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Abstract

In this paper a mathematical model is given for the scattering
of an incident wave from a surface covered with microscopic small
Helmholtz resonators, which are cavities with small openings. More
precisely, the surface is built upon a finite number of Helmholtz res-
onators in a unit cell and that unit cell is repeated periodically. To
solve the scattering problem, the mathematical framework elaborated
in [6] is used. The main result is an approximate formula for the scat-
tered wave in terms of the lengths of the openings. Our framework
provides analytic expressions for the scattering wave vector and an-
gle and the phase-shift. It justifies the apparent absorption. More-
over, it shows that at specific lengths for the openings and a specific
frequency there is an abrupt shift of the phase of the scattered wave
due to the subwavelength resonances of the Helmholtz resonators. A
numerically fast implementation is given to identify a region of those
specific values of the openings and the frequencies.

Mathematics Subject Classification (MSC2000). 35B27, 35A08, 35B34,
35C20.

Keywords. Gradient meta-surface, subwavelength resonance, Helmholtz
resonator, effective behavior.

1 Introduction

Surfaces covered by a microscopic structure can display unforeseen phys-
ical properties, which can be applied in the everyday life to have ad-
vantageous effects like anti-reflection coating and high-efficiency light ab-
sorbers, or enhancers. These are called meta-surfaces and have been sub-
ject to intensive research [14, 21, 12, 28, 13, 9]. We are particularly inspired

∗Department of Mathematics, ETH Zürich, Rämistrasse 101, CH-8092 Zürich, Switzer-
land (habib.ammari@math.ethz.ch, kthim.imeri@sam.math.ethz.ch).
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by the findings in [25, 24]. In [24], the authors built a gradient meta-surface
covered with microscopic small gold plates of different sizes, which are
energized by an electric current, and afterwards the authors physically il-
luminated that surface by an incident light with a particular frequency and
particular angle with respect to the ground, and emphasized a reflection
with an altered outgoing angle. For certain incident angles, they achieved
an absorption of the impinging wave. More importantly, they observed
at the resonant frequencies an abrupt shift of the phase of the scattered
wave. This unusual behaviour of the phase shift is intrinsic to gradient
meta-surfaces.

Here, we mainly consider acoustic waves. Our objective is to uncover
the behaviour of a meta-surface built upon microscopic Helmholtz res-
onators, one such Helmholtz resonator can be any cavity with a small
hole, as for example a water bottle with a small opening compared to its
size. Such a water bottle admits a high pitched noise when blown upon,
that is an effect of the resonance. To be more precise in our design, the
structure is a periodically repeated ensemble of rectangular Helmholtz
resonators each with a different size, where the opening is placed on the
center of their ceiling. As it was the case in the paper with the gold plates,
we let a plane wave hit the gradient meta-surface with a certain angle and
frequency. We can expect that for appropriate frequencies and appropriate
incident angles, the resonances of the cavities interact with each other and
produce a modified reflected wave. Although we work here in two di-
mensions only, it is enough as pointed out in [24], because there the third
dimension, which corresponds to the depth, has no measurable influence.

A solution for the scattering problem is provided in Theorem 3.1. The
numerical results show an abrupt phase-shift for the scattered wave. Ap-
plying the techniques developed in [6, 8, 4], we provide the formula in
which the resonance is involved in the scattered wave. That equation de-
pends on the controllable parameters, i.e., the incident frequency and the
lengths of the openings of the Helmholtz resonators, and it depends on
a matrix, which captures the coupling between the Helmholtz resonators.
Controlling such parameters, we can exploit the resonance effect, which
leads to a precise description of the unusual scattering and absorption
properties of the gradient meta-surface. This is further investigated in our
numerical applications at the end of this paper. From the proof we can
extract a formula for a numerical evaluation of the scattered wave in the
near-field and there we observe other remarkable outcomes like an en-
hancement of the amplitude of the scattered field, which is reminiscent of
the results in [13]. Finally, it is worth emphasizing the connection between
our results and those obtained for periodic arrays of narrow slits in the
series of papers [20, 19, 18, 17, 15, 16].

This paper is organized as follows. In Section 2 we prepare the math-
ematical foundation for the main result. There we define the geometry of
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the structure, the equation for the plane wave and the partial differential
equation which models the solution to the problem, and make a short re-
mark about the physical meaning for the boundary conditions for acoustic
walls. In Section 3, we then show the main results and comment on the
appropriate choices of parameters, like the coupling matrix and the scaling
factor and describe a way to utilize the resonance effect. In Section 4 we
then prove the theorem. We give an outline of the proof at the beginning of
the section. In Section 5 we first explain how we implemented the numer-
ics in Matlab and how we tested them. Afterwards we present numerical
applications of the theorem for some certain geometries. In Section 6 we
conclude the paper with final considerations, open questions and possible
future research interests.

2 Preliminaries

We first fix the geometry of our problem, i.e., the lengths and heights of
our Helmholtz resonators, and the positions and lengths of their openings.
This allows us to provide a mathematical model for the resulting wave
when we imping the structure with an incident wave with a particular
angle to the ground and a particular wave vector. That model is built
upon a partial differential equation on a unit strip with an outgoing wave
condition and a quasi-periodicity condition on both sides of the unit strips.
With that in hand we then can state the main result of this paper.

2.1 Geometry of the Problem

Let δ > 0, denote a small parameter, let N ∈ N denote the number of
Helmholtz resonators, then we denote a single Helmholtz resonator in the
unit strip Y := (−δ/2, δ/2) × (0, ∞) ⊂ R2 by Di ⊂ Y, for i ∈ {1, . . . , N}.
We set every Helmholtz resonator Di to be a rectangle of height hi > 0
and of length li > 0 and its center to be located at (ξi, hi/2), where ξi ∈
(−δ/2 + li/2, δ/2 − li/2). Thus the lower boundaries of the Helmholtz res-
onators intersect the horizontal axis, but the boundaries on the side do
not intersect the side of the unit strip. Every Helmholtz resonator Di has
also an opening gap Λi := (ξ − ε i, ξ + ε i) × {hi} located at the center of
its ceiling, that is at (ξi, hi) and it has a radius of ε i > 0, hence a diameter
of 2 ε i. This forms the geometry in our unit strip Y. See Figure 1 for an
illustration of an example with N = 3.

