
Ω [ψ

i
Ω], (3.47)
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for some coefficients ci with
∞∑

i=1

|ci(z)|2 <∞, z /∈ ∂Ω.

Moreover, ψi are orthonormal in H−1/2(∂Ω) equipped with 〈·, ·〉−1/2. From (Sω
Ω)

∗
= Sω

Ω , we have

−
〈
ξiΩ,Sω

Ω [ψ
j
Ω]
〉

−1/2,1/2
= −

〈(
Sω
Ω

)−1 S0
Ω[ψ

i
Ω],Sω

Ω [ψ
j
Ω]
〉

−1/2,1/2

= δi,j . (3.48)

Therefore,

〈
ξiΩ, G

ω(·, z)
〉

−1/2,1/2
= Sω

Ω [ξ
i
Ω](z). (3.49)

Combining (3.47) together with (3.48) and (3.49) shows the claim.

We denote Ωd = Ω+ dv. We then have the following proposition.

Proposition 3.29. Assume that Ω ∩ Ωd = ∅. Then, for φ ∈ H−1/2(∂Ωd), we have

Sω
Ωd

[φ](x− dv) = Sω
Ωd

[V φ](x), x ∈ ∂Ωd,

where V : H−1/2(∂Ωd) → H−1/2(∂Ωd) is given by

V [ψj
Ωd

] =

∞∑

i=1

Vi,jψ
i
Ωd
, Vi,j = −

∫

∂Ωd

Sω
Ωd

[ξiΩd
](y − dv)ψj

Ωd
(y) dσ(y), i, j ≥ 1.

Proof. Since

Sω
Ωd

[φ](x− dv) =

∫

∂Ωd

Gω(x, y + dv)φ(y) dσ(y),

and since y + dv /∈ ∂Ωd, the proposition follows from Proposition 3.28.

We will also need the following addition theorem for the normal derivative of the single-layer potential.
We let Dω

Ω denote the double-layer potential (for details on this operator we refer, for example, to [7]).

Proposition 3.30. Assume that Ω ∩ Ωd = ∅. Then, for φ ∈ H−1/2(∂Ωd), we have

∂Sω
Ωd

∂νx−dv
[φ](x− dv) =W

∂Sω
Ωd

∂νx

∣∣∣∣
+

[φ](x), x ∈ ∂Ωd,

where W : H−1/2(∂Ωd) → H−1/2(∂Ωd) is given by

W

(
1

2
+Kω,∗

Ωd

)−1

[ψj
Ωd

] =

∞∑

i=1

Wi,jψ
i
Ωd
, Wi,j =

∫

∂Ωd

Dω
Ωd

S0
Ωd

[ψi
Ωd

](y + dv)ψj
Ωd

(y) dσ(y), i, j ≥ 1.

Here, ∂/∂νx−dv
denotes the normal derivative with respect to Ω.

Proof. Analogously to the proof of Proposition 3.28, we can show that

∂Gω

∂νx
(x, y) =

∞∑

i=1

Dω
ΩS0

Ω[ψ
i
Ω](y)ψ

i
Ω(x), x ∈ ∂Ω, y /∈ ∂Ω.

The result now follows by the same argument as the one in the proof of Proposition 3.29, using the jump
relation

∂Sω
Ωd

∂νx

∣∣∣∣
+

[φ] =

(
1

2
+Kω,∗

Ωd

)
[φ].
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3.4.1 Fictitious sources for the non-overlapping resonators

Here we describe the method of fictitious sources when a single resonator Ω is dislocated by d such that
Ω ∩ Ωd = ∅, where Ωd = Ω+ dv.

The arguments follow closely those of Section 3.2.1. Again, we consider the two problems (3.16) and
(3.17) corresponding, respectively, to the original geometry with sources and to the dislocated geometry
without sources. Representing the solutions as (3.20) and (3.21), we again arrive at the equations given
in (3.22). Next, we will use Proposition 3.29 to study these equations.

Let U0 be a neighbourhood of Ω not containing Ωd. Imposing u = ũ in U0 \ Ω we find from Proposi-
tion 3.29 that

Φd = P1Φ, where P1 :=

(
V −1 0
0 V −1

)
Q.

As before, since Ωd and Ω only differ by a translation, we can easily see that

Ad = QAQ−1.

In U0, we can represent H as

H(x) =

∞∑

i=1

ciSω
Ωd

(x), x ∈ U0.

This gives (
H
∣∣
∂Ω

δ∂νH
∣∣
∂Ω

)
= P2

(
H
∣∣
∂Ωd

δ∂νH
∣∣
∂Ωd

)
, where P2 := Q

(
V ∗ 0
0 W

)
.

Here, V ∗ : H1/2(∂Ωd) → H1/2(∂Ωd) is defined by

V ∗
[
Sω
Ωd

[ψj
Ωd

]
]
=

∞∑

i=1

Vi,jSω
Ωd

[ψi
Ωd

].

Combining this together with (3.22) gives the following result.

Proposition 3.31. The layer densities φi and φo and the fictitious sources f and g satisfy

(
f
g

)
= B(ω, δ, d)

(
φi

φo

)
, B(ω, δ, d) = P2AP1 −A.

3.4.2 Integral equation for dislocations larger than the resonator width

We define d0 as the width of one resonator in the x1-direction, i.e.,

d0 = inf
{
d ∈ R

+ | D1 ∩D1 + dv = ∅
}
.

We define
Bd = P̂2ÂP̂1 − Â,

where

Â =

(
Ŝω
D −Ŝω

D

− 1
2I + K̂ω,∗

D −δ
(

1
2I + (K̂ω

D)∗
)
)
, P̂1 =

(
V̂ −1 0

0 V̂ −1

)
, P̂2 =

(
V̂ ∗ 0

0 Ŵ

)
,

with

V̂ =

(
V1 0
0 V2

)
, V̂ ∗ =

(
V ∗
1 0
0 V ∗

2

)
, Ŵ =

(
W1 0
0 W2

)
,

where Vj , V
∗
j ,Wj are defined as in Section 3.4.1 with Ω = Dj , j = 1, 2. Then Bd describes the fictitious

sources for the dimer. Following the same arguments as those in Section 3.2.2, we obtain the following
result.

