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Abstract

In this paper, we develop an approximation theory for deep neural networks that is based on the
concept of a catalog network. Catalog networks are generalizations of standard neural networks in
which the nonlinear activation functions can vary from layer to layer as long as they are chosen from
a predefined catalog of continuous functions. As such, catalog networks constitute a rich family of
continuous functions. We show that under appropriate conditions on the catalog, catalog networks
can efficiently be approximated with neural networks and provide precise estimates on the number
of parameters needed for a given approximation accuracy. We apply the theory of catalog networks
to demonstrate that neural networks can overcome the curse of dimensionality in different high-
dimensional approximation problems.

1 Introduction

It is well-known that neural networks with a single hidden layer can approximate any finite-dimensional
continuous function on compact sets arbitrarily well if they are allowed to have sufficiently many hidden
neurons; see e.g., Cybenko [3], Hornik et al. [10], Hornik [9], Leshno et al. [14], or Barron [I]. How-
ever, neural networks with more than one hidden layer typically show better performance in practical
applications; see e.g., LeCun et al. [13] or Goodfellow et al. [5] and the references therein.

On the theoretical side, Eldan and Shamir [4] have provided an example of a simple continuous
function that can be approximated much more efficiently with two hidden layers than with one. While
this result holds for a large class of activation functions, Maiorov and Pinkus [I5] have constructed a
specific sigmoidal activation function that, in principle, allows to approximate every continuous function
f: 00,11 — R to any desired precision when used in a two-hidden-layers network with 3d neurons
in the first and 6d + 3 neurons in the second hidden layer. Theoretically, this breaks the curse of
dimensionality. But due to its complicated form, the activation function of Maiorov and Pinkus [15] is
of little practical use. Moreover, it can be shown that their result only holds if the size of the network
weights is allowed to grow faster than polynomially in the inverse of the approximation error; see e.g.,
Petersen and Voigtlaender [I7]. So a better understanding of the approximation capacities of neural
networks with commonly used activation functions is still of great interest. Mashkar [16] has shown
that neural networks with multiple hidden layers and generalized sigmoidal activation functions are
able to achieve the optimal rate of approximation for smooth and analytic functions. More recently,
Petersen and Voigtlaender [I7,[19] have derived the necessary complexity of ReLU networks needed for
approximating classifier functions in LP. L2-approximation rates for different function classes are given
in Boleskei et al. [2] and Grohs et al. [§]. [6LIT,12] have shown that solutions of various PDEs can be
approximated with ReLLU networks without the curse of dimensionality provided that the same is true
for their coefficients and boundary conditions. In Schwab and Zech [18] neural network expression rates
for generalized polynomial chaos expansions are given and it is shown that neural network can overcome
the curse of dimensionality in the numerical approximation of solutions of certain parametric PDEs.
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The purpose of this paper is to provide additional classes of high-dimensional functions that can
efficiently be approximated with ReLLU-like networks. To do that, we introduce the notion of a catalog
network, which is a generalization of a standard feedforward network in which the nonlinear activation
functions can vary from one layer to another as long as they are chosen from a given catalog of contin-
uous functions. Particularly useful catalogs are catalogs of Lipschitz continuous functions, maximum
functions, and products. We first study their approximability with neural networks. Then we show how
the approximability of a catalog translates into the approximability of corresponding catalog networks.
The theory of catalog networks can be used to construct different function classes that are approximable
with ReLU-like neural networks with a number of parameters that is polynomial in the dimension and
the inverse of the approximation accuracy.

The rest of the paper is organized as follows. In Section Bl we establish the notation, recall basic
facts from [7,[12,[17] about the concatenation and parallelization of neural networks and derive two
simple consequences that are needed later in the paper. In Section Bl we analyze the approximability
of catalogs with neural networks and derive first consequences for the corresponding catalog networks.
Section M is devoted to concrete examples of catalogs and a careful study of their approximability with
neural networks. Section [l contains the statement and proof of our main result, Theorem [B.3] which
gives a precise estimate on the number of parameters needed to approximate a given catalog network
to a desired accuracy with neural networks. In Section [6 we apply our main result to establish that
different classes of high-dimensional functions are approximable with ReL.U-like networks without the
curse of dimensionality. Interestingly, in some cases, efficient approximation is possible with networks
of constant depth as the dimension goes to infinity and the accuracy tends to zero, while in others our
construction yields approximating networks with increasing depth.

2 Preliminaries

A neural network encodes a succession of affine and non-linear transformations. Denote N = {1,2,... }.
Then the set of all neural network architectures is given by

D _
N = Upen Uy, . ip)yenpst Xjeg (REXHE-1 5 RYE),

We denote the depth of a network architecture ¢ € N by D(¢) = D, the number of neurons in the k-th
layer by l,(f =k, k € {0,...,D}, and the number of network parameters by P(¢) = Zszl le(lk—1 + 1).
Moreover, if ¢ € N is given by ¢ = [(Vi,b1),...,(Vp,bp)], we denote by Ai c C(R¥—1, RW), k €
{1,..., D}, the affine function z — Vix + bx. Let a: R — R be a continuous activation function. As
usual, we extend it for every positive integer d, to a function from R? to RY mapping (x1,...,24) to
(a(x1),...,a(xq)). The a-realization of ¢ € N is the function RS € C (R, R!) given by

RE=ADoaoAp jo---aoAf.

We recall that ¢1, ¢y € N can be composed such that the a-realization of the resulting network equals
the concatenation RS! o Rgh. This is done by combining the output layer of ¢ with the input layer of
¢1. More precisely, if 1 = [(V1,b1),..., (Vp,bp)] and ¢2 = [(Wi,e1), ..., (W, cp)] satisty 1§ =I5, .
then the concatenation ¢ o ¢o € N is given by

pro¢y = [Wi,c1),..., Wg_1,ce-1), ViWg, Vicg + b1), (Va,b2),...,(Vp,bp)].

The following result is straight-forward from the definition. A formal proof can be found in Grohs et

al. [7].
Proposition 2.1. The concatenation

(Vo (): {(d1,¢2) €N X N 15" =132

Do)t N

is associative and satisfies for all ¢1,po € N with l‘gl = l%(@)



(i) RE°%2 = RE o RY2 for all a € C(R,R),
(i) D(¢10 ¢2) = D(¢1) + D(¢2) — 1,
i) 1 = {ﬁé ke Dios e Dlor o)
k+1—D(¢2) 2)r 1 2)1s
(iv) P(d10¢2) = P(é1) +P(d2) + 115050 4 = 1617 =150 (g1 + 1)
(v) i D(¢1) = 1, then P(¢1 o ¢2) < max {115, \(I5,) " }P(e2),

(vi) and if D(¢a) = 1, then P(¢1 0 o) < max {1, (15" +1)~1(15? + 1)} P(¢n).

The next lemma is a direct consequence of the above and will be used later to estimate the number
of parameters in our approximating networks.

