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Abstract

The main result of this article establishes strong convergence rates on the whole proba-
bility space for explicit space-time discrete numerical approximations for a class of stochastic
evolution equations with possibly non-globally monotone coefficients such as stochastic Burg-
ers equations with additive trace-class noise. The key idea in the proof of our main result is
(i) to bring the classical Alekseev-Grobner formula from deterministic analysis into play and
(ii) to employ uniform exponential moment estimates for the numerical approximations.
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1 Introduction

In this article we study the problem of establishing strong convergence rates for explicit space-
time discrete approximations of semilinear stochastic evolution equations (SEEs) with non-globally
monotone coefficients (see, e.g., Liu & Rockner [55, (H2) in Chapter 4] for global monotonicity)
such as stochastic Burgers equations. Proving strong convergence with rates for numerical ap-
proximations of SEEs with non-globally monotone coefficients is known to be challenging. In fact,
there exist stochastic ordinary differential equations (SODESs) with smooth and globally bounded
but non-globally monotone coefficients such that no approximation method based on finitely many
observations of the driving Brownian motion can converge strongly to their solutions faster than
any given speed of convergence (see Jentzen et al. [48, Theorem 1.3], Hairer et al. [32], and also,
e.g., [28, B34, [61, 69, [70]). In addition, the classical Euler-Maruyama method, the exponential
Euler method, and the linear-implicit Euler method fail to converge strongly as well as weakly for
some SEEs with superlinearly growing coefficients (see, e.g., Hutzenthaler et al. [39, Theorem 2.1]
and Hutzenthaler et al. [41, Theorem 2.1] for SODEs and Beccari et al. [4] for stochastic partial
differential equations (SPDEs)).

Recently, a series of appropriately modified versions of the explicit Euler method have been
introduced and proven to converge strongly for some SEEs with superlinearly growing coefficients
(see, e.g., [37, 38, [40], 63| 64, 66, 67] for SODEs and, e.g., [5l [7, B0, 42, 50, 51, 57] for SPDES).
These methods are easily implementable and tame the superlinearly growing terms in order to
ensure strong convergence. Strong convergence rates for explicit time discrete and explicit space-
time discrete numerical methods for SPDEs with a non-globally Lipschitz continuous but globally
monotone nonlinearity have been derived in, e.g., Becker et al. [5, Theorems 1.1 and 5.5], Becker &
Jentzen [7, Corollaries 6.15 and 6.17], Brehiér et al. [I2, Theorem 3.1], and Jentzen & Pusnik [50,
Theorem 1.1]. Moreover, suitable nonlinear-implicit approximation schemes are known to converge
strongly in the case of several SEEs with superlinearly growing coefficients (see, e.g., [35], 36] for
SODEs and, e.g., [13], 261 27, 29] 53, [54], [56] for SPDEs). Strong convergence rates for temporal and
spatio-temporal approximations of SEEs with non-globally monotone coefficients on suitable large
subsets of the probability space (sometimes referred to as semi-strong convergence rates) have been
established in, e.g., Bessaih et al. [8, Theorem 5.2], Carelli & Prohl [14, Theorems 3.1, 3.2, and 4.2],
and Furihata et al. [27, Theorem 5.3]. These semi-strong convergence rates can imply convergence
in probability, but they are not sufficient to prove strong convergence rates. For completeness, we
also refer to, e.g., [1I, 10, 111 16}, 52} 62, [7T], [72} [73] for results concerning convergence in probability
with and without rates, pathwise convergence with rates, and strong convergence without rates for
numerical approximations of SEEs with superlinearly growing coefficients. Weak convergence with
rates for splitting approximations of 2D stochastic Navier-Stokes equations has been established
in [25]. In Bessaih & Millet [9, Theorem 4.6] strong convergence with rates is proven for fully
drift-implicit Euler approximations in the case of 2D stochastic Navier-Stokes equations with
additive trace-class noise by exploiting a rather specific property (see Bessaih & Millet [9, (2.4)
in Section 2]) of the Navier-Stokes-nonlinearity (see also Bessaih & Millet [9, Theorems 3.6, 3.9,
and 4.4 and Proposition 4.8] for further strong convergence results). These fully drift-implicit Euler
approximations of 2D stochastic Navier-Stokes equations involve solutions of nonlinear equations
that are not known to be unique and it is unknown how to approximate these solutions with
positive convergence rates. Strong convergences rates for nonlinear-implicit numerical schemes for
SEEs with non-globally monotone coefficients have also been analyzed in Cui & Hong [18], [19] and
Cui et al. [21), 22] (cf. also, e.g., Cui et al. [20] and Yang & Zhang [68]).



To the best of our knowledge, there exist no results in the scientific literature establishing strong
convergence with rates on the whole probability space for an explicit space-time discrete numerical
method for an evolutionary SPDE with a non-globally monotone nonlinearity such as stochastic
Burgers equations, stochastic Navier-Stokes equations, stochastic Kuramoto-Sivashinsky equa-
tions, Cahn-Hilliard-Cook equations, or stochastic nonlinear Schrodinger equations. It is the key
contribution of this work to partially solve this problem and to establish strong convergence rates
for an appropriately tamed-truncated exponential Euler-type method for SPDEs with a possibly
non-globally monotone nonlinearity and additive trace-class noise (see Theorem below). In
particular, in Corollary below we derive strong convergence rates for explicit space-time dis-
crete approximations of stochastic Burgers equations. A slightly simplified version of Corollary [6.2]
below is given in the following theorem.

Theorem 1.1. Let (H,(-,-)u,||-||;;) be the R-Hilbert space of equivalence classes of Lebesgue-
Borel square-integrable functions from (0,1) to R, let A: D(A) C H — H be the Laplacian
with zero Dirichlet boundary conditions on H, let T € (0,00), c € R, £ € D(A), 5 € (0,Y2], B €
HS(H, D((—A)?)), (en)nex C H satisfy for everyn € N that e, (-) = V/2sin(n7(+)), let (Py)nex C
L(H) satisfy for every N € N, v € H that Py(v) = Zgil@n,v)]{em let F: D((—A)Y?) — H be
the function which satisfies for everyv € D((—A)"?) that F(v) = cv'v, let (Q, F,P) be a probability
space, let (Wy)ieior) be an Idy-cylindrical Wiener process, let W™ : [0 T xQ — Py(H), N € N,
be stochastic processes which satisfy for every N € N, t € [0,T] that P(W} = fo PyBdW;) =1,
and let XMN [0, T] x Q — PN(H), M, N € N, be the stochastic processes which satisfy for every
M,NeN, me{0,1,...,M =1}, t € (mT/ar, m+0T/n1] that Xo" = Py(€) and

XM N _ (t=mT/m)A <XM,N

mT/ M

(1)
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Then

(i) there exists an up to indistinguishability unique stochastic process X : [0, T]xQ — D((—A)"?)
with continuous sample paths which satisfies that for every t € [0,T) it holds P-a.s. that

t t
X, = e+ / HAR(X,) ds + / AR AW, (2)
0 0

and

(i1) for every e,p € (0,00) there exists C' € R such that for every M, N € N it holds that

s 1/17 Ee— E—
suprepoy (ElIXe — XV |5]) 7 < C(MED 4 NE-29), (3)

Theorem [L.Ilis an immediate consequence of Corollary in Section [l below (with T'= T, ¢ =
g,co=1,c0=c,s =Y p=max{p,1},=06,vy=12,H=H,e, =e,, A=A H, = D((-A)"),
B=B,{=¢ F=F, Py= Py, (QF,P)=(Q,F,P), Wcpr) = Wi, XOT/MTHN
XMN for M,N,n € N, g,p € (0,00), 7 € [0,00) in the notation of Corollary [6.2]) and Holder’s
inequality. Corollary 6.2] in turn, is a consequence of Theorem [£.9] in Subsection below (the
main result of this work). We note that if the diffusion coefficient B is a diagonal operator with
respect to the orthonormal basis (e, )nen € H, then the processes W, N € N, in Theorem [ILT]



above are Wiener processes with computable covariance structure (cf. Corollary 5.3 below) and
the approximation scheme () is directly implementable up to an additional approximation error
resulting from the numerical evaluations of Galerkin projections Py, N € N. We now briefly sketch
the key ideas which we employ to prove Theorem [ Il In the case of SPDEs with globally monotone
nonlinearities one can, very roughly speaking, apply the It6 formula to the squared Hilbert space
norm of the difference between the exact solution of the SPDE and its numerical approximation
and, thereafter, employ the global monotonicity property together with Gronwall’s lemma and
suitable uniform moment bounds for the solution and the numerical approximations to establish
strong convergence rates. This procedure, however, fails in the case of SPDEs with non-globally
monotone coefficients. We overcome this issue by bringing the classical Alekseev-Grobner formula
from deterministic numerical analysis (see, e.g., Hairer et al. [31, Theorem 14.5]) into play and by
employing the fact that the considered approximation processes (Xiw ’N)te[o,T], M, N € N, (see ()
above) have uniformly bounded exponential moments. More specifically, we apply the extended
version of the Alexeev-Grobner formula in [46, Corollary 5.2] to a spatially semi-discrete version of
the solution (X;).cpo,r) of the considered SPDE (see (2) above) and its numerical approximations
(X%N)te[oﬂ, M,N € N, (see ([Il) above) in order to derive a suitable error representation (cf.
Lemma below). This allows us to estimate the strong approximation error by an appropriate
integral expression involving two main terms (cf. (48)) in Corollary 2.9 below) which we analyze
independently. The first main term is, very roughly speaking, the derivative of the spatially
semi-discrete version of (X)scp,m with respect to its initial value, evaluated in a function of the
numerical approximations (X, ’N)te[oﬂ, M,N € N, and the Wiener process (W),cjor7- The
second main term is a function of the numerical approximations (Xiw ’N)te[o,T], M,N € N, and
the Wiener process (W;)icpo,r) but does not involve the spatially semi-discrete version of (X):ejo,1]
(cf. Corollary 2.9 below). A key step in establishing strong convergence rates is, loosely speaking,
to obtain a uniform moment bound for the derivative of the spatially semi-discrete version of
(Xt)teo,r] with respect to its initial value in terms of an appropriate functional of the spatially
semi-discrete version of (X¢)ejo,r) and the numerical approximations (X ’N)te[o,T], M,N € N (cf.
Corollary B3 below). Applying a general result on exponential integrability from Cox et al. [17,
Corollary 2.4], this moment bound is then further estimated by appropriate exponential moments
of the numerical approximations (Xiw ’N)te[oj], M, N € N (cf. Lemma[B3H below). The exponential
moments established in [45, 49] therefore yield a uniform upper bound for the first main term in
the initial strong error estimate (cf. Proposition [4.5, Corollary 5.5 and the proof of Theorem [£.9
below). The fact that the numerical approximations (X, ’N)te[o,T], M, N € N, enjoy sufficient
regularity properties (cf. Corollary b7 and the regularity results in [45,[47]) ensures that the second
main term in the initial strong error estimate converges strongly with rates (cf. Proposition
and the proof of Theorem below). Combining the estimates for both main terms in the
initial strong error estimate finally establishes strong convergence rates for explicit space-time
discrete approximations of the SPDE under consideration (cf. Theorem [5.9] and Corollaries [5.10,
6.1, and [6.2 below).

Let us comment on the optimality of the convergence rates obtained in Theorem [L.1l It is not
clear to us whether the established strong convergence rates are essentially optimal or whether
they can be substantially improved. In the simplified case ¢ = 0, where the nonlinearity is omitted
and the stochastic Burgers equation in (2]) reduces to a stochastic heat equation, lower bounds for
strong and weak approximation errors are well understood (see, e.g., Becker et al. [6], Conus et
al. [15], Davie & Gaines [24], Jentzen & Kurniawan [44], Miiller-Gronbach & Ritter [58], Miiller-
Gronbach et al. [59] [60], and the references mentioned therein). In particular, e.g, Becker et al.



[6, Theorem 1.1], Conus et al. [I5, Lemma 7.2], Davie & Gaines [24], Section 2.1], and Miiller-
Gronbach et al. [60, Theorem 4.2] indicate that the convergence rates in Theorem [Tl above might
not be optimal in the case ¢ = 0. In the case ¢ # 0, where the nonlinearity does not vanish, lower
bounds for strong and weak approximation errors remain on open problem for future research.

The remainder of this article is structured as follows. In Subsection 2.1] we apply the Alexeev-
Grobner formula from [46, Corollary 5.2] and establish in Lemma below a general pathwise
estimate. Combining this general pathwise estimate with suitable measurability results from the
scientific literature allows us to establish in Corollary [2.9]in Subsection below a strong L? esti-
mate for the difference between the spatially semi-discrete version of the solution of the considered
SPDE and the considered numerical approximations. In Subsection Bl we employ Cox et al. [17,
Corollary 2.4] to provide an appropriate a priori bound for the derivative of the spatially semi-
discrete version of the solution of the considered SPDE with respect to its initial value (see (88])
in Lemma 3.5 below). In Subsection 3.2 we combine the results from Section 2] and Subsection B.1]
to obtain in Proposition a simplified upper bound for the strong error. In Subsection 1] we
establish suitable uniform moment bounds for the spatially semi-discrete version of the considered
SPDE which we then employ in Subsection together with Proposition to prove in Propo-
sition strong convergence with rates for space-time discrete numerical approximations with
suitable integrability and regularity properties for a large class of SPDEs. In Subsection (5.1 we
show that the considered tamed-truncated numerical scheme enjoys appropriate integrability and
measurability properties. These properties are then used together with Proposition [4.5to establish
in Theorem in Subsection below (see also Corollary 5.10) strong convergence rates for the
considered tamed-truncated numerical scheme. In Section [6l we combine in Corollaries and
the results established in [47] with Corollary 510 in this article to establish strong convergence
rates in the case of stochastic Burgers equations with additive trace-class noise.

1.1 General setting

Throughout this article the following setting is frequently used.

Setting 1.2. For every measurable space (1, F1) and every measurable space (o, Fo) let
M(F1, F2) be the set of all Fy/Fy-measurable functions, for every set X let P(X) be the power
set of X, for every set X let Po(X) be the set given by Po(X) = {6 € P(X): 6 is a finite set},
for every T € (0,00) let wr be the set given by wr = {0 € Py([0,T]): {0,T} C 0}, for every
T € (0,00) let |-|p : wr — [0,T] be the function which satisfies for every 6 € wr that

0|7 :max{x € (0,00): (Ja,b€0: [x=b—a and H N (a,00) N (—00,b) = @])}, (4)

for every 0 € (Urco,00)r) let L-1p: [0,00) — [0,00) be the function which satisfies for every
t € (0,00) that Ltag = max([0,¢) N E) and L0y = 0, and for every measure space (Q, F, 1), every
measurable space (S,S), every set R, and every function f: Q — R let [f],.s be the set given by
[flus ={g € M(F,8): (FA e F: u(A) = 0 and {w € Q: f(w) # g(w)} € A)}.

Setting 1.3. Assume Setting[L3, let (H, (-, -)u, |||l) and (U, (-, )v, |||l;) be non-zero separable
R-Hilbert spaces, let H C H be an orthonormal basis of H, let v: H — R be a function which
satisfies sup,ep 0, < 0, let A: D(A) C H — H be the linear operator which satisfies D(A) = {v €
H: Y e lon(h,v)p|? < oo} and Vv € D(A): Av =37, g on(h,v)gh, and let (Hy, (-, ) u,, ||l 1,)
r € R, be a family of interpolation spaces associated to —A (cf., e.g., [6H, Section 3.7]).



Note that the assumption in Setting [L3] above that (H,,(-,")m,, ||z ), 7 € R, is a fam-
ily of interpolation spaces associated to —A ensures that for every r € [0,00) it holds that

(Hy, (5 )by |-l g,) = (DU(=A)7), ((=A)C), (A7) [(=A)" Ol

2 Time discretization error estimates based on an Alexeev-
Grobner-type formula

Setting 2.1. Assume Setting [.3, assume that dim(H) < oo, let T € (0,0), 0 € wr, £ € H,
O eC([0,T],H), O € M(B([0,T)),B(H)), F € C*(H,H), let F: H— H be a function, for every
s €0,T), x € H let X ) = (X ))wesm: [s,T] = H be a continuous function which satisfies for
every t € [s,T] that

¢
Xi = elt=9) 4y 4 / e(t_“)AF(X;u) du + Oy — =940, (5)

S

and let X: [0,T] — H be the function which satisfies for every t € [0,T) that
¢
X, = e+ / el AR (X, ) du+ Oy (6)
0

Note that for every topological space (X, 7) it holds that B(X) is the smallest sigma-algebra
on X which contains all elements of 7.

2.1 Pathwise temporal approximation error estimates

In this subsection we apply the extended Alekseev-Grobner formula in [46, Corollary 5.2] to express
the difference between the exact solution (ngOO)te[QT] of the integral equation (Bl above, started
at time s = 0 in z = £ + Oy, and the corresponding numerical approximation (X¢):ejo,7] in (G
above in terms of an appropriate integral in Lemma below. We then combine these auxiliary
results with Lemma 2.3] and Lemma 2.4] to derive an upper bound for the approximation error in
Lemma 23]

Lemma 2.2. Assume Setting[I.3, assume that dim(H) < oo, let T € (0,00), s € [0,T], x € H,
Z € M(B([s,T]), B(H)) satisfy fST | Zullgr du < oo, and let Y: [s,T| — H be the function which
satisfies for every t € [s,T] that Y; = =54z + f; et=mAZ du. Then

(1) it holds that Y € C([s,T], H) and
(i1) it holds for every t € [s,T] that Yy = x + fst[AYu + Z,] du.