Proposition 3.32. For d > d0, the mid-gap frequencies of (3.2) are precisely the values ω such that
there is a nonzero solution φα,i, φα,o ∈ L2(∂D × Y ∗) to the equation

(
φα,i

φα,o

)
= −

(
Aα(ω, δ)

)−1

( ∞∑

m=0

e−imαBdIm

)(
φα,i

φα,o

)
. (3.50)
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Our next goal is to show that as d increases, any mid-gap frequency will remain inside the band gap.
We begin by stating the following lemma, which is the analogue of Lemma 3.15.

Lemma 3.33. Assume that the resonators are in the dilute regime specified by (3.6). Then, for d ∈
(d0,∞) and for small enough ε and δ

|〈Φ⋄
j ,BdΨ

⋄
j 〉| > K > 0, j = 1, 2,

for some constant K independent of d.

The proof of this result is given in Appendix A.2. We are now ready to state and prove the main
result of this section. Recall that we denote the edges of the band gap by

ω⋄
1 = max

α∈Y ∗

ωα
1 , ω⋄

2 = min
α∈Y ∗

ωα
2 .

We then have the following proposition.

Proposition 3.34. For d > d0 and δ small enough, any mid-gap frequency ω(d) is bounded away from
the edges of the band gap, i.e.

|ω(d)− ω⋄
j | > c, j = 1, 2,

for all d > d0 and for some positive constant c independent of d.

Proof. We want to show that there are no solutions to (3.50) that approaches the edges of the band gap.
Assume the contrary, i.e. that we have a solution ω → ω⋄

j . Following the proof of Theorem 3.17, we
obtain

〈Φ⋄
j ,BdΨ

⋄
j 〉

4ω⋄
j |D1|(ω − ω⋄

j )
= 1 + o(1),

as ω → ω⋄
j . But since |〈Φ⋄

1, BΨ⋄
1〉| > K > 0 for all d, this equation has no solution.

3.5 Theorem on mid-gap frequencies

We now combine the results of the two previous sections, namely Proposition 3.24, Proposition 3.25 and
Proposition 3.34, into the following theorem.

Theorem 3.35. Assume that the resonators are in the dilute regime specified by (3.6). Then, for small
enough δ and ε, there exists some d0 = O(ε) such that there are two mid-gap frequencies ω1(d) and ω2(d)
for all d ∈ [d0,∞), both of which converge to the same value ω∞ as d→ ∞.

Corollary 3.36. Assume that the resonators are in the dilute regime specified by (3.6). Then, for small
enough δ and ε, there is an interval I = [ω1(d0), ω2(d0)] within the band gap such that if ω ∈ I \ {ω∞},
then there exists some d > d0 such that ω ∈ {ω1(d), ω2(d)}.

Corollary 3.36 says that any frequency ω ∈ I \ {ω∞} is a mid-gap frequency of the structure for some
dislocation d. From Proposition 3.24, we have an explicit way to compute the interval I, and as we will
see from the numerical computations, this interval contains the middle region of the band gap. What
we have shown is that we can choose a frequency in the middle of the band gap and create a structure
having this as a resonant frequency, thus corresponding to exponentially localized edge modes that are
stable under perturbations.

Proposition 3.25 and Theorem 3.17 hint to the physical origin of the two mid-gap frequencies. For
infinitely large dislocations, the system corresponds to two identical semi-infinite systems which each
support edge modes with frequency ω∞. As these two semi-infinite systems approach each other, they
hybridize and ω∞ splits into two frequencies, corresponding to monopole and dipole modes.

Seen from the other direction, d = 0 corresponds to the periodic structure, which is known to have a
band gap and no mid-gap frequencies. As d increases from 0, two mid-gap frequencies will emerge, one
from each edge of the band gap.

Remark 3.37. The requirement that d > d0 in Theorem 3.35 was used in Section 3.4. We assumed
that the dislocation was sufficiently large that the translated resonators do not overlap with the originals.
Since we are assuming that the structure is dilute and the size of each resonator is O(ε), d0 = O(ε). The
non-overlapping assumption was made purely to simplify the analysis and not for any physical reason.
Based on this, we conjecture that Theorem 3.35 is true for all d ∈ (0,∞), which is in accordance with our
numerical experiments. In this case, the interval I in Corollary 3.36 would include all of the band gap.
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Figure 8: An array of 14 spherical resonators formed by separating an array of 7 dimers in the centre by a
dislocation distance d > 0.

4 Finite arrays of resonators

In this section, we will study the finite array of resonators which is a truncation of the system studied
in Section 3. We will see that this structure, which represents the physical manifestation of our above
analysis, shares the important properties of the infinite system. We will also conduct a stability analysis
of the structure.

Consider the structure D that is a truncation of the infinite, dislocated array Cd studied in Section 3.
Let M = 4K + 2 for some K ∈ Z+, and assume

D = D−K−1
2 ∪

( −K⋃

m=−1

Dm
1 ∪Dm

2

)
∪
(

K−1⋃

m=0

(Dm
1 ∪Dm

2 ) + dv

)
∪
(
DK

1 + dv
)
, (4.1)

where Dm
1 , D

m
2 are as in Section 3, so that the symmetry assumptions (3.1) are satisfied. Moreover, we

assume l0 > 1/2 (recall that l0 = l/L), corresponding to the case where the array supports edge modes.
We model wave scattering by D with the Helmholtz problem





∆u+ ω2u = 0 in R
3 \ ∂D,

u|+ − u|− = 0 on ∂D,

δ
∂u

∂ν

∣∣∣∣
+

− ∂u

∂ν

∣∣∣∣
−
= 0 on ∂D,

|x|
(

∂
∂|x| − ik

)
u→ 0 as |x| → ∞.