Our gradient meta-surface in R2 is built upon periodically repeating
the unit strip along the horizontal axis. We are now interested in the re-
sult when we imping our gradient meta-surface with a harmonic incident
plane wave Uk

0 : R2 → C given through

Uk
0(x) := I0 e−i k1 x1e−i k2 x2 ,
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Figure 1: Depicted is the unit strip Y in the color blue. For this example we have
chosen N = 3, thus we have the three Helmholtz resonators D1, D2 and D3. The
three in green dotted lines represent the three openings Λ1, Λ2 and Λ3.

where i is the imaginary unit, I0 ∈ R denotes the intensity of the incident
wave, and k1 ∈ R and k2 < 0 are the horizontal, respectively vertical,
components of the wave vector (k1, k2) ∈ R2. Let k2 := k2

1 + k2
2 be the

length of the wave vector. See Figure 2 for an illustration of the gradient
meta-surface.

Figure 2: This figure show the unit strip repeated along the x1 axis. The wave
vector has the two components k1 ∈ R and k2 < 0 and the length k.
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2.2 Mathematical Model for the Scattering Problem

We denote the wave function, which results from letting our geometry
interacts with the incident wave, by Uk : Y → C. We model Uk as a
solution to the following partial differential equation:















































(

△+ k2
)

Uk = 0 in R
2
+ := {x ∈ R

2 | x2 ≥ 0} ,

Uk|+− Uk|− = 0 on all Λi ,

∂νUk|+− ∂νUk|− = 0 on all Λi ,

∂νUk|+= 0 on all ∂Di \ Λi ,

∂νUk|−= 0 on all ∂Di \ Λi ,

Uk = 0 on ∂R
2
+ \ ∪N

i=1∂Di ,

(2.1)

where · |+ denotes the limit from outside of Di and · |− denotes the limit
from inside of Di, and ∂ν denotes the outside normal derivative on ∂Di,
for all i ∈ {1, . . . , N}. The first condition, that is, the Helmholtz equa-
tion, represents the time-independent wave equation, and arises from the
wave equation by separation of variables in time and spatial domain. The
second and third conditions represent the transmission conditions. The
forth and fifth conditions represent rigid walls. It is also known as the
Neumann condition. For acoustic waves, the sixth condition represents a
sound cancelling ground layer. It is also known as the Dirichlet condition.

Similar to diffraction problems for gratings (see, for instance, [3] and
the references therein), the above system of equations is completed by a
certain outgoing radiation condition imposed on the scattered field Uk

s :=
Uk − Uk

0 and a quasi-periodicity condition on Uk, that is,

∣

∣∂x2Uk
s − i k2Uk

s

∣

∣ → 0 for x2 → ∞ ,

Uk
(

x +
(

δ
0

))

= e−i k1δ Uk(x) for x ∈ R
2
+ .

Both conditions follow from asserting that the scattered wave Uk
s behaves

in the same way in the far-field and in periodicity as the horizontally re-
flected incident wave. We remark here that the horizontally reflected in-
cident wave, that is the function I0e−i k1x1ei k2x2 , is the scattered solution to
(2.1) in absence of Helmholtz resonators.

We further remark that in the general case, where the incident wave
is a superposition of plane waves, we can decompose the incident wave
using Bloch-Floquet theory, see, for instance, [22, 3]. We obtain a family
of problems to solve, each one with its own outgoing radiation condition.
The final solution is then the superposition of all of these solutions.
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3 Main Result

We assume that

δk < min
(

π
li

, π
hi

)

, for all i ∈ {1, . . . , N} ,

which originates from the fact that δ2k2 has to be smaller than the first non-
zero Laplace eigenvalue with Neumann conditions for every Helmholtz
resonator Di.

Furthermore, we assume that

δk < 2π − |δk1| .

This is due to Lemma 4.1, which expresses the behaviour of certain aux-
iliary functions. This condition can be relaxed, but then the formulas get
more complicated.

Theorem 3.1 Let the matrix Rδk ∈ CN×N be defined by (4.17), let the constants
ri , r∂

i ∈ C, for i ∈ {1, . . . N}, and the constant rex ∈ C be defined through Lemma
4.1. Let ε := max(ε1, . . . , εN) > 0 be small enough. Then for all z ∈ Y, where
z2 is large enough, we have that

Uk(z)−Uk
0(z) = Is e−i k1z1 ei k2z2 +O(N ε ‖Q(δk)−1‖2)) +O(e−C z2) ,

for a constant C > 0 independent of z, where ‖ · ‖2 denotes the Frobenius norm
for matrices and where Is ∈ C is given through

Is =
N

∑
i=1

(Q(δk)−1 f δk)i ei δk1ξi
(

ri −
sin(δk2 hi)

δk2

)

− I0(1 − 2i δk2 rex) ,

where f δk ∈ CN is a vector with the components

f δk
i := 2i δk2 I0 e−i δk1 ξi

(2 sin(δk2 hi)

δk2
− r∂

i

)

,

Q(δk) ∈ CN×N is a matrix given through

Q(δk) := 1
(δk)2 |D|−1 + 2

π diag
(

log(ε i/2)
)

+ Rδk ,

diag
(

log(ε i/2)
)

is a N × N diagonal matrix with diagonal entries log(ε i/2),
and where |D| is a N × N diagonal matrix with diagonal entries |Di|.

The numerical implementation of the matrix Rδk and the constants
ri , r∂

i , rex is explained in Section 5.1.
The value δ > 0 only appears in the form δk1 or δk2 in the theorem,

thus we can use δ only to scale the incoming wave vector (k1, k2). Consider
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that the geometry scales with δ, and it does so in both spatial dimensions
simultaneously.

The value Is depends on the inversion of an N × N matrix Q(δk), and
for some complex values of δk, which are close to the physical resonance
values of the system, we obtain a blow-up in the entries of Q(δk)−1. In our
set-up we do not allow for a complex wave vector, only for real values for
δk, thus we never encounter a blow-up of Q(δk)−1. Nonetheless, when δk
approaches the real part of those singular complex values, we see numer-
ically a local extremum in the entries of Q(δk)−1 and hence a significant
effect of the gradient meta-surface on the scattered wave.