Proof of Lemma[2.4. Throughout this proof assume w.l.o.g. that s € [0,7). Note that the fact
that dim(H) < oo ensures that for every ¢ € [s, T it holds that fsT leG=AZ, || du < oo and

t
Y, = elt=9)4 (:c + / els=wAZ, du). (7)

Moreover, observe that the dominated convergence theorem implies that

<[8,T] St /St esmwAZ, du) e C([s,T], H). (8)



Combining (7)) and the fact that ([s,T] > t = =94 € L(H)) € C([s,T], L(H)) therefore estab-
lishes item ({). Next note that (7)), the fact that [s, T] X H > (t,h) — e(t 9)4h € H is continuously
differentiable, and, e.g., [46, Corollary 2.8] (with (V,||-|l,,) = (H,|ll5), W, I-llw) = (H, |-l ).
a=sb=T,F=(sT| >t (x+ [ etZ,du) € H), p = ([s,T] x HD (t,h) > e*)4h €
H), f=(sT]2urs (e*™™A4Z,) € H) in the notation of [46, Corollary 2.8]) show that for every
t € [s,T] it holds that

t
}/t—x:/ |:Ae(u—s)A ($+/ 6(8 T’AZ d’l") (u—s)A (s u)AZ du

t
_ / A, + 7, du.

This establishes item (). The proof of Lemma is thus completed. O
Lemma 2.3. Assume Setting[21. Then
(1) it holds that (X — O) € C([0,T], H),

(i) it holds that ({(u,v) € [0,TP:u < v} x H 3 (s,t,x) —» X, € H) € CO%({(u,v) €
0, T)*: v <wv} x H H),

(111) it holds for every t € [0,T] that

([0,] 3 5 = [ZXX OO (om0 AR (X, ) — F(X, — O, +0,))] € H)
€ M(B([0,1]), B(H)), (10)

(iv) it holds for every t € [0, T that

HHds < 00, (11)

t
/ I X250 H O (bR (X ) = F(X, = 0,4 05))
0

and

(v) it holds for every t € [0,T) that
t
X, — X&J{oo —0,-0, +/ 6%szj—osjtos (e(s—LSJe)AF(XLM) - F(X, -0, + OS)) ds. (12)
0

Proof of Lemma[2-3. Throughout this proof let A\: B([0,T]) — [0,T] be the Lebesgue-Borel mea-
sure on [0,77], let Y: [0,T] — H be the function which satisfies for every ¢ € [0,T] that ), =
— Oy, and let X7 ) = (X)) m): [, 7] — H, s €[0,T], v € H, be the functions which satisfy
for every s € [0,T], t € [s,T], x € H that X, = X709 — O,. Note that (B) implies that for every
s €[0,T],t €[s,T], z € H it holds that

¢
X = elt=94y +/ e(t*“)AF(Xf’u + 0,) du. (13)

The fact that for every s € [0,T], x € H it holds that ([s,T] > t — F(X7+0,) € H) € C([s,T], H)
and item () of Lemma 22 (with T =T, s = s, 2 = v, Z = ([s,T] > t = F(X? + O,) € H),



Y = ([5,T] >t &7, € H) for s € [0,T], z € H in the notation of item (i) of Lemma 2.2
therefore ensure that for every s € [0,7], t € [s,T], € H it holds that

¢
Xl =a+ / [AX], + F (X7, + O,)] du. (14)
Next note that (6]) implies that for every ¢ € [0, 7] it holds that

t
YV, = e+ / - AR(Y 1 0L,) du. (15)
0

In addition, observe that the fact that [0,7] > u + e(™w9)4 ¢ [(H) is bounded and left-
continuous implies that

([0,T] 3 u s AR (Y, +0.,,) € H) € L(\; H). (16)

Combining (I5) and Lemma 22 (with T =T, s =0, x =&, Z = ([0, T] 3 u + e 0)AF (Y, +
O..,) € H), Y =) in the notation of Lemma 2.2)) therefore proves that

(a) it holds that Y € C([0,T], H) and
(b) it holds for every ¢ € [0, T] that

t
Ve=¢€+ / [AYy + T F (Vo + Ouu,)] du. (17)
0
Observe that item (@) and the fact that J) = X —O establish item (). Furthermore, note that (Idl),
the assumption that O € C([0,T], H), the fact that F' € C(H, H), and item (@) ensure that
([0,T] 3 u s AR+ O.,) — F(Vu+0,) € H) € LY\ H). (18)

In addition, observe that the assumption that dim(H) < oo, the fact that O € C([0,T], H), the
fact that F' € C(H, H), and item (@) show that

([0,T) 2 ur AV, + F(Y, +0,) € H) € L'(\; H). (19)
This, (I8), and item (B) imply that for every ¢ € [0, 7] it holds that

t t
Vi=¢+ / [AVu + F(YVy + O,)] du + / [ F (Vo + Orusy) — F(Vu+ O)] du. (20)
0 0

Combining ([I4)), [IX), ([@J), the fact that ([0,7] x H > (u,h) — Ah+ F(h+ O,) € H) €
CoY([0,T] x H, H), and [46, Corollary 5.2] (with V.= H, T =T, f = ([0,T] x H > (u,h)
Ah+F(h+0,) € H),Y =Y, E=([0,T] > u s " AF(Y_,., + Oru,) — FVu+O0,) € H),
X7, =A&7 forx € H,t € [s,T], s €[0,7] in the notation of [46, Corollary 5.2]) hence proves that

(A) it holds that ({(u,v) € [0,T]*: u < v} x H 3 (s,t,z) — X, € H) € CO%'({(u,v) €
0, T)*: uw <v} x H H),

(B) it holds for every ¢ € [0,T] that

([0, 3 5 = [Z&% (b4 F (Y., + O.,) — F(V. +0,))] € H)
€ M(B([0,t]), B(H)), (21)



(C) it holds for every t € [0,T] that

/ Haaxxsyts (= LSJ&)AF<J}LSJ¢9 + OLSJG) - F<ys + OS)) HHdS < o0, (22)

and

(D) it holds for every ¢ € [0, T] that
t
Y, — X&};’ — / 2 XY (e“™=0)F (Y, + Ory,) — F(Vs + 0y)) ds. (23)
0

Observe that the fact that for every s € [0,7], t € [s,T], « € H it holds that X?, = X7, + Oy,
the assumption that O € C([0,7], H), and item (A]) establish item (). Next note that item (B]),
the fact that for every s € [0,7], t € [s,T] it holds that 2 X = a%ngJrOs, and the fact that for
every s € [0,77] it holds that Js = X — Oy imply item (). In addition, observe that item ([C),
the fact that for every s € [0,7], t € [s,T] it holds that 2 XY = 2 X23"% and the fact that for
every s € [0,7] it holds that Vs = X; — O show item (ix]). Moreover, note that item (D), the
fact that for every ¢ € [0,7] it holds that Xét = ngOO — Oy, the fact that for every s € [0,7],
t € [s,T] it holds that 2X%; = ZX"% and the fact that for every s € [0,77] it holds that
Vs = X5 — Oy establish item (@). The proof of Lemma 23] is thus completed. O

Lemma 2.4. Assume Setting [21], let C,c € [1,00), v € [0,1], § € [0,7], t € [0,1 =], k € R,
and assume for every x,y € H that ||F(z) — F(y)||g < Cllv —yllg;(1+ |z|G, + lwllg,). Then it
holds for every t € [0,T] that

et HDAR(X,, ) — F(X, — O, + O)|| i

< 012 NP (Xl + IF (X)) = F(Xity) e + C([IQIT]”_‘SIISIIHW

1-6 L e —0—t (24)
O] I X )+ (101" [ (b = o520) I (X[ ds

+10: = Ouiy [l + 10: — 0t||H5> (L4 11X 57, + (Xl + 100 = Ol m,)°).
Proof of Lemma[27). Note that the triangle inequality shows that for every ¢ € [0, T it holds that

[ MR (X ) — F(Xe — Oy + Ol u
< (e —1d ) F(Xooy) || (25)
+ ”F(XLtJG) - F(X\_tJe)”H + HF(XLtJe) - F(Xt - Ot + Ot)”H

In addition, observe that for every ¢ € [0, 7] it holds that

("% —Tdp)F(Xoe) e < (=) (00— Tdg) || e | (=A™ F(Xeey) | o

et ot (26)
< (8= cta) IR X e, s < [1012]°IF (X )1, s
Moreover, note that for every ¢t € [0, 7] it holds that
1F(Xiey) = F(Xe = 04+ O) [ (27)

< ClIXiesy — X+ Op = Oll, (1 + Xt I, + 1Xe — O + Oill5y,).

10



The triangle inequality hence shows that for every ¢ € [0, 7] it holds that

1F(Xiry) = F(Xy = Or + Ol

. . (28)
< C(I1Xity = Xellm, + 10: = Ocll, ) (1+ Xty I, + (IXellr, + [10¢ = O, )°)-

In the next step we observe that for every ¢t € [0, 7] it holds that

t
I = Xl < A8 e+ [P i, ds
Ltag

Ltag
T / ”<e(t7LSJ9)A - e(LtJeiLSJe)A)F<XLSJe>HHJ ds + Hot - O\_tJe ”H(s
0

t

< (=AM —Tdg) | lI€]|r, +/ (=) e i | F(Xoosy )l ds

Ltag

Ltag
+/O [(=A) et q Ly (= A) 7 (0 —Td ) || oo |F(Xesy) | ds

+ |0 — OLt || 1,
< (t = Ltag) Ol|E e, + (E— tag) T F (X)) |

(29)

Ltag
—0—/ (Ltag — I_SJQ)i(SiL(t — Ltag) |IF (X o)l ds + ||Or — Ol || 1
0
< 012N, + [617]' °I1F (Xieo) e

Ltag
+ [|9|T]L/ (ctag — 1530) T IF (X))l ds + 0; — Ouey |-
0

Combining (25), (26), and (28) therefore establishes (24]). The proof of Lemma 2.4 is thus com-
pleted. O

Lemma 2.5. Assume Setting[2.1], let C,c € [1,00), v € [0,1], § € [0,7], t € [0,1—0], k € R, and
assume for every x,y € H that |[F(xz) — F(y)||u < Clle — yllu,(1 + |25, + lvll%.). Then

(i) it holds that (X — O) € C([0,T], H),

(i) it holds that ({(u,v) € [0,TP:u < v} x H 3 (s,t,x) — XI, € H) € CO¥%({(u,v) €
[0,T)*: u<wv} x H H), and

(111) it holds for every t € [0,T] that

t
IX, — XE 4 < 0, — Oillar + / BB
0

s 101 IR (X

FIFX ) = F(Xiwy)lla + C(H@\T]V"sllﬁllm + [101r] I (X1
(30)

LS4

6
+ 01" [ (o520 — Ltg) T P (X )l du+ (|05 — Oy |,

10, = Oulli, ) (1+ 1%y, + Xl + 105 = Odll,)* } ds.

Proof of Lemma[Z3. Observe that item (i) of Lemma implies item (i). In addition, note
that item (i) of Lemma establishes item (). Moreover, observe that items (i) and (w) of
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Lemma and the triangle inequality show that for every t € [0, 7] it holds that

X = X5l < 100 = Ocllu

' 31
+ / | 2 X X7 OeH0s (s AR (X ) — F(X, — O, + 0,)) |, ds. (31)
0

Lemma 24 (with C = C, c=¢,v=7,d =0, t =, kK = k in the notation of Lemma [Z4]) and the
fact that Va,b € [0,00), ¢ € [1,00): 14+ a®+ b° < (1 + a + b)° therefore establish item (i). The
proof of Lemma is thus completed. O

2.2 Strong temporal approximation error estimates

In this subsection we recall in Lemma (see, e.g., Aliprantis & Border [2 Lemma 4.51]) and
Lemma 2.7 (see, e.g., Aliprantis & Border [2, Theorem 4.55]) some basic facts on measurability
properties of functions. Thereafter, we combine Lemma and Lemma 2.7 with Lemma to
establish in Lemma 2.8 suitable regularity properties for the solution of a stochastic version of the
integral equation in (E) above (see (B2) below). Combining Lemma 2.8 and Lemma 2.5 enables
us to establish in Corollary an upper moment bound for the difference between the solution
of the considered SODE (cf. (46) below and (Bl above) and its numerical approximation (cf. (4T
below and (@) above).

Lemma 2.6. Let (2, F) be a measurable space, let (X, dx) be a separable metric space, let (Y, dy)
be a metric space, let f: X xQ =Y be a function, assume for every x € X that Q> w — f(x,w) €
Y is F/B(Y)-measurable, and assume for every w € Q that (X >z — f(z,w) € Y) € C(X,Y).
Then it holds that f: X x Q =Y is (B(X) ® F)/B(Y)-measurable.

Lemma 2.7. Let (2, F) be a measurable space, let (X, dx) be a compact metric space, let (Y, dy)
be a separable metric space, let C(X,Y) be endowed with the topology of uniform convergence, let
f: X xQ =Y bea function, assume for every x € X that Q > w — f(z,w) € Y is F/B(Y)-
measurable, and assume for every w € Q that (X 3 x — f(z,w) €Y) € C(X,Y). Then it holds
that Q3w (X 3>z~ f(z,w)€eY) e C(X,Y) is F/B(C(X,Y))-measurable.

Lemma 2.8. Assume Setting[1.3, assume that dim(H) < oo, let (Q, F,P) be a probability space,
let T € (0,00), F € C'(H,H), Y,Z € M(B([0,T]) @ F,B(H)), let O: [0,T] x Q — H be a
stochastic process with continuous sample paths, and for every s € [0,T], x € H let X;(_) =

(X3 )iels): [8,T] x @ = H be a stochastic process with continuous sample paths which satisfies

for every t € [s,T] that

¢
Xi = elt=9) 4y 4 / e(t_“)AF(X;u) du + Oy — =940, (32)

s

Then

(i) it holds for every w € Q that ({(u,v) € [0,T: u < v} x H 3 (s,t,2) = X (w) € H) €
COO({(u,v) € [0, T u < v} x H, H),

(i) it holds that ({(u,v) € [0,T]?: u < v} x Q3 (s,t,w) — X;fi(w)(w) € H) € M(B({(u,v) €
[0, T)?: u <v})® F,B(H)), and
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(iii) it holds that ({(u,v) € [0,T]*:u < v} x Q 3 (s,t,w) %stﬂf(w)(w) € L(H)) €
M(B{(u,v) € [0,T)?: u <v}) @ F,B(L(H))).

Proof of Lemma[2.8. Throughout this proof let Zr = {(u,v) € [0,T]*: u < v}, let V = C({w €
H: |lw|lg <1}, H), let |-y, : V — [0, 00) be the function which satisfies for every f € V' that

1 fllv = SUPpe{weH: ||w| <1} £ (Pl &, (33)
and let ¢: L(H) — V be the function which satisfies for every @ € L(H) that

(Q) = ({we H: |wl|g <1} 5 h s Q(h) € H). (34)

Note that item (i) of Lemma R3] (with T =T, O; = Oy(w), F' = F, X7, = X{,(w) for (s,t) € Zr,
x € H, w € Q in the notation of item () of Lemma [2.3]) establishes item (il). This ensures that
for every w € it holds that

(Lr x H > (s,t,x) = X{(w) € H) € C(Lr x H, H). (35)

The fact that for every (s,t) € Zr, v € H it holds that (2 > w+— X7 (w) € H) € M(F,B(H))
and Lemma 2.6 (with Q =Q, F=F, X = Zr x H, dx = ([£7 x H> > ((s1,t1,71), (52, t2, T2)) =
[[s1=s2|*+[t1 —to|*+ |21 —a[[3,]* € [0,00)), Y = H, dy = (H* > (w1, 2) = [|[z1—22][m € [0,00)),
f=rxHxQ3 (s,t,2,w) = X7,(w) € H) in the notation of Lemma 2.6)) hence show that

(Lrx Hx Q3 (s,t,2,0) = X7, (w) € H) € M(B(£r) ® B(H) ® F, B(H)). (36)

The fact that (Z7 x Q 3 (s,t,w) — (s,t,Ys(w),w) € Zr x H x Q) € M(B(Zr) ® F,B(4r) ®
B(H) ® F) therefore establishes item (). Furthermore, observe that item (i) implies that for
every (s,t) € Zp, x € H, w € Q it holds that

h
XITM(w) X2, (w)

limsupH({w EH: |wlg<1}>h+—

s € H) — L(a%Xf,t(w))H

\%4
37
X2 ()= X2, @) (37)

a2 —(%X;t(w))hHH]:O.