Lemma 2.2. Let a € C(R,R) and ¢ € N. Suppose that 11,199 € N satisfy D(¢1) = D(¢s) = 2,

I = 15" =19, and I§? = 13* = I, Abbreviate D = D(¢). Then

P() + 172318 + 1) + 10 (15 + 1) + 10118 — 1519 if D=1,

Plérogoys) = {p<¢> IR 1)+ I 4 1)+ 0 — 10 41 (@ —1%) D2

Proof. Let k € N be given by k = lipo if D=1and k = l%_l if D > 2. By Proposition 2.1] and the fact
that P(¢2) = IY2(18> + 1) + 157 (12 4+ 1), we have
P(@ o) = P(o) + 1125 +1) + 17 (1 ~ 1f)

and also [°%? = k. Thus, by applying Proposition 2.1] once more and observing 1992 — 19 — lwl, we
D Y D+1 D 2

obtain
P10 ¢ o) =P(d o) + 1 (I +1) + k(" —13)
=P(@) + (5 + 1) + 0" (5 + 1) + {7 —16) + K07 —15),
which completes the proof of Lemma O

Another operation on neural networks that we will need is parallelization. In the case that ¢; =
[(Vi,b1),...,(VD,bp)] and ¢ = [(W1,c1),...,(Wp,cp)] have the same depth, then this can be achieved
by constructing block matrices in each layer by

oed=[([§ w o)) ([ wl 2]

Clearly, we can then define the parallelization of arbitrarily many neural networks ¢1,...,¢, € N,
n € N, with the same depth by iteration

(@1, 0n) = p(d1,0(d2,0(-. ., Pn))) - - - ).

Statements (i)—(ii) in the next proposition follow immediately from the definition. For (iii)—(iv), we
refer to Grohs et al. [7].

Proposition 2.3. The parallelization

P: Unen {(¢1,-..,6n) EN™": D(¢1) =--- =D(dn)} = N

satisfies for allm € N and ¢y, ..., ¢, € N with the same depth:



(i) Rg(d)l""’%)((xl,...,xn)) = (RO (z1),...,RE () for all ; € ]ngl,...,xn e RY" and each
a € C(R,R),

(ii) GO =51 0 for all k € {0,...,D(¢1)},
(iii) P(p(d1,. ... dn)) < [0 P(6))]",

(iv) P(p(d1,..-,¢n)) < n2P(¢1) whenever l,‘fi = l,fj for each k € {0,...,D(¢1)} and all i,j €
{1,...,n}.
The above construction needs all the neural networks to have the same depth. If this is not the case,

then we can still parallelize neural networks but only for a special class of activation functions.

Definition 2.4. We say a function a € C(R,R) fulfills the c-identity requirement for a number ¢ > 2
if there exists I € N such that D(I) = 2, I} < ¢ and RL = idg.

Note that if I satisfies RL = idg, one can also realize the identity function idgs in d dimensions for
any d € N, using d-fold parallelization I; = p(I,...,I). The c-identity requirement is crucial for our
purposes. The main example we have in mind is the ReLU activation ReLU: R — R, z — max{x, 0},
which satisfies the 2-identity requirement with 7 = [([1 — 1]7,[0 0]7), ([ — 1],0)]. However, it is easy
to see that generalized ReLU functions of the form

re ifx>0
a(z) = .
s ifz<O

for (r,s) € R% \ {0}, also satisfy the 2-identity requirement.

Using the identity requirement, we can extend the notion of parallelization. Namely, if ¢1,..., ¢, €
N, n € N, do not have the same depth, then we simply concatenate the shorter networks with the
identity I; until they all have the same depth. Then one can apply the original parallelization. Of
course, the parameter count changes compared to simple parallelization. The following result follows
from Grohs et al. [7, Corollary 2.24].

Proposition 2.5. Assume a € C(R,R) fulfills the c-identity requirement for a number ¢ > 2 with
I € N. Then the extended parallelization pr: Upeny N™ — N satisfies

Iry , ; ; NE
Pi(0n,-60) < 5| 35 P(6,) + el (eI, + 1), max  D(6:)]
for allm € N and ¢1,...,¢0, € N.
We finish this section with the following consequence of Lemma

Corollary 2.6. Assume a € C(R,R) satisfies the c-identity requirement for a number ¢ > 2 with
I e N. Let ¢ € N and denote the d-fold parallelization of I by I;. Abbreviate m = lg, n= l%(qb)’ and

k = max{m,n}. Then
P(I, 0 ¢poly) < P(p)ck + 3¢k
Proof. Abbreviate D = D(¢). Lemma yields
P, odol,) = P(¢) + 1" (m+ 1) + 1" (n+ 1) + 1{"I{" —mn if D=1,
P(@) + Um(m+ 1) + 1+ 1) + 10 —m) +15,_, (1" —n) if D>2.

Note that the hypothesis II < ¢ and item (@) in Proposition 23] ensure that 1™ and /I are both at
most ck. This and the fact that (¥ + l%fl < P(¢) imply

@) + 2ck(k 4+ 1) + k2 — k if D=1,

@)+ 2ck(k+ 1)+ (10 +19_)(ck —1) if D >2

}) + 3c2k> if D=1,

})ck + 3c2k* if D > 2,

P
P(l,o0poly) < {77

(
(
<{7’<
=17

where last inequality holds because ¢ > 2. U



3 Catalog Networks

In this section, we generalize the concept of a neural network by allowing the activation functions to
change from layer to layer. But they have to be chosen from a predefined catalog 7 C U,,, . C(R™,R").
The following notation will be useful: We denote the dimension of the domain of a function f €

U, nen C(R™,R™) by do(f) and the dimension of its target space by di(f), so that f € C(R% () Rt (1),
Now, consider a catalog F as well as D € N and [y, ...,lsp € N. Then we define leo""’lw to be the set

Cé_qv---vlzD _ Q Rizn-1xl2n—2 y Rl2n-1
n=1

k
X U {(fl, o fr) € FR [for all i € {0,1}: S di(f;) = ZQH,HZ} } :

keN j=1
As in the definition of neural network architectures, there are affine transformations encoded in the first
two components of the inner cartesian product. The last term consists of a tuple of continuous functions
fi,--+, frx, which are applied in a parallelized way in place of the activation function after each affine
transformation. We define the set of all catalog networks corresponding to F by

7T peNi,..lapeN T

We define the depth of a catalog network & € Cig’“"lw as Do (€) = D. Its input dimension is Z¢(€) = o,
its output dimension O¢(§) = lap, and its maximal width W (€) = max{lp,...,lap}. Next, we discuss
the realization of a catalog network. Suppose £ € Cé(_l""’lw is given by & = [(V1,b1, (fi,1,-- s fik))s -,
(Vb,bp, (fpas---, fD)p))]- Then we let A%n € O(R2n-2 Rl2n-1) n € {1,..., D}, be the affine function
x +— Voxr+ b, By gé’” € C(Rl2n-1 R2) n € {1,...,D}, we denote the function mapping z € Ri2n-1
to

gdn(x) = (fn,l(xl’ s ’xdo(fn,l))7f"72 (mdo(fn,l)Jrl’ s 7xd0(fn,l)+d0(fn,2))7 s
Jnken ('Ido(fn,1)+"'+d0(fn,kn—l)+1’ e ’de(fn,l)+"'+d0(fn,kn)))’

that is, we apply fi,1 to the first do(fy,1) entries of z, fy, 2 to the next dy(fy 2) entries, and so on. This
is well-defined due to the condition d;(f1) + -+ + d;(fx) = lan—1+4, @ € {0,1}, posed in the definition of
Cl]fl""’lw . The overall realization function Ré € C(R Rk0) generated by the catalog network ¢ is

R =G8" 0 AG 00 G&l o AG!.