The resonant frequencies and eigenmodes of this finite system of resonators can be expressed in terms
of the eigenpairs of the associated capacitance matrix. Let Vj , j = 1, · · · ,M , be the solution to





∆Vj = 0 in R3 \D,
Vj = δij on ∂Di,

Vj(x) = O
(

1
|x|

)
as |x| → ∞.

We then define the capacitance matrix C = (Ci,j)

Ci,j := −
∫

∂Di

∂Vj
∂ν

∣∣∣∣
+

dσ, i, j = 1, · · · ,M.

The following theorem, first proved in [9], shows that the eigenvalues of C determine the resonant
frequencies of the finite structure.

Theorem 4.1. The characteristic values ωj = ωj(δ), j = 1, · · · ,M , of A(ω, δ) can be approximated as

ωj =

√
δλj
|D1|

+O(δ),

where λj , j = 1, · · · ,M , are the eigenvalues of the capacitance matrix C and |D1| is the volume of each
individual resonator.

4.1 Behaviour for large dislocations

As the separation distance d becomes large, the capacitance matrix converges to a block diagonal form.
This is because, for large d, we have two systems of M/2 resonators whose interactions diminish with
increasing d. This is made precise by the following lemma.
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Lemma 4.2. As the dislocation size d→ ∞, the capacitance matrix has the form

C =

(
C̃ 0

0 C̃⋆

)
+O(d−1),

where C̃ is the capacitance matrix of the M/2-resonator system D1∪· · ·∪DM/2, and C̃⋆ is the rearranged
matrix

C̃⋆
i,j := CM+1−i,M+1−j .

Proof. We can use the jump conditions to show that the capacitance coefficients Ci,j are given by

Ci,j = −
∫

∂Di

ψj dσ, i, j = 1, · · · ,M,

where the functions ψj are defined as
ψj = (S0

D)−1[χ∂Dj
].

We make the identification ∂D = ∂D1 × · · · × ∂DM and use this to write the single layer potential
S0
D in a decomposed matrix form, as

S0
D = SI + SII , (4.2)

where SI and SII are block matrices defined as

[SI ]ij :=

{
S0
Di

|∂Dj
, if i, j ≤M/2 or i, j ≥M/2 + 1,

0, otherwise,

[SII ]ij :=

{
0, if i, j ≤M/2 or i, j ≥M/2 + 1,

S0
Di

|∂Dj
, otherwise.

The decomposition (4.2) has been chosen so that SI contains precisely the parts of S0
D that are

unaffected by varying the parameter d. Conversely, based on the decay of Green’s function G0 we can
see that, if i ≤M/2 and j ≥M/2 + 1 or vice versa, it holds that

‖S0
Dj

|∂Di
‖B(L2(∂Dj),H1(∂Di)) = O(d−1),

as d→ ∞, hence
‖SII‖B(L2(∂D),H1(∂D)) = O(d−1).

Therefore, ‖S−1
I SII‖ = O(d−1) so we may use a Neumann series to see that

(S0
D)−1[χ∂Dj

] = (SI + SII)
−1[χ∂Dj

]

= (I + S−1
I SII)

−1S−1
I [χ∂Dj

]

= (I − S−1
I SII)[φj ] +O(d−1),

where φj := S−1
I [χ∂Dj ]. Therefore,

Ci,j = −
∫

∂Di

(S0
D)−1[χ∂Dj ] dσ = −

∫

∂Di

(I − S−1
I SII)[φj ] dσ +O(d−1).

Suppose that i ≤ M/2 and j ≥ M/2 + 1 or vice versa. Then since (SI)
−1 is also block diagonal

we can see that φj |∂Di
= 0 so

∫
∂Di

φj dσ = 0. Thus, Ci,j = O(d−1). Conversely, if i, j ≤ M/2 then

(S−1
I SII)[φj ]|∂Di

= 0 so we find that

Ci,j = −
∫

∂Di

φj dσ +O(d−1)

= C̃i,j +O(d−1).

In the case that i, j ≥M/2 + 1 the result with C̃⋆ follows similarly.

Remark 4.3. At its heart, Lemma 4.2 is a consequence of the decay of the Helmholtz Green’s function
in free space and not a particular property of the system studied here. The dislocation of any general
collection of (finitely many) resonators would yield a similar result (albeit without such elegant notation
for the two blocks, which is a consequence of the structure’s symmetry).

29



Figure 9: Left: The two edge modes for an array of 42 spherical resonators of radius 1. Here, we simulate an
array with parameters L = 9, l = 6, d = 30 and δ = 1/7000. Right: For comparison, the edge mode of the
corresponding ‘half system’ is shown, which can be thought of as the d = ∞ case. In both cases, the eigenmodes
are shown directly above the corresponding system of resonators

Remark 4.4. C̃⋆ corresponds to the capacitance matrix of the M/2-resonator system DM/2+1∪· · ·∪DM .

This is the same system as that for which C̃ is the capacitance matrix, but with the resonators labelled
in the reverse order. That they have the same eigenvalues is easy to see from the fact that C̃⋆ = JC̃J ,
where J is the exchange matrix (1 on the off-diagonal and 0 elsewhere). Thus, in the limit as d→ ∞ the
eigenvalues of C converge to M/2 pairs of values.

The behaviour for large d can be understood by examining the eigenmodes, examples of which are
given in Figure 9. The dislocation splits the structure into two “half structures” which interact with
one another. This coupling leads to the creation of two resonant modes, with monopole- and dipole-like
characteristics (cf. [9]), which are the two edge modes.

4.2 Stability analysis

We consider the simplest example of a resonator array of the form (4.1), which has just six resonators
arranged as three pairs. The geometry of this structure is parametrised by l and L (Figure 8). We wish
to study how robust the system is with respect to variations in

We know from Lemma 4.2 that as d → ∞ this system will behave like two separate three-resonator
systems. Even in the case of a three-resonator system, finding explicit representations for the entries of
the capacitance matrix (with a view to e.g. calculating its eigenvalues) is a challenging problem. Consider
the case of a dilute array of resonators: that is, a structure where the distances between the resonators (l
and L) are much larger than the size of each individual resonator. In this case, we can recall the following
representation of the capacitance matrix, proved in [3].