= lim sup [ sup
r\0 heH,||h||p<1

Moreover, note that Lemma 27 (with Q@ = Q, F = F, X ={w € H: ||vw||lg < 1}, dx = {w €
H:||wllg <1} x{we H: ||w|g <1} 3 (z,y) = ||z —yllg € [0,00)),Y = H,dy = (Hx H>
(z,9) = ||z —yllu € [0,00)), [ = {w € H: |wl|lg <1} x Q 3 (h,w) — X" (w) € H) for
(s,t) € Zr, x € H, r € (0,00) in the notation of Lemma 2.7)) assures that for every (s,t) € Zr,
x € H, r € (0,00) it holds that

Q3w {we H: lullyg <1} 3 he XE™(w) € H) € V) € M(F,B(V)). (38)
This and (37) prove that for every (s,t) € Zp, v € H it holds that

(Q Sw L(B%X;t(w)) c V) e M(F,B(V)). (39)

Hence, we obtain that for every @ € L(H), € € (0,00), (s,t) € Zr, x € H it holds that

{weQ: HL(%X&(W)) — L(Q)HV <e}eF. (40)
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In addition, observe that for every Q1,Qs € L(H) it holds that

1Q1 — QallL(m) = SUPLeqwen: [un<1y [Q1(R) — Q2(h)||#
= SWDpefwen: |uw|u<i} 1H(Q1)(h) — Q) (M)[[r = [|L(Q1) — (Q2)]lv-

Combining this and (40) ensures that for every @ € L(H), € € (0,00), (s,t) € Zr, x € H it holds
that

(41)

fwe 0 | 2X000) — Qll < <) = {w e @ o(2X2@) ~ @, <} e P 12)

The fact that L(H) is a separable metric space and the fact that the Borel-sigma algebra on
a separable metric space is generated by the set of open balls therefore prove that for every
(s,t) € Zr, x € H it holds that

(25w ZX7(w) € L(H)) € M(F,B(L(H))). (43)
Moreover, note that item (il) ensures that for every w € Q it holds that
(Zr x H > (s,t,z) = 2XI(w) € L(H)) € C(Lr x H,L(H)). (44)

Lemma 2.6 (with Q = Q, F = F, X = Zr x H, dx = ([£1r x H]?> 3 ((s1,t1,71), (82, t2, T2)) =
[s1 = saf* + [tr = to* + [l2n — 2| H]7* € [0,00)), Y = L(H), dy = ([L(H)* 3 (A1, A2)
A1 = Aoy € [0,00)), f = (Lr x Hx Q3 (s,t,z,w) — L X7 (w) € L(H)) in the notation of
Lemma [2.0) and (£3) therefore prove that

(Zr x Hx Q3 (s, t,z,w) = ZX? (w) € L(H)) € M(B(4L7) ® B(H) @ F, B(L(H))).  (45)

The fact that (Zr x Q 3> (s,t,w) — (s,t, Zs(w),w) € Zr x H x Q) € M(B(4Lr) ® F,B(4Zr) ®
B(H) ® F) hence establishes item (). The proof of Lemma 2.8 is thus completed. O

Corollary 2.9. Assume Setting [1.3, assume that dim(H) < oo, let (Q,F,P) be a probability
space, let T € (0,00), 0 € wy, C,c,p € [1,00), v € [0,1), § € [0,7], ¢t € [0,1 =), k €
R, ¢ € M(F,B(H)), F € C}(H,H), F € M(B(H),B(H)), O € M(B([0,T]) ® F,B(H)),
let O:[0,T] x Q — H be a stochastic process with continuous sample paths, assume for every
2.y € H that |[F(x) = F(y)|un < Clla — yllu, (1 + |25, + yl5,), for cvery s € [0,T), v € H let
X;’*:(_) = (X7 tepsm): [5,T] x Q@ — H be a stochastic process with continuous sample paths which

s,t

satisfies for every t € [s,T] that
t
X = ety 4 / e(t’“)AF(X;":u) du + O, — =940, (46)

S

and let X: [0,T] x Q — H be a function which satisfies for every t € [0,T)] that

t
X, = et + / =) AR(X ) du + O;. (47)
0

Then
(1) it holds that X € M(B([0,T]) ® F,B(H)),
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(i) it holds for every w € Q that ({(u,v) € [0,T]*: u < v} x H 3 (s, t,x) — XI(w) € H) €
CO%1 ({(u,v) € [0,T)*: u < v} x H, H),

(iti) it holds for every ¢ € M(F,B(H)) that ({(u,v) € [0,T]*:u < v} x Q > (s,t,w) —
XSOy € H) € M(B({(u,v) € [0,T]?: u < v}) @ F,B(H)),

() it holds for every ( € M(F,B(H)) that ({(u,v) € [0,T]*: u < v} x Q > (s,t,w) —
aQmXvs)if(w)—Os(w)—i—Os(w)-i-eSA(C(w)—ﬁ(w))(W) c L(H)) e M(B{(u,v) € [0,T]>: u < v}) @ F,
B(L(1)), and

(v) it holds for every ( € M(F,B(H)), t € [0,T] that
I1Xs — X517 2oy < 11O¢ = Ol oy + 1€ = Clleogesn
+ e / |2X2 OO I ey { 1Bl I X e,
+IF(X) = FXes) ez + (1012 I (Xl ooy

+ [1617) supejo.r) IF (Xl zar@siry + 1105 = Oy ll vy + [1017) €N v 11,
+ 1105 = Osll zav;115) + 11§ — CHL‘W(P;H@) [1+ 11X s | cave @iy + 11Kl cave i)

+ |05 = Os|| pave @,y + 1€ — C||£4PC(P;HN)}C} ds.

(48)

Proof of Corollary[2.4. Observe that item ([) of Lemma (with T =T,0 =0, { = £(w),
Os = O4(w), Oy = Oy(w), F = F,F =F, X, = X7 (), Xy = X,(w) for w e Q,teclsT]
s € [0,T], x € H in the notation of item (III) of Lemma IE) proves that for every w € € it holds
that

([0, T]> t = Xy(w) — Oy(w) € H) € C([0,T7], H). (49)

Moreover, note that ([@7), the fact that for every ¢ € [0, 7] it holds that (2 > w — Oy(w) € H) €
M(F,B(H)), and the assumption that £ € M(F,B(H)) ensure that for every ¢ € [0, 7] it holds
that

(23w Xy(w) — Oy(w) € H) € M(F,B(H)). (50)

Combining this, (49)), and Lemma 2.6 (with Q = Q, F = F, X = [0, 7], d ([ T)? 3 (s,t)
[t—s] €[0,00)),Y =H,dy =(HxH> (z,y) — Haz yllg € 10,00)), f = O in the notation
of Lemma [2.6)) ensures that

Y

([0,T] x Q 3 (t,w) = X,(w) — Oyw) € H) € M(B(0,T)) ® F, B(H)). (51)

(
The assumption that O € M(B([0,T]) ® F, B(H)) therefore establishes item (). Next note that
Lemma 28 (with (Q, F,P) = (O, F,P), T=T,F = F,Y, = (+0,, Z, = X, —0,+0,+e*(( =),
Oy = Oy, XZy = XI, forxz € H, 1t € [s,T], € [0,7], ¢ € M(F,B(H)) in the notation of
Lemma [2.8)) establishes items ({)—(v). In the next step we observe that for every s € [0,T],
tels,T],z€ H, ( € M(F,B(H)) it holds that

t
Xz, =m0y 4 / TOAR(XE,) du+ (O + €0) = IO, + () (52)
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and .
X, = / T 0AR(X, ) du+ [Of + e¢]. (53)
0

Lemma 25 (with =T, 0 = 0, £ = 0, Oy = O4(w) + e*(w), Oy = O4(w) + e*4¢(w), F = F,
F=F, X{, = X{(w), Xy =X,(w),C=C,c=c,y=7,0=6,t=t,k=rforweQ, reH,
telsT],sel0,T], e M(F,B(H)) in the notation of Lemma [25]) therefore implies that for
every ( € M(F,B(H)), t € [0,T] it holds that

1Xs — X617 2oy

t
Xs—05+0s+e*4(¢—
< Hot—Ot+€tA<§_C)"LP(1P’;H) +/ HH@%Xs,t Ok OHL(H)
0

- ([I9IT]HIIF(XLsJQ)IIHV_g +IIFXissy) = F(Xisp)llm

50 (54)
+ C([WITP”HF(XLMQ)HH 101" [ (s Ltg) TP (X )11 du

+ HOS - OLSJe + (GSA - 6LSJ0A)§||H5 + HOS —Os + 6814(5 - O||H5>

. [1 + ||)(L5J(9||H,,€ + ||XS||H,€ + ||Os _ Os + GSA(g o C)||Hﬁ:|c) ds.

Lr(P;R)

Holder’s inequality and the triangle inequality hence show that for every ¢ € M(F,B(H)), t €
[0, 77] it holds that

I1Xe = XG50l o
t
< 110: = Odllesey + ll€(€ = )l creurny + / (> erimaiacanti ] PR,
|0 IR R ) s+ P (X) = FXa)lla
4 O (1911 IF Koyl + 18121 T (e = L) [F (X

1105 = Oyl + (e = e*D)Ell, + 05 = Osllm, + €™ (€ — C)IIH&)

ds.

Il 1Kol + 105 = Ol + e (€ = Ol ,, o

Holder’s inequality and the triangle inequality therefore prove that for every ¢ € M(F,B(H)),
t € [0, 7] it holds that

1Xe — X671 o e
t
<O - OtHD’(P;H) + 1€ = CHET’(P;H) + /0 H%X‘SCJSiOSJrOSJreSA(CiOHLQP(P;L(H))
. {[|9|T]7_6||F(XLSJ6)||L2P(1P>;H7_5) + [ F(Xissy) = F(Xiop)l c2r (s
0PN o+ 100 = s NP s

1105 = Oy llm; + [l = e M| 11; + |05 — Ol +11€ = ¢l

L4 (P;R)
1+ Xl 1Kl + 10, = Oulli, 1€ = Gl o .
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In addition, note that the fact that § + ¢ < 1 assures that for every s € [0, 7] it holds that

LS9

Of (LSJ@ — LU—‘@)_(S_L”F<XLUJ9)”Hdu

L4 (P;R)
LS.g

< ({ (L5ap — Ltag) " F (X)) || cor @iy du
Lsap s (57)
< supyejo,r [1F(Xu) | o) / (Lsap —u) ™" "du
= IF (X, el
SUDye0,7) u) L4 (PH) ™ 15—,

max{7T,1
< sUPyeozy [F K)o ey L

Furthermore, observe that for every s € [0, 7] it holds that

I(e™ — e N)e ], = lle-*o (e —Tdp)¢||m, < [[(=A)° (47 —1dp )|l m
< I(=A)° (=% —1da) | ll€l, < (s = Lsa0)°ll€llar, < [1012]°lI€] 1, -

Combining this with (56]) and (57)) establishes item (). The proof of Corollary 2.9 is thus com-
pleted. O

(58)

3 Moment bounds for the derivative process and resulting
time discretization error estimates

3.1 A priori bounds for the derivative process

In this subsection we derive in Lemma an appropriate moment bound for the pathwise deriva-
tives of the solution processes (X7;)iefs,11, s € [0,7], # € H, with respect to their initial conditions
appearing in item (W) of Corollary 2.9l above (see (88)) in Lemma [3.5 below). We first demonstrate
in Lemma B.]] that the well known local monotonicity property (see (B9) in Lemma Bl below
and cf., e.g., Liu & Rockner [55, (H2') in Chapter 5]) together with the continuous Fréchet differ-
entiability of the nonlinearity F' implies the property of F’ that we are exploiting in this article
(see (B0) in Lemma B.1] below). In addition, Proposition (cf. Hairer & Mattingly [33, (4.8)
in Section 4.4]) provides a suitable upper bound for the derivative process appearing in item ()
of Corollary (see (64) in Proposition B.2] below). Combining Lemma 2.8 and Proposition
implies Corollary B3 which we use together with Cox et al. [I7, Corollary 2.4] as a tool to establish
in Lemma the desired moment bound.

Lemma 3.1. Assume Setting [L.3, let ¢,C,y € [0,00), F € C'(H,,H), and assume for every
T,y € Hyaxfy,12y that

(F(z) = F(y),z —y)r < Ellzll,, + Ollz =yl + o =yl ,- (59)
Then it holds for every x,y € Huyax{~,1/2) that

(F'(@)y.y)m < Elll,, + Oyl + Iy, (60)
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Proof of Lemma[31. Observe that for every € Hyaxy,1/2}; ¥ € (Hmax{y,1/23 \{0}) it holds that
(F'(z)y, y)r = (lim,~o M’ y), = hm <F(x+ry) Flz) vy,

= lim 1 (2 (P4 ry) = F(2),ry)n)

7"

| L(F(x+ry) = Fla),ry)u
< (2l , + O)llylly + Iyl ) limsup
(CIE» i+ [yl ) st Cllel,, + OOl + vl
| (Fatry) = F(),ry)u (61)
= ((ellxll,, + Oyl + llyll3, ,) lim sup
(e i+ Il S | G Ol + T s,

(F(z+ry) — F(z),ry)n
(ell=ll,, + OllryllE + Iyl ,

(F(x +v) — F(x),v)n
(ell=liZ, , + Ololly + ol |

< ((ell=ll, + CyllE + llvllz, ,) e

< ((ell=ll, + ClyllE + llvllz, ,) . sup o
V€ max{~,1/2}

Combining this and (59)) establishes (6I]). The proof of Lemma [3.1]is thus completed. O

Proposition 3.2. Assume Setting [[3, assume that dim(H) < oo, let T € (0,0), £,C € [0, 0),
F e C'(H,H), O € C([0,T],H), assume for every x,y € H that (F'(x)y,y)g < (z—:||ac||%,1/2 +

O)llyll3 + ||y||§{1/2, and for every s € [0,T], x € H let X2 = (X e [s,T] — H be a
continuous function which satisfies for every t € [s,T| that

t
XS =x+ / (AX;U + F(X7, + Ou)) du. (62)

Then

(i) it holds that ({(u,v) € [0,T]*: u < v} x H 3 (s,t,x) = X7, € H) € C*%'({(u,v) €
[0,71?: uw < v} x H, H),

(i1) it holds for every s € [0,T], t € [s,T), x,y € H that

t
(Bazdu=u+ [ [AGRL)y+ P+ 0 (E25)] du (63
and

(iii) it holds for every s € [0,T], t € [s,T], x € H that

t
8%l < 0 [ (€15 + Ol + ©) ) 9

Proof of Proposition[3.2. Note that the fact that ([0,7] x H > (u,h) — Ah + F(h + O,) €
H) € C%([0,T] x H,H) and, e.g., [46, items (v) and (vi) of Lemma 4.8] (with V. = H, T =T,
f=0,T]x H> (u,h) = Ah+ F(h+0,) € H), X;, = &7, fort € [s,T], s € [0,T], € H in
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the notation of [46, items (v) and (vi) of Lemma 4.8]) establish items ({l) and (i). Therefore, we
obtain that for every s € [0,T], t € [s,T], x,y € H it holds that

[zl ol =2 [ ((Baz)0 ALy + P2+ 0 (BA2))  du
=2 [ [P+ 00 E X (B5)0)y — | Gl ] o
<2 [ [+ Ol + O Bzl + (Bl (Bl ] du

t -
—2 [ (e, + Ol + O (B3] du

Moreover, note that the assumption that dim(H) < oo assures that for every s € [0,T], x € H it
holds that

(65)

([s, 71 5 w = | X7, + Oullh,, € [0,00)) € C([s, 7, [0, 00)). (66)

Combining this, item (i), and (65]) with Gronwall’s lemma demonstrates that for every s € [0, 77,
t €[s,T], z,y € H it holds that

t
I(Zx2)y,, < HyHHexp(/ (el X2y + Oulliyy, +C) du). (67)
The proof of Proposition is thus completed. O

Corollary 3.3. Assume Setting [I.3, assume that dim(H) < oo, let (Q,F,P) be a probability
space, let T € (0,00), ,C € [0,00), p € [1,00), F € CY(H,H), Y € M(B([0,T]) ® F,B(H)),
let O:[0,T] x Q — H be a stochastic process with continuous sample paths, assume for every
x,y € H that (F'(z)y,y)n < (»5||x||fql/2 + O)|lyll3 + ||y||§{1/2, and for every s € [0,T], x € H let
XS = (XZ)eersir): [8, 1) x Q& — H be a stochastic process with continuous sample paths which
satisfies for every t € [s,T) that

t
X7, = elt=9) 4y 4 / e(t_“)AF(Xﬁu) du + Oy — =940, (68)

s

Then

(i) it holds for every w € Q that ({(u,v) € [0,TP: u < v} x H 3 (s,t,x) = X (w) € H) €
CO%91 ({(u,v) € [0,T)*: u < v} x H, H),

(ii) it holds that ({(u,v) € [0 TP:u < v} x Q3 (s,t,w) = 2X5¥(W) e L(H)) e
M(B({(u,v) € [0,T]*: u < v}>®f B(L(H))),

(iii) it holds that ({(u,v) € [0,T]%: u < v} x Q 3 (s,1,w) = X);“ (W) € Hip) € M(B({(u,v) €
0,T)?: u < v})®F,B(Hys,)), and

