
Efficient approximation of high-dimensional

functions with deep neural networks

P. Cheridito and A. Jentzen and F. Rossmannek

Research Report No. 2019-64
December 2019

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

____________________________________________________________________________________________________



Efficient approximation of high-dimensional

functions with deep neural networks

Patrick Cheridito∗ Arnulf Jentzen∗† Florian Rossmannek∗

December 12, 2019

Abstract

In this paper, we develop an approximation theory for deep neural networks that is based on the
concept of a catalog network. Catalog networks are generalizations of standard neural networks in
which the nonlinear activation functions can vary from layer to layer as long as they are chosen from
a predefined catalog of continuous functions. As such, catalog networks constitute a rich family of
continuous functions. We show that under appropriate conditions on the catalog, catalog networks
can efficiently be approximated with neural networks and provide precise estimates on the number
of parameters needed for a given approximation accuracy. We apply the theory of catalog networks
to demonstrate that neural networks can overcome the curse of dimensionality in different high-
dimensional approximation problems.

1 Introduction

It is well-known that neural networks with a single hidden layer can approximate any finite-dimensional
continuous function on compact sets arbitrarily well if they are allowed to have sufficiently many hidden
neurons; see e.g., Cybenko [3], Hornik et al. [10], Hornik [9], Leshno et al. [14], or Barron [1]. How-
ever, neural networks with more than one hidden layer typically show better performance in practical
applications; see e.g., LeCun et al. [13] or Goodfellow et al. [5] and the references therein.

On the theoretical side, Eldan and Shamir [4] have provided an example of a simple continuous
function that can be approximated much more efficiently with two hidden layers than with one. While
this result holds for a large class of activation functions, Maiorov and Pinkus [15] have constructed a
specific sigmoidal activation function that, in principle, allows to approximate every continuous function
f : [0, 1]d → R to any desired precision when used in a two-hidden-layers network with 3d neurons
in the first and 6d + 3 neurons in the second hidden layer. Theoretically, this breaks the curse of
dimensionality. But due to its complicated form, the activation function of Maiorov and Pinkus [15] is
of little practical use. Moreover, it can be shown that their result only holds if the size of the network
weights is allowed to grow faster than polynomially in the inverse of the approximation error; see e.g.,
Petersen and Voigtlaender [17]. So a better understanding of the approximation capacities of neural
networks with commonly used activation functions is still of great interest. Mashkar [16] has shown
that neural networks with multiple hidden layers and generalized sigmoidal activation functions are
able to achieve the optimal rate of approximation for smooth and analytic functions. More recently,
Petersen and Voigtlaender [17,19] have derived the necessary complexity of ReLU networks needed for
approximating classifier functions in Lp. L2-approximation rates for different function classes are given
in Bölcskei et al. [2] and Grohs et al. [8]. [6, 11, 12] have shown that solutions of various PDEs can be
approximated with ReLU networks without the curse of dimensionality provided that the same is true
for their coefficients and boundary conditions. In Schwab and Zech [18] neural network expression rates
for generalized polynomial chaos expansions are given and it is shown that neural network can overcome
the curse of dimensionality in the numerical approximation of solutions of certain parametric PDEs.
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The purpose of this paper is to provide additional classes of high-dimensional functions that can
efficiently be approximated with ReLU-like networks. To do that, we introduce the notion of a catalog
network, which is a generalization of a standard feedforward network in which the nonlinear activation
functions can vary from one layer to another as long as they are chosen from a given catalog of contin-
uous functions. Particularly useful catalogs are catalogs of Lipschitz continuous functions, maximum
functions, and products. We first study their approximability with neural networks. Then we show how
the approximability of a catalog translates into the approximability of corresponding catalog networks.
The theory of catalog networks can be used to construct different function classes that are approximable
with ReLU-like neural networks with a number of parameters that is polynomial in the dimension and
the inverse of the approximation accuracy.

The rest of the paper is organized as follows. In Section 2, we establish the notation, recall basic
facts from [7, 12, 17] about the concatenation and parallelization of neural networks and derive two
simple consequences that are needed later in the paper. In Section 3, we analyze the approximability
of catalogs with neural networks and derive first consequences for the corresponding catalog networks.
Section 4 is devoted to concrete examples of catalogs and a careful study of their approximability with
neural networks. Section 5 contains the statement and proof of our main result, Theorem 5.3, which
gives a precise estimate on the number of parameters needed to approximate a given catalog network
to a desired accuracy with neural networks. In Section 6, we apply our main result to establish that
different classes of high-dimensional functions are approximable with ReLU-like networks without the
curse of dimensionality. Interestingly, in some cases, efficient approximation is possible with networks
of constant depth as the dimension goes to infinity and the accuracy tends to zero, while in others our
construction yields approximating networks with increasing depth.

2 Preliminaries

A neural network encodes a succession of affine and non-linear transformations. Denote N = {1, 2, . . . }.
Then the set of all neural network architectures is given by

N = ∪D∈N ∪(l0,...,lD)∈ND+1 ×D
k=1(R

lk×lk−1 × R
lk).

We denote the depth of a network architecture φ ∈ N by D(φ) = D, the number of neurons in the k-th

layer by lφk = lk, k ∈ {0, . . . ,D}, and the number of network parameters by P(φ) =
∑D

k=1 lk(lk−1 + 1).

Moreover, if φ ∈ N is given by φ = [(V1, b1), . . . , (VD, bD)], we denote by Aφ
k ∈ C(Rlk−1 ,Rlk), k ∈

{1, . . . ,D}, the affine function x 7→ Vkx + bk. Let a : R → R be a continuous activation function. As
usual, we extend it for every positive integer d, to a function from R

d to R
d mapping (x1, . . . , xd) to

(a(x1), . . . , a(xd)). The a-realization of φ ∈ N is the function Rφ
a ∈ C(Rl0 ,RlD) given by

Rφ
a = Aφ

D ◦ a ◦ Aφ
D−1 ◦ · · · a ◦ A

φ
1 .

We recall that φ1, φ2 ∈ N can be composed such that the a-realization of the resulting network equals
the concatenation Rφ1

a ◦ Rφ2
a . This is done by combining the output layer of φ2 with the input layer of

φ1. More precisely, if φ1 = [(V1, b1), . . . , (VD, bD)] and φ2 = [(W1, c1), . . . , (WE , cE)] satisfy l
φ1
0 = lφ2D(φ2)

,
then the concatenation φ1 ◦ φ2 ∈ N is given by

φ1 ◦ φ2 = [(W1, c1), . . . , (WE−1, cE−1), (V1WE , V1cE + b1), (V2, b2), . . . , (VD, bD)].

The following result is straight-forward from the definition. A formal proof can be found in Grohs et
al. [7].

Proposition 2.1. The concatenation

(·) ◦ (·) : {(φ1, φ2) ∈ N ×N : lφ10 = lφ2D(φ2)
} → N

is associative and satisfies for all φ1, φ2 ∈ N with lφ10 = lφ2D(φ2)
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(i) Rφ1◦φ2
a = Rφ1

a ◦ Rφ2
a for all a ∈ C(R,R),

(ii) D(φ1 ◦ φ2) = D(φ1) +D(φ2)− 1,

(iii) lφ1◦φ2k =

{

lφ2k if k ∈ {0, . . . ,D(φ2)− 1},
lφ1k+1−D(φ2)

if k ∈ {D(φ2), . . . ,D(φ1 ◦ φ2)},

(iv) P(φ1 ◦ φ2) = P(φ1) + P(φ2) + lφ11 l
φ2
D(φ2)−1 − lφ10 l

φ1
1 − lφ2D(φ2)

(lφ2D(φ2)−1 + 1),

(v) if D(φ1) = 1, then P(φ1 ◦ φ2) ≤ max
{

1, lφ1D(φ1)
(lφ2D(φ2)

)−1
}

P(φ2),

(vi) and if D(φ2) = 1, then P(φ1 ◦ φ2) ≤ max
{

1, (lφ10 + 1)−1(lφ20 + 1)
}

P(φ1).

The next lemma is a direct consequence of the above and will be used later to estimate the number
of parameters in our approximating networks.

Lemma 2.2. Let a ∈ C(R,R) and φ ∈ N . Suppose that ψ1, ψ2 ∈ N satisfy D(ψ1) = D(ψ2) = 2,

lψ1

0 = lψ1

2 = lφD(φ), and l
ψ2

0 = lψ2

2 = lφ0 . Abbreviate D = D(φ). Then

P(ψ1 ◦ φ ◦ ψ2) =

{

P(φ) + lψ2

1 (lφ0 + 1) + lψ1

1 (lφD + 1) + lψ1

1 lψ2

1 − lφ0 l
φ
D if D = 1,

P(φ) + lψ2

1 (lφ0 + 1) + lψ1

1 (lφD + 1) + lφ1 (l
ψ2

1 − lφ0 ) + lφD−1(l
ψ1

1 − lφD) if D ≥ 2.