Our goal is to show that catalog networks can efficiently be approximated with neural networks with
respect to some weight function, by which we mean any function w: [0, 00) — [0, 00).

Definition 3.1. We say a weight function w has order of growth at most (s1,s2) € [1,00) x [0,00) if
w(z) < s1r2w(rmax{z, 1})
for all x € [0,00) and r € [1,00).

Useful weight functions are constants and functions of the form (1 + 2%)~! or (max{1,29})~! for
some g € (0,00). Constant weight functions clearly have order of growth at most (1,0). The order
of growth of (1 4 29)~! and (max{1,29})~! follows from Lemma below. The order of growth is
a general concept applicable to different types of weight functions. The inequality in Definition Bl is
exactly what is needed in the proof of our main result. Note that if a weight function w has an order
of growth and satisfies w(xz) = 0 for some x € [1,00), then w(y) = 0 for all y € [0,z]. In particular,
indicator functions of bounded intervals cannot have an order of growth. We address this issue by
introducing approximation sets in Definition B.3l



Lemma 3.2. Let 6 € (0,00) and consider a non-decreasing function f: [0,00) — (0,00). Moreover,
let p: [0,00) — [0,00) be of the form x— Y _, arz®, where ¢ € Ng = NU {0} and ag,bo, . . .,a4,b, €
[0,00). Then the weight function w given by w(x) = f(z)(max{p(x),5})~! has order of growth at most
(max{%, 1}, max{bo,...,bq}).

Proof. Abbreviate s = max{bo,...,b,} and note that p having non-negative coefficients ay,...,a, im-
plies for all x € [0,00), r € [1,00) that p(rz) < r®*p(x). This and the hypothesis that f is non-decreasing
yield for all z € [0,00), r € [1,00)

fre) _ frap
max{p(z),6} ~ max{p(rz),d}

Next, we use the hypothesis that f is non-decreasing again to find for all x € [0,1)

f(1) < max{p(l),é}w
max{p(z),d} ~ 0

w(z) <

= riw(rz).

w(z) < (1).

Combining the previous two calculations yields

)
max{p(1),d}
which concludes Lemma O

w(z) < w(max{z,1}) < r®w(max{z,1}),

We are primarily interested in catalogs of functions that are well approximable with neural net-
works. In addition, we require the approximations to be Lipschitz continuous with a Lipschitz constant
independent of the accuracy. Let us make this precise. We denote by || - || the Euclidean norm.

Definition 3.3. Let a € C(R,R) and consider a weight function w. Fiz L € [0,00) and ¢ € (0,1].
Given a function f € U, .y C(R™,R") and any set B C R we define the cost to approzimate f
with accuracy € and weight w with L-Lipschitz neural networks on the set B as

¢ € N with RY € C(R%) R
Costgw(f, B,L,e) =inf¢ P(¢) € N: | s.t. RS is L-Lipschitz on R0 gnd )
sup,ep w(|zl)] f(x) - RE()|| <

where we use the usual convention inf(()) = co.
The next definition embodies the class of catalogs we will use for our catalog networks.

Definition 3.4. Let a € C(R,R), k = (Ko, K1, k2,k3) € [1,00)% x [0,00)2, ¢ € (0,1], and suppose
w is a weight function that never vanishes. Consider a family of sets B = (By)ser such that By C
RI) contains the origin for all f € F, and let L = (Lf)er € [0,00) be a collection of Lipschitz
constants. Then we call a subset F C U C(R™ R"™) an [a,w, B, L, e, k]-approximable catalog if

supje | F(0)]] < wo and

m,neN

Costa,w(f, By, Ly, 0) < ki max{do(f),d1(f)}[**0~"
for all f € F and ¢ € (0,¢].

Note that if F is [a,w, B, L, ¢, k]-approximable, then every f € F must be L-Lipschitz continuous
on the set By. Indeed, the definition implies that for all 6 € (0,¢] there exists a ¢5 € N such that
w(||z)|If (@) —RY (2| < 6 and |RE (z) — RY (y)|| < Ly¢||x —yl| for all z,y € By. So, one obtains from
the triangle inequality that

+ Lyllz — yll +

17@) ~ Fw)l < —

() w(llyll)



for all z,y € By and 6 > 0.

Coming back to catalog networks, we would like to deduce a Lipschitz property for the generalized
activation functions gg" in a catalog network ¢ € Cr corresponding to an approximable catalog F.
To do so, we need two more definitions. Let F be a catalog approximable on sets B = (By)fcr with
Lipschitz constants L = (Ly)ser C [0,00). For a catalog network & € Cl]?""’lw given by & = [(V1, by,
(fl,la - ’flJﬂ))? RN (VD, bp, (fDJ, - afD,kD))]a we set

J=1 ’ j=1
and
L™ := max Ly, ..
je{l,....kn} ’J

IB%%" is the set on which all the functions used in the n-th layer can be approximated. Moreover, the
following holds.

Lemma 3.5. Let £ € Cr be a catalog network based on an |a,w, B, L, e, k]-approximable catalog F.
Then

IGe™ (x) = Ge" (w)l| < L& ||z — y|
foralln € {1,...,Dc(&)} and z,y € B%n.

Proof. Assume that & = [(V1,b1, (fi,1,--+5 fik))s---» VDb, (fD1s -+ fDkp))]. The discussion after
Definition 3.4 showed that every f € F is L-Lipschitz continuous on the set By. Given n € {1,...,D},
je{l,...,k,}, and z € R2"-1, denote by T(nj) € R%(fn.i) the vector

L(n,j) = <l‘d0(fn,l)+“'+d0(fn,j71)+1’ s ’xdo(fn,l)Jr---erO(fn,j)) :

Then one has for all n € {1,..., D} and z,y € BS",

kn
198" (@) = G&" W = 5 Wi @) = FrWin)I?
]k‘n (3.1)
< 3 ALgs Pllwtns) = o I” < 125 Pl =
j:

4 Examples of approximable catalogs

In this section, we provide different examples of approximable catalogs that will be used in Section
to show that certain high-dimensional functions are approximable without the curse of dimensionality.
We focus on one-dimensional Lipschitz functions, the maximum function in arbitrary dimension, and
the product function in two dimensions.

First, consider a K-Lipschitz function f: R — R for some K € (0,00) such that |f(0)] < K. For any
given r € (0,00), f can be approximated on [—r,r| with a piece-wise linear function supported on N + 1
equidistributed points with accuracy Kr/N. Such a piece-wise linear function can be realized with a
ReLU network ¢ with one hidden layer and N hidden neurons. This results in P(¢x) = 3N + 1, and
it follows that

COStReLU,“K)(f? [_7"7 7"], K7 5) S IP(¢|—K7’6*1.|) S 3KT€71 + 47

where wy is the weight function that is constantly equal to 1. Alternatively, one can approximate f on
the entire real line with respect to a weight function of the form w,(z) = (1+29)~! for some ¢ € (1,00).
Then . .

CostreLUuw, (f, R, K,e) < (6K)a-Te a-T 4 10;



see Hutzenthaler et al. [I1], Corollary 3.13].
Next, we turn to the maximum functions max;: R* —» R, z — max{zy,...,24}, d € N. These can
be represented exactly by ReLLU networks. max; is simply the identity and maxs is the ReLLU-realization

1 —17 o
ho = 0 1,0 ],([t 1 —1],0)
0 —1f [0

If I € N is taken such that ReLU fulfills the 2-identity requirement with I and we define Iy = p(I,...,I),
d € N, then it can easily be shown by induction that maxgy, d € N>3, is the ReLU-realization of
¢q = dg—10p(P2, [4_2) and P(pgq) = %(4d3 +3d? — 4d + 3) < 2d3. In other words, for all d € N and any
weight function w

CostRreLU w(maxg, RY, 1, ) < 2d3 = 2|dp(maxg) .