() it holds for every s € [0,T], t € [s,T] that

t
L(H)} SE[QXI’(Z?/ ( ||X;/Z

[Hameyi

i, + C) du)} : (69)
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Proof of Corollary[3.3 Throughout this proof let X7 ) = (X]))wesm: [s,T] x @ — H, s € 0,71,

x € H, be the functions which satisfy for every s € [0,T], t € [s,T], w € Q, x € H that
Xy (w) = X7 () - Ow). (70)

s,t

Observe that items ({) and () of Lemma 2.8 (with (Q, F,P) = (Q,F,P), T =T, F = F,
Zy=Y,, 0, =0,, X7, = X, fort € [s,T], s € [0,T], * € H in the notation of items ({) and (i)
of Lemma [2.8) establish items () and (). Furthermore, note that item (@) of Lemma 2§ (with
QFP)=(QFP),T=T F=FY, =Y, Os =0, X;, = XZ, fort € [5,T], s € [0,T],
x € H in the notation of item (i) of Lemma 2.8)) implies that

({(w,v) € [0, TP u < v} x Q3 (s,t,w) — Xzi(w)(w) €H)
€ M(B({(u,v) € [0,T]?: u <v})® F,B(H)). (71)

The assumption that dim(H) < oo hence establishes item ([ill). Next observe that (Z0) and the
fact that for every s € [0,T], t € [s,T], w € Q, x € H it holds that

s,t

t
X0 () = 94 (2 + O, (w)) + / VAR (XTEO) (W) du + Oy(w) — ™40 (w)  (72)

S

prove that for every s € [0,T], t € [s,T], w € Q, z € H it holds that

t
XT(w) = =) Ay 4 / e(t_“)AF(X;u(w) + O, (w)) du. (73)

s

The fact that F' € C(H, H), the fact that Vs € [0,T], w € Q: ([s,T] 5 t — Oi(w) € H) €
C([s,T], H), the fact that Vs € [0,T], w € Q, v € H: ([s,T] > t = X7, (w) € H) € C([s,T], H),
and Lemma (with T' =T, s = s, v =2, Z = ([s,T] >t = F(X}(w) + Ow)) € H),
Y = ([5,T7] >t XZ(w) € H) for s € [0,T], w € Q, x € H in the notation of Lemma 2.2
therefore ensure that for every s € [0,T],t € [s,T], w € Q, x € H it holds that

Xl(w) =2+ / [AX], (W) + F(X], (W) 4 Ou(w))] du. (74)

Item (i) of Proposition (withT =T, e =¢,C=C, F=F, O; = Oy(w), X7, = &7 (w) for
te€ls,T],se€0,T], we D € H in the notation of item (i) of Proposition B.2]) hence proves
that for every w € €2 it holds that

({(u,v) € [0,T]*: u < v} x H 3 (s,t,2) = X(w) € H)
c C*% ({(u,v) € [0,T)*: u < v} x H, H). (75)
Moreover, observe that (7)) and item (fil) of Proposition (withT =T, e=¢,C=C, F=F,

O = Oy(w), XF, = XF(w) for t € [5,T], s € [0,T], w € Q, x € H in the notation of item (i) of
Proposition B.2)) ensure that for every s € [0,T], ¢t € [s,T], w € Q it holds that

t
H%X;f;(w)—osw(w)}}um < exp(/ (]| AX)=0s) () 4 Ou(w)y@lm +C) du). (76)
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This and (70) show that for every s € [0,T7], t € [s,T], w € Q it holds that

t
|32 @y < e[ EIXEO @I, +€) ). ()

Combining this and items (i) and (i) establishes item ([vl). The proof of Corollary is thus
completed. O

Lemma 3.4. Assume Setting [I.3, assume that dim(H) < oo, let T € (0,00), s € [0,T], B €
HS(U, H), let (2, F,IP) be a probability space, let (Wy)eo,r) be an Idy-cylindrical Wiener process,

let & € M(F,B(H)), Z € M(B([s,T])®@F,B(H)) satisfy for every w € 2 that fsT | Zu(w)|| g du <
oo, and let Y: [s,T] x Q — H and O: [0,T] x Q — H be stochastic processes with continuous
sample paths which satisfy for every t € [s,T] that [Op gy = fot e =WAB AW, and

t
P(Yt — elt=94¢ 4 / VA7 du+ O — e(ts)AOS) = 1. (78)

Then it holds for every t € [s,T) that
¢ ¢
[Yt]P,B(H) = [f +/ [AY, + Z,] du} +/ BdW,. (79)
s P,B(H) s

Proof of Lemma[34. Throughout this proof let ¥ = {w € Q: (Vt € [5,T]: Yi(w) = e=4¢(w) +
fst el=WAZ (w) du + Oy(w) — e=940,(w))}. Observe that item () of Lemma (with T =T,
s =510 =~£EW), Z = Zy(w), Y = =94 (w) + fst et=WAZ (w)du for t € [s,T], w € ¥ in the
notation of item () of Lemma 22) proves that for every w € € it holds that

([s, T) >t =94 (W) + /t WAZ (W) du € H) e C([s,T), H). (80)

The fact that O and Y have continuous sample paths and (78)) therefore show that
P(X) = 1. (81)

Next note that the assumption that dim(H) < oo ensures that for every ¢ € [s, T] it holds that

t s t
e 40, )p gy = / AR AW, = / eIAB AW, + / WA B W,
0 0 s

¢ (82)
= [Oslp,m) +/ e"IAB AW,
This implies that for every ¢ € [s, T it holds that
t
/ eCTIAB AW, = [e" 0, — OJlp 5(m). (83)
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Combining (82), the fact that [s,7] x H > (t,z) + e* =4z € H is twice continuously differen-
tiable, and It6’s formula hence shows that for every ¢ € [s, T it holds that

t
[Odesny = [0 Jesn) + e~ / eC=0AB 4,

t t
_ [e(t—s)AOS + / Ae(u—s)A(e—(u—s)AOu . Os) du:| + / 6(u—s)Ae(s—u)AB qu
s P,B(H) s

t t
- |:6(t—s)AOS+/ A(Ou_e(u—s)AOS) d’LL:| +/ Bdw,.
s P,B(H) s
(84)

This implies that for every ¢ € [s,T] it holds that
t ¢
[Ot _ e(tfs)AOs]]P’,B(H) — |:/ A(Ou _ e(“*S)AOs) du:| —|—/ Bdw,. (85)
s P,B(H) s

Moreover, observe that item () of Lemma (with T =T, s = s, 2 = £Ww), Zy = Zi(w),
Y, = Yi(w) — (Oy(w) — e**)10,(w)) for t € [s,T], w € ¥ in the notation of item () of Lemma 2.2
proves that for every ¢t € [s,T], w € 3 it holds that

Vi(w) = (Oy(w) — =910, (w)) = §(w)+/ [A(Yo(w) = (Ou(w) — e ™940,(w))) + Zy(w)] du. (86)

Combining (81]) and (85]) therefore establishes (79)). The proof of Lemma[34lis thus completed. [

Lemma 3.5. Assume Setting[1.3, assume that dim(H) < oo, let T' € (0,00), a,b,C, p € [0,00),
p € [1,00), B € HS(U,H), ¢ € [0, (%/p) exp(=2(b + pl| Bllsigw.z))T)]; F € C'(H,H), assume
for every x,y € H that (x,F(z))n < a+ blzlf; and (F'(2)y,y)n < (ellzl,, + C)llylli +
||y||%{1/2, let (Q, F,P) be a probability space with a normal filtration (Fy)icior, let (Wi)iepm be
an Idy-cylindrical (Fy)scom-Wiener process, let Y : [0,T] x Q@ — H and O: [0,T] x Q — H be
(Ft)iepo,m-adapted stochastic processes with continuous sample paths, assume for every t € [0,T]
that [Op gy = fot et=WAB AW, and for every s € [0,T), x € H let X7y = (XS [s,T] x
Q — H be an (Fy)ies,r-adapted stochastic process with continuous sample paths which satisfies
for every t € [s,T] that

t
X2, =l g 4 / eTIAR(XE ) du+ O — 40, (87)

S

Then

(i) it holds for every w € Q that ({(u,v) € [0,T: u < v} x H 3 (s,t,2) — X (w) € H) €
CO%1 ({(u,v) € [0,T)*: u < v} x H, H),

(it) it holds that ({(u,v) € [0,T]:u < v} x Q > (s,t,w) — %Xﬁ(w)(w) € L(H)) €
M(B({(u,v) € [0,T?*: u <v})® F,B(L(H))), and

(111) it holds for every s € [0,T], t € [s,T] that

E[HB%X:; Z(H)] < exp((pC + p(2a + ||B||I2HS(U,H)))(t - s))E[epllellfH] (88)
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Proof of Lemma[3.3. Throughout this proof let B € L(H,U) satisfy for every v € H, u € U
that (Bu,v)g = (u,Bv)y, let R: U — [ker(B)]* be the orthogonal projection of U on [ker(B)]*,
let d = dim(H), m = dim([ker(B)]*), and let t: H — R? and x: R(U) — R™ be isometric
isomorphisms. Observe that the assumption that for every z,y € H it holds that (F'(z)y,y)y <
(8H;1:H§{1/2 + C)l|yll3 + HyH%ﬁ/2 and items () and (@) of Corollary B3 (with (Q, F,P) = (Q, F,P),
T=T,e=¢,C=C,p=p, F=F,Y,=Y,,0,=0,, X, = X?, fort € [5,T], s € [0,T], 2 € H
in the notation of items () and (i) of CorollaryB.3]) establish items () and (i). Moreover, note that
the assumption that for every z,y € H it holds that (F'(z)y,y)g < (eH:L’H%{l/Q +O)|lyll% + Hnyql/Q
and items (i) and (iv)) of Corollary B.3 (with (Q, F,P) = (Q, F,P), T =T, e =¢,C=C, p = p,
F=F Y, =Y, 0,=0, X{, = XZ forte[s,T],s€[0,T], z € H in the notation of items (i)
and (vl) of Corollary B3] prove that for every s € [0, 7], t € [s,T] it holds that

t
P ) B

In the next step we intend to apply Cox et al. [I7, Corollary 2.4] in order to derive an a priori
bound for the right-hand side of (89)). For this note that the assumption that for every =z € H it
holds that (z, F(z))g < a + b||x||% implies that for every x € H it holds that

E|[| X2

2p(x, Az + F(v)) g + p”BHI%IS(U,H) +20°|| Bz ||

< =2plallh,, + 2p(x, F(2)) i + ol Bllirsw.m + 207 Bllfsw,mll= 17

< =2pllalli,,, + 2pa + 20bl|z ]| + pll Bllisw.my + 20° 1 Bllsw.m 2l

= —2plzl,,, + p(2a + | Bllisw,m) + 206+ pll Blliisw,m) 1l
Next note that Lemma B4 (with T = T, s = s, B = B, (Q,F,P) = (0, F,P), W) =

(Wt)tE[O,T]7 g = Y;h Zs+t = F(X:ss+t)7 }/;+t = X:sertv O = O fOI‘ t e [O7T - S]a s € [OaT] in the
notation of Lemma [3.4]) ensures that for every s € [0,T], t € [0,T — s] it holds that

(90)

s+t st
(X3 desny = [Yelesan + [/ [AX], + F(X,3)] du} Jr/ BdW,. (91)
s P,B(H) s

Moreover, observe that the assumption that dim(H) < oo ensures that dim([ker(B)]*) < oo and
R € HS(U). This implies that there exists a stochastic process W: [0,7] x Q@ — R(U) with
continuous sample paths which satisfies for every ¢ € [0, 7] that

t
(Wile.s(ru)) = / RdW;. (92)
0

Observe that (02) implies that for every s € [0, 7], t € [0,T — s] it holds that

s+t s+t s+t
/ BdW, = / BRAW, = / (B|r@)) AW, = [(Blr@) (Wit — W) lps)- (93)

In addition, note that, e.g., [49, Lemma 3.2] (with H = R(U), U =U, T =T, Q = 1dy, R =
Idrwy, (,F, P, (Foecpom) = (2, F. P, (Fe)icor1), We)eior) = Welieior)s (Ge)ejo,r) = (Fe)iejo,ms
(Wo)tepor] = (Wi)sep.r in the notation of [49, Lemma 3.2]) proves that (W), is an Idg)-
standard (F)¢cjo,r1-Wiener process. Combining this, ([@0), and (@3) with Cox et al. [17, Corol-
lary 2.4] (with d = dim(H), m = dim(fker(B)]*), T =T —s, O = R, p = (R* > 2
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(toAor™)(z)+ (toFout)(z) € RY), 0 = (RY 3 2 — vo (B|gw)) okt € HS(R™, RY)),
(QF,P)=(QF,P), F,=Fepu, Wy = k(Wery — Wy), a=2b+ 2p||B||%{S(U7H), U=(R%3 2+
Al @I € R), U = (0.7 - 5] x B4 3 (r.2) > 20l (@) 3, — pl2a + [BlRigun) € R,
T=Q3w—t—sec[0,T—s)), X,=toX:, foruec[0,T—s],telsT], s€cl0,7T)in the

s,s+u

notation of Cox et al. [I7, Corollary 2.4]) shows that for every s € [0,T1], t € [s,T] it holds that

: {exp (ﬂe‘z“’“”B”%‘ﬂ’fﬂ))“‘s’IIXST;II%{

t (94)
+/ o~ 20+l Blifis 17, ) (=) (2p||X§Z||§Il/2 — p(2a + ||B||12{S(U,H))) du)] < E[epllysn%[]
This implies that for every s € [0,T], t € [s,T] it holds that
t
E {exp ( pe 20 BT )09 Ve 2 4 9, / e 2B s ) X 2, du)]
’ (95)

t
< exp (p@a + |1 Bllisw,mm) / e 2O Blas om0 =) du)E[eP”YS”ﬂ

s

Therefore, we obtain that for every s € [0,T], t € [s,T] it holds that

t

< exp(p(20 -+ | Blisn)(t — ) B[ V5],

The assumption that pe < 2pexp(—2(b + p||B||12{S(U7H))T) and (89) hence demonstrate that for
every s € [0,T], t € [s,T] it holds that

t
P C(t—s) —2(b+pl B} )T Ys (|2
L(H)] = E[exp <2p€ o /8 15 Hijy du)] (97)

< exp(pC(t — ) + p(2a + | Blis(o,m)(t — 5)) B[ 1],

E|[|2x%

The proof of Lemma is thus completed. O

3.2 Strong error estimates for exponential Euler-type approximations

In this subsection we combine the results from Subsections and [3.I] to establish in Proposi-
tion an upper bound for the strong error between the exact solution of an SODE with additive
noise and given initial value (see ([@9) below) and its numerical approximation (see (O8) below).

Proposition 3.6. Assume Setting [I.3, assume that dim(H) < oo, let T € (0,00), 0 € wr,
a,b,C,p € [0,00), C,e,p € [1,0), v € [0,1), 6 € [0,7], x € R, B € HS(U,H), ¢ €
[0, (#/p) exp(=2(b + pl| Bllfisw,m) 1)), F € C'(H,H), F € M(B(H),B(H)), ® € C(H,[0,00)), as-
sume for every x,y € H that (x, F(z))u < atbllz|, (F'(x)y, y)u < (ellzlly, , +C)llyllE+ 1yl ,
1F(z) = F(y)llr < Cllz = ylla, (L + [zl + 1yl5,), and (z, Az + F(z +y)m < 2(y)(1+ ||2]7),
let (2, F,IP) be a probability space with a normal filtration (Fy)icior), let & € M(Fo, B(H)), let
(Wi)eepo,r be an Idy-cylindrical (Fy)ico.r)- Wiener process, let O: [0,T] x Q — H be a stochas-
tic process with continuous sample paths which satisfies for every t € [0,T] that [Oppm)y =
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fot e=AB AW, and let X: [0,T] x Q — H and O: [0,T] x Q — H be (Fy)iepo.1-adapted stochas-
tic processes with continuous sample paths which satisfy for every t € [0, T] that

t
P(Xt _ etAg +/ e(tﬂ_um)AF(X\_uw) du + Ot) =1. (98)
0

Then

(1) there exists a unique stochastic process X : [0,T] x Q — H with continuous sample paths
which satisfies for every t € [0,T] that

t
X, = et + / eEWAR(X,) du + Oy, (99)
0

(ii) it holds that X is (Fy)icjo.r-adapted, and
(111) it holds for every t € [0,T] that
1Xs = Xl o,y < supgeory |0s — Osll o)
+ Sl oxp((C + p(2a + |1 Bllsw.m))1) [ / o010 ds]
: {[|9|T]y_(S suPsepo, 1] 1F (Xs) |l c2e (e, _s) + 5upsepo ) [F(Xs) — F(Xo)|| c2o ) (100)
+ (2[|9|T]y_(S suPsepo,7] 1F (Xs) |l cor sy + SuDseo. 1) [10s — Ol |l cor (i)
(011 Nl ooy + 5Pcioi 105 = Ol csngesny))

- [1 4 2supycp Xl care @,y + SUPseqo ) 105 — Ost:m(P;Hn)]c}-

Proof of Proposition[3.6. Throughout this proof let ¥ C € be the set which satisfies that

t
5 :{w eN: <Vt € [0,77: Xy(w) = e€(w) + / e DAR(X (W) du+ Ot(w)) } (101)
0
let V: [0,T] x Q — H be the function which satisfies for every t € [0,7T], w € Q that

{Xt(w) twE X

V@) =1, Lwe (Q\R),

(102)

and let O: [0,T] x Q — H be the function which satisfies for every t € [0,7T], w € Q that

B Ot(w) W E 2
)= {—etAE(uJ) — Jy e OAF(0) du :w € (D). o

Note that the assumption that for every x,y € H it holds that

1E(x) = FW)lla < Cllz = yllu; (L + 2/, + lyll,), (104)
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the assumption that for every x,y € H it holds that
(z, Az + F(z +y))u < ®(y)(1 + [lz[|), (105)

and, e.g., [47, Corollary 24| (with H=H H=H,0=0, A=A T=T,s=0,C=C,c=c,
6= 57 Kk = R, F = Fa ¢ = (ba (Qafa]P)a (Ft)tE[O,T]) = (Q,F,P, (]Ft)tE[O,T])a 6 - g + OOa O=0in
the notation of [47, Corollary 2.4]) establish items (fl) and (). In the next step we are going to
use Corollary 2.9 and Lemma B3] to prove (I00). For this observe that (I04]), (I03), and, e.g., [47,
Corollary 2.4] (with H=H H=H, 0 =0, A=A T=T,s=5,C=C,c=¢,0 =0, k=&,
F = F7 ¢ = ¢a (Q,F,P, (]Ft)tE[O,T]) = (Qafa]P)a (Ft)tE[O,T])ﬂ g = (Q SDwW T e H)7 O = O for
s € [0,T], x € H in the notation of [47, Corollary 2.4]) demonstrate that there exist stochastic
processes X7 = (X)) [5,T] x @ — H, s € [0,T], x € H, with continuous sample paths

which satisfy for every s € (0,71, t € [s,T], z € H that X7 is (Fu)ue[s,r-adapted and

t
Xr, = el Ay 4+ / eTIAR(XE,) du+ O — 740, (106)

S

Moreover, note that (O8) and the fact that X and O are stochastic processes with continuous
sample paths ensure that
xeF and P(X) =1 (107)

The fact that (F;)icpo,r is a normal filtration and the fact that X and O are (F;)cjo,r-adapted
therefore implies that

(a) it holds that Y is (F;)icpo,m-adapted,
(b

(c
(d) it holds for every t € [0, 7] that P(O; = O;) = 1.