Now Q(δk) is of the form: a diagonal matrix added to Rδk, and we
can vary the entries in the diagonal matrix by varying all ε i. This gives
us a control on the singular behaviour of Q(δk). Intuitively, to achieve a
highly singular behaviour, we require all the eigenvalues of Q(δk) to be
close to zero, which we obtain when the entries of the diagonal matrix

1
(δk)2 |D|−1 + 2

π diag(log(ε i/2)) are close to the opposite of the eigenvalues

of Rδk. In the simplest case, Rδk has one real eigenvalue λRδk of multiplicity
N, then we vary those ε i so that −

(

1
|Di |(δk)2 +

2
π log(ε i/2)

)

is equal to that

eigenvalue for all i = 1, . . . , N. This leads to the equation

ε i = 2 exp
(

− π
2

(

1
|Di |(δk)2 + λRδk

)

)

.

Since Rδk will generally not have only one real eigenvalue with multiplicity
N, we also vary (δk)2 in the hope to obtain an eigenvalue with multiplicity
at least 2. In the numerical simulations we elaborate on how we determine
those ε i on the considered geometries.

Note that the denser the eigenvalues of Rδk are, the broader is the range
of frequencies for which one can observe a significant effect of the gradient
meta-surface on the scattered wave.

4 Proof of the Main Results

The outline of the proof is as follows. Before we can begin with the actual
idea to prove the result, which starts in Subsection 4.4, we need a bun-
dle of auxiliary functions, like the Neumann functions, which describe the
solution to (2.1) with closed openings, and for these Neumann functions
we need the fundamental solution to the Helmholtz equation, which we
denote here by the Gamma-function. In Subsection 4.2, we formulate in-
tegral equations, which allow for a numeric evaluation of these Neumann
functions.

Then we begin the proof by defining a scaled form of the resulting
wave vector. With that microscopic view, we use Green’s identity and the
conditions from (2.1) to establish an integral equation on functions defined
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on the openings, which is solvable due to an invertible hypersingular in-
tegral operator, defined in Subsection 4.3. Its solution depends on the
constant matrix Rk given in Theorem 3.1. Using Green’s identity again,
we can recover the behaviour of the resulting wave on the far-field from
its behaviour on the openings. Re-establishing the macroscopic view, we
have then proven Theorem 3.1.

4.1 The Gamma-Function and the Neumann-Function

Let the wave vector satisfy the condition

k2
< inf

n∈Z\{0}
{|2π n − k1|2} , (4.1)

then we define the quasi-periodic fundamental solution Γk
+ to the Helmholtz

operator △+ k2 by

Γk
+(z, x) :=

e−i k1(z1−x1)
(

ei k2 |z2−x2| − ei k2 |z2+x2|)

2i k2

− ∑
n∈Z\{0}

sn :=
√

|2π n−k1|2−k2

e−i (2π n−k1)(z1−x1)
(

e−sn|z2−x2| − e−sn|z2+x2|)

2 sn
, (4.2)

for z, x ∈ Y, z 6= x. The sum in Equation (4.2) can also be defined if k
does not satisfy the above condition (4.1), for this we refer to [4, Section
3.1]. Γk

+ satisfies the equation (△x + k2)Γk
+(z, x) = δz(x) for x ∈ Y, where

δz(·) denotes the Dirac mass in z, and Γk
+ is quasi-periodic in its second

variable, that is, Γk
+(z, x +

(

δ
0

)

) = e−i k1δ Γk
+(z, x). The + in Γk

+ originates

from the fact that for x2 large enough, Γk
+(z, x) is proportional to e+i k1x1

for a fixed x2. For x close enough to z we have that

Γk
+(z, x) =

1

2π
log(|x − z|) + Rk

Γ,+(z, x) , (4.3)

where Rk
Γ,+(z, ·) ∈ H

3/2

loc(R
2), this follows from describing Γk

+ as an infinite
sum of Hankel functions of the first kind of order 0, see [4, Section 3.1], and
the singularity term of that Hankel function, see [3, Section 2.3]. Moreover,
we have that for k → 0, Γk

+ → Γ0
+, where Γ0

+ is the fundamental solution
to the Laplace equation, compare [4, Section 3.1].

Next we define the Neumann-functions Nk
+(z, x) and Nk

i (z, x), for i ∈
{1, . . . , N}. Nk

i (z, x) satisfies the equation △x + k2 = δz inside Di, with the
boundary condition ∂νNk

i (z, ·) = 0. Since Di is assumed to be a rectangle,
we can express Nk

i (z, x) as a conditionally convergent sum for x ∈ Di. This
can be readily assembled through [3, Proposition 2.7] and [11, Section 3.1].
We also see that Nk

i is well-defined except when k2 is a Laplace eigenvalue
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with Neumann boundary conditions. We exclude these values for k from
now on. We can express Nk

i (z, x) for x close enough to z, and k smaller
than the first non-zero Laplace eigenvalue with the Neumann boundary
condition through

Nk
i (z, x) =

1

2π
log(|x − z|) + 1

k2

1

|Di|
+ Rk

i (z, x) , (4.4)

where Rk
i (z, ·) ∈ H3/2(Di), see [3, Lemma 2.9], with H3/2 being a Sobolev

space. We know that Rk
i (z, ·) is analytic in k for k smaller than the first

non-zero Laplace eigenvalue with Neumann conditions in the domain Di,
see [3, Proposition 2.7].

The function Nk
+(z, x), z, x ∈ Y \ ∪n

i=1Di is defined as the solution to















(

△+ k2
)

Nk
+(z, ·) = δz(·) in Y \ ∪n

i=1Di,

∂νNk
+(z, ·)|+= 0 on ∂Di,

Nk
+(z, ·) = 0 on ∂R

2
+,

(4.5)

where it is additionally required that the quasi-periodicity condition is
satisfied, that is, Nk

+(z, x +
(

δ
0

)

) = e−i k1δ Nk
+(z, x), as well as the radia-

tion condition, that is,
∣

∣∂x2Nk
+(z, x) − i k2Nk

+(z, x)
∣

∣ → 0 for x2 → ∞. We
note here that the normal to ∂Di still points outside. We can write the
Neumann-function Nk

+ as

Nk
+(z, x) = Γk

+(z, x) + Rk
+(z, x) ,

where the remainder Rk
+ exists in H1

loc(Y), we refer to [3, Chapter 7]. An
integral equation is given in the next section.