Finally, we study the approximability of the product function. To do that, we first consider the
square function sq: R — R, z +— 22. It has been shown by different authors that the square function
can be approximated with accuracy € > 0 on the unit interval by a ReLU network ¢. satisfying P(¢.) =
O(logy(e71)); see [7,[8,[18,20]. This relies on realizing linear combinations of iterations of the saw-
tooth function with a neural network and establishing exponentially fast convergence in the number of
iterations. In particular, the approximator RﬁeLU is 2-Lipschitz. A precise estimate of the number of
parameters required is given in Grohs et al. [7, Proposition 3.3]. In our language it can be stated as

COStReLU,w() (Sq7 [07 1]7 27 E) S P(¢E) S max{13, 10 10g2(€_1) - 7}

Moreover, the neural network ¢. achieving this Cost also satisfies RﬁZLU = ReLU on R\[0,1]. By a
mirroring argument, we can then obtain an approximation of the square function on the interval [—r, 7]
for any r € (0, 00).

Lemma 4.1. For all r € (0,00) and ¢ € (0,1], there exists a neural network .. € N such that
Rlﬁ;’EU € C(R,R) is 2r-Lipschitz continuous, Sup,c(_, | \Rﬁ;EU(x) — 22| <, Rﬁ;EU(m) = rlz| for all
x € R\[—r,7], and

P(¢re) < max{52,80logy(r) + 40 logz(sfl) — 28}.

Proof. Take ¢,1 € N of depth 1 with RﬁgiU € C(R%,R) given by (z,y) = r*(z +y) and take ¢.o € N
of depth 1 with R?{EEU € C(R,R?) given by z (5, =%). If (#e)ee(0,1) € N denote the approximators of
the square function on the unit interval from above, then v¥,.. = ¢, 1 0p(¢,—2., ¢,—2.) 0 ¢, 2 approximates
the square function on [—r,r] with accuracy e. To see this, note that Rﬁ;EU(m) = 7“272(;;\;125(@) for all
x € R since ¢,—2, = ReLU on R\ [0, 1]. Moreover, this also implies R?{Z’EU (x) = r|z| for all z € R\[—r, 7]
as well as the Lipschitz continuity. Lastly, Proposition 211 (items () and (i) and Proposition 23]
(item (i) assure P(¢)r ) < 4P(¢,—2.). This finishes the proof of Lemma 11 O

More concisely, the statement of Lemma [£.1] can be written as
COStReLU o (54, [=7, 7], 2, €) < max{52,801logy(r) + 40logy(c ) — 28}.

We can now estimate the approximation rate of the product function pr: R? — R, (z,y) — zy using
the identity xy = %((m +y)% — 22 —y?). This trick has already been used before; see [7J818,20]. But let
us still provide a proof of the next proposition, since most results in the existing literature are stated
slightly differently or do not specify the Lipschitz constant.

Proposition 4.2. For all r € (0,00) and ¢ € (0,1], one has

COStReLU g (DT, [—7, 7%, V327, €) < max{468, 679 + 7201og,(r) + 360logy(c 1)}



Proof. Pick 11 € N of depth 1 with R&LU € C(R3,R) given by (z,y,2) %(x —y — z) and pick
9 € N of depth 1 with RﬁiLU € C(R?,R3) given by (z,9) — (z + y,z,y). If (Vr.e)re(0,00),c€(0,1] SN
denote the approximators of the square function on the interval [—r,r] from Lemma EI] then x,. =

1 0 (. 2 /35 Wor 2¢/35 Yo 2e /3) o 1) approximates the product function on [—r,r]? with accuracy e. Fur-

Xr,e . . . . 1/’27,25/3 . . . .
thermore, Ry is v/ 32r-Lipschitz continuous because Ry /" is 4r-Lipschitz continuous and, hence,

IRieiu (@1, 22) = Ryoiu (i, y2)| < 2r (o + 22 — (y1 + y2)| + |21 — va] + |w2 — w2)
< V32r|[(z1 — y1, w2 — y2)||.

Finally, Proposition 2] (items (@) and (vi)) together with Proposition 2.3 (item ([ivl)) implies that
CostRreLU o (PT, [—7,7]2, V327, €) < 9P (tgy.2¢/5). This completes the proof of Proposition O

Combining the results from this section, we obtain the following examples of approximable catalogs.

Example 4.3. Let ¢ € (1,00) and denote by w, the weight function (1 + 29)~L. For K € (0, 00),
introduce the K -Lipschitz catalog (augmented by idg if K < 1)

]:IL(ip ={f € C(R,R): f is K-Lipschitz continuous on R and |f(0)| < K} U {idr}

and the K-Lipschitz-mazimum catalog fII}ip’maX = .7-}L(ip U {maxgy: d € N}. Define prescribed Lipschitz
constants and approximation sets

I.— 1 if f=maxy, d€N, B, — R? if f = maxy, d €N,
T7A\K if f e FEP\{idg}, T7AR if f € FEP\{id ).
Then

(i) .7-}L(ip ifll a [ReLU, wy, B, L, min{1,6 K}, (K, 11(6K)f1%1,07 qqu)]—approximable catalog
ii) an Pmax e ¢ [ReLU, wy, B, L, min{1, , (K, #,3, —4)]-approximable catalog.
d FPme ReLU, w,, B, L 1,6K}, (K, 11(6K =

Denote by wq the weight function that is constantly 1 and introduce the K-Lipschitz-product catalog
]:IL(lp’prOd = ]:IL(lp U{pr}. Let r,R € (0,00) and define new prescribed Lipschitz constants and approxi-
mation sets

1 if f = maxgy, d €N, R if f =maxy, d €N,
Ly={K  if f e F"\{idr}, Bf =< [-R,R] if f€F*\{ide},
V32r if f=pr, [—r,r? i f=pr.

Then

(1) ]:IL(ip il a [ReLU, wp, B, L,min{1, KR}, (K,7TKR,0,1)]-approzimable catalog,
(ii) .FII}ip’maX is a [ReLU,wp, B, L,min{1, KR}, (K,7TK R, 3,1)]-approximable catalog,
(iii) and .FII}ip’prOd is a [ReLU,wy, B, L, 4, (K, M,0,1)]-approzimable catalog,

where § € (0,1] and M € [0,00) are chosen such that both 3K Re™! + 4 < Me~! and max{468,679 +
7201ogy(r) + 3601ogy(e™1)} < Me™t hold for all € € (0,6].

"Here we use that ¢ < min{1,6K} ensures (6K)q%157q%1 +10 < 11(6K)q%167q%1. We could also use € = 1 but then
K1 becomes larger.
2Similarly, we use that ¢ < min{1, KR} ensures 3K Re ™' 4+ 4 < TKRe™".



5 Approximation Results

In this section, we state and prove our main result on the approximability of catalog networks with
neural networks. The following lemma is crucial for its proof. It establishes the approximability of
the functions an, n€{l,...,Dc(§)}, in a catalog network ¢ € Cr corresponding to an approximable
catalog F.