Lemma 4.5. Consider a dilute system of M identical subwavelength resonators with size of order ε,
given by

D =

M⋃

j=1

(εB + zj) ,

where 0 < ε ≪ 1, B is a fixed domain of unit size and zj represents the translated position of each
resonator. In the limit as ε→ 0, the capacitance matrix is given by

Ci,j =





εCapB +O(ε3), i = j,

−ε
2(CapB)

2

4π|zi − zj |
+O(ε3), i 6= j,

(4.3)

where CapB := −
∫
∂B

(S0
B)

−1[χB ] dσ.

In the case of a three-resonator system with |z1 − z2| = l and |z1 − z3| = L, we can use the expansion
(4.3) to show that the eigenvalues of the capacitance matrix are given, as ε→ 0, by

λk = εCapB + ε2
(CapB)

2γ

2
√
3π

cos

[
1

3

(
arccos

(
−3

√
3

lL(L− l)γ3

)
+ 2kπ

)]
+O(ε3), (4.4)
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for k = 1, 2, 3, where γ = γ(l, L) :=
√
l−2 + L−2 + (L− l)−2. The convergence of the six resonant

frequencies of the six-resonator system to these three values is demonstrated in Figure 10a.
We know that, in order for the undislocated structure (d = 0) to have a subwavelength band gap it

must be asymmetric, i.e. l/L 6= 1/2 (see e.g. [3]). In the case of a sufficiently asymmetric structure, we
can show that the middle eigenvalue is more stable with respect to changes in the resonator positions.
This is achieved by Lemma 4.6, which describes the extent to which the eigenvalues (4.4) are affected by
variations in the parameters l and L. In particular, it says that if l′ := L− l is sufficiently small then

∣∣∣∣
∂λ2
∂l

∣∣∣∣≪
∣∣∣∣
∂λ1
∂l

∣∣∣∣ ,
∣∣∣∣
∂λ2
∂l

∣∣∣∣≪
∣∣∣∣
∂λ3
∂l

∣∣∣∣ ,

and that the dependence of all three eigenvalues on L is comparatively negligible.

Lemma 4.6. Let l′ := L− l. As l′ → 0+, it holds that

∣∣∣∣
∂λ1
∂l

∣∣∣∣→ ∞,

∣∣∣∣
∂λ2
∂l

∣∣∣∣ = O(1),

∣∣∣∣
∂λ3
∂l

∣∣∣∣→ ∞.

Meanwhile, for k = 1, 2, 3, ∣∣∣∣
∂λk
∂L

∣∣∣∣ = O(l′).

Proof. Define the functions

c(l′, L, k) := cos

[
1

3

(
arccos

(
−3

√
3

l′L(L− l′)γ(l′, L)3

)
+ 2kπ

)]
, 0 < l′ < L, k = 1, 2, 3,

and

s(l′, L, k) := sin

[
1

3

(
arccos

(
−3

√
3

l′L(L− l′)γ(l′, L)3

)
+ 2kπ

)]
, 0 < l′ < L, k = 1, 2, 3.

As l′ → 0+ it holds that

c(l′, L, 1) → −
√
3

2
, c(l′, L, 2) → 0, c(l′, L, 3) →

√
3

2
,

s(l′, L, 1) → 1

2
, s(l′, L, 2) → −1, s(l′, L, 3) → 1

2
.

(4.5)

In addition to this, for fixed L and k we see that, as l′ → 0+,

∂λk
∂l′

∼ ε2(CapB)
2

2
√
3π

[
− 1

(l′)2
c(l′, L, k)− 2

√
3

L2
s(l′, L, k)

]
,

where the notation ∼ is used to mean that f ∼ g if and only if lim f/g = 1. From this and (4.5) we can
see that, as l′ → 0+,

dλ1
dl′

→ ∞,
dλ3
dl′

→ −∞.

Conversely, using Taylor series expansions we can see that, as l′ → 0+,

c(l′, L, 2) =

√
3

L2
(l′)2 +O

(
(l′)3

)
,

hence as l′ → 0+ it holds that
∂λ2
∂l′

→ ε2(CapB)
2

2πL2
.

Likewise, the result for dλk/ dL follows from the fact that, as l′ → 0+,

dλk
dL

∼ ε2(CapB)
2

2
√
3π

[
−2l′

L3
c(l′, L, k)− 2

√
3l′

L3
s(l′, L, k)

]
,

for k = 1, 2, 3.
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(a) Resonator array with 6 resonators. (b) Resonator array with 42 resonators.

Figure 10: Simulation of the resonant frequencies of different subwavelength resonator arrays as the dislocation d
is increased.

(a) Increasing imperfection deviation σ, for d = 10. (b) Increasing dislocation d, for σ = 0.2.

Figure 11: Analysis of the stability of the resonant frequencies of a system of six resonators. An array of six
resonators with dislocation size d is repeatedly simulated after random imperfections, drawn from the distribution
N (0, σ2), are introduced to the resonator positions. An arrow indicates the position of minimum variance.

In Figures 10 and 11, simulations were performed on spherical resonators with radius 1 arranged with distances
L = 9 and l = 6 (as depicted in Figure 8), and with δ = 1/7000. The multipole expansion method was used to
find the characteristic values of A (see the appendix of [3] for details).

The stability that is predicted by Lemma 4.6 can be investigated numerically by repeatedly introducing
random imperfections to the structure (see Figure 11). It can, firstly, be observed that the middle
eigenvalues (which both converge to λ2, as defined in (4.4), as d → ∞) are more stable, as expected.
It is also interesting to observe how the stability varies as a function of the dislocation d. The minimal
variance of any resonant frequency is observed for ω4 when d ≈ 8, as indicated by the arrow in Figure 11b.
At this point, ω4 is in the centre of the band gap so it is as far as possible from the other (unlocalized)
modes, consistent with e.g. [18, 43]. This demonstrates the value of being able to control the position of
mid-gap frequencies within the band gap.