Proof. Let k ∈ N be given by k = lψ2

1 if D = 1 and k = lφD−1 if D ≥ 2. By Proposition 2.1 and the fact

that P(ψ2) = lψ2

1 (lψ2

0 + 1) + lψ2

2 (lψ2

1 + 1), we have

P(φ ◦ ψ2) = P(φ) + lψ2

1 (lφ0 + 1) + lφ1 (l
ψ2

1 − lφ0 )

and also lφ◦ψ2

D = k. Thus, by applying Proposition 2.1 once more and observing lφ◦ψ2

D+1 = lφD = lψ1

2 , we
obtain

P(ψ1 ◦ φ ◦ ψ2) = P(φ ◦ ψ2) + lψ1

1 (lφD + 1) + k(lψ1

1 − lφD)

= P(φ) + lψ2

1 (lφ0 + 1) + lψ1

1 (lφD + 1) + lφ1 (l
ψ2

1 − lφ0 ) + k(lψ1

1 − lφD),

which completes the proof of Lemma 2.2.

Another operation on neural networks that we will need is parallelization. In the case that φ1 =
[(V1, b1), . . . , (VD, bD)] and φ2 = [(W1, c1), . . . , (WD, cD)] have the same depth, then this can be achieved
by constructing block matrices in each layer by

p(φ1, φ2) =

[([

V1 0
0 W1

]

,

[

b1
c1

])

, . . . ,

([

VD 0
0 WD

]

,

[

bD
cD

])]

.

Clearly, we can then define the parallelization of arbitrarily many neural networks φ1, . . . , φn ∈ N ,
n ∈ N, with the same depth by iteration

p(φ1, . . . , φn) = p(φ1, p(φ2, p(. . . , φn))) . . . ).

Statements (i)–(ii) in the next proposition follow immediately from the definition. For (iii)–(iv), we
refer to Grohs et al. [7].

Proposition 2.3. The parallelization

p : ∪n∈N {(φ1, . . . , φn) ∈ N n : D(φ1) = · · · = D(φn)} → N

satisfies for all n ∈ N and φ1, . . . , φn ∈ N with the same depth:
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(i) Rp(φ1,...,φn)
a ((x1, . . . , xn)) = (Rφ1

a (x1), . . . ,Rφn
a (xn)) for all x1 ∈ R

l
φ1
0 , . . . , xn ∈ R

lφn
0 and each

a ∈ C(R,R),

(ii) l
p(φ1,...,φn)
k =

∑n
j=1 l

φj
k for all k ∈ {0, . . . ,D(φ1)},

(iii) P(p(φ1, . . . , φn)) ≤ 1
2

[
∑n

j=1P(φj)
]2
,

(iv) P(p(φ1, . . . , φn)) ≤ n2P(φ1) whenever lφik = l
φj
k for each k ∈ {0, . . . ,D(φ1)} and all i, j ∈

{1, . . . , n}.
The above construction needs all the neural networks to have the same depth. If this is not the case,

then we can still parallelize neural networks but only for a special class of activation functions.

Definition 2.4. We say a function a ∈ C(R,R) fulfills the c-identity requirement for a number c ≥ 2
if there exists I ∈ N such that D(I) = 2, lI1 ≤ c and RI

a = idR.

Note that if I satisfies RI
a = idR , one can also realize the identity function idRd in d dimensions for

any d ∈ N, using d-fold parallelization Id = p(I, . . . , I). The c-identity requirement is crucial for our
purposes. The main example we have in mind is the ReLU activation ReLU: R → R, x 7→ max{x, 0},
which satisfies the 2-identity requirement with I = [([1 − 1]T , [0 0]T ), ([1 − 1], 0)]. However, it is easy
to see that generalized ReLU functions of the form

a(x) =

{

rx if x ≥ 0

sx if x < 0

for (r, s) ∈ R
2
+ \ {0}, also satisfy the 2-identity requirement.

Using the identity requirement, we can extend the notion of parallelization. Namely, if φ1, . . . , φn ∈
N , n ∈ N, do not have the same depth, then we simply concatenate the shorter networks with the
identity Id until they all have the same depth. Then one can apply the original parallelization. Of
course, the parameter count changes compared to simple parallelization. The following result follows
from Grohs et al. [7, Corollary 2.24].

Proposition 2.5. Assume a ∈ C(R,R) fulfills the c-identity requirement for a number c ≥ 2 with
I ∈ N . Then the extended parallelization pI : ∪n∈N N n → N satisfies

P(pI(φ1, . . . , φn)) ≤
1

2

[ n
∑

j=1
cP(φj) + cl

φj
D(φj)

(cl
φj
D(φj)

+ 1) max
i∈{1,...,n}

D(φi)
]2

for all n ∈ N and φ1, . . . , φn ∈ N .

We finish this section with the following consequence of Lemma 2.2.

Corollary 2.6. Assume a ∈ C(R,R) satisfies the c-identity requirement for a number c ≥ 2 with

I ∈ N . Let φ ∈ N and denote the d-fold parallelization of I by Id. Abbreviate m = lφ0 , n = lφD(φ), and

k = max{m,n}. Then
P(In ◦ φ ◦ Im) ≤ P(φ)ck + 3c2k2.

Proof. Abbreviate D = D(φ). Lemma 2.2 yields

P(In ◦ φ ◦ Im) =
{

P(φ) + lIm1 (m+ 1) + lIn1 (n+ 1) + lIm1 lIn1 −mn if D = 1,

P(φ) + lIm1 (m+ 1) + lIn1 (n+ 1) + lφ1 (l
Im
1 −m) + lφD−1(l

In
1 − n) if D ≥ 2.

Note that the hypothesis lI1 ≤ c and item (ii) in Proposition 2.3 ensure that lIm1 and lIn1 are both at

most ck. This and the fact that lφ1 + lφD−1 ≤ P(φ) imply

P(In ◦ φ ◦ Im) ≤
{

P(φ) + 2ck(k + 1) + c2k2 − k if D = 1,

P(φ) + 2ck(k + 1) + (lφ1 + lφD−1)(ck − 1) if D ≥ 2

≤
{

P(φ) + 3c2k2 if D = 1,

P(φ)ck + 3c2k2 if D ≥ 2,

where last inequality holds because c ≥ 2.
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3 Catalog Networks

In this section, we generalize the concept of a neural network by allowing the activation functions to
change from layer to layer. But they have to be chosen from a predefined catalog F ⊆ ∪m,n∈NC(Rm,Rn).
The following notation will be useful: We denote the dimension of the domain of a function f ∈
∪m,n∈NC(Rm,Rn) by d0(f) and the dimension of its target space by d1(f), so that f ∈ C(Rd0(f),Rd1(f)).

Now, consider a catalog F as well as D ∈ N and l0, . . . , l2D ∈ N. Then we define Cl0,...,l2DF to be the set

Cl0,...,l2DF =
D
×
n=1

[

R
l2n−1×l2n−2 ×R

l2n−1

× ∪
k∈N

{

(f1, . . . , fk) ∈ Fk :
[

for all i ∈ {0, 1} :
k
∑

j=1
di(fj) = l2n−1+i

]}

]

.

As in the definition of neural network architectures, there are affine transformations encoded in the first
two components of the inner cartesian product. The last term consists of a tuple of continuous functions
f1, . . . , fk, which are applied in a parallelized way in place of the activation function after each affine
transformation. We define the set of all catalog networks corresponding to F by

CF = ∪
D∈N

∪
l0,...,l2D∈N

Cl0,...,l2DF .

We define the depth of a catalog network ξ ∈ Cl0,...,l2DF as DC(ξ) = D. Its input dimension is IC(ξ) = l0,
its output dimension OC(ξ) = l2D, and its maximal width WC(ξ) = max{l0, . . . , l2D}. Next, we discuss

the realization of a catalog network. Suppose ξ ∈ Cl0,...,l2DF is given by ξ = [(V1, b1, (f1,1, . . . , f1,k1)), . . . ,

(VD, bD, (fD,1, . . . , fD,kD))]. Then we let Aξ,n
C ∈ C(Rl2n−2 ,Rl2n−1), n ∈ {1, . . . ,D}, be the affine function

x 7→ Vnx+ bn. By Gξ,nC ∈ C(Rl2n−1 ,Rl2n), n ∈ {1, . . . ,D}, we denote the function mapping x ∈ R
l2n−1

to

Gξ,nC (x) =
(

fn,1
(

x1, . . . , xd0(fn,1)

)

, fn,2
(

xd0(fn,1)+1, . . . , xd0(fn,1)+d0(fn,2)

)

, . . .

fn,kn
(

xd0(fn,1)+···+d0(fn,kn−1)+1, . . . , xd0(fn,1)+···+d0(fn,kn )

)

)

,

that is, we apply fn,1 to the first d0(fn,1) entries of x, fn,2 to the next d0(fn,2) entries, and so on. This
is well-defined due to the condition di(f1) + · · ·+ di(fk) = l2n−1+i, i ∈ {0, 1}, posed in the definition of

Cl0,...,l2DF . The overall realization function Rξ
C ∈ C(Rl0 ,Rl2D) generated by the catalog network ξ is

Rξ
C = Gξ,DC ◦ Aξ,D

C ◦ · · · ◦ Gξ,1C ◦ Aξ,1
C .

Our goal is to show that catalog networks can efficiently be approximated with neural networks with
respect to some weight function, by which we mean any function w : [0,∞) → [0,∞).

Definition 3.1. We say a weight function w has order of growth at most (s1, s2) ∈ [1,∞) × [0,∞) if

w(x) ≤ s1r
s2w(rmax{x, 1})

for all x ∈ [0,∞) and r ∈ [1,∞).