Lemma 5.1. Assume a € C(R,R) satisfies the c-identity requirement for some number ¢ € [2,00). Let
F be an [a,w, B, L, e, k|-approzimable catalog with a non-increasing weight function w, and consider a
catalog network & € Cé(_l""’lw for some D € N and ly,...,lap € N. Then for alln € {1,...,D} and
§ € (0,e], there exists a neural network ¢ € N with RY € C(R2n-1, Rl2n) such that

(i) RY is LE™-Lipschitz continuous on Rl2n-1,
(ii) sup,pen w(|zDIGE" (@) = RE(@)] < 6.

(i) and P(¢) < 23c|k1|?[lon|*| max{lon_1, lon }|**2| min{lon_1, lon } #3262,
Proof. Suppose that ¢ is given by [(Vi,b1, (fi,1,---5 fik1))s---» (VD,bp, (fD1,-- 5 [DKp))] and fix n €
{1,...,L}, § € (0,¢]. The hypothesis that F is an [a,w, B, L,¢, k]-approximable catalog, where

k = (Ko, K1, K2, k3), implies that there exist neural networks ¢; € N, j € {1,...,k,}, with Rffj €
C(R%Fns) RN(Fns)) such that

(1) for all z,y € R%(5) we have HRZ}D] () — RY Wl < Ly, ;llz =yl

(IT) for all x € By, ; we have w(|[z|)|| fn;(x) — RYI ()] < \/‘;7,

(I11) and P(¢;) < | max{do(fu,;), da (f)) }"2 k| 36775

Let I € N be such that a fulfills the c-identity requirement with I and let ¢ € N be given by the
parallelization ¢ = pr(¢1,...,¢,). Recall the following piece of notation. For all j € {1,...,k,} and
x € Rlen-1 Jet T(nj) € R%(.3) be given by

do(fn.i
L(n,j) = <xd0(fn,1)+"'+d0(fn,j—1)+1’ s ’xdo(fn,l)'f'""f'd()(fn,j)) €R olfmd),

With this notation, we can estimate for all z,y € R2n-1,

IR (x) — RE(y)|I* = ZHR (@(ng)) — R (Yon ) II?

(5.1)
< Zl Lt Pl ng) = Y I° < 1L8"Pllz =yl
]:
Next, we use that w is non-increasing and the definition of IBB%" to deduce for all x € IBB%",
£n ¢ 2 _ ¥; 2
1Ge" (2) = Ra(@)[|” = Z_Z 1 (Z(5)) = Ra” (T n, )l
(5.2)

52 En
AL (12, D17 < 8wl
k i=1

It remains to estimate the number of parameters P(¢). Since l;@j(wj) = di(fn;) < lon and D(1p;) <
2P(;) for all j € {1,...,k,}, Proposition 2Hl yields

1 k" Cl2n 2
P(6) < 5| X eP(y) + S (clon +1)_max  P(yy)]
2 =1 2 1€{1,...kn} (5 3)
|k |? clop 2 NE knl 5 o 2]? Nk .
< SE ot S (elan +1)] [ie{q%}wz)} < 2 3 o | [ie{q}%}w :
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where the last inequality is true because ¢ > 2. Plugging in item ([II)) yields
P(¢) < 3¢k |*lan|*| max{lon 1, lon }2 k| 225252,
Finally, note that we must always have k,, < min{lo,_1,l2,}, with which we can conclude the proof. [

Remark 5.2. If all functions in a catalog F have target dimension 1; that is, di(f) =1 for all f € F,
then statement (i) of Lemma 5.1l can be improved to

P(¢) < Bty [*| max{lon_1, lon }*™ | min{lon_1, lan }|™ 2672

(where we dropped the term |l2,[*). Indeed, in (5.3) we used the estimate l;@j(wj) = di(fn,j) < lon which
now becomes lféj(wj) = di(fn,;) =1, so (B3) can be improved to

[knl® [5 272 2
P(9) < — [10} Le{r{%n}P(wi) -

For our main result, we have to introduce a few more concepts. Let F be a catalog that is approx-
imable on sets B = (By)cr with Lipschitz constants L = (Lf)¢er C [0,00). Then, for any catalog
network

52 [(Vlabla(fl,l""?fl,k?l))?"'?(VD’bD?(fD,la"' afD,k;D))] € C]:,

we define
]D£B = {x e RT7¢®: |for all {1,...,Dc(€)}: (Agdn o gg"* 0---0 Agz o gé’l o .A%l)(x) € B%n} }

and

D
Lipg (€) := 1 LV,

where || - | denotes the operator norm when applied to matrices.
To estimate the approximation error, we need two more quantities. The first one is

Bo(€) = max {1, A5 0)],..., | A5P©(0)] },

which simply measures the maximal norm of the inhomogeneous parts of the affine transformations
(capped from below by 1). When using weight functions of the type w,(x) = (1 + 29)~!, functions in
the catalog are approximated better close to the origin. The quantity B¢ (€) is used to control how far
away one is from the region where one has the best approximation. However, this becomes redundant
if the weight function is constant as Corollary 5.8 will show. The last quantity we need is

Ti(©) = max [mas {1 WVngu,ol} mae {1, Lm0 L (T Lo ))].

m,nENp, j= 1
m<n<D+1 g=m+

Essentially, this is the maximum of all Lipschitz constants of layers m 4+ 1 to n. Its precise use will
become clear in the proof of the following result.

Theorem 5.3. Suppose a € C(R,R) fulfills the c-identity requirement for some number ¢ > 2 and let
w be a non-increasing weight function with order of growth at most (s1,s2) for some s1 € [1,00) and
s9 € [0,00). Consider a catalog network § € Cx for an [a,w, B, L, e, k|-approzimable catalog F. Then
there exists a neural network architecture ¢ € N with a-realization RS € C (RZe(©) ROC(©)) such that

(i) RE is Lipy (€)-Lipschitz continuous on RZ(©),

(ii) sup,cpe w(llzIRE(x) = RE (@) < e, and

11



(iif) P(¢) < CBe (&)~ |TL(E)I* [Do(€)[> ! W (€)[PretrTe2ne
for = k3(so+ 1) and C = 43 - 240=#3)=5¢5| g4 |2(r=h3) | i || 5 |23,

Remark 5.4. The conclusion of Theorem [5.3] could be written more concisely as
Costa,u(Re Dy, Lipy, (€),€) < CIBa(&)P" ™) |TL(€) P[P (&) W (€) PR+,
In particular, for any given M € [1,00) and k € [0, 00), the set of functions

{,Rg : [ ¢ € Cr with ||RS(0)] < M and } }
¢ | max{Bc(§), Te(€), De(€), We(€)} < [max{Zc(€), Oc(§)}*
is an [a,w, D%),LipL(-), g, (M,C, k(2k2 — 2k3 + Tr + 8), 2k3)]-approximable catalog.