5 Concluding remarks

In this paper, we have studied a one-dimensional array of subwavelength resonators capable of robustly
manipulating waves on subwavelength scales. This is based on the principle that eigenmodes correspond-
ing to mid-gap frequencies that are far from the edges of that band gap will be strongly localized in
space and robust to structural imperfections. Thus, the goal was to design a structure that could be
manipulated so as to place a mid-gap frequency at any given point within the band gap. This can be
achieved by introducing a dislocation to an array of subwavelength resonator pairs. In this paper we have
proved that the mid-gap frequencies emerge from the edges of the band gap, and span an interval in the
middle of the band gap.

Our study of the periodic structure was complemented by an analysis of the corresponding finite
array of resonators. Created by truncating the infinite array, this physically-realizable structure shared
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the spectral behaviour of the infinite array. Further, a stability analysis confirmed the value of being able
to fine-tune the structure in order to optimise robustness.

In the setting of the Schrödinger operator, two-dimensional structures exhibiting edge modes have
been studied via the bulk-edge correspondence. It is well known that materials with nonzero bulk index
can be achieved, for example, by perturbing honeycomb-like materials exhibiting Dirac cones [20, 24, 25].
Dirac cones have also been shown to exist in two-dimensional honeycomb structures of subwavelength
resonators [10], suggesting the potential for analogous results in this setting.

A Proofs of Lemma 3.15 and Lemma 3.33

Here we give proofs of Lemma 3.15 and Lemma 3.33. Qualitatively, these results describe the strength
of the fictitious source interactions in the two cases studied in Section 3.2 and Section 3.4, respectively.

A.1 Proof of Lemma 3.15

We will expand Sω
D and Kω,∗

D in the dilute regime specified by (3.6). Recall the matrix form of Sω
D:

Sω
D =

(
Sω
D1

Sω
D2

∣∣
∂D1

Sω
D1

∣∣
∂D2

Sω
D2

)
= Ŝω

D +

(
0 Sω

D2

∣∣
∂D1

Sω
D1

∣∣
∂D2

0

)
.

We define the centres z1, z2 of the resonators in the dilute regime specified by (3.6):

z1 = − l

2
v, z2 =

l

2
v.

Then, as ε→ 0, we have for i 6= j,

S0
Dj

∣∣
∂Di

[φ](x) =

∫

∂Dj

(
G0(x, zj) + (y − zj) · ∇yG

0(x, y0)
)
φ(y) dσ(y)

= −χ∂Di
(x)

4πl

∫

∂Dj

φ(y) dσ(y) +O

(
ε

∫

∂Dj

|φ(y)| dσ(y)
)
.

Here, y0 means a point on the line segment joining y and zj . Hence we have

S0
D = Ŝ0

D − 1

4πl

(
0 〈χ∂D2

, ·〉χ∂D1

〈χ∂D1
, ·〉χ∂D2

0

)
+O(ε3)

= Ŝ0
D + S(1)

D +O(ε3).

In the same way, we can compute

K0,∗
D = K̂0,∗

D +
v · ν
4πl

(
0 −〈χ∂D2

, ·〉
〈χ∂D1

, ·〉 0

)
+O(ε3)

= K̂0,∗
D +K(1)

D +O(ε3).

Following the computations in the proof of Lemma 3.3 of [3], we have for α 6= 0

ψα
1 = ψ1 + εCapB

∑

m 6=0

eimαL

4π|m|Lψ1 + εCapB

∑

m∈Z

eimαL

4π|l −mL|ψ2 +O(ε),

ψα
2 = ψ2 + εCapB

∑

m∈Z

eimαL

4π|l +mL|ψ1 + εCapB

∑

m 6=0

eimαL

4π|mL|ψ2 +O(ε).

In these equations, observe that ‖ψi‖L2(∂Di) = O(ε−1). At α = π/L, u⋄j and uj correspond to either
monopole or dipole modes:

u⋄j =
1√
2
(±ψ⋄

1 + ψ⋄
2) , uj =

1√
2
(±ψ1 + ψ2) .
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The sign is positive, corresponding to a monopole mode, if l0 < 1/2 and j = 1 or l0 > 1/2 and j = 2,
and negative if l0 < 1/2 and j = 2 or l0 > 1/2 and j = 1. Hence, from the expansions of ψα

1 and ψα
2 it

follows that
u⋄j = uj + εu

(1)
j uj +O(ε),

where

u
(1)
j =





CapB

(
∑

m∈Z

(−1)m

4π|l +mL| −
log(2)

4πL

)
l0 < 1/2, j = 1 or l0 > 1/2, j = 2,

CapB

(
−
∑

m∈Z

(−1)m

4π|l +mL| −
log(2)

4πL

)
l0 < 1/2, j = 2 or l0 > 1/2, j = 1.

From [3] we have that

{
u
(1)
j < 0, l0 < 1/2, j = 1 or l0 < 1/2, j = 2,

u
(1)
j > 0, l0 < 1/2, j = 2 or l0 > 1/2, j = 1.

We are now ready to compute BΨ⋄
j . Recall that B = P2AP1 −A. Since

Pi = I + dP(1)
i +O(d2),

we have
B = d

(
P(1)
2 A+AP(1)

1

)
+O(d2).

Moreover, we compute

AP(1)
1

(
uj
u⋄j

)
=


 v ·

(
∇Ŝω

D

∣∣
−[uj ]−∇Sω

D

∣∣
+
[u⋄j ]

)
(
− 1

2 + K̂ω,∗
D

)
[ξ1]− δ

(
1
2 +Kω,∗

D

)
[ξ2]


 ,

where

ξ1 =
(
Ŝω
D

)−1

v · ∇Ŝω
D

∣∣
−[uj ], ξ2 = (Sω

D)
−1

v · ∇Sω
D

∣∣
+
[u⋄j ].