) it holds that O is (IFy).c(o,r1-adapted,
) it holds for every t € [0, 7] that P(), = X;) = 1, and
)

In addition, note that (I06]) implies that for every ¢t € [0,7], w € Q it holds that

t
XéngOO(W) (w) — oA (w) _'_/ e(t—u)AF(XégleOo(w) <w>) du + Ot(w). (108)
0
Furthermore, observe that item (i) ensures that for every t € [0, 7], w € Q it holds that

Xy(w) = eé(w) + /0 eEWAR(X, (W) du + Op(w). (109)

Combining this, (I08]), and, e.g., [47, item (i) of Corollary 2.4] (with H = H, H = H, v = v,
A=AT=T,5s=0,C=C,c=c¢,0=0,k=r F=F, &= (QFP, (F)wcpo,r) =
(0, F, P, (Fp)eepor)s € = €+ Op, O = O in the notation of [47, item (i) of Corollary 2.4]) shows
that for every ¢ € [0, T], w € it holds that

Xi(w) = AP ), (110)

Moreover, observe that (I0I)—(I03]) prove that for every t € [0, T] it holds that

t
YV, =+ / e(t_L“JG)AF(yLuJe) du + O,. (111)
0
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Combining item (@), (I04)), (1I06), (II0), and Corollary (with (Q, F,P) = (O, F,P), T =T,
0=0,C=C,c=c,p=p,7y=770=0,1=7—-0,k=k, (=& F=F,F=F, O, =O,,
Os = Os, X3y = X5, Xg =V, ¢ =& fort € [5,T], s € [0,7], v € H in the notation of
Corollary 2.9) therefore establishes that

(A) it holds for every s € [0,T],t € [s,T], w € Q that H > v+ X7, (w) € H is differentiable,
(B) it holds for every ¢ € [0,T] that (22 w Xégw)jLOO(w)(w) € H) € M(F,B(H)),

(C) it holds for every ¢ € [0,T] that ([0,¢] X Q> (s,w) — %Xsﬁs(w)_os(wHos(w(w) € L(H)) €
M(B([0,t]) ® F,B(L(H))), and

(D) it holds for every ¢ € [0, T] that
IXe = Xill oy = 1V = X5l oo

C max{T,1 s s s
< SUPse(0,7) ||08 - OSHLP(IP’;H) + $ {/ Ha;chli ~Ost0

ooy 99 ]
: {[\G\T]H sup,epo,r] [|F(Vs)ll 2o, _s) + subseior) 1F(Vs) — F(Vs) || c2e i)
+ ((H@IT]H +[1012]77°) supepo 1y IF Vo) | cov @ity + subsego ) |Os — Oy ll v ey

101 ey + 5uDseia 105 — Osllctmeey

(112)

. []_ + 2 SupsE[O,T] ||y5||£4pC(P;HK) + supsE[O’T] ||OS - Os||£4pc(]13’;H,i)]c}.

Moreover, note that (I06), the fact that ), O, and O are (IF;).c(o,rj-adapted stochastic processes
with continuous sample paths the assumption that for every z,y € H it holds that (zr, F'(z))g <
a+bllz||f and (F'(z)y, y)u < (ellxlz, , + Oyl + [yl ,, and Lemma B3 (with T =T, a = a,
b= b, C = C, p=pP, D= 2p, B = B £ =g, F = F (Q ]: IP)) (Q ./—" P) (]Ft)te[QT] = (Ft)te[QT},
(Wt)te[O,T] = (Wt)tE[O,T]a Y =YVs — Os+ Os, Og = Oy, X;‘:u = X;‘:U for u € [S,T], s € [O,T], reH
in the notation of Lemma [B.5]) prove that for every s € [0,T], t € [s,T] it holds that

[H astyf Os+0s

T < exp((20C + p2a+ | Blisqm))E[eA¥ O+l (113)
This and (I12]) show that for every ¢ € [0, 7] it holds that
Xt = Xiller e,y < supsepo.ry |O0s — Osll o e

t
+ S BE oxp((C + p(2a + |1 Blsw.m))1) { /O (E[erIPe=0+0ul]) e ds}

: {[|9|T]%5 suPsefo.1) |1 F(Vo)ll ez, _s) + subseor) 1F(Vs) — F(Vs) | c2o sy (14)
+ (2[|9|T]y_(S suPsefo,1) 1F(Vs)ll 2o @.mr) + 5uDseio ) |Os — OLs gl 220 0,115
+ 01 lEl conein,) + $uPseioiry 1105 = Oulcsngesry))

. [1 + 2 SUDse[0,7] HysHL‘lPC(]P’;H,i) + SUPge(o, 717 105 — Os”ﬁ‘lpc(ﬂ”;Hn)]c}'

Combining this and items (@) and (d]) establishes item (f). The proof of Proposition is thus
completed. O
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4 Strong convergence rates for space-time discrete expo-
nential Euler-type approximations with assuming finite
exponential moments

4.1 Moment bounds for spatial spectral Galerkin approximations

In this subsection we prove in Lemma [A.]] suitable a priori moment bounds for exact solutions
of SODEs. Corollary then establishes uniform a priori moment bounds for spectral Galerkin
approximations of exact solutions of semilinear SPDEs with additive noise.

Lemma 4.1. Assume Setting [[.3, assume that dim(H) < oo, let T € (0,00), a,b € [0, )
p € [2,00),s€[0,T], BeHS(U, H), F € C(H,H), assume for every v € H that <x,F(x))

a + bljz||3;, let (Q,F,P) be a probability space with a normal filtration (Fy)sepor), let (VVt)teOT
be an Idy-cylindrical (Fy)ico.1- Wiener process, let § € M(Fg,B(H)), let O: [0,T] x Q — H
be a stochastic process with continuous sample paths which satisfies for every t € [0,T] that
(Ol ) = fot e=IAB AW, and let X : [s,T]xQ — H be an (Fy)iep,r1-adapted stochastic process
with continuous sample paths which satisfies for every t € [s,T| that

t
]P’(Xt = et=94¢ 4 / e AF(X,) du+ O, — e<“>AOs) =1 (115)

S

Then

p/2
supyers 71 EIXelI75] < (E[IENG] + 27 [a + 52| Bllisw.m)] ) exp((pb + p = 2)T). (116)
Proof of Lemma 4.1 Throughout this proof let U C U be an orthonormal basis of U. Note that
Lemma B4 (with T =T, s = s, B = B, (0, F,P) = (0 F,P), Wiicjo,r) = Wi)eepor), § = &,

Zy = F(Xy), Y = X3, O =0 for t € [s,T] in the notation of Lemma [B.4]) shows that for every
t € [s,T] it holds that

X Jesn) = [5+ / (AX, + F(X)] duLB(H)+ / "Baw,. (117)

Furthermore, observe that the fact that X has continuous sample paths ensures that there exist
(F¢)ecfs,-stopping times 7,.: @ — [s, T, r € (0, 00), which satisfy for every r € (0, 00) that

7 =inf({TYU{t € [s,T): | Xiller > 7}). (118)

Note that 1t6’s formula, (II7), and (II8) demonstrate that for every r € (0,00), t € [s, T] it holds
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that

min{7,t}
X minger e oo e = [nsnz [ AX, F(Xu»Hdu}
s P,B(R)

t
[ P Xl (X, B Wb

min{7,,t}
- 4
+ {é / > PIXulli 2 IBullg + p(p — 2)Lpx, 20y 1 Xull i [(Xu, Bu)l’] dU] (119)
s uel P,5(R)

min{7,t}
< [l [ PO AX, 4 X
s P,B(R)

t min{7,,t}
+/ PLin s | Xl (X, BdWo) i + {@HBH%{S(U,H)/ ||Xu||§){_2du:|
s s P,B(R)

Moreover, observe that for every r € (0,00), ¢ € [s,T] it holds that
1 X5 X, B R)|4swr) @
ez} [ Xully” T U 3 0= (X, B(v)) i € R)laswr) du
<[ X2 VBl sw.m d 120
> {nzu}H ull 7 I ||HS(U,H) u (120)

¢ T
< [ PO B s < [ Bl < o
s 0

Combining this, the assumption that for every € H it holds that (z, F(z))y < a+b||x|/%, (I19),
Tonelli’s theorem, and Young’s inequality proves that for every r € (0,00), t € [s,T] it holds that

El|1¢r, >0 Xel%] < E[(| 17 >0 Xminfr o 17 + 1 1ir <0 Xmintrg 12)7] = Bl Xmingr 0 [15]

r pmin{rt}
< E[l[¢]17] + pE / Xl (Xus AXo + F(X)) i+ 557 | Blifisw,m) du]

r pmin{r.,t}
<Ellel)+oE) [ X (a4 Ul + 2Bl sn) du}

t
= E[l[¢l[7] + pE / L 2ap | Xl (0 + BlIXull 7 + 250 I Bllfisw.m) dU]

(121)
t
= E[||€]%] +p/ E (12| Xullf (@ + 5 IBlfis,m) + 0Lir w1 Xul] du

t
_ _ p/2
< E[[l¢][%] +p/ B[P Linon [ Xullly + 2 (a+ B2 IBllfsw.m) ™ + 0Linzu [ Xully] du

t
— p/2
= Ell€llz] + (b +p - 2)/ B[ > | Xullfy) du + 2(t = 5) (@ + 25| Bllfis,m)
_ p/
< B[]l + (b + p = 2)(t = )"+ 2(t = 5) (@ + B Bllfswr ) -

Gronwall’s lemma therefore shows that for every r € (0,00), t € [s,T] it holds that

E[Lr, | X 5] < (BIIEIG] + 26 = 5)[a + 25 BllEsw.n] ™) exp(@b+p - 2)(t — 5)).  (122)
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The fact that for every n € N, ¢ € [0,7] it holds that 1. >4 < 1y..,,>4 and the monotone
convergence theorem hence establish (I16]). The proof of Lemma 1] is thus completed. O

Corollary 4.2. Assume Setting [L3, let T € (0,00), a,b € [0,00), p € [1,00), B € [0,)2),
Y. € [07 1/2+ﬁ)7 N2 € [7717 1/2_'_6)7 LE [7727 1/2_'_6)7 o € [07 1_771>7 Qg € [07 1_772)7 B e HS<U7 Hﬁ):
FeC(H, H), (Pr)iepm € L(H) satisfy for every I € P(H), x € H that Pr(x) =Y, ,(h, z)uh,
assume for every I € Po(H), v € P;(H) that {x, F(z))g < a+ b||z||}, and

|F )| e £ (v )IIH,QQ] [ IF@r_,,
SUPVE Has(y,mp) 14013, } * [S“pveﬂmax{m} g, | S, o | <00 (123)

let (2, F,P) be a probability space with a normal filtration (Fy)icior), let (Wi)epr) be an
Idy-cylindrical (Fy)iepor-Wiener process, let & € L%(Plg,; H,) satisfy E[||€]|%] < oo, and let
X100, x Q — Pr(H), I € Py(H), and O: [0,T] x Q@ — Pi(H), I € Py(H), be (Fy)iepo.r)-
adapted stochastic processes with continuous sample paths which satisfy for every I € Py(H),
t € 10,7 that [O!]e sep,my) = [y €94 PrB dW, and

t
X! =P+ / AP F(XDds + O] (124)
0

Then

SUD e, (1) SUPsefo,7) | X [lerinn,) < o0 (125)
Proof of Corollary[4.3. Throughout this proof let A;: P(H) — Pi(H), I € Py(H), be the func-
tions which satisfy for every I € Py(H), v € P;(H) that Ajv = Av and for every I € Py(H) let
(Hrs ¢ Mo oMl ), 7 € R, be a family of interpolation spaces associated to —A;. Note that
the Burkholder-Davis-Gundy-type inequality in Da Prato & Zabczyk [23, Lemma 7.7] proves that
for every t € 0,77, ¢ € [2,00) it holds that

t
-1 —s
SUP rep, (1) ||Ot1||%q(]P’~HL < q(q2 )SupIE’Po(]HI)/ ||6(t )APIBH%IS(U,HL) ds
0

q 1) t s)A B d < q(g—1) tt_ 26—21 B 2 d (126)
> H HL(H I ”HS UHg) 45 = T5— ; (t—s) | HHS(U,HB) S

t1+2,3 2

<4 2 1423— 2L||B||HS(UH3) < Q.

Next observe that the fact that & € L% (P|g,; H), the assumption that for every I € PO(H),
x € Pr(H) it holds that (z, F(z))g < a + b||z||%, and Lemma E1] (with H = P;(H), H = P;(H),
={I>h—v,€eR), A=A, (HS)SGR:(HI,S)SE]R,T:T,aza,b:b,p—Sp,S—O,
=({U>3uw PB(u) € P(H)), F=(P(H) >z~ PF(x) € P(H)), (QF,P) = (QF,P),
(Fo)ie.r) = Foicior), Woieor) = Woiepor), § = (22 w = Pié(w) € Pr(H)), 0 =0", X = X'
for I € (Po(H)\{0}) in the notation of Lemma [AJ]) imply that

SUP repy i1) SUPrefo 7] 12X | con (i) < 0. (127)

Combining the assumption that £ € L% (Plg,; H,), (123), and ([I26) with, e.g., [47, Lemma 3.4]
(with H = H, H=H, 0 =0, A=A, (QFP) = (ULFP), T =T, 8=12+0~ =,
E=Q3wr Pi(§(w)) € Hypp), F=(Hy 22— PF(x)e H), k= ([0,T] 5t —tel0,T)),
Z = (0,T] x Q > (t,w) = X/ (w) € Hy), O = ([0,T] x Q 5> (t,w) = Of(w) € Hipip),
Y = ([0,T] xQ > (tw) = X(w) € H), p=p,p=1m,0 =1 L =1, 0 =Q, G = Q9
for I € Py(H) in the notation of [47, Lemma 3.4]) therefore establishes (I25). The proof of
Corollary is thus completed. O
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4.2 Strong error estimates for space-time discrete truncated exponen-
tial Euler-type approximations

In this subsection we study numerical approximations for a class of semilinear SPDEs with additive
noise and establish in Proposition below strong convergence rates for truncated exponential
Euler-type approximation processes (X? ’I)te[oﬂ, I € Py(H), 6 € wr, (see (I43) in Proposition (4.5
below) under (i) the assumption that the truncated exponential Euler-type approximations sat-
isfy suitable exponential moment bounds and (ii) suitable approximatibility assumptions on the
stochastic convolution process. Our proof of Proposition employs Proposition and Corol-
lary above as well as the elementary truncation error estimate in Lemma below.