Proof of Theorem [52.3. We split the proof into two parts. In the first half, we construct a candidate
neural network for our approximation and bound the approximation error. In the second half, we
analyze the number of parameters. Assume that £ € CZO’ whp g given by & = [(Vi,b1, (fi,1,-- -, fie))s

. (Vb,bp, (fD1s- -+, fDKp))]. Introduce the short- hand G, € C(Rl R2r) n € {0,..., D}, given by

for n € {1,...,D} and Gp = idpi,. Before we consider any specific neural networks, let us work on a
general bound for A%n o0 Gp—1. We prove by induction over n that for all n € {1,...,D} and x € ]D)£B

I(AE" 0 Gor)(@) | < IV H( Il L“HVH)HxH + lew
o (5.4)
F S (D EE ) S bl + 1957 O)1):
m=1 j=m+1

The base case n = 1 reduces to ||.A£dl(x)|| < |IVil||z|| + ||b1]|- For the induction step, suppose the claim
is true for a given n € {1,...,D — 1}. Then Lemma B.5]implies for all z € ]D§B

ICAZ™ 0 Ga) @)1 < [VarallIl(GE™ 0 A" © Grm1) (@) + bt |
< Vart [(EEICAG" © Gt @) + 1GE" O)) + 1B -

For this step, it was crucial in the definition of an approximable catalog to require the sets By to contain

the origin. Plugging the induction hypothesis into H(.Agcn o Gp—1)(z)||, we readily obtain the formula in
(54)). Next, observe that for all n € {1,...,D}

Fon
IGe™ ()] = Zl g O < knlol* < Wel(€)|Ikol*. (5:5)
]:

Hence, (5.4]) yields for all n € {1,...,D} and = € ID)gB
I(AE" © Gu) @) < ITe©lll2]] + Bo(€) +Dm< )|(Bo(©) + molvWe(©)
< Afro|IBe (D (§)VWe (€)ITL(E !max{l ][}

Now we start constructing our candidate neural network. Lemma [l shows that for all § € (0,¢],
n € {1,...,D} there exists 95, € N with RY™ € C(R'2n=1 Rl2n) such that

(5.6)

(I) for all z,y € R”2»—1 we have HRZ‘S" (x) — Rf‘sn(y)H < L& ||z — g,

(IT) for all z € IBB%" we have w(||z|))||Ga" (z) — Rf‘sn(x)H <4,
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(IIT) and P(1h5) < 25ct k1|2 We (€)[Pr2trst05—2ns,

Moreover, since each A%n is an affine function, there exist unique x, € N, n € {1,..., D}, of depth 1
with Re™ € C(RZQ"*Q,RZQ"*) given by RX"™ = Agn. Let @5, € N be given by @5, = tsp 0 xno -0
Y51 0 x1. With n = D, this will be our candidate neural network for sufficiently small §. Let us verify
that it does the job in terms of the approximation precision. To do so, we prove by induction over n
that for all n € {1,...,D}, 6 € (0,¢], z € ID)fB

L vy A |
R (2) — Go(2)|| < 6 J=m+ . 5.7
[Ra () = Gl n;ww%moaml(x)n) >0

The base case n = 1 holds by the approximation property of 151 and the fact that .A%l (x) € B%l
whenever x € ID)%. For the induction step, suppose the claim is true for a given n € {1,...,D — 1}. By

the Lipschitz and the approximation properties of 15,41, we obtain for all § € (0,¢], x € ]D£B

[RE™ (@) = Gusa (@)l = [Ra" (A" 0 RE™ (@) = G ((AF™ 0 Gu) @)
o

w([[(AG™ 0 Gu)(@)])

where we used that (Agwfl o Gp)(x) € IB%%"H whenever x € ]D%. Plugging the induction hypothesis
into |R&>™ (x) — Gn(z)||, we readily obtain the formula in (5.7). Now we combine (5.6), (5.7), and the
hypothesis that w has order of growth at most (s1, s2) to find for all § € (0,¢], = € ID)£B

< LS [[Vaa [[IRE (2) = Gnl)]| +

. SDITL(9)|

RIOP (1) — Gp(x)] <

IRa™ ) = Gl < I Dote) W @) T () ma{L, 2]} 55)
< 5104 o 2| Be (€)1 (€)= W )] F T (@)1 )]

This essentially finishes the approximation part of the proof if we pick § appropriately. That Ry >” is
Lip; (¢)-Lipschitz continuous follows from the fact that the concatenation of Lipschitz functions is again
Lipschitz with constant equal to the product of the original Lipschitz constants. It remains to estimate
the number of parameters in the constructed neural network. Actually, let us make a slight modification.
Pick I € N for which a fulfills the c-identity requirement and let I; € N, d € N, denote the d-fold
parallelization of I. Then, let ps, € N, n € {1,...,D}, § € (0,¢], be given by ps, = I1,, © Yspn oIy, .
Solely for approximation purposes, one could simply work with s, instead of ps,,, but for the latter
we have better control on the number of parameters once we start concatenating the layers. Combining
Corollary and the bound for P(¢5,,), we see that for all § € (0,¢] and n € {1,...,D}

P(Pén) = 3205’”1‘ ’WC(S)’2R2+H3+7572R3 +3C2’WC(§)’2

59
< 31051y Wi (€ [T, (59)

where we used ¢ > 2. Next, note that Proposition 2.3limplies l{d < cd for all d € N. Thus, Proposition 2.1]
yields for all § € (0,¢] and n € {1,...,D}

P(psn o Xn) < Ppsn) + P(xn) + clon—1lon—2 — lon—1(lon—2 + 1)

) (5.10)
< Plpsn) + cWe ()]
Furthermore, we prove by induction over n that for all n € {1,..., D}, § € (0,¢]
P(psn o Xno- - 0ps10x1) < (n—1EWe(€)P + 3 Plpsj o x;j)- (5.11)

J=1
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The base case n = 1 is trivially satisfied. For the induction step, suppose the claim is true for a given
n € {1,...,D —1}. Then Proposition 2] and the induction hypothesis show for all § € (0, ¢]

P(psn4+1 0 Xnt1 00 P51 0 X1) < P(Psnt1 0 Xnt1) + P(Psn © Xn o 0ps10x1)+ C2l2(n+1)71l2n

n+1
<neWe(©F + X Ploss 0 x5)
J:

which finishes the induction. Now we combine (5.10) and (5.11]) to obtain for all ¢ € (0, ¢]
3.2 2, &
Plospoxpo--opsioxt) < 5¢Pa(OIWe(OI + 1 Plos;),
j=

where we used ¢ > 2 again. Plugging (5.9)) into this inequality yields for all § € (0, ]

Plps,poxp o 0ps10x1) < 32De(&)|We(€)? + D(8Lc% |k [*We (€) [P trstTo—2ns)

5.12
< 536w’ Do(€)[[We (§)PrerratTo=?m. 12

This finishes the parameter estimation. We conclude by gathering everything we have proved so far.
Motivated by (B.6]), let € (0,¢] be given by

so -1
n= 4251 llnol* [Be(©) 1 Pe (O We©) F T ] e

and let ¢ € N be given by ¢ = p, poxpo---0pp10xi. Note that RS = REP and Gp = Rgc Thus,
(E8) translates to

sup w(||z])[[RE (@) — R ()] <e.