Useful weight functions are constants and functions of the form (1 + xq)−1 or (max{1, xq})−1 for
some q ∈ (0,∞). Constant weight functions clearly have order of growth at most (1, 0). The order
of growth of (1 + xq)−1 and (max{1, xq})−1 follows from Lemma 3.2 below. The order of growth is
a general concept applicable to different types of weight functions. The inequality in Definition 3.1 is
exactly what is needed in the proof of our main result. Note that if a weight function w has an order
of growth and satisfies w(x) = 0 for some x ∈ [1,∞), then w(y) = 0 for all y ∈ [0, x]. In particular,
indicator functions of bounded intervals cannot have an order of growth. We address this issue by
introducing approximation sets in Definition 3.3.

5



Lemma 3.2. Let δ ∈ (0,∞) and consider a non-decreasing function f : [0,∞) → (0,∞). Moreover,
let p : [0,∞) → [0,∞) be of the form x 7→ ∑q

k=0 akx
bk , where q ∈ N0 = N ∪ {0} and a0, b0, . . . , aq, bq ∈

[0,∞). Then the weight function w given by w(x) = f(x)(max{p(x), δ})−1 has order of growth at most

(max{p(1)δ , 1},max{b0, . . . , bq}).

Proof. Abbreviate s = max{b0, . . . , bq} and note that p having non-negative coefficients a0, . . . , aq im-
plies for all x ∈ [0,∞), r ∈ [1,∞) that p(rx) ≤ rsp(x). This and the hypothesis that f is non-decreasing
yield for all x ∈ [0,∞), r ∈ [1,∞)

w(x) ≤ f(rx)

max{p(x), δ} ≤ f(rx)rs

max{p(rx), δ} = rsw(rx).

Next, we use the hypothesis that f is non-decreasing again to find for all x ∈ [0, 1)

w(x) ≤ f(1)

max{p(x), δ} ≤ max{p(1), δ}
δ

w(1).

Combining the previous two calculations yields

δ

max{p(1), δ}w(x) ≤ w(max{x, 1}) ≤ rsw(max{x, 1}),

which concludes Lemma 3.2.

We are primarily interested in catalogs of functions that are well approximable with neural net-
works. In addition, we require the approximations to be Lipschitz continuous with a Lipschitz constant
independent of the accuracy. Let us make this precise. We denote by ‖ · ‖ the Euclidean norm.

Definition 3.3. Let a ∈ C(R,R) and consider a weight function w. Fix L ∈ [0,∞) and ε ∈ (0, 1].
Given a function f ∈ ∪m,n∈NC(Rm,Rn) and any set B ⊆ R

d0(f), we define the cost to approximate f
with accuracy ε and weight w with L-Lipschitz neural networks on the set B as

Costa,w(f,B,L, ε) = inf











P(φ) ∈ N :







φ ∈ N with Rφ
a ∈ C(Rd0(f),Rd1(f))

s.t. Rφ
a is L-Lipschitz on R

d0(f) and

supx∈B w(‖x‖)‖f(x) −Rφ
a(x)‖ ≤ ε

















,

where we use the usual convention inf(∅) = ∞.

The next definition embodies the class of catalogs we will use for our catalog networks.

Definition 3.4. Let a ∈ C(R,R), κ = (κ0, κ1, κ2, κ3) ∈ [1,∞)2 × [0,∞)2, ε ∈ (0, 1], and suppose
w is a weight function that never vanishes. Consider a family of sets B = (Bf )f∈F such that Bf ⊆
R
d0(f) contains the origin for all f ∈ F , and let L = (Lf )f∈F ⊆ [0,∞) be a collection of Lipschitz

constants. Then we call a subset F ⊆ ∪m,n∈NC(Rm,Rn) an [a,w,B,L, ε, κ]-approximable catalog if
supf∈F ‖f(0)‖ ≤ κ0 and

Costa,w(f,Bf , Lf , δ) ≤ κ1|max{d0(f), d1(f)}|κ2δ−κ3

for all f ∈ F and δ ∈ (0, ε].

Note that if F is [a,w,B,L, ε, κ]-approximable, then every f ∈ F must be Lf -Lipschitz continuous
on the set Bf . Indeed, the definition implies that for all δ ∈ (0, ε] there exists a φδ ∈ N such that

w(‖x‖)‖f(x)−Rφδ
a (x)‖ ≤ δ and ‖Rφδ

a (x)−Rφδ
a (y)‖ ≤ Lf‖x− y‖ for all x, y ∈ Bf . So, one obtains from

the triangle inequality that

‖f(x)− f(y)‖ ≤ δ

w(‖x‖) + Lf‖x− y‖+ δ

w(‖y‖)
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for all x, y ∈ Bf and δ > 0.
Coming back to catalog networks, we would like to deduce a Lipschitz property for the generalized

activation functions Gξ,nC in a catalog network ξ ∈ CF corresponding to an approximable catalog F .
To do so, we need two more definitions. Let F be a catalog approximable on sets B = (Bf )f∈F with

Lipschitz constants L = (Lf )f∈F ⊆ [0,∞). For a catalog network ξ ∈ Cl0,...,l2DF given by ξ = [(V1, b1,
(f1,1, . . . , f1,k1)), . . . , (VD, bD, (fD,1, . . . , fD,kD))], we set

B
ξ,n
B :=

kn×
j=1

Bfn,j
⊆

kn×
j=1

R
d0(fn,j) = R

l2n−1

and
Lξ,n := max

j∈{1,...,kn}
Lfn,j

.

B
ξ,n
B is the set on which all the functions used in the n-th layer can be approximated. Moreover, the

following holds.

Lemma 3.5. Let ξ ∈ CF be a catalog network based on an [a,w,B,L, ε, κ]-approximable catalog F .
Then

‖Gξ,nC (x)− Gξ,nC (y)‖ ≤ Lξ,n‖x− y‖

for all n ∈ {1, . . . ,DC(ξ)} and x, y ∈ B
ξ,n
B .

Proof. Assume that ξ = [(V1, b1, (f1,1, . . . , f1,k1)), . . . , (VD, bD, (fD,1, . . . , fD,kD))]. The discussion after
Definition 3.4 showed that every f ∈ F is Lf -Lipschitz continuous on the set Bf . Given n ∈ {1, . . . ,D},
j ∈ {1, . . . , kn}, and x ∈ R

l2n−1 , denote by x(n,j) ∈ R
d0(fn,j) the vector

x(n,j) =
(

xd0(fn,1)+···+d0(fn,j−1)+1, . . . , xd0(fn,1)+···+d0(fn,j)

)

.

Then one has for all n ∈ {1, . . . ,D} and x, y ∈ B
ξ,n
B ,

‖Gξ,nC (x)− Gξ,nC (y)‖2 =
kn
∑

j=1
‖fn,j(x(n,j))− fn,j(y(n,j))‖2

≤
kn
∑

j=1
|Lfn,j

|2‖x(n,j) − y(n,j)‖2 ≤ |Lξ,n|2‖x− y‖2.
(3.1)

4 Examples of approximable catalogs

In this section, we provide different examples of approximable catalogs that will be used in Section 6
to show that certain high-dimensional functions are approximable without the curse of dimensionality.
We focus on one-dimensional Lipschitz functions, the maximum function in arbitrary dimension, and
the product function in two dimensions.

First, consider a K-Lipschitz function f : R → R for some K ∈ (0,∞) such that |f(0)| ≤ K. For any
given r ∈ (0,∞), f can be approximated on [−r, r] with a piece-wise linear function supported on N +1
equidistributed points with accuracy Kr/N . Such a piece-wise linear function can be realized with a
ReLU network φN with one hidden layer and N hidden neurons. This results in P(φN ) = 3N + 1, and
it follows that

CostReLU,w0
(f, [−r, r],K, ε) ≤ P(φ⌈Krε−1⌉) ≤ 3Krε−1 + 4,

where w0 is the weight function that is constantly equal to 1. Alternatively, one can approximate f on
the entire real line with respect to a weight function of the form wq(x) = (1+xq)−1 for some q ∈ (1,∞).
Then

CostReLU,wq(f,R,K, ε) ≤ (6K)
q

q−1 ε
− q

q−1 + 10;
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see Hutzenthaler et al. [11, Corollary 3.13].
Next, we turn to the maximum functions maxd : R

d → R, x 7→ max{x1, . . . , xd}, d ∈ N. These can
be represented exactly by ReLU networks. max1 is simply the identity and max2 is the ReLU-realization
of

φ2 =













1 −1
0 1
0 −1



 ,





0
0
0







 ,
( [

1 1 −1
]

, 0
)



 .

If I ∈ N is taken such that ReLU fulfills the 2-identity requirement with I and we define Id = p(I, . . . , I),
d ∈ N, then it can easily be shown by induction that maxd, d ∈ N≥3, is the ReLU-realization of
φd = φd−1 ◦ p(φ2, Id−2) and P(φd) =

1
3 (4d

3 +3d2 − 4d+3) ≤ 2d3. In other words, for all d ∈ N and any
weight function w

CostReLU,w(maxd,R
d, 1, ε) ≤ 2d3 = 2|d0(maxd)|3.