Hence

〈Φ⋄
j ,AP(1)

1 Ψ⋄
j 〉 = −δ

〈
u⋄j ,v ·

(
∇Ŝ0

D

∣∣
−[uj ]−∇S0

D

∣∣
+
[u⋄j ]

)〉
+

〈(
−1

2
+ K̂ω

D

)
[χ⋄

j ], ξ1

〉

− δ

〈(
1

2
+K0

D

)
[χ⋄

j ], ξ2

〉

= δ
〈
u⋄j ,v · ∇S0

D

∣∣
+
[u⋄j ]

〉
+ ω2

〈
K̂D,2[χ

⋄
j ],
(
Ŝ0
D

)−1

∂T Ŝ0
D

∣∣
−[uj ]

〉

− δ
〈(

S0
D

)−1
[χ⋄

j ],v · ∇S0
D

∣∣
+
[u⋄j ]

〉
+O(ω3)

= δ
〈
u⋄j ,v · ∇S0

D

∣∣
+
[u⋄j ]

〉
− δ

〈(
S0
D

)−1
[χ⋄

j ],v · ∇S0
D

∣∣
+
[u⋄j ]

〉
+O(ω3).

Using the expansions in the dilute regime, we have to leading order in ε,

〈Φ⋄
j ,AP(1)

1 Ψ⋄
j 〉 = δ

〈
uj ,v · ∇Ŝ0

D

∣∣
+
[uj ]
〉
− δ

〈(
Ŝ0
D

)−1

[χ⋄
j ],v · ∇Ŝ0

D

∣∣
+
[uj ]

〉
+O(ω3 + ω2ε)

= δ 〈uj , (v · ν)uj〉 − δ 〈uj , (v · ν)uj〉+O(ω3 + ω2ε)

= O(ω3 + ω2ε).

Passing to higher orders in ε we have, after simplifications,

〈Φ⋄
j ,AP(1)

1 Ψ⋄
j 〉 = δεu

(1)
j 〈uj , (v · ν)uj〉+ δ

〈(
Ŝ0
D

)−1

S(1)
D [uj ], (v · ν)uj

〉
+O(ω3 + ω2ε2)

= δε

(
u
(1)
j ± CapB

4πl

)
〈uj , (v · ν)uj〉+O(ω3 + ω2ε2),
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where ± is chosen as positive if uj is a monopole mode, and negative if uj is a dipole mode. Due to the
reflection symmetry of D1 and D2, we have 〈uj , (v · ν)uj〉 = 0, and hence

〈Φ⋄
j ,AP(1)

1 Ψ⋄
j 〉 = O(ω3 + ω2ε2).

Next, we compute 〈Φ⋄
j ,P

(1)
2 AΨ⋄

j 〉. Using the dilute expansions, we can write

A = A(0) +A(1) +O(ε3), Ψ⋄
j = Ψ(0) +Ψ(1) +O(ε),

where A(0) and Ψ(0) are the leading order terms. At ω = ω⋄
j , we have A(0)Ψ(0) = O(ω3), and hence

AΨ⋄
j = A(1)Ψ(0) +A(0)Ψ

(1)
1 +O(ω3).

We can see that

A(1)Ψ(0) = −
(

S(1)
D [uj ]

δK(1)
D [uj ]

)
, A(0)Ψ(1) = −εu(1)j

(
Ŝω
D[uj ]

δ
(

1
2 + K̂ω,∗

D

)
[uj ]

)
.

Observe that S(1)
D [uj ] and Ŝω

D[uj ] are constant on ∂D. Combining these results, we arrive at

〈Φ⋄
j ,P(1)

2 AΨ⋄
j 〉 = −δ

〈
uj ,K(1)

D [uj ]
〉
− δ

〈
χ⋄
j , (2τ − ∂T )K(1)

D [uj ]
〉
− δεu

(1)
j

〈
χ⋄
j , (2τ − ∂T )uj

〉
+O(ω3 + εω2)

= −δεu(1)j

〈
χ⋄
j , (2τ − ∂T )uj

〉
+O(ω3 + εω2)

= −δεu(1)j

〈
χ⋄
j , 2τuj

〉
+O(ω3 + εω2).

Consequently, we obtain that

〈Φ⋄
j ,B0Ψ

⋄
j 〉 = −δεu(1)j

〈
χ⋄
j , 2τuj

〉
+O(ω3 + εω2).

Observe that
〈
χ⋄
j , uj

〉
< 0, and in the case D1 and D2 are strictly convex we have τ(x) > τ0 > 0 for all

x ∈ D, hence
〈
χ⋄
j , 2τuj

〉
< 0. Combining this with the sign of u

(1)
j , the result follows.

A.2 Proof of Lemma 3.33

We begin by computing the expansion of V̂ in the dilute regime. Using ψj as in the previous sections,

that is, ψj = (Ŝ0
D)−1[χDj

], we have

ψj =
√
εCapBψ

1
Dj
, j = 1, 2.

Then

(Vj)m,n = −
∫

∂Dj

∫

∂Dj

Gω(x− dv, y)ξmDj
(y)ψn

Dj
(x) dσ(x) dσ(y)

= −
∫

∂Dj

∫

∂Dj

(
Gω(dv, 0) + (x− y) · ∇xG

ω(dv, 0)
)
ξmDj

(z)ψn
Dj

(y) dσ(z) dσ(y) +O(ε3)

= −
√
εCapBG

ω(dv, 0)δn,1

∫

∂Dj

ξmDj
dσ +O(ε3)

=
εCapB
4πd

δm,1δn,1 +O(ε3 + ωε), (A.1)

where we have used symmetry in the integration together the orthogonality relation

∫

∂Dj

ψm
Dj

dσ =
√
εCapBδm,1.

Observe that at m = 1 we have D0
Dj

[χDj ] = 0 outside Dj , and so

(Wj)1,n = O(ω2) (A.2)
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for all n. Recall the expansion, from the proof of Lemma 3.15,

Ψ⋄
j = Ψ(0) +Ψ(1) +O(ε), Ψ(0) =

(
uj
uj

)
, Ψ(1) =

(
0

εu
(1)
j uj

)
,

where, at ω = ω⋄
j , ÂΨ(0) = O(ω3). Also, recall that

Φ⋄
j =

(−δu⋄j
χ⋄
j

)
.