Until now we have assumed that the variable z is an element in an open
domain, but we also need that z is located at the boundary. When z is at
the boundary, the Dirac measure in the Helmholtz equation has its mass
on the boundary as well and since an integral over the domain covers only
half that mass, we have to multiply by a factor of 2 to recover the whole
mass, and with that, the spatial singularity at z is twice the singularity
when z is in the domain. This changes the Neumann function, as well as
the remainders. We denote these variations by Nk

i, ∂, Rk
i, ∂, Nk

+, ∂, Rk
+, ∂. For

example, it holds now that for z ∈ ∪N
i=1∂Di

Nk
+, ∂(z, x) = 2Γk

+(z, x) + Rk
+, ∂(z, x) , for x ∈ Y \ ∪n

i=1Di ,

Nk
i, ∂(z, x) =

1

π
log(|x − z|) + 1

k2

1

|Di|
+ Rk

i, ∂(z, x) .

Note here that the singularity in k has no factor of 2. We see this by con-
sidering that the function Nk

i, ∂(z, ·)− 1
π log(|z − ·|) satisfies the Helmholtz
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equation with a zero right-hand side with smooth Neumann boundary
conditions and thus can be formulated as the convolution of Nk

i and the
Neumann boundary data, see [3, Section 2.3.5.]. Since Nk

i has the singu-
larity 1

k2
1

|Di | so does then Nk
i, ∂.

This shows that the quotient between Rk
i and Rk

i, ∂ as well as the quotient

between Rk
+ and Rk

+, ∂ might not have a simple relation like them being
equal to 2 or 1/2 after taking a limit to the boundary.

4.2 Integral Equation for Rk
+ and Rk

+, ∂

Let us consider the integral equation for Rk
+, ∂(z, x) first. Using Green’s

identity on
∫

(△ + k2)N
(−k1,k2)
+,∂ (x, y)Rk

+, ∂(z, y), for z, x ∈ ∪i∂Di, over the
unit strip Y, but outside the Helmholtz resonators, we obtain with the

splitting N
(−k1,k2)
+,∂ (x, y) = 2 Γ

(−k1,k2)
+ (x, y) +R

(−k1,k2)
+,∂ (x, y) the integral equa-

tion

R
(k1,k2)
+,∂ (z, x) + 2

∫

∪i∂Di

R
(−k1,k2)
+,∂ (x, y)∂νy Γk

+(z, y)dσy

= −4
∫

∪i∂Di

Γ
(−k1,k2)
+ (x, y)∂νx Γk

+(z, y)dσy ,

where we used the quasi-periodicity condition, the Dirichlet ground con-
dition and the radiation condition. Here we note that the first-named
integral has R

(−k1,k2)
+ instead of R

(k1,k2)
+ . This is due to the quasi-periodicity

conditions. We can correct this, by using Green’s identity once again to
obtain that

2
∫

∪i∂Di

R
(−k1,k2)
+,∂ (x, y)∂νy Γk

+(z, y)dσy = 2
∫

∪i∂Di

Rk
+,∂(z, y)∂νy Γ

(−k1,k2)
+ (x, y)dσy ,

which then leads to the final integral equation for Rk
+, ∂ for z, x ∈ ∪i∂Di,

Rk
+,∂(z, x) + 2

∫

∪i∂Di

Rk
+,∂(z, y)∂νy Γ

(−k1,k2)
+ (x, y)dσy

= −4
∫

∪i∂Di

Γ
(−k1,k2)
+ (x, y)∂νx Γk

+(z, y)dσy . (4.6)

With this at hand, we can formulate an equation for x being outside of
all Di, through analogous arguments, and obtain

Rk
+,∂(z, x) +

∫

∪i∂Di

Rk
+,∂(z, y)∂νy Γ

(−k1,k2)
+ (x, y)dσy

= −2
∫

∪i∂Di

Γ
(−k1,k2)
+ (x, y)∂νx Γk

+(z, y)dσy . (4.7)

10



If z is outside of all Di, the factor 2 does not appear in the splitting of
the Neumann function, and we can still use the same arguments as before
and obtain for Rk

+ for z outside of all Di and x on the boundary that

Rk
+(z, x) + 2

∫

∪i∂Di

Rk
+(z, y)∂νy Γ

(−k1,k2)
+ (x, y)dσy

= −2
∫

∪i∂Di

Γ
(−k1,k2)
+ (x, y)∂νx Γk

+(z, y)dσy , (4.8)

and if x is outside the boundary we have

Rk
+(z, x) +

∫

∪i∂Di

Rk
+(z, y)∂νy Γ

(−k1,k2)
+ (x, y)dσy

= −
∫

∪i∂Di

Γ
(−k1,k2)
+ (x, y)∂νx Γk

+(z, y)dσy . (4.9)

With these integral equations (4.6) to (4.9) and the formula for the prop-
agating part in Γk

+, see Equation (4.2), we can readily show the following
lemma:

Lemma 4.1 Let k satisfy Condition (4.1). There exists a C > 0 such that for all
z ∈ Λi and for x2 → ∞ we have that

Rk
+, ∂(z, x) = e−i k1z1 ei k1x1 ei k2x2 r∂

i +O(e−C x2) , (4.10)

where r∂
i does not depend on z. And for all x ∈ Λi and z2 → ∞ we have that

Rk
+(z, x) = e−i k1z1 ei k2z2 ei k1x1 ri +O(e−C z2) , (4.11)

where ri does not depend on z. And for all z outside of all Di and x2 → ∞ we
have that

Rk
+(z, x) = e−i k1z1 ei k1x1 ei k2z2 ei k2x2 rex +O(e−C (x2−z2)) , (4.12)

where rex does not depend on z or x.