Finally, we study the approximability of the product function. To do that, we first consider the
square function sq: R → R, x 7→ x2. It has been shown by different authors that the square function
can be approximated with accuracy ε > 0 on the unit interval by a ReLU network φε satisfying P(φε) =
O(log2(ε

−1)); see [7, 8, 18, 20]. This relies on realizing linear combinations of iterations of the saw-
tooth function with a neural network and establishing exponentially fast convergence in the number of
iterations. In particular, the approximator Rφ

ReLU is 2-Lipschitz. A precise estimate of the number of
parameters required is given in Grohs et al. [7, Proposition 3.3]. In our language it can be stated as

CostReLU,w0
(sq, [0, 1], 2, ε) ≤ P(φε) ≤ max{13, 10 log2(ε−1)− 7}.

Moreover, the neural network φε achieving this Cost also satisfies Rφε
ReLU = ReLU on R\[0, 1]. By a

mirroring argument, we can then obtain an approximation of the square function on the interval [−r, r]
for any r ∈ (0,∞).

Lemma 4.1. For all r ∈ (0,∞) and ε ∈ (0, 1], there exists a neural network ψr,ε ∈ N such that

Rψr,ε

ReLU ∈ C(R,R) is 2r-Lipschitz continuous, supx∈[−r,r] |R
ψr,ε

ReLU(x) − x2| ≤ ε, Rψr,ε

ReLU(x) = r|x| for all
x ∈ R\[−r, r], and

P(ψr,ε) ≤ max{52, 80 log2(r) + 40 log2(ε
−1)− 28}.

Proof. Take φr,1 ∈ N of depth 1 with Rφr,1
ReLU ∈ C(R2,R) given by (x, y) 7→ r2(x+ y) and take φr,2 ∈ N

of depth 1 with Rφr,2
ReLU ∈ C(R,R2) given by x 7→ (xr ,−x

r ). If (φε)ε∈(0,1] ⊆ N denote the approximators of
the square function on the unit interval from above, then ψr,ε = φr,1 ◦p(φr−2ε, φr−2ε)◦φr,2 approximates

the square function on [−r, r] with accuracy ε. To see this, note that Rψr,ε

ReLU(x) = r2Rφr−2ε
ReLU ( |x|r ) for all

x ∈ R since φr−2ε = ReLU on R\[0, 1]. Moreover, this also implies Rψr,ε

ReLU(x) = r|x| for all x ∈ R\[−r, r]
as well as the Lipschitz continuity. Lastly, Proposition 2.1 (items (v) and (vi)) and Proposition 2.3
(item (iv)) assure P(ψr,ε) ≤ 4P(φr−2ε). This finishes the proof of Lemma 4.1.

More concisely, the statement of Lemma 4.1 can be written as

CostReLU,w0
(sq, [−r, r], 2r, ε) ≤ max{52, 80 log2(r) + 40 log2(ε

−1)− 28}.

We can now estimate the approximation rate of the product function pr : R2 → R, (x, y) 7→ xy using
the identity xy = 1

2((x+ y)
2−x2− y2). This trick has already been used before; see [7,8,18,20]. But let

us still provide a proof of the next proposition, since most results in the existing literature are stated
slightly differently or do not specify the Lipschitz constant.

Proposition 4.2. For all r ∈ (0,∞) and ε ∈ (0, 1], one has

CostReLU,w0
(pr, [−r, r]2,

√
32r, ε) ≤ max{468, 679 + 720 log2(r) + 360 log2(ε

−1)}.
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Proof. Pick ψ1 ∈ N of depth 1 with Rψ1

ReLU ∈ C(R3,R) given by (x, y, z) 7→ 1
2(x − y − z) and pick

ψ2 ∈ N of depth 1 with Rψ2

ReLU ∈ C(R2,R3) given by (x, y) 7→ (x+ y, x, y). If (ψr,ε)r∈(0,∞),ε∈(0,1] ⊆ N
denote the approximators of the square function on the interval [−r, r] from Lemma 4.1, then χr,ε =
ψ1 ◦ p(ψ2r,2ε/3, ψ2r,2ε/3, ψ2r,2ε/3) ◦ ψ2 approximates the product function on [−r, r]2 with accuracy ε. Fur-

thermore, Rχr,ε

ReLU is
√
32r-Lipschitz continuous because Rψ2r,2ε/3

ReLU is 4r-Lipschitz continuous and, hence,

|Rχr,ε

ReLU(x1, x2)−Rχr,ε

ReLU(y1, y2)| ≤ 2r
(

|x1 + x2 − (y1 + y2)|+ |x1 − y1|+ |x2 − y2|
)

≤
√
32r‖(x1 − y1, x2 − y2)‖.

Finally, Proposition 2.1 (items (v) and (vi)) together with Proposition 2.3 (item (iv)) implies that
CostReLU,w0

(pr, [−r, r]2,
√
32r, ε) ≤ 9P(ψ2r,2ε/3). This completes the proof of Proposition 4.2.

Combining the results from this section, we obtain the following examples of approximable catalogs.

Example 4.3. Let q ∈ (1,∞) and denote by wq the weight function (1 + xq)−1. For K ∈ (0,∞),
introduce the K-Lipschitz catalog (augmented by idR if K < 1)

FLip
K =

{

f ∈ C(R,R) : f is K-Lipschitz continuous on R and |f(0)| ≤ K
}

∪ {idR}

and the K-Lipschitz-maximum catalog FLip,max
K = FLip

K ∪ {maxd : d ∈ N}. Define prescribed Lipschitz
constants and approximation sets

Lf =

{

1 if f = maxd, d ∈ N,

K if f ∈ FLip
K \{idR},

Bf =

{

R
d if f = maxd, d ∈ N,

R if f ∈ FLip
K \{idR}.

Then

(i) FLip
K is1 a [ReLU, wq, B, L,min{1, 6K}, (K, 11(6K)

q
q−1 , 0, q

q−1)]-approximable catalog

(ii) and FLip,max
K is a [ReLU, wq, B, L,min{1, 6K}, (K, 11(6K)

q
q−1 , 3, q

q−1)]-approximable catalog.

Denote by w0 the weight function that is constantly 1 and introduce the K-Lipschitz-product catalog
FLip,prod
K = FLip

K ∪ {pr}. Let r,R ∈ (0,∞) and define new prescribed Lipschitz constants and approxi-
mation sets

Lf =











1 if f = maxd, d ∈ N,

K if f ∈ FLip
K \{idR},√

32r if f = pr,

Bf =











R
d if f = maxd, d ∈ N,

[−R,R] if f ∈ FLip
K \{idR},

[−r, r]2 if f = pr.

Then

(i) FLip
K is2 a [ReLU, w0, B, L,min{1,KR}, (K, 7KR, 0, 1)]-approximable catalog,

(ii) FLip,max
K is a [ReLU, w0, B, L,min{1,KR}, (K, 7KR, 3, 1)]-approximable catalog,

(iii) and FLip,prod
K is a [ReLU, w0, B, L, δ, (K,M, 0, 1)]-approximable catalog,

where δ ∈ (0, 1] and M ∈ [0,∞) are chosen such that both 3KRε−1 + 4 ≤ Mε−1 and max{468, 679 +
720 log2(r) + 360 log2(ε

−1)} ≤Mε−1 hold for all ε ∈ (0, δ].

1Here we use that ε ≤ min{1, 6K} ensures (6K)
q

q−1 ε
−

q

q−1 + 10 ≤ 11(6K)
q

q−1 ε
−

q

q−1 . We could also use ε = 1 but then
κ1 becomes larger.

2Similarly, we use that ε ≤ min{1, KR} ensures 3KRε−1 + 4 ≤ 7KRε−1.
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5 Approximation Results

In this section, we state and prove our main result on the approximability of catalog networks with
neural networks. The following lemma is crucial for its proof. It establishes the approximability of
the functions Gξ,nC , n ∈ {1, . . . ,DC(ξ)}, in a catalog network ξ ∈ CF corresponding to an approximable
catalog F .

Lemma 5.1. Assume a ∈ C(R,R) satisfies the c-identity requirement for some number c ∈ [2,∞). Let
F be an [a,w,B,L, ε, κ]-approximable catalog with a non-increasing weight function w, and consider a

catalog network ξ ∈ Cl0,...,l2DF for some D ∈ N and l0, . . . , l2D ∈ N. Then for all n ∈ {1, . . . ,D} and

δ ∈ (0, ε], there exists a neural network φ ∈ N with Rφ
a ∈ C(Rl2n−1 ,Rl2n) such that

(i) Rφ
a is Lξ,n-Lipschitz continuous on R

l2n−1 ,

(ii) sup
x∈Bξ,n

B
w(‖x‖)‖Gξ,nC (x)−Rφ

a(x)‖ ≤ δ,

(iii) and P(φ) ≤ 25
32c

4|κ1|2|l2n|4|max{l2n−1, l2n}|2κ2 |min{l2n−1, l2n}|κ3+2δ−2κ3 .