J:E]D)'SB

Moreover, (5.12)) implies

P(9) < 43 205270 g [422 sy 2] sy 772 B (6) o2 T () a2+
: ’D0(§) ’2“3(32+1)+1 ‘WC (é‘) ’2524’/{3(824’1)4’7672/{3’

which completes the proof of Theorem B.31 O

Remark 5.5. BS/ I{enlark 1; ZL if dl(f) =1 for all f [ F y then iten in the pl"OOf of Orel1n m
can be improved to () in th The
2 (¢57n) < _gg 04‘1%1 ’2 ’WC@) ‘4H2+R3+2572/@3

(the exponent of W (&) changed). As a consequence, item (i) of Theorem [5.3] can be improved to
P(¢) < CIB(€)PU 9 TLE)P 1D (&) We (&) Pratr+ie =2,

Remark 5.6. A careful inspection of the proof of Theorem B3] reveals that it does not only work
with the Euclidean norm. For instance, one could also also work with the co-norm. One only needs to

replace the property ||z||?> = > i ||x(j)H2 of the Euclidean norm in (31), (5.1)), (52)), and (5.5) with

the corresponding property ||z/|? = maX;e(i,.. n} ||x(j)H2 of the co-norm and note that (5.2]) is still true
because [|z(;|| < [|z]| holds for the co-norm, as well.

One activation function we know fulfills the identity requirement is the ReLLU function. Our main
result recast for ReLU activation and the weight function w,(z) = (1 + 29)~! reads as follows:

Corollary 5.7. Consider the weight function wy(z) = (1 +x9)~1 for some q € (0,00). Let £ € Cx be a
catalog network for an [ReLU,wy, B, L, €, k]-approzimable catalog. Then there exists a neural network
architecture ¢ € N* with ReL U-realization R?{eLU € C(RTc(®) ROc©) such that

(1) sup,cpe (1+ 21 [Repo (&) = RE()] <, and
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(ii) P(¢) < C|Bc(&)|P=r3)|TL(E)|* | De ()P T We (€) P2 tr+Te=2ks,
forr = k3(q+ 1) and C = 43 - 427758 |k |27—53) |1 |2.

Noteworthy is also that for the weight function wg = 1, the parameter estimate in Theorem (.3
simplifies considerably:

Corollary 5.8. Let & € Cr be a catalog network for an [ReLU, wg, B, L, €, k|-approzimable catalog. Then
there exists a neural network architecture ¢ € N with ReL U-realization Rf{eLU € C(RTc®) ROc©)) such
that

(i) sup,cpe RS Lu(@) — RE(2)]| < e, and

(i) P(¢) < 43|11 |2|TL(€) 253 | D (€) |2F+L Wi (€) | Zra+ratTo—2ns,

We conclude the section by noting that we could have specified the characteristic inequality of
Definition B.4] as
Costa,u(f, By, Ly,8) < k1| max{do(f),di(f)}]"*|logy(671)[" (5.13)

by using a log-term | log,(6~1)|%* instead of ="3. With this alternative definition, almost all arguments
of Section [Al go through and one obtains a version of Lemma [B.1] with statement (i) modified to

K min{lon_1,l2n }| /2 K
P(#) < Bk ?lan|*| max{lon 1, lon }[***| min{lan 1, lon }[*| logy (inlizagileall Zy 212,
If, subsequently, one replaces (5.9) with
K — 2K
P(psn) < 5561k |*IWe (&) 247 logy (IWe (€)]2671) ™
and (5.12) with
K - 2K
P(ps,p o XD o0 ps1ox1) < sc|k1|*|De(€)|[We (€)1 | loga (IWe (§)77671) ™,
one obtains the following version of Theorem .3t

Theorem 5.9. Assume a € C(R,R) satisfies the c-identity requirement for some number ¢ > 2, and
let w be a non-increasing weight function with order of growth at most (s1,s2) for some s1 € [1,00) and
s9 € [0,00). Consider a catalog network & € Cx for an [a,w, B, L, e, k|-approximable catalog F, where
the approzimation cost is given by (B13) and € < 1/2. Then there exists a neural network architecture
¢ € N with a-realization RE € C(RZc©) ROc©)) such that

(i) RE is Lipy (€)-Lipschitz continuous on RZC©),

(ii) sup, pe w(|z])|RE (z) = RE(@) < e, and

(it}) P(6) < C1|De(&)|[We €)=+ logy (CalBe (€)1 [De (€)= We (@) 5 [Tu ()= [

for Cy = B5|k1|? and Co = 4°2[s1]|ko|*2.

The next result is the analogue of Corollary [5.8] for the log-modification (5.13]) of the approximation
cost.

Corollary 5.10. Consider the weight function wg = 1, and let £ € Cr be a catalog network for an
[ReLU, wy, B, L, €, k]-approximable catalog F, where the approzimation cost is giwen by ([I3) and
e < 1/2. Then there exists a neural network architecture ¢ € N with ReL U-realization RﬁeLU €

C(R%c©) RO sych that

(i) sup,cpe [RReu(@) = RE(@)I| < e, and
(ii) P (@) < 431 2D (&)[[Wo (&)1 |logy (|Do(€)Wo (&) 2 [TL(6)e~H) [,
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The log-modification (5.13]) of the approximation cost is useful when considering catalogs consisting
of functions that can be approximated with a number of parameters growing like logs(¢~!) in the
accuracy €. With the original definition of the approximation cost, one would obtain an estimate of the
form Me=" for logy(¢71), which is rather rough for small ¢; see Propositions and below. The
following example is a consequence of Proposition

Example 5.11. Consider the weight function wy = 1 and let P9 = {idg, pr} be the product catalog.
Fix r € (0,00), and consider the Lipschitz constants and approximation sets

s 1 if f=idg, [ R if f=idg,
= o f= 2 iep_
V32r if f =pr, [—r,r]* if f=pr.

Then FP™4 is a [ReLU, wy, B, L, §, (1, M, 0, 1)]-approximable catalog if the approximation cost is mea-
sured by (5.I3]), and 6 € (0,1] and M € [0, 00) are such that max{468, 679+720log,(r)+360logs(c 1)} <
M logy(e71) for all € € (0,4].

6 Overcoming the curse of dimensionality

In this section, we apply the theory of catalog networks to show that different high-dimensional functions
admit a ReLLU neural network approximation without the curse of dimensionality. We concentrate on
catalogs containing one-dimensional Lipschitz functions, maximum functions, and the product function
in two dimensions. Building on these, we construct families of functions indexed by the dimension of
their domain that are of the same form for each dimension. For instance, in the first example below,
we consider the sum of d Lipschitz functions for d € N.

Proposition 6.1. Fiz K, R € (0,00), and let g4: R - R, d € N, be K-Lipschitz continuous on R with
194(0)| < K. Define fq: R4 = R by fa(x) = X%, gi(x1). Then for all d € N and ¢ € (0, min{1, K R}],
there exists ¢ € N with RﬁeLU € C(R%R) such that

(1) Supsel—pra |fa(®) = Riou (@) <,
(i) and P(¢) < £10° max{1, K*}R?d% 2.

Proof. Let F = ]:IL(ip be the K-Lipschitz catalog and suppose L = (L¢)fer and B = (Bjf)fcr are
defined as for item ({l) in Example B3l Let V; € R4 d € N, be the matrix Vz = (1 --- 1) with all
entries 1 and let £; € Cr, d € N, be given by &; = [(idga,0, (91,--,94)), (V4,0,idr)]. Then Ré‘f = fq,

Dc(€q) = 2, Weo(&y) = d, and T1,(&4) < dmax{1, K?}. Moreover, ID)%’Z = B%’l = [~R, R]? because
B%’Q = Biq, = R. Thus, Example [4.3] Remark [5.5] and Corollary [5.8] yield Proposition O

While the factor 10° may seem large, the growth of 10°d® in the dimension is much slower than
exponential growth, say 2%, as soon as the dimension exceeds roughly 50. Thus, for large dimension,
our estimates are better than those of other approximation schemes suffering from the curse of dimen-
sionality.