Then we can compute 〈
Φ⋄

j , P̂2ÂP̂1Ψ
(0)
〉
= O(ω3).

Turning to higher orders of Ψ⋄
j , we have

〈
Φ⋄

j ,
(
P̂2ÂP̂1 − Â

)
Ψ(1)

〉
= −δεu(1)j

(〈
χ⋄
j ,W

(
1

2
+ K̂0,∗

D

)
[V −1uj ]

〉
−
〈
χ⋄
j ,

(
1

2
+ K̂0,∗

D

)
[uj ]

〉

+
〈
u⋄j , V

∗S0
D[V −1uj ]

〉
−
〈
uj ,S0

D[uj ]
〉)

+O(ω3).

From (A.2), it holds that 〈
χ⋄
j ,W

(
1

2
+ K̂0,∗

D

)
[V −1uj ]

〉
= O(ω2).

Moreover, (A.1) yields 〈
u⋄j , V

∗S0
D[V −1uj ]

〉
−
〈
uj ,S0

D[uj ]
〉
= O(ε2 + ω2).

Finally, since
〈
χ⋄
j ,
(

1
2 + K̂0,∗

D

)
[uj ]
〉
=
〈
χ⋄
j , uj

〉
= εCapB , we have

〈
Φ⋄

j ,BdΨ
⋄
j

〉
= δε2CapBu

(1)
j +O(ω3 + ε3ω2).

Since the leading order is independent of d, the conclusion follows.

B Proof of Proposition 3.24

We will restrict the analysis to the equation

1

2π

∫

Y ∗

(
Ω1

(
1− eiθα

)
+Ω2

(
1 + eiθα

) )
dα = 0, (B.1)

since the proof of the equation in (3.45) with the other sign is similar. Define

λ =
ω2|D1|
δ

, λα1 = Cα
11 − |Cα

12|, λα2 = Cα
11 + |Cα

12|.

Then, as δ → 0,

1

2π

∫

Y ∗

(
Ω1

(
1− eiθα

)
+Ω2

(
1 + eiθα

) )
dα =

1

π

∫

Y ∗

λ (Cα
11 +Re(Cα

12))− λα1λ
α
2

(λ− λα1 )(λ− λα2 )
dα+O(δ1/2), (B.2)

where the imaginary part vanishes due to symmetry. Observe that for ω inside the band gap, we have
λ− λα1 > 0 and λ− λα2 < 0. Define

f(α) = λ (Cα
11 +Re(Cα

12))− λα1λ
α
2 .

We will now study the two cases l0 < 1/2 and l0 > 1/2 separately. We will show that the right-hand side
of (B.1) is always positive in the first case, while in the second case it has a sign depending on λ. We
will do so by splitting the integral into two parts, one with α close to 0 and one with α bounded away
from 0, and show that the first part is negligible.
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B.1 Case l0 < 1/2

In the dilute regime, as ε→ 0, it follows from Lemma 3.5 that the width of the band gap scales as O(ε2).
Moreover, if ω is inside the band gap then we are able to write that

λ = εCapB + ε2(CapB)
2λ0 +O(ε3)

for some λ0 ∈ R. From the expansions of the capacitance coefficients in Lemma 3.5, and the fact that λα1
(resp. λα2 ) attains its maximum (resp. minimum) at α = π/L, we have the following bounds on λ0:

− 1

4πL

∑

m 6=0

eiαmL

|m| − 1

4πL

∞∑

m=−∞

eiαmL

|m+ l0|
< λ0 < − 1

4πL

∑

m 6=0

eiαmL

|m| +
1

4πL

∞∑

m=−∞

eiαmL

|m+ l0|
. (B.3)

We fix constants C > 0, p ∈ N. Then, for α such that |α| > Cεp, f(α) can be expanded in the dilute
regime as

f(α) =ε3(CapB)
3


λ0 −

1

4πl
+

1

4πL

∑

m 6=0

cos(mαL)

|m| − 1

4πL

∑

m 6=0

cos(mαL)

|m+ l0|


+ o(ε3)

=ε3(CapB)
3

(
λ0 −

1

4πl
+

1

4πL

∞∑

m=1

cos(mαL)

(
2

m
− 1

m+ l0
− 1

m− l0

))
+ o(ε3). (B.4)

Define g(α) as

g(α) =

∞∑

m=1

eimαL

(
2

m
− 1

m+ l0
− 1

m− l0

)
.

We can rewrite g as

g(α) = eiαL
∞∑

m=0

eimαL

(
2

m+ 1
− 1

m+ 1 + l0
− 1

m+ 1− l0

)

= eiαL
(
2Φ(eiαL, 1, 1)− Φ(eiαL, 1, 1 + l0)− Φ(eiαL, 1, 1− l0)

)
.

Here, Φ(z, s, a) denotes Lerch’s transcendent function, defined by the power series

Φ(z, s, a) =

∞∑

m=0

zm

(a+m)s
,

for z ∈ C where this series converges, and is extended by analytic continuation (for details on this function
we refer, for example, to [23]). For arguments in the regime Re(s) > 0,Re(a) > 0 and z ∈ C \ [1,∞), this
function admits an integral representation as

Φ(z, s, a) =
1

Γ(s)

∫ ∞

0

ts−1e−at

1− ze−t
dt,

where Γ is the Gamma function. From this, we have a representation of g(α), α 6= 0, as

g(α) =

∫ ∞

0

2e−t − e−(1+l0)t − e−(1−l0)t

1− eiαLe−t
dt

=

∫ ∞

0

(cosh(l0t)− 1) (e−t − cos(αL))

cosh(t)− cos(αL)
dt.