Proof. Suppose that ξ is given by [(V1, b1, (f1,1, . . . , f1,k1)), . . . , (VD, bD, (fD,1, . . . , fD,kD))] and fix n ∈
{1, . . . , L}, δ ∈ (0, ε]. The hypothesis that F is an [a,w,B,L, ε, κ]-approximable catalog, where

κ = (κ0, κ1, κ2, κ3), implies that there exist neural networks ψj ∈ N , j ∈ {1, . . . , kn}, with Rψj
a ∈

C(Rd0(fn,j ),Rd1(fn,j)) such that

(I) for all x, y ∈ R
d0(fn,j) we have ‖Rψj

a (x)−Rψj
a (y)‖ ≤ Lfn,j

‖x− y‖,

(II) for all x ∈ Bfn,j
we have w(‖x‖)‖fn,j(x)−Rψj

a (x)‖ ≤ δ√
kn
,

(III) and P(ψj) ≤ κ1|max{d0(fn,j), d1(fn,j)}|κ2 |kn|
κ3
2 δ−κ3 .

Let I ∈ N be such that a fulfills the c-identity requirement with I and let φ ∈ N be given by the
parallelization φ = pI(ψ1, . . . , ψkn). Recall the following piece of notation. For all j ∈ {1, . . . , kn} and
x ∈ R

l2n−1 , let x(n,j) ∈ R
d0(fn,j) be given by

x(n,j) =
(

xd0(fn,1)+···+d0(fn,j−1)+1, . . . , xd0(fn,1)+···+d0(fn,j)

)

∈ R
d0(fn,j).

With this notation, we can estimate for all x, y ∈ R
l2n−1 ,

‖Rφ
a(x)−Rφ

a(y)‖2 =
kn
∑

j=1
‖Rψj

a (x(n,j))−Rψj
a (y(n,j))‖2

≤
kn
∑

j=1
|Lfn,j

|2‖x(n,j) − y(n,j)‖2 ≤ |Lξ,n|2‖x− y‖2.
(5.1)

Next, we use that w is non-increasing and the definition of Bξ,nB to deduce for all x ∈ B
ξ,n
B ,

‖Gξ,nC (x)−Rφ
a(x)‖2 =

kn
∑

j=1
‖fn,j(x(n,j))−Rψj

a (x(n,j))‖2

≤ δ2

kn

kn
∑

j=1
|w(‖x(n,j)‖)|−2 ≤ δ2|w(‖x‖)|−2.

(5.2)

It remains to estimate the number of parameters P(φ). Since l
ψj

D(ψj)
= d1(fn,j) ≤ l2n and D(ψj) ≤

1
2P(ψj) for all j ∈ {1, . . . , kn}, Proposition 2.5 yields

P(φ) ≤ 1

2

[ kn
∑

j=1
cP(ψj) +

cl2n
2

(cl2n + 1) max
i∈{1,...,kn}

P(ψi)
]2

≤ |kn|2
2

[

c+
cl2n
2

(cl2n + 1)
]2[

max
i∈{1,...,kn}

P(ψi)
]2

≤ |kn|2
2

[

5
4c

2|l2n|2
]2[

max
i∈{1,...,kn}

P(ψi)
]2
,

(5.3)
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where the last inequality is true because c ≥ 2. Plugging in item (III) yields

P(φ) ≤ 25
32c

4|κ1|2|l2n|4|max{l2n−1, l2n}|2κ2 |kn|κ3+2δ−2κ3 .

Finally, note that we must always have kn ≤ min{l2n−1, l2n}, with which we can conclude the proof.

Remark 5.2. If all functions in a catalog F have target dimension 1; that is, d1(f) = 1 for all f ∈ F ,
then statement (iii) of Lemma 5.1 can be improved to

P(φ) ≤ 25
32c

4|κ1|2|max{l2n−1, l2n}|2κ2 |min{l2n−1, l2n}|κ3+2δ−2κ3

(where we dropped the term |l2n|4). Indeed, in (5.3) we used the estimate l
ψj

D(ψj)
= d1(fn,j) ≤ l2n which

now becomes l
ψj

D(ψj)
= d1(fn,j) = 1, so (5.3) can be improved to

P(φ) ≤ |kn|2
2

[

5
4c

2
]2[

max
i∈{1,...,kn}

P(ψi)
]2
.

For our main result, we have to introduce a few more concepts. Let F be a catalog that is approx-
imable on sets B = (Bf )f∈F with Lipschitz constants L = (Lf )f∈F ⊆ [0,∞). Then, for any catalog
network

ξ = [(V1, b1, (f1,1, . . . , f1,k1)), . . . , (VD, bD, (fD,1, . . . , fD,kD))] ∈ CF ,
we define

D
ξ
B :=

{

x ∈ R
IC(ξ) :

[

for all {1, . . . ,DC(ξ)} :
(

Aξ,n
C ◦ Gξ,n−1

C ◦ · · · ◦ Aξ,2
C ◦ Gξ,1C ◦ Aξ,1

C

)

(x) ∈ B
ξ,n
B

]

}

and

LipL(ξ) :=
D
∏

n=1
Lξ,n‖Vn‖,

where ‖ · ‖ denotes the operator norm when applied to matrices.
To estimate the approximation error, we need two more quantities. The first one is

BC(ξ) = max
{

1, ‖Aξ,1
C (0)‖, . . . , ‖Aξ,DC(ξ)

C (0)‖
}

,

which simply measures the maximal norm of the inhomogeneous parts of the affine transformations
(capped from below by 1). When using weight functions of the type wq(x) = (1 + xq)−1, functions in
the catalog are approximated better close to the origin. The quantity BC(ξ) is used to control how far
away one is from the region where one has the best approximation. However, this becomes redundant
if the weight function is constant as Corollary 5.8 will show. The last quantity we need is

TL(ξ) = max
m,n∈N0,
m<n≤D+1

[

max
{

1, ‖Vmin{n,D}‖
}

max
{

1, Lξ,max{m,1}
}( n−1

∏

j=m+1
Lξ,j‖Vj‖

)]

.

Essentially, this is the maximum of all Lipschitz constants of layers m + 1 to n. Its precise use will
become clear in the proof of the following result.

Theorem 5.3. Suppose a ∈ C(R,R) fulfills the c-identity requirement for some number c ≥ 2 and let
w be a non-increasing weight function with order of growth at most (s1, s2) for some s1 ∈ [1,∞) and
s2 ∈ [0,∞). Consider a catalog network ξ ∈ CF for an [a,w,B,L, ε, κ]-approximable catalog F . Then

there exists a neural network architecture φ ∈ N with a-realization Rφ
a ∈ C(RIC(ξ),ROC(ξ)) such that

(i) Rφ
a is LipL(ξ)-Lipschitz continuous on R

IC(ξ),

(ii) sup
x∈Dξ

B
w(‖x‖)‖Rφ

a (x)−Rξ
C(x)‖ ≤ ε, and

11



(iii) P(φ) ≤ C|BC(ξ)|2(r−κ3)|TL(ξ)|2r|DC(ξ)|2r+1|WC(ξ)|2κ2+r+7ε−2κ3

for r = κ3(s2 + 1) and C = 43 · 24(r−κ3)−5c5|κ0|2(r−κ3)|κ1|2|s1|2κ3 .

Remark 5.4. The conclusion of Theorem 5.3 could be written more concisely as

Costa,w(Rξ
C ,D

ξ
B ,LipL(ξ), ε) ≤ C|BC(ξ)|2(r−κ3)|TL(ξ)|2r|DC(ξ)|2r+1|WC(ξ)|2κ2+r+7ε−2κ3 .

In particular, for any given M ∈ [1,∞) and k ∈ [0,∞), the set of functions

{

Rξ
C :

[

ξ ∈ CF with ‖Rξ
C(0)‖ ≤M and

max{BC(ξ),TL(ξ),DC(ξ),WC(ξ)} ≤ |max{IC(ξ),OC (ξ)}|k
]}

is an [a,w,D
(·)
B ,LipL(·), ε, (M,C, k(2κ2 − 2κ3 + 7r + 8), 2κ3)]-approximable catalog.

Proof of Theorem 5.3. We split the proof into two parts. In the first half, we construct a candidate
neural network for our approximation and bound the approximation error. In the second half, we
analyze the number of parameters. Assume that ξ ∈ Cl0,...,l2DF is given by ξ = [(V1, b1, (f1,1, . . . , f1,k1)),
. . . , (VD, bD, (fD,1, . . . , fD,kD))]. Introduce the short-hand Gn ∈ C(Rl0 ,Rl2n), n ∈ {0, . . . ,D}, given by

Gn = Gξ,nC ◦ Aξ,n
C ◦ Gξ,n−1

C ◦ · · · ◦ Gξ,1C ◦ Aξ,1
C

for n ∈ {1, . . . ,D} and G0 = id
Rl0 . Before we consider any specific neural networks, let us work on a

general bound for Aξ,n
C ◦Gn−1. We prove by induction over n that for all n ∈ {1, . . . ,D} and x ∈ D

ξ
B

‖(Aξ,n
C ◦Gn−1)(x)‖ ≤ ‖Vn‖

( n−1
∏

j=1
Lξ,j‖Vj‖

)

‖x‖+ ‖bn‖

+
n−1
∑

m=1
‖Vn‖

( n−1
∏

j=m+1
Lξ,j‖Vj‖

)

(

Lξ,m‖bm‖+ ‖Gξ,mC (0)‖
)

.