Here we note that if k does not satisfy Condition (4.1), then the propagat-
ing part in Γk

+ has a different form, which then will alter the formulas in
the above lemma as well. We do not consider that case in this paper.
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4.3 The Hyper-Singular Operator Lε

Let µ′ represent the distributional derivative of µ. We define the following
spaces and their respective norms:

X ε :=

{

µ ∈ L2((−ε, ε))

∣

∣

∣

∣

∫ ε

−ε

√

ε2 − t2 |µ(t)|2dt<∞

}

,

Y ε :=
{

µ ∈ C0([−ε, ε])
∣

∣ ∃ µ′ ∈ X ε
}

,

‖µ‖X ε :=

(

∫ ε

−ε

√

ε2 − t2 |µ(t)|2dt

)1/2

,

‖µ‖Y ε :=
(

‖µ‖2
X ε +

∥

∥µ′∥
∥

2

X ε

)1/2
.

Let ε > 0. Then we define the operator Lε : X ε → Y ε as

Lε[µ](τ) :=
∫ ε

−ε
µ(t) log(|τ − t|)dt . (4.13)

Let ε > 0 be small enough. Then the operator Lε : X ε → Y ε is bijective,
see [23, Chapter 11], and we have that

(Lε)−1[1](t) =
1

π log(ε/2)
√

ε2 − t2
. (4.14)

A general closed form for (Lε)−1 is given in [6, Proposition 3.11], from
which the function (Lε)−1[1](t) can be determined.

4.4 The Microscopic View

We define uδk : R2
+ → C by uδk(x) := Uk(δ x), where Uk is the resulting

wave function, and analogously uδk
0 : R2

+ → C, uδk
0 (x) := Uk

0(δ x). We
readily see that uδk satisfies (2.1) with a scaled geometry and a scaled wave
vector (δk1, δk2). Furthermore, we have the following radiation condition
and quasi-periodicity condition:

∣

∣∂x2 uδk
s − i δk2uδk

s

∣

∣ → 0 for x2 → ∞ ,

uδk
(

x +
(

1
0

))

= e−i k1δ uδk(x) for x ∈ R
2
+ ,

where uδk
s (x) := uδk(x) − uδk

0 (x). To reduce the amount of symbols we
uphold the notation for Y, Di, Λi, li, hi, ξi, ε i after scaling.
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4.5 Collapsing the Wave-Function to the Openings

Lemma 4.2 Let i, j ∈ {1, . . . , N}, i 6= j and let z ∈ Λi. Then we have that

∫

Λi

∂νuδk(y)
(

Nδk
+, ∂(z, y) + Nδk

i, ∂(z, y)
)

dσy +
N

∑
j=1
j 6=i

∫

Λj

∂νuδk(y)Nδk
+, ∂(z, y)dσy

= 2i δk2 I0 e−i δk1 z1

(

2
sin(δk2 z2)

δk2
− r∂

i

)

.

Proof Using Green’s identity with the Neumann function Nδk
i, ∂ inside Di,

we readily obtain for z ∈ Λi that

uδk(z) = −
∫

Λi

∂νuδk(y)Nδk
i, ∂(z, y)dσy . (4.15)

Analogously we apply Green’s identity to uδk using Nδk
+, ∂ on Y with the

properties mentioned in Section 4.1 and obtain

uδk(z) =
N

∑
j=1

∫

Λj

∂νuδk(y)Nδk
+, ∂(z, y)dσy

+ 2i δk2 lim
r→+∞

∫ 1/2

−1/2

uδk
0

(

( y1
r )

)

Nδk
+, ∂

(

z, ( y1
r )

)

dy1 ,

for an explicit demonstration we suggest to look at [6, Proof Proposition
3.5]. Using Equation (4.10), that is, Rδk

+, ∂(z, x) = e−i δk1z1 ei δk1x1 ei δk2x2 r∂
i +

O(e−Cx2) , for x2 → ∞ and z2 = hi, where r∂
i does not depend on x, we

can infer that

lim
r→+∞

∫ 1/2

−1/2

uδk
0

(

( y1
r )

)

Nδk
+, ∂

(

z, ( y1
r )

)

dy1 = I0 e−i δk1 z1
(

r∂
i − 2

sin(δk2 z2)

δk2

)

.

Setting the first and second equations to be equal for z ∈ Λi and applying
the last equation to the second one, we prove the lemma. �

We define then µi := ∂νuδk|Λi
, and µ := (µ1, . . . , µN) as well as Rδk :

(X ε)N → (Y ε)N

Rδk[η] :=
( N

∑
j=1

Rδk
1,j[ηj] , . . . ,

N

∑
j=1

Rδk
N,j[ηj]

)

,

where

Rδk
i,j [ηj](τ) :=































∫ εi

−εi

[

Rδk
Γ,+

(( zi
hi

)

,
( yi

hi

))

+ Rδk
+, ∂

(( zi
hi

)

,
( yi

hi

))

+ Rδk
i, ∂

(( zi
hi

)

,
( yi

hi

))

]

ηi(t)dt , for i = j ,
∫ ε j

−ε j

Nδk
+, ∂

(( zi
hi

)

,
( yj

hj

))

ηj(t)dt , for i 6= j ,
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with yi = ξi + t and zi = ξi + τ, for i ∈ {1, . . . , N}. Using the singular
decomposition formulas for Γδk

+ , Nδk
i, ∂ and Nδk

+, ∂, which are written down in
Section 4.1, we can rewrite the equation in Lemma 4.2 as

2

π
Lεi [µi](τ) +

1

(δk)2 |Di|
∫ εi

−εi

µi(t)dt +
N

∑
j=1

Rδk
i,j [µj](τ)

= 2i δk2 I0 e−i δk1 (ξi+τ)
(

2
sin(δk2 hi)

δk2
− r∂

i

)

, (4.16)

for τ ∈ (−ε, ε) and i ∈ {1, . . . , N}, as long as δk is smaller than the first
non-zero Laplace eigenvalue with Neumann boundary conditions. We
define f δk

i ∈ C to be

f δk
i := 2i δk2 I0 e−i δk1 ξi

(

2
sin(δk2 hi)

δk2
− r∂

i

)

,

which expresses the zero order term of the right-hand side with respect
to ε. To simplify notation, we define f δk := ( f δk

1 , . . . , f δk
N )T, where the

superscript T denotes the transpose, and we define Lε and |D| to be diag-
onal matrices with diagonal entries Lεi and |Di| respectively. Using Taylor
series, we can decompose Rδk as

Rδk[µ] = Rδk
∫ ε

−ε
µ +

∫ ε

−ε

(

O(ε)
)N,N

i,j=1
µ , (4.17)

where Rδk ∈ CN×N depends on δk and
∫ ε
−ε µ := (

∫ ε1

−ε1
µ1 , . . . ,

∫ εN

−εN
µN)

T.