Lemma 4.3. Assume Setting[I.3, let (Q2, F,P) be a probability space, let (V,|-||;,) be an R-Banach
space, let ¢ € [0,00), p € [1,00), a,¢,h € (0,00), Y € M(F,B(V)), r € M(B(V),B(]0,0))),
PeL(H), Fe MB(V),B(H)), D € B(V) satisfy {v € V:r(w) <ch } C D. Then it holds

that
[1p(Y) PE(Y) = F(Y)| oy < R |lr(Y)| z200 o) | PE (Y ) || c20 (1) (128)
+ (P = 1dm) F(Y)| o m)-

Proof of Lemma[{.3. Observe that the triangle inequality and Holder’s inequality prove that

[1p(Y) PE(Y) = F(Y)| zre.mn)
< [(Wp(Y) = DPE ) er@my + [PEY) = F(Y)|l ooy (129)
< 1p(Y) = Ul cze@m) | PEY ) 2oy + 1(P = 1du ) F(Y) | 2o @)

Moreover, note that Markov’s inequality shows that

[1p(Y) = Ul czr@ry = [Tvan V)l ez er) < 1L ir(vysen—sillczr i)

130
= PURV ) > (ch) )]/ < (e =(Errep . 1)
This and (I29) imply that
11p(Y) PE(Y) = F(Y)ll oy < ¢ R (E[lr(Y)[P]) /| PEY)| 220 2;00) (131)
+ (P = 1dm) F(Y)l| o (e:m)-
The proof of Lemma is thus completed. O

Lemma 4.4. Assume Setting[1.3, let C,c,y € [0,00), §,k € [0,7], F € C(H,, H), let (Pr)epm) C
L(H) satisfy for every I € P(H), v € H that Pr(v) = >, ;(h,v)gh, and assume for every
I € Py(H), u,v € Pi(H) that ||PiF(u) — PrF(v)||lg < Cllu —vl[g,(1+ |lul|f, + ||v]|%,.). Then it
holds for every u,v € H, that

1 (w) = F(u)la < Cllu = vfla; (1 + [[ully, + l[ollF,)- (132)

Proof of Lemma .4 Throughout this proof let I, C H, n € N, be sets which satisfy for every
n € N that [, C I,,11 and U,,en!,,, = H. Note that the triangle inequality implies that for every
m,n € N, u,v € H, it holds that

[F(u) = E()llv < [|F(u) = P, F(u)l[ + | P, F(uw) = Pr, F(Pru)l|

133
P, F(Pyu) — Po, F(Pyo) | + | Poy F(Po) — P ()l + | P F0) = F@). )
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Next observe that for every v € H it holds that
limsup,,_, ||[v — Pr,v||lz = 0. (134)
This ensures that for every u,v € H, it holds that
limsup,, .. (1F() — Pp, F(w)li + | Py, F(v) = F(0) 1) = 0. (135)
In addition, observe that for every u € H, it holds that
limsup,,_,, ||[v — Pr,ul|m, = 0. (136)
The assumption that F' € C(H.,, H) hence implies that for every m € N, u,v € H, it holds that

limsup,, o (I1Pr,, F(u) = P, F(Pru)lla + || Pr, F(Pr,v) — Pr,, F(v)]|n)
< timsup, .. (IF(w) — F(Pow)ll + [ F(Pr0) — F)lla) = 0.
Moreover, note that the fact that Yn € N, u,v € Pp (H): || P, F(u) — P, F(v)||lg < Cllu —

Ol a, (1 + |||, + [[v]|%.) and the fact that Ym € N, n € ([m,00) "N), u € H: |Pullg =
|\ Pr,,, Pr,ullg < || Pr,ul|g show that for every m € N, n € (m,00) NN), u,v € H, it holds that

(137)

| Pr F(Pryu) = P, F(Pro) || g < P, F(Pr,u) = Pr F(Pro)l (138)

< Cl|Pru = Prol (1 + (| Prullg, +[1Proll%,)-

The fact that d, x € [0,~] and (I30) therefore prove that for every m € N, u,v € H, it holds that

lisup,, o0 || Pr,, F'(Pr,w) = Pr, F(Pro)[[n < Cllu = |, (1 + [lullf, +[[vll7,)- (139)
Combining (I33) and (I37) hence implies that for every m € N, u,v € H, it holds that

1 (w) = F(o)lla < [F(w) = Pr, F(u)l[m + Cllu = o, (1 + lullf, +[Jv]F,)
+ 1 Pr, F(v) = F(0)l[ -

This and (I35)) establish (I32). The proof of Lemma 4] is thus completed. O

(140)

Proposition 4.5. Assume Setting [I.3, let T,v,s,a € (0,00), a,t,p € [0,00), C,c,p € [1,00),
B e [071/2)7 S [2571/2+6): 57’% < [0,'7/], m € [071/2+6): UPIES [71171/2+5); a € [ 1 —711)7
az € [0,1 —mn), B € HS(U, Hp), € € [0, ("/p)eXp(—Q(a + plIBlisw.s) T, F € C\(H,. H).
r € M(B(H,),B([0,00))), (D) e, 1eromy S B(H,), let ®: H — [0,00) be a function, let
(Pr)repay © L(H) satisfy for every I € 73( ), * € H that Pr(x) = > ,.(h,z)ph, assume
for every I € Py(H), h € (0,T] that {v € P;(H): r(v) < vh~} C D! and (Pi(H) 3 v
®(v) € [0,00)) € C(P;(H),[0,00)), assume for every I € Po(H), x,y € P;(H) that {x, F(z))y <
a(l+[l=(l), (F'(@)y, y)u < (ellelz, , + Oyl + 1yl ,. 1P(F (@) = F)lla < Clle—ylla, (1+
lell5, + 1ylle,), (@, Az + F(z +y))y < @(y)(1+ [lz]%), and

|F )| e £ (v )IIH,Q2 IFE@)e_,,
SUPVEH (5,15 1+||U||?{nj * [SHPUEHmax{w wy TG, | | SWPeen, TirpE | < %% (141)

let (Q, F,IP) be a probability space with a normal filtration (Fy)iwcpor, let (Wi)iepr be an Idy-
cylindrical (Fy).ejo.1- Wiener process, let & € LA max{e2t(P|g - H, max{y,n2}) SALisfy E[||§||16p] < 00,
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let X:[0,T] x Q — H, and O: [0,T] x Q — H, be (Fy)ico,r1-adapted stochastic processes with
continuous sample paths which satisfy for every t € [0,T] that [Op s,y = f t=)AB dW, and

P(Xt = ¢+ / HAR(X,) ds + ot) =1, (142)
0
let X1 [0,T] x Q — Pi(H), 0 € wp, I € Py(H), and O%L: [0,T] x Q — P;(H), 0 € wr,

I € Po(H), be (Ft)icr-adapted stochastic processes with continuous sample paths which satisfy
for every 0 € wr, I € Py(H), t € [0,T] that

t
P(Xf’l =P+ / Lpg, (X0L,) o0 P F (X2, ) ds + Of’l) —1, (143)
and assume for every 0 € wy, 1,7 € Po(H) with I CZ that
suDyep,r1 105" = OF Il conemry) < ClI0I7)°, (144)
supejo.17 107" = PrOsl| oveittyanesy) < CUIPai (—A) " |l oemy + [1012)%), (145)

T
SUD 1 j¢ ey (i) supﬁEWT/O E[exp(p”X?’K — O’ + PO, + eSAPJ\Kgﬂ?q)] ds < o0, (146)

SUD ey (i) SWPpewy SWseio.r) I PrF (X0 covrr,_s) + 1PrF (XY || coo@iy | < 00, (147)
and  Sup yep () SUPyewy SUPse(0,7] [HX;g’JHE‘*PC(P;HQ + ”T(Xf"])|’c4pa/<(u»;]f{)} < 0. (148)

Then there exists ¢ € R such that for every 6 € wry, I € Py(H) it holds that
supseio |1 Xe = XY Nl neiany < e(1Pae (= 4) 072 | iy + [19]r] ™0 ). (149)

Proof of Proposition [[.3. Throughout this proof let O: [0,T] x Q — P;(H), I € Py(H), be the
(Fy)ieo,r-adapted stochastic processes which satisfy for every I € Py(H), t € [0,T] that O] =
POy, let Ar: P(H) — Pi(H), I € Py(H), be the functions which satisfy for every I € Py(H),
v € Pr(H) that Ajv = Av, for every I € Po(H) let (Hrs, (s )nr.s I3, )y s € R, be a family of
interpolation spaces associated to —A;, and let I, € (Po(H)\{0}), m € N, be sets which satisfy
Unen (Nmefntin+2,.1Im) = H. Note that the fact that for every I € Py(H), x € P;(H) it holds
that

(@, PrF(z))n < a(1 + ||=[l%), (150)
the fact that for every I € Py(H), =,y € P;(H) it holds that ((PF) (z)y,y)y < (5"37”%{1/2 +
ONyllz + Iyl ,» (@, Az + PrF(@ +y)a < S(y)(1+ [|l2]|7), and

1Pr(F(x) = F)lla < Clle =yl (1 + (2], + llvllz,), (151)

Proposition B.6l (with H = P, (H), H = P,(H), 6 = (I, > h— v, € R), A=A, (Hs)ser =
(Hlns)selRaT T@—Qa—ab aC:Cvp:paC:CaC:7p:pa7:7a5:5a
K,—K,B (UBU)—)P]nB()EP[n(H))EZE,F (P[n(H)BZL')—)P[nF(ZL‘)GP]n(H)),
F = (P (H) 52 Ly (@)PF(x) € Py, (), = (Py,(H) 5 2 = 9(x) € [0, 00)), (2. F.B) =
(Q,F,P), (Ft)te[O,T] = (Ft)teoT £E=(Q 3w~ Péw) e PL(H)), (VVt)te[o,T} = (Wt)te[O,T}a
0=0" X= (0T x> (t,w)— X (w) € P (H)), 0= ([0,T] x Q2> (t,w) — O (w) -
e P é(w) € P (H)), X =X"forf € wr, I € P(I,),n €N in the notation of Proposition 3.6,
and the triangle inequality prove that
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(a) it holds that there exist (IF¢);co,m7-adapted stochastic processes X™: [0,7] x Q — Py, (H),
n € N, with continuous sample paths which satisfy for every n € N, ¢ € [0, T] that

t
XM =P €+ / VAP F(X) du+ Ol (152)
0

and

(b) it holds for every 6 € wr, I € Py(H), n € N, ¢t € [0, T] with I C I,, that

X — 27 oy < supsepory 02 = O Loy + [ Prai€lleocesn
+ M exp((C + p(2a + ”BHHS(UH ))T)

T
0.1 _ 01 oln 4 sA 2 3
. |:/ E[Gp”XS 05" 4+0"+ P[n\I§||H:| d$:| {[|9|T]’7 6sups€[O,T] ||PIF(X2’I)||£2P(P§H7—6)
0

+5upeio |1y, (SN PIF(X) = P F(X0N) | ooy

+ (2[|9|T]’HS supe o7 |1 PrF (XS] cav ey + supgego ) 1097 = O, |l cow e
+ [017) €l avcin,) + suPsepo.p 1097 — O || av ey + ||P1n\15||£4P(P;H5))

' [1 + 25up,epo,m ||Xg71||£4PC(JP’;Hn) + SUDg¢o,7] ||0§’I - O£”||£4PC(P;HN) + ||P1n\15||£4PC(P;H~)]C}'
(153)

Moreover, observe that the triangle inequality implies that for every 6 € wr, I € Po(H), n € N,
t € [0, 7] it holds that

IXE" = Xillereny < XY = XMo@ + 12 = Xell oo (154)

Next note that (I41)), (I50), the fact that & € L% (P|ry; Himax{q,n.}), the fact that E[[|€]1:7] < oo,
and Corollary 42 (with 7" =T, a = a, b = a, p =2p, 8 = B, v = v, m = M1, N2 = Mo,
v = max{y, 0}, o1 = a1, s = o, B=B, F=F, Pp =P, (Q,F,P) = (Q,F,P), (Fo)scpor) =
(FS>SE[O,T]7 (Ws>s€[0,T] = (Ws)se[O,T]a E=¢, XtI" = th, OtI = OtI fort € [0 T] neN, e Po(H) in
the notation of Corollary [.2]) demonstrate that

SUPpeN SUP¢e(o,1) ||th||l:2p(]P);H'y) < 0. (155)

In addition, observe that (I51l), Lemma 44 (with C = C, c=¢, vy =7, =0, k =k, F = F,
Py = Py for I € P(H) in the notation of Lemma (7)), and the fact that v > max{203, k,d} show
that for every R € (0,00), z,y € H, with max{||z||g,, ||y|lz,} < R it holds that

1F (@) = F)l -, < (A i | F(2) = Fy)lln

F(y
< CN=AP" el = yllas (1 + 201(=A) |2 R)) (156)
< CI=D* eI (=A) Nl =yl (1 + 201 (=A)" @ R)%) < 0.

Combining this, (I52), (I53), and the fact that 28 — v < 0 with, e.g., [50, Corollary 6.5] (with
H=H U=UH=H AN=v, A=A vy=~T=T,p=2p, (UL,F,P) = (QF,P),
(ft)te[o,T] = (Ft)te[o,T] §=¢, (Wt)te[o,T] = (Wt)te[o,T], n=2y-p),F = (Hv >z Fx) €
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Hys ), B = (H, >« > B € HS(U,Hy)), I, = I, X" = X", X = X, q = p, K =
ClH (=AM ol (=A)° N een (1 + 2(| (=A)* || L R)°) for n € N, R € (0,00) in the nota-
tion of [50}, Corollary 6.5]) ensures that

lim sup,,_, (SUPte[O,T] [ XtHllp(lP’;Hw)) =0. (157)

In addition, note that the assumption that for every I € Py(H), h € (0,7] it holds that {v €
Pr(H): r(v) < vh=} C D} and LemmalL3 (with (Q, F,P) = (Q, F,P),V = Pi(H),c =<, p = 2p,
a=2c=v,h=10p,Y =(Q 3w X} (w) € P(H)), r = (P(H) >z r(z) € 0,00)),
P=P,F=(P(H)>x— P, F(x)€e H), D = D\I9|T for 0 € wr, I € Po(H), n € N, t € [0,7] in
the notation of Lemma [L.3)) prove that for every 6 € wr, I € Py(H), n € N, t € [0,7] with I C I,
it holds that

12y, (XT) PrP(XP") = Pr, P X e

= |y]1D‘19‘T(XfJ) P(Py, F(XP1) — P, F(XP)| 220 o)

< VB 1 (RS o oy 1P P E (X ey (158)
+ 1 (Pr = 1dg) Pr, F(X)) | 2o ey

= VI 001 1 XD | oo | P RE D ey + | Pronr X 2.

Moreover, note that for every 6 € wr, I € Py(H), n € N with I C I, it holds that

0,1 — 0,1
suPyeio ) 1 Pr\ i F(Xy ) c2r ey < 1 Praa(—A) " | o supseqo ) | Praa F/(Xe ) || c2e e,

. 0.1 (159)
< HPH\I(_A) HL(H) SUP jep, ) SUPte[0,1) | PrE (X )”LQP(JP;HL)-
In addition, observe that for every I € Py(H), n € N with I C I,, it holds that
1PrrEllconeeirs) < 1Pei (=AY i €]l cones, - (160)

Next note that (I40]) ensures that for every 6 € wy, I € Py(H), n € N with I C I,, it holds that

sup,eror 1007 — O || o)

—max{k,0} —t o (161)
< C'max{[|(—A) Moy, L Pane (—A) N + [1017]),
SUDse0,1) ||0§’I - O£n||E4P(P;H5) (162)
< C max{||(—=A)> ™| Ly, 1 (| B (= A) ey + [612]%),
and
SUPse0,1) ”OgJ - OgnHﬁ“pc(P;H:ﬁ) (163)

< Cmax{||(=A) |y (N (=A) gy + [max{T, 1}]%).