(5.4)

The base case n = 1 reduces to ‖Aξ,1
C (x)‖ ≤ ‖V1‖‖x‖+ ‖b1‖. For the induction step, suppose the claim

is true for a given n ∈ {1, . . . ,D − 1}. Then Lemma 3.5 implies for all x ∈ D
ξ
B

‖(Aξ,n+1
C ◦Gn)(x)‖ ≤ ‖Vn+1‖‖(Gξ,nC ◦ Aξ,n

C ◦Gn−1)(x)‖+ ‖bn+1‖
≤ ‖Vn+1‖(Lξ,n‖(Aξ,n

C ◦Gn−1)(x)‖+ ‖Gξ,nC (0)‖) + ‖bn+1‖.

For this step, it was crucial in the definition of an approximable catalog to require the sets Bf to contain

the origin. Plugging the induction hypothesis into ‖(Aξ,n
C ◦Gn−1)(x)‖, we readily obtain the formula in

(5.4). Next, observe that for all n ∈ {1, . . . ,D}

‖Gξ,nC (0)‖2 =
kn
∑

j=1
‖fn,j(0)‖2 ≤ kn|κ0|2 ≤ |WC(ξ)||κ0|2. (5.5)

Hence, (5.4) yields for all n ∈ {1, . . . ,D} and x ∈ D
ξ
B

‖(Aξ,n
C ◦Gn−1)(x)‖ ≤ |TL(ξ)|‖x‖ + BC(ξ) +D|TL(ξ)|

(

BC(ξ) + |κ0|
√

WC(ξ)
)

≤ 4|κ0||BC(ξ)||DC(ξ)|
√

WC(ξ)|TL(ξ)|max{1, ‖x‖}.
(5.6)

Now we start constructing our candidate neural network. Lemma 5.1 shows that for all δ ∈ (0, ε],

n ∈ {1, . . . ,D} there exists ψδ,n ∈ N with Rψδ,n
a ∈ C(Rl2n−1 ,Rl2n) such that

(I) for all x, y ∈ R
l2n−1 we have ‖Rψδ,n

a (x)−Rψδ,n
a (y)‖ ≤ Lξ,n‖x− y‖,

(II) for all x ∈ B
ξ,n
B we have w(‖x‖)‖Gξ,nC (x)−Rψδ,n

a (x)‖ ≤ δ,
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(III) and P(ψδ,n) ≤ 25
32c

4|κ1|2|WC(ξ)|2κ2+κ3+6δ−2κ3 .

Moreover, since each Aξ,n
C is an affine function, there exist unique χn ∈ N , n ∈ {1, . . . ,D}, of depth 1

with Rχn
a ∈ C(Rl2n−2 ,Rl2n−1) given by Rχn

a = Aξ,n
C . Let ϕδ,n ∈ N be given by ϕδ,n = ψδ,n ◦ χn ◦ · · · ◦

ψδ,1 ◦ χ1. With n = D, this will be our candidate neural network for sufficiently small δ. Let us verify
that it does the job in terms of the approximation precision. To do so, we prove by induction over n
that for all n ∈ {1, . . . ,D}, δ ∈ (0, ε], x ∈ D

ξ
B

‖Rϕδ,n
a (x)−Gn(x)‖ ≤ δ

n
∑

m=1

∏n
j=m+1 L

ξ,j‖Vj‖
w(‖Aξ,m

C ◦Gm−1(x)‖)
. (5.7)

The base case n = 1 holds by the approximation property of ψδ,1 and the fact that Aξ,1
C (x) ∈ B

ξ,1
B

whenever x ∈ D
ξ
B . For the induction step, suppose the claim is true for a given n ∈ {1, . . . ,D − 1}. By

the Lipschitz and the approximation properties of ψδ,n+1, we obtain for all δ ∈ (0, ε], x ∈ D
ξ
B

‖Rϕδ,n+1

a (x)−Gn+1(x)‖ = ‖Rψδ,n+1

a ((Aξ,n+1
C ◦ Rϕδ,n

a (x))− Gξ,n+1
C ((Aξ,n+1

C ◦Gn)(x))‖

≤ |Lξ,n+1|‖Vn+1‖‖Rϕδ,n
a (x)−Gn(x)‖+

δ

w(‖(Aξ,n+1
C ◦Gn)(x)‖)

,

where we used that (Aξ,n+1
C ◦ Gn)(x) ∈ B

ξ,n+1
B whenever x ∈ D

ξ
B . Plugging the induction hypothesis

into ‖Rϕδ,n
a (x) −Gn(x)‖, we readily obtain the formula in (5.7). Now we combine (5.6), (5.7), and the

hypothesis that w has order of growth at most (s1, s2) to find for all δ ∈ (0, ε], x ∈ D
ξ
B

‖Rϕδ,D
a (x)−GD(x)‖ ≤ δD|TL(ξ)|

w
(

4|κ0||BC(ξ)||DC (ξ)|
√

WC(ξ)|TL(ξ)|max{1, ‖x‖}
)

≤ s1δ4
s2 |κ0|s2 |BC(ξ)|s2 |DC(ξ)|s2+1|WC(ξ)|

s2
2 |TL(ξ)|s2+1|w(‖x‖)|−1.

(5.8)

This essentially finishes the approximation part of the proof if we pick δ appropriately. That Rϕδ,D
a is

LipL(ξ)-Lipschitz continuous follows from the fact that the concatenation of Lipschitz functions is again
Lipschitz with constant equal to the product of the original Lipschitz constants. It remains to estimate
the number of parameters in the constructed neural network. Actually, let us make a slight modification.
Pick I ∈ N for which a fulfills the c-identity requirement and let Id ∈ N , d ∈ N, denote the d-fold
parallelization of I. Then, let ρδ,n ∈ N , n ∈ {1, . . . ,D}, δ ∈ (0, ε], be given by ρδ,n = Il2n ◦ ψδ,n ◦ Il2n−1

.
Solely for approximation purposes, one could simply work with ψδ,n instead of ρδ,n, but for the latter
we have better control on the number of parameters once we start concatenating the layers. Combining
Corollary 2.6 and the bound for P(ψδ,n), we see that for all δ ∈ (0, ε] and n ∈ {1, . . . ,D}

P(ρδ,n) ≤ 25
32c

5|κ1|2|WC(ξ)|2κ2+κ3+7δ−2κ3 + 3c2|WC(ξ)|2

≤ 37
32c

5|κ1|2|WC(ξ)|2κ2+κ3+7δ−2κ3 ,
(5.9)

where we used c ≥ 2. Next, note that Proposition 2.3 implies lId1 ≤ cd for all d ∈ N. Thus, Proposition 2.1
yields for all δ ∈ (0, ε] and n ∈ {1, . . . ,D}

P(ρδ,n ◦ χn) ≤ P(ρδ,n) + P(χn) + cl2n−1l2n−2 − l2n−1(l2n−2 + 1)

≤ P(ρδ,n) + c|WC(ξ)|2.
(5.10)

Furthermore, we prove by induction over n that for all n ∈ {1, . . . ,D}, δ ∈ (0, ε]

P(ρδ,n ◦ χn ◦ · · · ◦ ρδ,1 ◦ χ1) ≤ (n− 1)c2|WC(ξ)|2 +
n
∑

j=1
P(ρδ,j ◦ χj). (5.11)
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The base case n = 1 is trivially satisfied. For the induction step, suppose the claim is true for a given
n ∈ {1, . . . ,D − 1}. Then Proposition 2.1 and the induction hypothesis show for all δ ∈ (0, ε]

P(ρδ,n+1 ◦ χn+1 ◦ · · · ◦ ρδ,1 ◦ χ1) ≤ P(ρδ,n+1 ◦ χn+1) + P(ρδ,n ◦ χn ◦ · · · ◦ ρδ,1 ◦ χ1) + c2l2(n+1)−1l2n

≤ nc2|WC(ξ)|2 +
n+1
∑

j=1
P(ρδ,j ◦ χj),

which finishes the induction. Now we combine (5.10) and (5.11) to obtain for all δ ∈ (0, ε]

P(ρδ,D ◦ χD ◦ · · · ◦ ρδ,1 ◦ χ1) ≤ 3
2c

2|DC(ξ)||WC(ξ)|2 +
D
∑

j=1
P(ρδ,j),

where we used c ≥ 2 again. Plugging (5.9) into this inequality yields for all δ ∈ (0, ε]

P(ρδ,D ◦ χD ◦ · · · ◦ ρδ,1 ◦ χ1) ≤ 3
2c

2|DC(ξ)||WC(ξ)|2 +D
(

37
32c

5|κ1|2|WC(ξ)|2κ2+κ3+7δ−2κ3
)

≤ 43
32c

5|κ1|2|DC(ξ)||WC(ξ)|2κ2+κ3+7δ−2κ3 .
(5.12)

This finishes the parameter estimation. We conclude by gathering everything we have proved so far.
Motivated by (5.6), let η ∈ (0, ε] be given by

η =
[

4s2 |s1||κ0|s2 |BC(ξ)|s2 |DC(ξ)|s2+1|WC(ξ)|
s2
2 |TL(ξ)|s2+1

]−1
ε

and let φ ∈ N be given by φ = ρη,D ◦ χD ◦ · · · ◦ ρη,1 ◦ χ1. Note that Rφ
a = Rϕη,D

a and GD = Rξ
C . Thus,

(5.8) translates to

sup
x∈Dξ

B

w(‖x‖)‖Rφ
a (x)−Rξ

C(x)‖ ≤ ε.