4.6 Solving for ∂νuδk on the Openings

We can rewrite Equation (4.16) in the matrix-form as

2

π
Lε[µ] +

1

(δk)2
|D|−1

∫ ε

−ε
µ +Rδk[µ] = f δk , (4.18)

up to some error of order ε, where still µi := ∂νuδk|Λi
. We can solve that

equation in matrix form for ∂νuδk|Λi
.

To this end, we consider the series expansion Rδk[µ] = Rδk
∫ ε
−ε µ +

∫ ε
−ε

(

O(ε)
)N,N

i,j=1
µ, where Rδk ∈ CN×N , see Equation (4.17) and we will

neglect the error terms given in Rδk[µ]. Then we can reformulate the
equation as

2

π
µ + (Lε)−1

[

( 1
(δk)2 |D|−1 + Rδk)

∫ ε

−ε
µ
]

= (Lε)−1[ f δk] , (4.19)

where |D| is a square diagonal matrix with diagonal-entries |Di|. Consider
that (Lε)−1[v](t) = v

π log(ε/2)
√

ε2−t2
for a constant function with value v ∈
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CN , where ε = (ε1, . . . , εN) and the elementary operations are defined
element-wise.

After applying
∫ ε
−ε on both sides of the above equation we can factor

out
∫ ε
−ε µ ∈ CN on the left-hand side. With the definition

Q(δk) :=
1

(δk)2
|D|−1 +

2 log(ε/2)

π
+ Rδk ,

where log(ε/2) is a N × N diagonal matrix with entries log(ε i/2), we can
solve for

∫ ε
−ε µ and obtain

∫ ε

−ε
µ = Q(δk)−1 f δk .

Embedding this in Equation (4.19), we obtain

∂νuδk(t) =
π

2
(Lε)−1

[

f δk − ( 1
(δk)2 |D|−1 + R)

∫ ε

−ε
µ
]

=

(

IN −
(

1
(δk)2 |D|−1 + Rδk

)

Q(δk)−1
)

f δk

2 log(ε/2)
√

ε2 − t2

=
Q(δk)−1 f δk

π
√

ε2 − t2
.

Considering the error term, which we had for Rδk as well as for the
right-hand side for the equation in Lemma 4.2, we can readily establish an
error term for ∂νuδk of order O

(

N ε√
ε2−t2

‖Q(δk)−1‖2

)

, where we used [6,

Lemma 3.14].

Remark 4.3 The values δkres ∈ C for which the operator in Equation (4.18) is
not invertible are resonance values. Using the generalized Rouché theorem [3,
Theorem 1.2] we see that those resonance values are of order maxi(ε i) away from
those values δkapp ∈ C in Equation (4.19), which yield no solution µ. We can
readily give a condition to determine the δkapp, that is,

0 ∈ eig(Q(δk)) ,

where eig(M) is the set of all eigenvalues of a matrix M ∈ CN×N .

Remark 4.4 In [6, Section 4.3.4] it is shown that for 1
| log(εi/2)| small enough we

have exactly 2N eigenvalues. This is done using the generalized Rouché theorem
[3, Theorem 1.2] and the generalized argument principle [3, Theorem 1.12]. Note
that ε i has to be too small for those findings to hold.
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4.7 Solving for uδk on the far-field

Consider that for z ∈ Y, but z not element of the closure of our Helmholtz
resonators, it holds analogous to the proof of Lemma 4.2, using Green’s
identity, the Dirichlet condition, the quasi-periodicity condition and the
radiation condition,

uδk(z) =
N

∑
i=1

∫

Λi

Nδk
+ (z, y)∂νuδk(y)dσy + 2i δk2

∫ 1/2

−1/2

Nδk
+ (z, ( y1

r ))u
δk
0 (( y1

r ))dy1 ,

(4.20)

for r → ∞. We recall that Nδk
+ (z, x) = Γδk

+ (z, x) + Rδk
+ (z, x). Using Equation

(4.11), that is, Rδk
+ (z, x) = e−i δk1z1 ei δk2z2 ei δk1x1 ri +O(e−C z2) , for z2 → ∞

and x2 = hi, where ri does not depend on z, and using Equation (4.12), that
is, Rδk

+ (z, x) = e−i δk1z1 ei δk1x1 ei δk2z2 ei δk2x2 rex +O(e−C (x2−z2)) for x2 → ∞,
where rex does not depend on z and x, we obtain that

uδk(z) = e−i δk1z1 ei δk2z2

( N

∑
i=1

(

Q(δk)−1 f δk
)

i
ei δk1ξi

(

− sin(δk2 hi)

δk2
+ ri

)

− I0(1 − 2i δk2 rex)
)

+ uδk
0 (z) ,

with an error in O(N ε ‖Q(δk)−1‖2)+O(e−C z2). Re-establishing the macro-
scopic view and recovering the notation for Y, Di, Λi, li, hi, ξi, ε, we proved
the main result.