Combining (I44), item (D)), and (I58)-(I60) hence implies that for every 6 € wp, I € Py(H) it
holds that

lim sup,, (Supte[oﬂ ||Xf’l - thHLP(P;H))
< Cmax{||(—A) ™| Ly, 111 Pant (= A) Ny + (1017]%) + || Paill coesrny
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Clmax{T,1}]?
 Clmexf LT 1_{q/ 1 eXp((C+p(2a+HB”%{S(U,H)))T)
T ||X9’I—09’I+OI"+€SAP §||2 ~N—6 6.1
| supey | B[ OO il s | {1617 supeioy B (XS | oo,
0

+ V] sup,e(o.1y ||7“(X§’I)||pra/<(p;m sup,eio.r) | PrE(XP)| 2o @ [16]]

+ 1P (—A) " Loy SUP ey iy SUPseio 17 1P F (XS || 20 e, (164)
+ (2[|9|T]y_(S sup,epo.q) | PrF (X)) || ongeiary + CllOI2) + [10]7) €] ancyir, )

+ Cmax{[| (= A)" 7 gy, ()| Pyt (= A) ™ ey + [16]2]°)

+ | P (= A)° |y H£H£4P(JP;HW)) [1+ 2supeo. 7 X0 || cave @,

+ Cmax{]| (= A)* 7 gy, 1 ([[(=A) o + max{T, 1}]7) + Hé*Hz:wc(P;HH)}C}-
This proves that for every 6 € wr, I € Py(H) it holds that

lim sup,,_o0 (SUPefo.ry [1XE" = A | 2rein)
< Cmaxc{ || (= A) ™| gy, T (= A) O | gy [ Py (= A) 700
+ Cmax{|| (= A) 7S oy 1310]7])
| Pan g (= A) ™00 | (= )O3 i 1€ o e,
+ C[m%{fup exp((C + p(2a + HB”%{S(U,H)»T) [1+ 25up,epo X3 awe e,
+ C maxc{ || (= A) | g (1= A) gy + [max{ T, 11*) + 1€ ]| cve i)

T
0.1 _ 0,1 In esA 2 —
. |:Supn€]N/ E[ep”xs 05" +0"+ PIn\Ié‘”H:| d$:| { Supse[O,T] ||PIF(X-27I)||£2P(]P’7H,Y_6)[|0|T:|’y d
0

[

+ [V sup,eqo.my HT(Xf’I)HZ@a/c(p;R) supe o7y | PrF (XS] 2o e, [16]7] (165)
+ SUD ey 11) SWsefo. 1) | PrF (X0 || 220 11,

(= A) 7RO | Ly | P (= A) 00 oy

+ 2sup,c o) |1 PrE XS caneuin [1012) 0 + CllOI)* + 1€l| can s, [10]7]°

+ Cmax{[| (=A™ Loy, THI(—A) O] gy || P (= A) ™00 |

+ Cmax{[| (—A)" ™ oy, 13]10]7]°

+ [[(=A)? 0= | L || Py (— A) ™0 L 16| oo i) }

Moreover, note that (I54) and (I57) ensure that for every 6 € wr, I € Py(H), t € [0,T] it holds
that

X7 — Xill o < limsup, oo (supseror 1X7" — X coesnn))- (166)

Combining the fact that & € L%4(P; H.,), (I46)—(148), and (I63]) therefore establishes (I49). The
proof of Proposition is thus completed. O
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5 Strong convergence rates for space-time discrete tamed-
truncated exponential Euler-type approximations with-
out assuming finite exponential moments

Setting 5.1. Assume Setting [[.3, let T € (0,00), a,b,v € [0,00), ¢ € (0,Y18), € € (0,1],

S [07 1/2)} v E [07 1/2+B): B e HS(U> HB): F e M(B(Hv),B(H)), (Dli)he(O,T],IGPo(H) - B(H“/)7
let (Pr)iepm) € L(H) satisfy for every I € P(H), » € H that Pr(z) = Y, ., (h,z)gh, assume
for every I € Po(H), h € (0,T), € D} that D} C {v € P/(H): ||Bllusw,m + €llvl|f < vh~},
max{||PrF(z)||m, | Bllusw,m} < vh=°, and (z, F(z)); < a+ b||z||3;, let (Q, F,P) be a probability
space with a normal filtration (Fy)icio,r, let (Wi)iepom be an Idy-cylindrical (Fy)ecpo,m-Wiener
process, let & € M(Fo, B(H,)) satisfy Elexp(e||€||%)] < oo, and let X%1: [0,T] x Q@ — P;(H),
0 € wrp, I € Po(H), be (Fy)icpo,m-adapted stochastic processes with continuous sample paths which
satisfy for every 0 € wy, I € Py(H), t € [0,T] that Xg’I = P;§ and

(X{ ey = [ AKX, + 1y (X“

Ltg

Ll 0
) elt=t0)A p F(XLtfe)( LtJe)]P,B(PI(H))

S Lon, (X)) e " AP B dW, (167)

Ltag 16l

L+ [, PrBAW||%

5.1 Finite exponential moments for tamed-truncated Euler-type ap-
proximations

In this subsection we establish in Corollary below uniformly bounded exponential moments
for the space-time discrete tamed-truncated exponential Euler-type approximation processes
(X icior], 0 € wr, I € Po(H), (see [IBT) above). Our proof of Corollary uses the ex-
ponential moment estimate in |49, Corollary 3.4]. We then employ Corollary to establish
in Corollary below for every p € (0,00) uniformly bounded £P-moments for the considered
approximation processes. Moreover, combining Corollary with [45, Corollary 3.1] and [47,
Lemma 3.4] allows us to establish in Corollary B.7 below for every p € (0, 00) strengthened uni-
formly bounded £P-moments for the considered approximation processes.

Lemma 5.2. Assume Setting [L2, let (H,(-,-)u, ||-||;) be a non-zero separable R-Hilbert space,
let (U, (-, )u,|l|l;) be a separable R-Hilbert space, let M = [1,dim(H)] NN, let (hy)pen € H
be an orthonormal basis of H, let H = {h,: n € N}, let B: U — H be a linear function, let
(Pr)repmy € L(H) satisfy for every I € P(H), v € H that Pi(v) = Y, (h,v)uh, for every
n € N let U, C [ker(Piy, hy....n3B)|" be an orthonormal basis of [ker(Pipy py....n1B)|E, assume
for every n € (M\{sup(M)}) that U,, C U1, and let (Pr)repu,cqun) S L(U) satisfy for every
I € P(UpenUy), v € U that Pru = Y . (w,u)yu. Then there exists a function I': Py(H) — N
which satisfies that

(i) it holds for every I € Po(H) that [ker(P;B)|*- € Py, (U),
(ii) it holds for every n € M that I'({h1, he, ..., hn}) < n, and

(ii) it holds for every I € Po(H) that P1B = PrB%Bu,,, -

37



Proof of Lemma[5.2. Throughout this proof let I': Py(H) — N U {oo} be the function which
satisfies for every I € Py(H) that

I'(I) = inf({n € N: [ker(PrB)]*" C Py, (U)} U {oc}). (168)
Observe that for every n € 91 it holds that
[ker (Phy ho..ny B)" = Pu, (V). (169)

Moreover, note that for every I € Py(H) there exists n € M such that I C {hy, hy, ..., h,}. This
ensures that for every I € Py(H) there exists n € 9t such that

ker (Phy ha,....hay B) C ker (PrB). (170)

.....

This and (I69) imply that for every I € Py(H) there exists n € 9 such that
ker(PrB)) € %o, (). ()

Therefore, we obtain that for every I € Py(H) it holds that I'(I) € 91. Combining this, (I68]), and
(I69) establishes items (fl) and (). Moreover, note that item () implies that for every I € Py (H)
it holds that

PrB = P BBy, (172)
This implies item (fi). The proof of Lemma is thus completed. O

Corollary 5.3. Assume Setting[1.2, let (H, (-, )u, |||l;) be a non-zero separable R-Hilbert space,
let (U,(-,-)u,|ll;) be a separable R-Hilbert space, let M = [1,dim(H)] NN, let (hy)nvem € H
be an orthonormal basis of H, let T € (0,00), B € HS(U,H), let B € L(H,U) satisfy for every
v € H, ueU that (Bu,v)y = (u,Bv)y, let (Py)yem € L(H) satisfy for every N € ¥, v € H
that Py(v) = SN (B, ) gh, for every N € M let Uy C [ker(PyB)]*- be an orthonormal basis
of [ker(PyB))t, assume for every N € (M\{sup(MN)}) that Uy C Upnyy, let (Bn)nvem S L(U)
satisfy for every N € M, u € U that Pyu = Yy (W, Wy, let (Q, F,P) be a probability space,
let (Wy)ieor) be an Idy-cylindrical Wiener process, and for every N € 9 let WY [0,T] x Q —
Pn(H) be a stochastic process with continuous sample paths which satisfies for every t € [0,T]
that (WNe ey iy = [y PxB dW,. Then

(i) it holds for every N € N that PyBBn = Py B,
(ii) it holds for every N € M, t € [0,T] that [W¥]p sipy ) = fot Py BBy dWs, and
(i) it holds for every N € M that (W )iejor) is a (P BB|pym))- Wiener process.

Proof of Corollary[2.3. Throughout this proof let (F;):cjo,r) be the normal filtration generated
by (Wi)icpo,r)- Observe that Lemma (with H =H, U =U,%"=MN h, = h,, B =B,
Pt ho,oohny = Pn, Uy = Uy, Pu, =B, for n € M in the notation of Lemma [5.2)) ensures that for
every N € M, ¢t € [0,7] it holds that

PyB = PyBPy. (173)

This establishes items () and (). Combining (I73)) and, e.g, [49, Lemma 3.2] (with H = Py(H),
U=U,T=T, Q= 1dy, (Q,F,P, (Z:t)te[o,T]) = (Q, F,P,(Fe)icpor1), We)eeor] = We)eepom,
R = (U > uw PyB(u) € Py(H)), Wi)tep) = (W )ieppr for N € 9 in the notation of [49,
Lemma 3.2]) establishes item (). The proof of Corollary is thus completed. O
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Lemma 5.4. Assume Setting [[.3, let T € (0,00), 8 € wp, B € [0,12), v € [0,Y2 + B),
B € HS(U,Hg), F € M(B(H,),B(H)), D € B(H,), let (2, F,P) be a probability space with
a normal filtration (Fy)icpr), let (We)icjor be an Idy-cylindrical (IFy).cio.11- Wiener process, let
£ € M(Fo,B(H,)), I € Py(H), P € L(H) satisfy for every x € H that P(z) = ), ,;(h,x)xh,
let W: [0, T] x Q2 — P(H) be a stochastic process with continuous sample paths which satisfies for
every t € [0,T] that DWilp spimy = fot PBdW,, and let X: [0,T] x Q — P(H) be an (Fy)icjo.1-
adapted stochastic process which satisfies for every t € [0,T] that Xog = P and

[Xt]lP’,B(P(H)) — [e(thtJe)AXLtJG + ]1D<XLt49) e(thtJe)APF(XLtJe)@ . '—t—'eﬂpﬁ(}:([{))
S, Ip(Xer,) =04 PB WY, (174)
- :
1+ || fme PBdW,|%

Then there exists an (Fy)icpo,r-adapted stochastic process X: [0,T] x Q@ — P(H) with continuous
sample paths which satisfies that

(i) it holds that Xy = P¢,
(11) it holds for every t € [0,T] that

(Wt - WLtJ@)

X, — (t*LtJQ)AX 1A(X (t—rtag)A PF(X t— Lt
A Lty D( Lth)e ( Lth)( L JG) + 1+ ”Wt _ WLthH%{

, (175)

(111) it holds for every t € [0,T] that
[Xlespany = [ 2X,, + 1p(Xy,) AP E(X,,) (- LtJG)]RB(p(H))
jjm 1p(X.,,)et)APBdW, (176)
t 9
1+ thJe PBdW,|%

and
(iv) it holds for every t € [0,T] that P(X; = X;) = 1.

Proof of Lemma[5.7. Throughout this proof let X: [0,7] x © — P(H) be the stochastic process
which satisfies for every t € [0,T] that Ay = P¢ and

(Wt - WLth)
L+ Wy = WalH ]

Note that the fact that for every s € [0, T] it holds that [s,T] x H > (t,z) — e**)4z € P(H) is
continuous, the fact that ¥ has continuous sample paths, and (I77)) ensure that X has continuous
sample paths. Moreover, observe that the assumption that (IF;);co,7] is a normal filtration and
the assumption that for every ¢ € [0,77] it holds that DWi|e gy = fot PBdW, show that W is
(F¢)iepo,m-adapted. Combining this, (I77), the fact that £ € M(FFy, B(P(H))), and the assumption
that (IF¢).cjo,7) is a normal filtration therefore shows that X' is (IF;)cjo,r-adapted. This, (I77), and
the fact that X has continuous sample paths establish items (i) and (iil). Next note that the fact
that X is (Fy).epo,r-adapted ensures that for every ¢ € [0, 7] it holds that

(Wt . WJJ@) B ffme ILD(X\_t49> e(tﬂ_tw)APB AW,
L+ We = Wy ) 5 sipny L+ [, PBAW|3

Xy =0y (X)) e TN PR(XL ) (t— Ltag) +

(177)

1p(X,,)elt-t04 (178)

39



Combining this and (I77) demonstrates that for every ¢ € [0,77] it holds that
[Xilp.spa) = [ X, + 1p(X,) e HAPE(X,, ) (E — ‘—tJG)]P,B(P(H))

[ 1p(Xy,) e 04 PB AW, (179)
’ |
L+l [, PBAW|%

This establishes item (iill). Moreover, observe that (I74]), (I79), and item (i) assure that for every
t € [0,T] it holds that
P(X, = X,) = 1. (180)

This establishes item ([v)). The proof of Lemma [5.4] is thus completed. O
Corollary 5.5. Assume Setting (5.1 Then

€ 0,12
Sup@EwT Sup[EPo(H) SuptE[O,T] E |:eXp (ez(b—i_”B”%IS(U,H))T HXt ”H):| < 00. (181)

Proof of Corollary[2.3. Throughout this proof let ¢ = 2max{ea, €| Blusw,m),€, Vv, 1}, let N =
[1,dim(H)] NN, let h, € H, n € N, satisfy for every m,n € N that h,, # h, and H={hy: N €
M}, let Uy C [ker(Py,3B)]* be an orthonormal basis of [ker(Py,,3B)|*, for every n € (]2, 00) NN)
let U, C [ker(Ppp, hs,...n,} B)]~ be an orthonormal basis of [ker(P, p,...,

let U C U be an orthonormal basis of U with U D U,enU,, let P, € L(U), I € P(U), satisty for
every I € P(U), u € U that Pru = Y, (u,u)yu, and let X%"7: [0, 7] x Q — P;(H), 0 € wr,
I € Py(H), J € Po(U), be (Fy)ico,r-adapted stochastic processes which satisfy for every 0 € wr,
I € Py(H), J € Po(d), t €[0,T] that X5" = P& and

(X0 Tese = [T AREL - Lpr (R TP (XD (= Lt0)] b sy

o1 s

[ 1pe (&%) elt—t0Ap, BR, dW, (182)

Ltig 0|7 Lt

L[| [, PrBR, W%

Observe that Lemma 54 (with T =T,0 =60, 8 =8,v=~, B=BY;, F =F, D = D|{9\T7
(Q>~F7 ]P)) = (Qva P)? (Ft)tE[O,T] = (Ft)tE[QT}v (Wt)tE[O,T} = (Wt)te[QT}a 5 = 57 I =1, P =P,
X0 = X057 for § € wyp, I € Py(H), J € Py(U) in the notation of Lemma [E.4]) ensures that
there exist (IF;);e(0,r-adapted stochastic processes X57: [0, T] x Q — P;(H), 6 € wr, I € Py(H),
J € Po(U), with continuous sample paths which satisfy for every 6 € wy, I € Py(H), J € Po(U),
t € [0,T] that X"/ = P& and

(e seryany = [0 4 Ly (KT TP (XL (= )]y

Ltag

[ 1pe (XGE)elt—t0A P B, dW, (183)

Ltag 16l Ltag

L+ || [, PrBBs dWL|%

Next note that Lemma 5.2 (with H = H, U =U, N=N, h, =h, H=H, B= (U 3 u —
B(u)e H), Pr=P;,U,=0,, B, =P, for I € P(H), n e N, J € P(UpenU,) in the notation of
Lemma[5.2)) assures that there exists a function I': Py(H) — 9% which satisfies for every I € Py(H)
that

PiB = PrBBuy - (184)
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Combining (I67) and (I84) demonstrates that for every 6 € wy, I € Py(H), ¢ € [0,T] it holds
that

0,1 Lt 0,1 0,1 Lty 0,1
[Xt ]IRB(PI(H)) = [e(t ! Q)AXLth + ]]‘DI (XLtJQ) (t ! O)AP F(X'LtJ@)( LtJe)]]P’,B(PI(H))

thtJe ]]'DI (Xftfe) (t Hoo APIB"BUF(I) dWS (185)

1017

1 _'_ ” thJ@ PIBm[UF(I) dWSH%{

This and (I83)) ensure that for every 0 € wy, I € Py(H), t € [0, 7] it holds that

X0 = x0 U, (186)
In addition, note that for every I € Py(H), h € (0,7 it holds that
Dy, € {v € Pi(H): ||Blusw.m + ellvlly < vh™} € {v € He ||Blusw.m +ellvllf < ch™}. (187)
Furthermore, observe that for every I € Py(H), h € (0,T], z € D} it holds that
max{[| PrE() ms || PrBBup ) msw,m} < max{|[PrE () ||a, || Bllusw,m} < vh™ < ch™®. (188)

Moreover, note that the fact that for every I € Py(H), h € (0,7] it holds that D} C Pr(H)
demonstrates that for every I € Py(H), h € (0,T], z € D! it holds that

(@, PrF () = (@, F(2)) y < a +0||z|[7. (189)

Combining this and (I85)-(I88) with [49, Corollary 3.4] (with H = H, U =U, H=H, U = U,
A=0, A=AT=T,v=706=¢, (OLF,P(Foepmn) = ,F, P, (Fcpo,n) (VVt)te[OT} =
Wi, E =& F=F, B=(H,>xw~— B e HSU,H)), DY = DI P = Py, Py = B,
v = |]BHIQJS(U7H), by=a,bp=be=¢c¢=c¢ c=c YOOI = X007 for § € wp, I € Py(H),
J € Po(U), h € (0, T] in the notation of [49, Corollary 3.4]) shows that

0,1
N
(b+€”B” S(UH))t

In addition, note that the fact that e < 1 assures that for every ¢ € [0, 7] it holds that

SUDpe oy SUP 7P, (1) SUPse (0.7 E < 00. (190)

€ € €

2 BT ) = 2O Bl T = 20 Bl T (191)

This and (I90)) establish (I8I)). The proof of Corollary 5.5l is thus completed. O
Corollary 5.6. Assume Setting[5.1 and let p € (0,00). Then it holds that