Moreover, (5.12) implies

P(φ) ≤ 43 · 24κ3s2−5c5|κ0|2κ3s2 |κ1|2|s1|2κ3 |BC(ξ)|2κ3s2 |TL(ξ)|2κ3(s2+1)

· |DC(ξ)|2κ3(s2+1)+1|WC(ξ)|2κ2+κ3(s2+1)+7ε−2κ3 ,

which completes the proof of Theorem 5.3.

Remark 5.5. By Remark 5.2, if d1(f) = 1 for all f ∈ F , then item (III) in the proof of Theorem 5.3
can be improved to

P(ψδ,n) ≤ 25
32c

4|κ1|2|WC(ξ)|4κ2+κ3+2δ−2κ3

(the exponent of WC(ξ) changed). As a consequence, item (iii) of Theorem 5.3 can be improved to

P(φ) ≤ C|BC(ξ)|2(r−κ3)|TL(ξ)|2r|DC(ξ)|2r+1|WC(ξ)|2κ2+r+3ε−2κ3 .

Remark 5.6. A careful inspection of the proof of Theorem 5.3 reveals that it does not only work
with the Euclidean norm. For instance, one could also also work with the ∞-norm. One only needs to
replace the property ‖x‖2 =

∑n
j=1 ‖x(j)‖2 of the Euclidean norm in (3.1), (5.1), (5.2), and (5.5) with

the corresponding property ‖x‖2 = maxj∈{1,...,n} ‖x(j)‖2 of the ∞-norm and note that (5.2) is still true
because ‖x(j)‖ ≤ ‖x‖ holds for the ∞-norm, as well.

One activation function we know fulfills the identity requirement is the ReLU function. Our main
result recast for ReLU activation and the weight function wq(x) = (1 + xq)−1 reads as follows:

Corollary 5.7. Consider the weight function wq(x) = (1 + xq)−1 for some q ∈ (0,∞). Let ξ ∈ CF be a
catalog network for an [ReLU, wq, B, L, ε, κ]-approximable catalog. Then there exists a neural network

architecture φ ∈ N with ReLU-realization Rφ
ReLU ∈ C(RIC(ξ),ROC(ξ)) such that

(i) sup
x∈Dξ

B
(1 + ‖x‖q)−1‖Rφ

ReLU(x)−Rξ
C(x)‖ ≤ ε, and
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(ii) P(φ) ≤ C|BC(ξ)|2(r−κ3)|TL(ξ)|2r|DC(ξ)|2r+1|WC(ξ)|2κ2+r+7ε−2κ3 ,
for r = κ3(q + 1) and C = 43 · 42r−κ3 |κ0|2(r−κ3)|κ1|2.

Noteworthy is also that for the weight function w0 ≡ 1, the parameter estimate in Theorem 5.3
simplifies considerably:

Corollary 5.8. Let ξ ∈ CF be a catalog network for an [ReLU, w0, B, L, ε, κ]-approximable catalog. Then

there exists a neural network architecture φ ∈ N with ReLU-realization Rφ
ReLU ∈ C(RIC(ξ),ROC(ξ)) such

that

(i) sup
x∈Dξ

B
‖Rφ

ReLU(x)−Rξ
C(x)‖ ≤ ε, and

(ii) P(φ) ≤ 43|κ1|2|TL(ξ)|2κ3 |DC(ξ)|2κ3+1|WC(ξ)|2κ2+κ3+7ε−2κ3 .

We conclude the section by noting that we could have specified the characteristic inequality of
Definition 3.4 as

Costa,w(f,Bf , Lf , δ) ≤ κ1|max{d0(f), d1(f)}|κ2 | log2(δ−1)|κ3 (5.13)

by using a log-term | log2(δ−1)|κ3 instead of δ−κ3 . With this alternative definition, almost all arguments
of Section 5 go through and one obtains a version of Lemma 5.1 with statement (iii) modified to

P(φ) ≤ 25
32c

4|κ1|2|l2n|4|max{l2n−1, l2n}|2κ2 |min{l2n−1, l2n}|2
∣

∣ log2
( |min{l2n−1,l2n}|1/2

δ

)∣

∣

2κ3 .

If, subsequently, one replaces (5.9) with

P(ρδ,n) ≤ 37
32c

5|κ1|2|WC(ξ)|2κ2+7
∣

∣ log2
(

|WC(ξ)|1/2δ−1
)∣

∣

2κ3

and (5.12) with

P(ρδ,D ◦ χD ◦ · · · ◦ ρδ,1 ◦ χ1) ≤ 43
32c

5|κ1|2|DC(ξ)||WC(ξ)|2κ2+7
∣

∣ log2
(

|WC(ξ)|1/2δ−1
)∣

∣

2κ3 ,

one obtains the following version of Theorem 5.3:

Theorem 5.9. Assume a ∈ C(R,R) satisfies the c-identity requirement for some number c ≥ 2, and
let w be a non-increasing weight function with order of growth at most (s1, s2) for some s1 ∈ [1,∞) and
s2 ∈ [0,∞). Consider a catalog network ξ ∈ CF for an [a,w,B,L, ε, κ]-approximable catalog F , where
the approximation cost is given by (5.13) and ε ≤ 1/2. Then there exists a neural network architecture

φ ∈ N with a-realization Rφ
a ∈ C(RIC(ξ),ROC(ξ)) such that

(i) Rφ
a is LipL(ξ)-Lipschitz continuous on R

IC(ξ),

(ii) sup
x∈Dξ

B
w(‖x‖)‖Rφ

a (x)−Rξ
C(x)‖ ≤ ε, and

(iii) P(φ) ≤ C1|DC(ξ)||WC(ξ)|2κ2+7
∣

∣ log2
(

C2|BC(ξ)|s2 |DC(ξ)|s2+1|WC(ξ)|
s2+1

2 |TL(ξ)|s2+1ε−1
)∣

∣

2κ3

for C1 =
43
32c

5|κ1|2 and C2 = 4s2 |s1||κ0|s2.

The next result is the analogue of Corollary 5.8 for the log-modification (5.13) of the approximation
cost.

Corollary 5.10. Consider the weight function w0 ≡ 1, and let ξ ∈ CF be a catalog network for an
[ReLU, w0, B, L, ε, κ]-approximable catalog F , where the approximation cost is given by (5.13) and

ε ≤ 1/2. Then there exists a neural network architecture φ ∈ N with ReLU-realization Rφ
ReLU ∈

C(RIC(ξ),ROC(ξ)) such that

(i) sup
x∈Dξ

B
‖Rφ

ReLU(x)−Rξ
C(x)‖ ≤ ε, and

(ii) P(φ) ≤ 43|κ1|2|DC(ξ)||WC(ξ)|2κ2+7
∣

∣ log2
(

|DC(ξ)||WC(ξ)|
1

2 |TL(ξ)|ε−1
)∣

∣

2κ3 .
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The log-modification (5.13) of the approximation cost is useful when considering catalogs consisting
of functions that can be approximated with a number of parameters growing like log2(ε

−1) in the
accuracy ε. With the original definition of the approximation cost, one would obtain an estimate of the
form Mε−κ3 for log2(ε

−1), which is rather rough for small ε; see Propositions 6.4 and 6.5 below. The
following example is a consequence of Proposition 4.2.

Example 5.11. Consider the weight function w0 ≡ 1 and let Fprod = {idR ,pr} be the product catalog.
Fix r ∈ (0,∞), and consider the Lipschitz constants and approximation sets

Lf =

{

1 if f = idR ,√
32r if f = pr,

Bf =

{

R if f = idR ,

[−r, r]2 if f = pr.

Then Fprod is a [ReLU, w0, B, L, δ, (1,M, 0, 1)]-approximable catalog if the approximation cost is mea-
sured by (5.13), and δ ∈ (0, 1] andM ∈ [0,∞) are such that max{468, 679+720 log2(r)+360 log2(ε

−1)} ≤
M log2(ε

−1) for all ε ∈ (0, δ].

6 Overcoming the curse of dimensionality

In this section, we apply the theory of catalog networks to show that different high-dimensional functions
admit a ReLU neural network approximation without the curse of dimensionality. We concentrate on
catalogs containing one-dimensional Lipschitz functions, maximum functions, and the product function
in two dimensions. Building on these, we construct families of functions indexed by the dimension of
their domain that are of the same form for each dimension. For instance, in the first example below,
we consider the sum of d Lipschitz functions for d ∈ N.

Proposition 6.1. Fix K,R ∈ (0,∞), and let gd : R → R, d ∈ N, be K-Lipschitz continuous on R with
|gd(0)| ≤ K. Define fd : R

d → R by fd(x) =
∑d

k=1 gk(xk). Then for all d ∈ N and ε ∈ (0,min{1,KR}],
there exists φ ∈ N with Rφ

ReLU ∈ C(Rd,R) such that

(i) supx∈[−R,R]d |fd(x)−Rφ
ReLU(x)| ≤ ε,

(ii) and P(φ) ≤ 2
1110

5 max{1,K4}R2d6ε−2.