5 Numerical Implementation and Application of the

Main Results

5.1 Numerical Implementation

To carry out our numerics we rely on Matlab. To find the eigenvalues we
use the in-built function eig. To find the constant matrix Rδk ∈ CN×N and
constant vectors ri , r∂

i ∈ C, for i ∈ {1, . . . N}, and the constant function
rex ∈ C, we have to implement Γk

+, Nk
i, ∂, Nk

+, Nk
+, ∂ using integral equations,

which we will explain in the following.
Unfortunately, the series expansion for Γk

+ given in Equation (4.2) is
not converging fast enough and thus we have to apply a fast converging
alternative representation, that is the Ewald method, which is described in
[10] and which is slightly altered to fit our definition of Γk

+ in [4, Section
4.1]. Here we have to mention that for k ≈ 2π n − |k1|, for any n ∈ N,
the implementation of Γk

+ does not well-behave because of an instability
phenomenon, which is called the case of empty resonance. To resolve this
one can use different implementations like the Barnett-Greengard method
[5, Section 5.4].
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The computation of Nk
i, ∂, is a well-studied process [3, Proposition 2.8

][7]. For our implementation, we used the representation Nk
i, ∂(z, x) =

2 Γk(z, x) + Rk(z, x), where Γk(z, x) = − i
4 H

(1)
(0)

(k |z − x|), where H
(1)
(0)

is the

Hankel function of the first kind of order 0, and Rk satisfies the Helmholtz
equation with the boundary condition ∂νx Rk(z, x) = −2 ∂νx Γk(z, x). Using
Green’s identity we obtain that

Rk(z, x)− 2
∫

∂Di

Rk(z, y)∂νy Γk(x, y)dσy = −4
∫

∂Di

Γk(x, y)∂νx Γk(z, y)dσy .

Applying a discretization with M nodes to the boundary, and approxi-
mating the integral with the trapezoidal rule, we obtain a linear system of
equation of the form ( 1

2 IM − K ) R = f, from which we obtain a discretized

version R of Rk(z, ·). In this process, the problem arises that the trapezoidal
rule cannot efficiently approximate singular integrals, that is with increas-
ing number of nodes M the error in the approximation might not decay.

These troublesome integrals are
∫ ε
−ε ϕ(t) log(|t|)dt and

∫ T
0 ϕ(t) 1/M

t2+(1/M)2 dt,

for a smooth enough ϕ ∈ L2((−ε1, ε2)). To overcome the inaccurate ap-
proximation we use the following identities:

∫ ε2

−ε1

ϕ(t) log(|t|)dt =
[

log(|t|)
∫ t

0
ϕ(τ)dτ

]ε2

−ε1

−
∫ ε2

−ε1

1

t

∫ t

0
ϕ(τ)dτdt ,

∫ T

0
ϕ(t)

1/M

t2 + (1/M)2
dt =

∫ M T

0
ϕ(arctan(M t))dt ,

and subsequently we use Taylor series for ϕ in
∫ t

0 ϕ(τ)dτ and we condense

the nodes close to the bounds of the interval for
∫ M T

0 ϕ(arctan(M t))dt.

Given now Rk, we obtain Rk
i, ∂ by

Rk
i, ∂(z, y) = Rk(z, y)− 1

k2 |Di|
+ 2

(

Γk(z, x)− 1
2π log(|z − x|)

)

.

This has the disadvantage that for k → 0, Rk
i, ∂ should converge to a finite

value, but because the implementation of Rk yields a low accuracy for
k → 0, we have that the above implementation of Rk

i, ∂ still diverges for

k → 0. To approximate Rk
i, ∂ for k = 0, we choose some non-zero values k,

for which Rk
i, ∂ is stable and extrapolated with a second degree polynomial

in k. After some testing, we found out that min(π
li

, π
hi
)× [0.25, 0.75] is an

interval of well-computable values for k.
The computation of Nk

+, ∂, follows the same idea as for Nk
i, ∂, that is

we use Green’s identity with Γk
+ and obtain an integral equation for Rk

+, ∂,
which is Equation (4.6), if z and x are on the boundary. Applying a dis-
cretization with M nodes to the boundary, and approximating the inte-
gral with the trapezoidal rule, this once more leads to a linear system of
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equation of the from ( 1
2 IM + K ) R = f, with the discretized version R of

Rk
+,∂(z, ·). Fortunately, Γk

+ exhibits no singular behaviour in k and more-

over it has the same spatial singularity behaviour as Γk.
If x is outside of the boundary, we apply a discretization of the integral

equation (4.7) which requires the solution to the integral equation (4.6).
If z is outside of the boundary we proceed analogously, by first solving a
discretized version of Equation (4.8) and then applying it to Equation (4.9)
if x is also outside the boundaries.

Then the computation of the matrix Rδk, the vectors ri and r∂
i and the

constant rex can be done directly by applying Lemma 4.1.
We tested our implementation using a discretized version of the Helm-

holtz equation and checking whether Rk
+, ∂ and Rk

+ satisfy those. We could
not check whether those two function satisfy the boundary condition be-
cause the numerical implementation is unstable for values z too close to
the boundary. Another way to test our implementation was to double the
periodicity, that is if only one Helmholtz resonator was in the unit strip,
we should get the results when we make the unit strip twice as wide.
We got in all cases a very small error, which we suspect to be due to the
discretization.

5.2 Numerical Applications

Figure 3: The four Helmholtz
resonators of our unit strip
are shown. The incident
wave has the wave vector
(−k cos(θ),−k sin(θ)), where
k = 1.663 and θ = π/6.

Our geometry involves 4 Helmholtz res-
onators and the resonator parameters are
given by the following table:

h1 = 0.2 h2 = 0.3 h3 = 0.4 h4 = 0.3
l1 = 0.1 l2 = 0.3 l3 = 0.25 l4 = 0.2

ξ1 = −0.43 ξ2 = −0.19 ξ3 = 0.11 ξ4 = 0.38

We set δ to be 1, since it is only a scal-
ing parameter.

In Figure 3 we see an illustration of
the unit strip Y with an incoming wave
with k = 1.663 and a wavelength of 2π

k ≈
3.778. The 300 black points on the bound-
ary of our Helmholtz resonators are the
discretization points used in the numerics.

With these values we can already de-
termine the matrix Rk ∈ C4×4 in Theorem
3.1 and we are especially interested in its
eigenvalues dependence on k in the inter-
val (0, π). Additionally, we want to show the behaviour of the eigenvalues
of Rk, when the angle of the incident wave vector varies. In Figure 4 we
have depicted all four eigenvalues depending on k between 1.5 and 1.755,
for 5 different angles of θ. In Figure 4, we see a peculiar behaviour at the
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point (1.663, 0.8858), where the eigenvalues accumulate.