Note that the approximating networks constructed in the proof of Proposition have fixed depth
independent of both the dimension and the accuracy since we approximate all Lipschitz functions in the
catalog with networks with a single hidden layer. This illustrates that it may happen that the networks
provided by Theorem [5.3] only grow in width but not in depth as the dimension increases.

Proposition 6.2. Fiz K,R € (0,00), and let g;: R — R, d € N, be K-Lipschitz continuous with
|94(0)| < K. Consider the functions fq: R? = R, given by fq(z) = max{gi(z1),...,94(xq)}. Then for
all d € N and € € (0, min{1l, KR}|, there exists ¢ € N with RﬁeLU € C(R%R) such that

(i) suPse—ppe [fal@) = Ry (@) < e,

(i) and P(¢) < £10° max{1, K4} R*dP0=~2.
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Proof. Let F = flL(ip’maX be the K-Lipschitz-maximum catalog and suppose L = (Lf)tcr and B =
(Bf)fer are defined as for item () in Example B3l Further, let £ € Cr, d € N, be given by
éd = [(ide?Oa (gla v ’gd))a (ideaO’maXd)]' Then Rgd = fd, DC(gd) =2, WC(gd) = da and 71(561) =
max{1, K?}. Moreover, ]D%’l = B%i’l = [~R, R]? because B%’Q = Buax, = RY We conclude with
Example 13 Remark [5.5] and Corollary B8 O

Note that this time, the approximating networks have a depth that grows linearly in the dimension
since the network realizing the maximum function maxy has depth d. But the width grows as well due
to the parallelized shallow networks approximating the Lipschitz functions.

The functions in the previous two propositions were approximated on bounded domains. But if one
is willing to pay a slightly higher approximation cost, one can also approximate the family of functions
from, e.g., Proposition on the entire space without curse of dimensionality.

Proposition 6.3. Let ¢ € (1,00), K € (0,00) and suppose g4: R — R, d € N, are K-Lipschitz
continuous on R with |gq(0)| < K. Define fi: RT — R by fq(x) = ZZ:l 9x(zx). Then for all d € N
and € € (0,min{1,6K}|, there exists ¢ € N with RﬁeLU € C(R%R) such that

(1) supyepa(l + [[2]|7) 7 fu(e) = Ry ()| <&, and

(i) P(¢) < 210%47 G5 max (1, KOr(@tDY|@drlat DT =2r for p — L.

Proof. Let F = ]:IL(ip be the K-Lipschitz catalog and suppose L = (L¢)fer and B = (Bjf)fcr are
defined as for item ({l) in Example B3l Let V; € R4 d € N, be the matrix Vz = (1 --- 1) with all
entries 1 and let £; € Cr, d € N, be given by &; = [(idga,0, (91,---,94)), (V4,0,idr)]. Then Ré‘f = fq,
Be(€q) =1, Do(&y) = 2, We(€y) = d, and T(&4) < dmax{1, K2}. Moreover, ]D%’l = B%i’l = R? because
B%’Q = Biq, = R. Hence, Example [4.3] Remark [5.5] and Corollary 5.7 imply Proposition O

A statement analogue to Proposition[6.2]can be shown the same way. In the following proposition, we
replace the sum by a product. Unfortunately, we cannot establish the approximation on an arbitrarily
large domain since the Lipschitz constant of the product function on [—r,7]? is large for large r.

Proposition 6.4. Let K € (0,00) and assume gqg: R — R, d € N, are K-Lipschitz continuous with
194(0)] < K. Define fg: R = R by fy(x) = szl gr(zk) and set R = 1/v32(k+1). Then for all d € N>g
and € € (0,1], there exists ¢ € N with R?{eLU € C(R% R) such that

(i) SUPge[-R,R)¢ | fa(z) — R?{eLU(xN <e, and
(i) P(¢) < $10° max{l, K*}d"e2.

Proof. Let F = .FII}ip’prOd be the K-Lipschitz-product catalog and suppose L = (Lj)fer and B =
(Bf)ser are defined as for item (i) in Example A3 (with r = 1/v/32, 0 = 1, and M = 23). Further, let
&4 € Cr, d € N>g, be given by

&g = [(ide, 0,(g1,--- ,gd)), (ide,O, (pr,idg, ... ,idR)),
(idga-1,0, (pr,idg,...,idg)), ..., (idgs, 0, (pr,idg)), (idg2, 0, pr)].

Then RY = f4, Do(&q) = d, We(€a) = d, and Tr,(€4) = max{1, K?}. Moreover, B%"' = [~ R, R]? and
IB%%’" = [-r, 72 xR ™ for alln € {2,...,d}. Hence, the fact that for alln € {1,...,d—1}, z € [-R, R]?
we have |[T7_; gr(zr)] < (K 4+ 1)"R™ < r and |gn41(2n41)] < (K + 1)R = r ensures ID)% = [-R, R]%.
Thus, Proposition follows from Example £3] Remark (5.5 and Corollary B8 O

Since on large hypercubes, the quantity 77(&;) starts to grow exponentially in the dimension, the
approximators in the proof of Proposition can only be built on a small hypercube. But in the
specific case, where all Lipschitz functions g4 in Proposition are the identity, it has been shown that
the d-dimensional product can be approximated without curse of dimensionality on arbitrarily large
hypercubes; see Schwab and Zech [I8], Proposition 3.3]). Applying the log-modification of our theory,
we can recover this result:
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Proposition 6.5. Consider the functions fi: R — R, d € N, given by fy(x) = szl xy, and let Let
R € [1,00). Then for all d € N>y and ¢ € (0,min{%, %}, there exists ¢ € N with RﬁeLU € C(R%R)
such that

(i) sup,el_pra lfa(@) — Riqu(@)| <e, and
(i) P(¢) < 2107 max{1,logy(R)}|*| logy(d)[*d'®[logy (e ™).
Proof. Fix d € N>, let F = FP™4 be the product catalog, and suppose L = (Lf)fer and B = (By)fer
are defined as in Example 511 (with » = R?, § = min{%, %}, and M = 1240d). Further, let £; € Cx be
given by
&4 = [(idga, 0, (pr,idg, . . .,idr)), (idge-1,0, (pr,idg, . .. ,idr)),. . ., (idgs, 0, (pr,idr)), (idgz,0,pr)].

Then R = fa, Do(€q) = d — 1, We(€q) = d, and Tr(&g) = 327°RT. Moreover, BY™ = [-R%, R%? x
R4™ for all n € {1,...,d — 1}. Hence, the fact that for all n € {1,...,d — 1}, = € [-R, R]* we
have |[[i_; zx| < R? ensures [-R, R]? C ID)%d. We can conclude with Corollary 5.10, Remark .5,
and Example 5.11] using

logy (Vd(d — 1)322RT 1) < 2 max{1,log,(R) }d® logy(d) logy (1),

Remark 6.6. If R =1 in Proposition [6.5] we could actually do better and obtain
P(9) < 310°|logy(d)[*d®|logy (e ™)
by taking M = 1039 and using

logy (Vd(d — 1)327%71) < R dlogy(d) logy(e71).
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