From (B.4), using the bounds on λ0 from (B.3) and for α such that |α| > Cεp, we have

f(α) <
ε3(CapB)

3

4πL

( ∞∑

m=1

(cos(mαL)− (−1)m)

(
2

m
− 1

m+ l0
− 1

m− l0

))
+ o(ε3)

=
ε3(CapB)

3

4πL

(
Re
(
g(α)

)
− g(π/L)

)
+ o(ε3)

=
ε3(CapB)

3

4πL

∫ ∞

0

(cosh(l0t)− 1) sinh(t)

(
1

cosh(t) + 1
− 1

cosh(t)− cos(αL)

)
+ o(ε3)

= A1(α)ε
3 + o(ε3)
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for some A1(α) ≤ 0 independent of ε, with A1(α) = 0 precisely when α = π/L. It follows that

1

π

∫

Y ∗\[−Cεp,Cεp]

λ (Cα
11 +Re(Cα

12))− λα1λ
α
2

(λ− λα1 )(λ− λα2 )
dα =

A2

ε
+ o(ε−1) (B.5)

for some constant A2 > 0. From the scaling property (3.7), we know that |f(α)| < ε2K1 for some K1 > 0
independent on α. The minimum of

∣∣(λ−λα1 )(λ−λα2 )
∣∣ is attained at π/L, and from Lemma 3.5, we have∣∣(λ− λα1 )(λ− λα2 )

∣∣ > K2ε
4. Therefore, we have

∣∣∣∣∣
1

π

∫

[−Cεp,Cεp]

λ (Cα
11 +Re(Cα

12))− λα1λ
α
2

(λ− λα1 )(λ− λα2 )
dα

∣∣∣∣∣ < A3ε
p−2,

for some constant A3. Choosing p > 2, and combining this with (B.5), we find that

1

π

∫

Y ∗

λ (Cα
11 +Re(Cα

12))− λα1λ
α
2

(λ− λα1 )(λ− λα2 )
dα > 0

for ε small enough. Therefore, when l0 < 1/2, by (B.2) we find that, for λ sufficiently close to λ
π/L
1 , we

have
1

2π

∫

Y ∗

(
Ω1

(
1− eiθα

)
+Ω2

(
1 + eiθα

) )
dα > 0,

when ε and δ are small enough.

B.2 Case l0 > 1/2

We will show that (B.1) has a solution. We denote the left-hand side by

I(λ) :=
1

2π

∫

Y ∗

(
Ω1

(
1− eiθα

)
+Ω2

(
1 + eiθα

) )
dα.

From Lemma 3.5, we find that for ε small enough, C
π/L
12 > 0 in the case l0 > 1/2. Hence eiθπ/L = 1, so

I(λ) → −∞ as λ→ λ
π/L
2 . Next, we will show that I(λ) is positive for λ sufficiently close to λ

π/L
1 .

Since C
π/L
12 is positive, we now have the following bounds for λ0:

− 1

4πL

∑

m 6=0

eiαmL

|m| +
1

4πL

∞∑

m=−∞

eiαmL

|m+ l0|
< λ0 < − 1

4πL

∑

m 6=0

eiαmL

|m| − 1

4πL

∞∑

m=−∞

eiαmL

|m+ l0|
.

Fix some small κ > 0, and choose λ0 as

λ0 = κ− 1

4πL

∑

m 6=0

eiαmL

|m| +
1

4πL

∞∑

m=−∞

eiαmL

|m+ l0|
.

Observe that κ→ 0 corresponds to λ→ λ
π/L
1 . Using (B.4) and following the same subsequent steps, we

find that

f(α) = ε3
(
CapB)

3κ+A1(α)
)
+ o(ε3).

Then, analogously to (B.5), we have

1

π

∫

Y ∗\[−Cεp,Cεp]

λ (Cα
11 +Re(Cα

12))− λα1λ
α
2

(λ− λα1 )(λ− λα2 )
dα =

A2 +A4κ

ε
+ o(ε−1),

where, again, A2 is a constant A2 > 0, and A4 is a constant A4 < 0. Thus, for κ small enough, we have
A2 +A4κ > 0, and then we can proceed as in Section B.1 to show that

I(λ) > 0,

for λ sufficiently close to λ
π/L
1 , and for small enough ε and δ. This, combined with the fact that I(λ) < 0

for λ sufficiently close to λ
π/L
2 , allows us to conclude that I(λ̂) = 0 for some λ

π/L
1 < λ̂ < λ

π/L
2 .
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In order to show that this solution λ̂ is unique, we show that I(λ) is strictly monotonic for λ
π/L
1 < λ <

λ
π/L
2 . Differentiating (B.2) gives

I ′(λ) =
1

π

∫

Y ∗

(Cα
11 +Re(Cα

12)) (λ− λα1 )(λ− λα2 )− (λ (Cα
11 +Re(Cα

12))− λα1λ
α
2 ) (2λ− λα1 − λα2 )

(λ− λα1 )
2(λ− λα2 )

2
dα+O(δ1/2).

Define

h(α) = (Cα
11 +Re(Cα

12)) (λ− λα1 )(λ− λα2 )− (λ (Cα
11 +Re(Cα

12))− λα1λ
α
2 ) (2λ− λα1 − λα2 )

= (Cα
11 +Re(Cα

12)) (−λ2 + λα1λ
α
2 ) + λα1λ

α
2 (2λ− λα1 − λα2 )

≤
{
λα2
(
−λ2 + λα1λ

α
2 + λα1 (2λ− λα1 − λα2 )

)
, if λ2 ≤ λα1 − λα2 ,

λα1
(
−λ2 + λα1λ

α
2 + λα2 (2λ− λα1 − λα2 )

)
, if λ2 > λα1 − λα2 ,

=

{
−λα2 (λ− λα1 )

2
, if λ2 ≤ λα1 − λα2 ,

−λα1 (λ− λα2 )
2
, if λ2 > λα1 − λα2 .

(B.6)

Using the bounds (B.6) we have that if λ
π/L
1 < λ < λ

π/L
2 then I ′(λ) < 0, provided δ is sufficiently small.

Therefore, if l0 > 1/2 then (B.1) has a unique solution, when ε and δ are small enough.
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