Figure 4: Depicted are the real parts of the 4 eigenvalues for Rk for the values
k ∈ [1.5, 1.775], with 5 different angles. In green we have the angle 5

6 π, in blue

we have the angle 2
3 π, in black we have the angle π, in red we have the angle 1

3 π

and in yellow we have 1
6 π. Here, EV(R(k)) stands for eigenvalue of Rk.

Thus, as elaborated after Theorem 3.1, we take for ε1 to ε4 the values

ε i = 2 exp
(

− π
2

(

1
|Di |(1.663)2 + 0.8858

))

.

We note here that not all ε i are physically meaningful, for example we have
that ε1 ≈ 10−14, but to give an understanding of the concept, we allow ε i

to hold these values.
Now that we have ε1 to ε4 we can compute Is. Since Is is a complex

number, we can decompose it into its complex angle θIs ∈ (−π, π] and
its absolute value |Is| > 0, as Is = |Is| exp(i θIs). In Figure 5 we show the
result. We see that for k ≈ 1.663, that is a wavelength of approximately
3.778, and θinc ≈ π we have almost no absorption, that is |Is| ≈ 1. And just
below that value for k we see a full absorption, that is |Is| ≈ 0. In Figure 5
(left), we see an abrupt phase-shift in that neighbourhood of k.

Here we want to note that in Figure 4 we have a second accumulation
of eigenvalues at (1.65, 0.98). For those values, we achieve a singular be-
haviour for Q(k) too, but the values of the vector Q(k)−1 f k are moderate,
and we do not see a strong resonance effect.

From the proof of Theorem 3.1, specifically from Equation (4.20), we
can recover a formula for the resulting wave Uk(z) for z close to the
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Figure 5: Depicted are the complex angle and absolute value for Is, for k ∈
(1.5, 1.755), and θinc ∈ (0.5, 2.5).

Helmholtz resonators and that one is

Uk(z) =
N

∑
i=1

Nδk
+

(

z
δ ,
(

ξi

hi

)

) (

Q(δk)−1 f δk
)

i
+ 2i I0 δk2 lim

r→∞

Rδk
+

(

z
δ , ( 0

r )
)

e+i δk2r

+ Uk
0(z) − I0 e−i k1z1e−i k2z2 + O(N ε ‖Q(δk)−1‖2) ,

where Q(δk) and f δk are as in Theorem 3.1. The field inside a Helmholtz
resonator is given through Equation (4.15). For k = 1.663 and θ = π/6,
we obtain the solution Real(Uk(z)) shown in Figure 6, where z is located
close to the Helmholtz resonator D1 to D4. We also see focal spots with
|Real(Uk(z))| > 1 on the left and right sides of the unit strip. This outcome
is similar to the findings in [13].
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Figure 6: The field Real(Uk(z)) is depicted, where z is close enough to the
Helmholtz resonators, and k = 1.663 and θ = π/6. This shows the resulting
scattering when applying the set-up in Figure 3.

6 Concluding Remarks

In this paper we have established in Theorem 3.1 that the formula Uk(z)−
Uk

0(z) = Is e−i k1z1 ei k2z2 describes the scattered field in the far-field in
our geometry, up to a small error, which depends on the lengths of the
openings of the Helmholtz resonators. Moreover, we have seen that Is =
(vδk)T Q(δk)−1 f δk − b, for Q(δk) ∈ CN×N and f δk ∈ CN as in Theorem 3.1,
for some vector vδk ∈ CN and some scalar b ∈ C, where Q(δk) is the addi-
tion of a diagonal matrix Dε,δk and the matrix Rδk. Dε,δk is given through a
simple formula consisting of all ε i and δk. Rδk contains the intrinsic prop-
erties of the geometry. By determining the diagonal matrix according to
the eigenvalues of Rδk we made Q(δk) be a near singular matrix for some
values of δk, which in turn leads us to an unusual behaviour for the in-
tensity Is of the scattered field due to the resonances of the resonators. In
the numerical applications we have achieved almost full absorption and
almost no absorption for wavelengths of around three units and addition-
ally, we have obtained an abrupt phase-shift in that regime. These effects
are similar to those observed experimentally in the gradient meta-surfaces
in [25, 24].

The proof requires that the wave number δk satisfies δk < 2π − |δk1|. In
numerical simulations, this constraint leads to δk ∈ [0, 2.5]. If we look for
shorter wavelengths, we need to rewrite Γδk

+ , in Equation (4.2), and Lemma
4.1. This will make the formulas more complicated, but might also yield
new and unforeseen results.
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Since the connection between the parameters of the geometry (ξi, li and
hi) and the eigenvalues of the matrix Rδk is not explicit, the only way to
evaluate Rδk is through numerically solving integral equations. Hence we
are left with trying different geometries until we find a geometry with the
particular property. One future point of interest in order to find optimal
configurations might be to perform a sensitivity analysis, when we change
either ξi, li or hi. We think that the case when two Helmholtz resonators
get close to touching might reveal fascinating phenomena, as it does in the
case of two nearly touching metallic spheres, see [26, 27].

Our framework is established in two dimensions. As said in the in-
troduction, the authors of the gradient meta-surface made of microscopic
small gold plates [24] saw no influence of the dimension of depth, that is
the third dimension, in their physical experiments. However, a physical
application of our gradient meta-surface might require a formula derived
from a three dimensional Helmholtz resonator. To gather such a formula
one needs a higher dimensional Green’s function Γk

+, that is given in [4],
and higher dimensional hyper-singular integral operators. An application
of those is given in [8].

In our mathematical model we used the Dirichlet and Neumann bound-
ary conditions. Materials which satisfy these conditions perfectly are not
commonly available. Thus different boundary conditions might model the
physical problem more accurately. For example in [2] Steklov boundary
conditions are studied. Moreover, mixed boundaries as they are studied in
[1] move the singularity in k of the scattered wave away from k = 0. Thus
with mixed boundaries we might achieve a better resonance effect. Ad-
ditionally, our model has boundaries of vanishing width. To implement
non-vanishing widths, one has to derive the behaviour of the scattered
wave on the neck of the Helmholtz resonators.

Our results can lead to many practical applications and we are looking
forward to experimental realizations of the unusual effects highlighted in
this paper.
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