Proof. Let F = FLip
K be the K-Lipschitz catalog and suppose L = (Lf )f∈F and B = (Bf )f∈F are

defined as for item (i) in Example 4.3. Let Vd ∈ R
1×d, d ∈ N, be the matrix Vd = (1 · · · 1) with all

entries 1 and let ξd ∈ CF , d ∈ N, be given by ξd = [(idRd , 0, (g1, . . . , gd)), (Vd, 0, idR)]. Then Rξd
C = fd,

DC(ξd) = 2, WC(ξd) = d, and TL(ξd) ≤ dmax{1,K2}. Moreover, D
ξd
B = B

ξd,1
B = [−R,R]d because

B
ξd,2
B = BidR = R. Thus, Example 4.3, Remark 5.5, and Corollary 5.8 yield Proposition 6.1.

While the factor 105 may seem large, the growth of 105d6 in the dimension is much slower than
exponential growth, say 2d, as soon as the dimension exceeds roughly 50. Thus, for large dimension,
our estimates are better than those of other approximation schemes suffering from the curse of dimen-
sionality.

Note that the approximating networks constructed in the proof of Proposition 6.1 have fixed depth
independent of both the dimension and the accuracy since we approximate all Lipschitz functions in the
catalog with networks with a single hidden layer. This illustrates that it may happen that the networks
provided by Theorem 5.3 only grow in width but not in depth as the dimension increases.

Proposition 6.2. Fix K,R ∈ (0,∞), and let gd : R → R, d ∈ N, be K-Lipschitz continuous with
|gd(0)| ≤ K. Consider the functions fd : R

d → R, given by fd(x) = max{g1(x1), . . . , gd(xd)}. Then for

all d ∈ N and ε ∈ (0,min{1,KR}], there exists φ ∈ N with Rφ
ReLU ∈ C(Rd,R) such that

(i) supx∈[−R,R]d |fd(x)−Rφ
ReLU(x)| ≤ ε,

(ii) and P(φ) ≤ 2
1110

5 max{1,K4}R2d10ε−2.
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Proof. Let F = FLip,max
K be the K-Lipschitz-maximum catalog and suppose L = (Lf )f∈F and B =

(Bf )f∈F are defined as for item (ii) in Example 4.3. Further, let ξd ∈ CF , d ∈ N, be given by

ξd = [(idRd , 0, (g1, . . . , gd)), (idRd , 0,maxd)]. Then Rξd
C = fd, DC(ξd) = 2, WC(ξd) = d, and TL(ξd) =

max{1,K2}. Moreover, D
ξd
B = B

ξd,1
B = [−R,R]d because B

ξd,2
B = Bmaxd = R

d. We conclude with
Example 4.3, Remark 5.5, and Corollary 5.8.

Note that this time, the approximating networks have a depth that grows linearly in the dimension
since the network realizing the maximum function maxd has depth d. But the width grows as well due
to the parallelized shallow networks approximating the Lipschitz functions.

The functions in the previous two propositions were approximated on bounded domains. But if one
is willing to pay a slightly higher approximation cost, one can also approximate the family of functions
from, e.g., Proposition 6.1 on the entire space without curse of dimensionality.

Proposition 6.3. Let q ∈ (1,∞), K ∈ (0,∞) and suppose gd : R → R, d ∈ N, are K-Lipschitz
continuous on R with |gd(0)| ≤ K. Define fd : R

d → R by fd(x) =
∑d

k=1 gk(xk). Then for all d ∈ N

and ε ∈ (0,min{1, 6K}], there exists φ ∈ N with Rφ
ReLU ∈ C(Rd,R) such that

(i) supx∈Rd(1 + ‖x‖q)−1|fd(x)−Rφ
ReLU(x)| ≤ ε, and

(ii) P(φ) ≤ 3
510

44r(3q+5) max{1,K6r(q+1)}|d3r(q+1)+3ε−2r for r = q
q−1 .

Proof. Let F = FLip
K be the K-Lipschitz catalog and suppose L = (Lf )f∈F and B = (Bf )f∈F are

defined as for item (i) in Example 4.3. Let Vd ∈ R
1×d, d ∈ N, be the matrix Vd = (1 · · · 1) with all

entries 1 and let ξd ∈ CF , d ∈ N, be given by ξd = [(idRd , 0, (g1, . . . , gd)), (Vd, 0, idR)]. Then Rξd
C = fd,

BC(ξd) = 1, DC(ξd) = 2, WC(ξd) = d, and TL(ξd) ≤ dmax{1,K2}. Moreover, DξdB = B
ξd,1
B = R

d because

B
ξd,2
B = BidR = R. Hence, Example 4.3, Remark 5.5, and Corollary 5.7 imply Proposition 6.3.

A statement analogue to Proposition 6.2 can be shown the same way. In the following proposition, we
replace the sum by a product. Unfortunately, we cannot establish the approximation on an arbitrarily
large domain since the Lipschitz constant of the product function on [−r, r]2 is large for large r.

Proposition 6.4. Let K ∈ (0,∞) and assume gd : R → R, d ∈ N, are K-Lipschitz continuous with
|gd(0)| ≤ K. Define fd : R

d → R by fd(x) =
∏d
k=1 gk(xk) and set R = 1/

√
32(K+1). Then for all d ∈ N≥2

and ε ∈ (0, 1], there exists φ ∈ N with Rφ
ReLU ∈ C(Rd,R) such that

(i) supx∈[−R,R]d |fd(x)−Rφ
ReLU(x)| ≤ ε, and

(ii) P(φ) ≤ 1
410

5 max{1,K4}d7ε−2.

Proof. Let F = FLip,prod
K be the K-Lipschitz-product catalog and suppose L = (Lf )f∈F and B =

(Bf )f∈F are defined as for item (iii) in Example 4.3 (with r = 1/
√
32, δ = 1, and M = 23). Further, let

ξd ∈ CF , d ∈ N≥2, be given by

ξd =
[(

idRd , 0, (g1, . . . , gd)
)

,
(

idRd , 0, (pr, idR , . . . , idR)
)

,
(

idRd−1 , 0, (pr, idR , . . . , idR)
)

, . . . ,
(

idR3 , 0, (pr, idR)
)

,
(

idR2 , 0,pr
)]

.

Then Rξd
C = fd, DC(ξd) = d, WC(ξd) = d, and TL(ξd) = max{1,K2}. Moreover, Bξd,1B = [−R,R]d and

B
ξd,n
B = [−r, r]2×R

d−n for all n ∈ {2, . . . , d}. Hence, the fact that for all n ∈ {1, . . . , d−1}, x ∈ [−R,R]d
we have |∏n

k=1 gk(xk)| ≤ (K + 1)nRn ≤ r and |gn+1(xn+1)| ≤ (K + 1)R = r ensures D
ξd
B = [−R,R]d.

Thus, Proposition 6.4 follows from Example 4.3, Remark 5.5, and Corollary 5.8.

Since on large hypercubes, the quantity TL(ξd) starts to grow exponentially in the dimension, the
approximators in the proof of Proposition 6.4 can only be built on a small hypercube. But in the
specific case, where all Lipschitz functions gd in Proposition 6.4 are the identity, it has been shown that
the d-dimensional product can be approximated without curse of dimensionality on arbitrarily large
hypercubes; see Schwab and Zech [18, Proposition 3.3]). Applying the log-modification of our theory,
we can recover this result:
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Proposition 6.5. Consider the functions fd : R
d → R, d ∈ N, given by fd(x) =

∏d
k=1 xk, and let Let

R ∈ [1,∞). Then for all d ∈ N≥2 and ε ∈ (0,min{1
2 ,

1
R}], there exists φ ∈ N with Rφ

ReLU ∈ C(Rd,R)
such that

(i) supx∈[−R,R]d |fd(x)−Rφ
ReLU(x)| ≤ ε, and

(ii) P(φ) ≤ 3
510

9|max{1, log2(R)}|2| log2(d)|2d10| log2(ε−1)|2.
Proof. Fix d ∈ N≥2, let F = Fprod be the product catalog, and suppose L = (Lf )f∈F and B = (Bf )f∈F
are defined as in Example 5.11 (with r = Rd, δ = min{1

2 ,
1
R}, and M = 1240d). Further, let ξd ∈ CF be

given by

ξd =
[(

idRd , 0, (pr, idR , . . . , idR)
)

,
(

idRd−1 , 0, (pr, idR , . . . , idR)
)

, . . . ,
(

idR3 , 0, (pr, idR)
)

,
(

idR2 , 0,pr
)]

.

Then Rξd
C = fd, DC(ξd) = d − 1, WC(ξd) = d, and TL(ξd) = 32d/2Rd

2

. Moreover, Bξd,nB = [−Rd, Rd]2 ×
R
d−n for all n ∈ {1, . . . , d − 1}. Hence, the fact that for all n ∈ {1, . . . , d − 1}, x ∈ [−R,R]d we

have |∏n
k=1 xk| ≤ Rd ensures [−R,R]d ⊆ D

ξd
B . We can conclude with Corollary 5.10, Remark 5.5,

and Example 5.11 using

log2
(
√
d(d− 1)32

d/2Rd
2

ε−1
)

≤ 23
8 max{1, log2(R)}d2 log2(d) log2(ε−1).

Remark 6.6. If R = 1 in Proposition 6.5, we could actually do better and obtain

P(φ) ≤ 2
310

9| log2(d)|2d6| log2(ε−1)|2

by taking M = 1039 and using

log2
(
√
d(d− 1)32

d/2ε−1
)

≤ 15
4 d log2(d) log2(ε

−1).
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