SUP 1Py (1) SUPoec SUPte(0,T] ||Xf’l||£P(IP’;H) < 00. (192)

Proof of Corollary[2.8. Throughout this proof let N € ([5,£41)NN). Observe that Corollary 5.5
shows that there exists M € [0,00) such that for every 6 € wr, [ € Po(H), t € [0,T], ¢ €
(0, eexp(=2(b + || Bllfiswry)T)] it holds that

E [ exp(e]XP|13)] < M. (193)
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In addition, note that Young’s inequality ensures that for every = € (0,00) it holds that

272 = gNDN=/2) pN@/2=N+1) < (N 2YN=L (2 N 4 1)V

N-1 - (194)
< N2Vl = (V) (&5 + 57) < (Ve
Therefore, we obtain that for every 6 € wr, I € Py(H), ¢t € [0,T] it holds that
E|[£1%073 7] < (V)R [exp(elXI113)]- (195)

This and (I93) imply that there exists M € [0,00) such that for every 6 € wy, I € Po(H),
t €[0,T], e € (0,eexp(=2(b + || Bll3ig(p.1))T)] it holds that

P v
(B[leit 3, 7]) ™ < (. (196)
This completes the proof of Corollary (.6 0J
Corollary 5.7. Assume Setting [5.1), let p € (0,00), m € [0,Y2+ ), na € [m, Y2+ ), ¢ €
(M9, Y2+ B), a1 € [0,1 —m1), az € [0,1 — 1), and assume that E[||§||4max{p 1}] < oo and
F(v I1F@)_, I1F@)m_,
SupveHmax{W o} 1|L_”(U”)JT|{H :| + [SupveHmax{w m} W] + [SUpveHy w < 0. (197)
Then it holds that
0.1
SUDpew, SUPrep, (1) SUPte[0,1) X ||£P(1P’;HL) < 0. (198)

Proof of Corollary[5.77 Throughout this proof let (Gy)icpo,r7 be the normal filtration generated
by (Wi)ieo.r), let U be an orthonormal basis of U, and let O%': [0,T] x @ — P;(H), 0 € wr,
I € Py(H), be stochastic processes which satisty for every 6 € wr, I € Py(H), t € [0,T] that

t
01 = XU — (*pi+ [ 1y (U MREX ) as). (199)

0|7 LS9 LS9

Observe that [45, Corollary 3.1] (with H = H, U =U, H=H,0o=0, A=A, =03,T=T,
(AQJ:,IP, (Fo)ecor) = (2, F, P, (Goecpo,r), We)epr) = Woltepor, B = B, U = U, P = Fp,
Py = dy, 9 = ((0.7) x 05 (t.6) = Lpy (X)) € [0.1]), O™ = 0%, p = max{p. 1}
v = for 0 € wr, I € Py(H) in the notation of [45 Corollary 3.1]) shows that

SUDge oy SUD sy (i) SUPtejo 71 1O || pmaxtony g,y < 00 (200)

Next note that Corollary 5.6 (with p = 8 max{p, 1} in the notation of Corollary B.6]) proves that

0,1
SUPpew, SUP1ep, (1) SUPte[0,1) [p® ”ESmaX{Pvl}(]P’;H) < o0. (201)

Combining this, (I97), and (200) with, e.g., [47, Lemma 3.4] (with H = H, H = ]HI, b =0,
T ]]_D\IO\ (x)PF(z) € H),k=([0,T] >t Lt €[0,T]), Z = ([0,T] XQ > (t,w) — Xftw( ) €
T

H,), 0 = ([0,T] x Q3 (t,w) = OP (W) € Hipp), Y = ([0,T] x Q > (t,w) = XV (w) € H),
p=max{p, 1}, p=m, N =1, Lt =1, A1 = a1, g = 3 for € wyp, I € Py(H) in the notation
of |47, Lemma 3.4]) shows that

0,1
SUDpe o SUP 1, (1) SWPsefo,7) 1K (| macin 1y o,y < 00 (202)

Holder’s inequality therefore establishes (I98). The proof of Corollary 5.7 is thus completed. O

42



5.2 Strong error estimates for tamed-truncated Euler-type approxi-
mations

In this subsection we establish the main result of this article in Theorem below. To do so, we
first prove an elementary exponential moment estimate in Lemma[5.8 Combining Corollaries 5.5+
B Lemma (.8, and [45, Corollaries 3.2-3.4] allows us to apply Proposition to derive in
Theorem strong convergence rates for the numerical approximations (Xf’l)te[o,ﬂ, 0 € wr,
I € Py(H), (see ([2I12) below) for a general class of semilinear SPDEs with additive noise and a
possibly non-globally monotone nonlinearity. Moreover, in Corollary [5.10] we briefly present and
prove a simplified version of Theorem [5.9

Lemma 5.8. Assume Setting[L3, let T € (0,00), B € HS(U, H), let (Pr)rep,ny € L(H) satisfy
for every I € Py(H), v € H that P(v) = >, (h,v)gh, let (,F,P) be a probability space,
and let (Wy)ecpo,r) be an Idy-cylindrical Wiener process. Then it holds for every t € [0,T] with
2t[| Bl < 1 that

| [ et==)AP;BdWs|?2 2
SUPep, (i) E[e o ! ] < =41B s (203)

Proof of Lemma[528. Throughout this proof let U C U be an orthonormal basis of U, let (IF;):cpo,1
be the normal filtration generated by (W)iepory, and let OT: [0,T] x Q — P(H), I € Py(H),
be (F;)tcjo,r-adapted stochastic processes with continuous sample paths which satisfy for every

I € Po(H), t € [0,T] that [Of]esep,my) = Jy Pre® 4B dW,. Observe that for every I € Py(H),
t € [0,T] it holds that

t t
[OtI]P,B(PI(H)) = |:/ AOi ds} +/ PrBdW,. (204)
0 P,B(Pr(H)) 0

[t6’s formula therefore shows that for every p € [2,00), I € Py(H), t € [0, 7] it holds that
t
+ [ plOkIE Ok B W

P,B(R) 0

[/Z POl Bullf; + p(p — 2) L0120, 101 {07, Bu)ul?] ds - (205)

t
1072 Je s = [ [ o ||f;;2<o£,Ao§>Hds]

Moreover, note that the Burkholder-Davis-Gundy-type inequality in Da Prato & Zabczyk [23),
Lemma 7.7] proves that for every p € [2,00), [ € Py(H), t € [0,T] it holds that

t
/0 E[|O1H (U > u— (OL, B(w))i € R)|Aswm) ds

t
1) 2 1)
< [ RO 1B sem] ds = I1BlFiswosm / |02 ey s
0

(r-1)

t
< 1Blswosm [ [(p—1><2p—3>J<p”[ A ||Pfe<“>AB||%IS<U,H)du] s (206)
0 0

(p—1)

t S
< 1BBisa | [<p—1><2p—3>]<p”[ / He““MH%(H)HBH%SW,H)du} s

(p—-1)

< 1B lto - D=3 [ ][] s <o
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Combining (208), the fact that for every z € H; it holds that (z, Ax)y = —Hx”qu < 0, Cauchy-

Schwarz’s inequality, and Tonelli’s theorem therefore implies that for every p € [2,00), I € Py(H),
t € [0,T] it holds that

E[|O; 7] < 1E[/ > [PIOE I Bullf + p(p = 2)Lior0, |05 2 | Bull?] dS]

uelU

= 11BlBsmE]| / IO+ 00— 2ot OL11 ] ]

¢ ¢
) —2 p(p—1)||1B|1? )
- %HBH%{S(U,H)/O E[pllOfl[ " + p(p — 2N0L5 7] ds = ———=40 HS(U’H)/O E[[|Of|[5 7] ds

(207)
This ensures that for every I € Py(H), n € N, ¢, € [0,7] it holds that
2n(2n—1)|BI} 0 2(n—1)
Bljo, 1) < 22w Mg [jofe) g,
(208)
< .||B||HS<UH) / / / b dty dty — )”fi':ﬁ(”)t"

Moreover, note that for every € [0, 00) it holds that e* <23 © 7;, (see, e.g., Hutzenthaler et
al. [43, Lemma 2.4]). Combining this, (208), Tonelli’s theorem, and the fact that for every n € N
it holds that (4n)! < 24*[(2n)!]? implies that for every I € PO(H), t € [0, 00) with 2t|| B|[fg sy < 1

it holds that
E 6||f5e<‘—S>APIBdWs||%;] — E[l0f] < 2E[Zw, ] QZM E[IIOIII

(4n)!|| Bl n n
<oy LRt <93 Bl (209)
ZQZn: 4||B||HS U,H) tz) 12

This completes the proof of Lemma [5.8 O

Theorem 5.9. Assume Setting [I.3, let T,v € (0,00), ¢ € (0,Y18), a € [0,00), C,c,p €
[1,00), B € [0,%2), v € [26,1/2 + B8) N (0,00), 6 € (v — Y2,7) N[0,00), £ € [0,7] N
[071/2+6_7+5): o = 0, o,V [ 1/2+6) S [77171/2+6): ap € [071_7]1)7
az € [0,1 —m), a3 = 0, B € HS(U g), € € (anXP(— (@ + 1Blisw.m)T)]. € €
0, & T €XP(— (a+HB”%{S(U,H))T>mln{€eXp( (a’_'_HB”%{S(U,H))T) V(8 max{|| Bl y, 1} max{T:1})2}),
F e CI(H%H); e M(B(HW),BGO,OO))), (D}i)hE(O,T},Ie’PO(H) - B( ’Y): let ©: H — [0,00)
be a function, let (Pr)repmy € L(H) satisfy for every I € PMH), x € H that Pi(x) =
Sonerlh,x)yph, assume for every I € Py(H), h € (0,T) that D}, = {v € P(H): r(v) < vh™*}
and (Pi(H) 2 v — ®(v) € [0,00)) € C(P(H),[0,00)), assume for every I € Py(H),
h € (0,7, = € Dj that max{||PrF(x)|u, || Bllusw,m} < Vh™, assume for every I € Py(H),
z,y € Pi(H) that || Bllusw.m + elzllf, < r(x) < C(L+ [l2llF,), (=, F(x)n < a(l + [z[l7),
(F'(zx)y,y)m < (e Hngl2+C)HyHH+HyHH1/2 1P (F ()= Fy)lla < Clle—yllu; {5, +yliE,),
(z, Ax + Fz +y)u < ©(y) (1 + [|z]l7,), and

t2||B||HS(U,H)'

2

IPs POl IF @),

[SupJGPO(H) SUDue P, (1) T30l ] +2 [S‘lpveHmaxﬁ - Wg]n“] < 00, (210)
1=0 B
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let (2, F,P) be a probability space with a normal filtration (Fy)wcpor), let (Wiepr be an
Idy-cylindrical (Fy)ieo,r- Wiener process, let & € L3ema{0=0/SI(P|g « Hyaxtnowny) Satisfy
Elexp(e||&]|7)] < oo, let X:[0,T] x Q@ — H, be an (Fy)ieor)-adapted stochastic process with
continuous sample paths which satisfies for every t € [0,T] that

t t
(X Je5001,) = {e“u / eI R(X,) ds] + / AR W, (211)
0 P,B(H-) 0

and let XO1: [0,T] x Q — Py(H), 0 € wy, I € Po(H), be (Fy)ieo.r-adapted stochastic processes
which satisfy for every 0 € wy, I € Py(H), t € [0,T)] that X5 = Pi& and
0, Lt 0 0 Lt (%
[Xt I]P,B(PI(H)) = [e(t ! Q)AXLtig + ]]‘DI (XLtfg) (bt Q)AP F(XLtig)( I—tJe)]]P’B(PI(H))
t 07 Lty
I, ILD‘IG‘T(XJ;) e<t Lo)A P B dW, (212)

t
L+ [, PrBAW,||%

Then there ezists ¢ € R such that for every 6 € wr, I € Py(H) it holds that
supyepo ) 1% = X0 o) < ¢ (Il Pane (—A)° |y + [1012]7°). (213)

Proof of Theorem[5.9. Throughout this proof let p € (0, 00) satisfy that

2(a+| Bl )T 1 —2(a+1Bllfs v, )T 1
epe it < p < gy min e T T (214)
Note that Lemma (4] (with 7" =T,0 =60, 6 = 3, v = v, B = B, F—FD—D{G‘
(Q7‘F7]P)) = <97F7P)7 (Ft)tE[O,T] = (Ft)tE[OT (Wt)tGOT} = (Wt)tEOT E - é I = [ P = P17
X = X% for 6 € wy, I € Py(H) in the notation of Lemma [5.4) proves that there exist (Fy)sejo7)-
adapted stochastic processes X%1: [0,T] x Q — P;(H), 0 € wy, I € Py(H), with continuous
sample paths which satisfy for every 6 € wr, I € Py(H), t € [0,T] that IP’(th’I = X?’I) =1 and

[Xte’I]RB(Pz(H)) = e “ LtJe)AXL@tfe ™ HD" <Xftfe) o dp (Xfmle)< LtJ@)]p,B(P,(H))
" Tpr (X51)eltmt0A P B aw, (215)

Ltag 10l Ltag

L+ | [, PrBdW|%

Next let O%': [0,T] x Q — Pi(H), 6 € wr, I € Py(H), be stochastic processes which satisfy for
every 0 € wr, I € Po(H), t € [0,T] that

t
Of,[ _ XtG,I _ (etAP1§+/ ]]-DI (XGI) (t— LSJQ)AP F(Xel )d ) (216)

10| LS9 LS9

We intend to prove Theorem (.9 through an application of Proposition (with a = v — 4,
L=rv—08, X0 = x0 0% = Q% for § € wy, I € Py(H) in the notation of Proposition E5)). For
this we now verify the hypotheses (I44)-(148)) in Proposition Observe that (215]) and (216
imply that for every 6 € wr, I € Py(H), ¢ € [0, 7] it holds that

t 0,1 —Lta
f\_th HD‘IQ‘T(XLtJQ) e(t t Q)AP[B dWs

(t—Ltg AO - ;
L+ % PBaW,l,

(217)

0.1
(O b8P, (1)) = [e O Te B ) +
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This and [45, Corollary 3.2] (with H = H, U =U, H=H, 0 =9, A=A, =0,T =T,
(Q,]—“, P, (Ft)te[O,T}) = (Q,]—“, P, (Ft)te[O,T])a (VVt)te[O,T] = (VVt)te[o,T}, B = B, Pr = P, Py = Idy,
XY= (0.T)x Q5 (tw) = Ip, (4 () €[0,1]), 0%V = O, p=dp y=06,p=7-15
for 0 € wyp, I € Py(H) in the notation of [45, Corollary 3.2]) show that there exists € € R which
satisfies that for every 6 € wr it holds that

SUP ey () SUPsefo.r) 05" — OFL, lcwepiny) < €[10]7]7". (218)

Moreover, note that the fact that v < 1/2 + 3 ensures that there exists an (IF;)cjo,r-adapted
stochastic process O: [0,T] x Q@ — H, with continuous sample paths which satisfies for every
t €10, 7] that

t
[O:]p 52, =/ =B W, (219)
0

(cf., e.g., [47, Lemma 5.5]). Next let O7: [0,T] x Q — P;(H), I € Py(H), be stochastic processes
which satisfy for every I € Py(H), ¢t € [0,7] that

O! = P0,. (220)

Observe that (220) and Hélder’s inequality imply that for every 6 € wy, I,J € Po(H), s € [0,T]
it holds that

E[exp(pl| X" — O + Of + e Pry s3]
< E[exp(4p([127 17 + 1027117 + 02117 + 11€117))] (221)
< [Efexp(16p]|2|[3)] Elexp(16p]| 027 [3)] Elexp(160] O |3)] Elexp(16o]l€ 3] 7"

Moreover, note that the assumption that for every I € Py(H), x € P;(H) it holds that
Bl + ellally < () < O+ o) (229)
and the assumption that for every I € Py(H), h € (0,T] it holds that
Di ={ve P(H): r(v) <Vvh™°} (223)
ensure that for every I € Py(H), h € (0,77] it holds that
fv e Pi(H): C(+ [ol,) < V™) € DL C {u € Pr(H): | Bllascm + llolfy < v~} (224)
Combining this, the assumption that for every I € Py(H), h € (0,T], z € D} it holds that
mas{[| PP (@), | Blluswn} < vh~, (225)

the assumption that Elexp(e||£||%)] < oo, the fact that & € M(Fy, B(H,)), the assumption that
for every I € Py(H), x € P;(H) it holds that

(z, F(2))r < a(1+ [l2]), (226)

the fact that 16p < eexp(—2(a + || Bl|fgw.my)T): @1H), and Corollary (with T =T, a = a,
b=a,v=v,c=¢e=¢3=8,v=~B=B,F=F,Dl =D} Pr=P, (Q,F,P)=(Q,F,P),
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(Ft)te[o,T} = (Ft>te[0,T]a (Wt)te[o,T} = (Wt)te[O,T}a § =&, X0 = X% for 0 € wr, I € PO(H)u
h € (0,T] in the notation of Corollary 5.5) proves that

SUDgecw, SUP jep, (H) SUPse(o,T) E[exp(16p||é\ff"]||§{)] < 0. (227)

In addition, note that the fact that 16p < 1/(smax{||B|3gs . 1} max{7,1})?, [217), and [45, Corol-
lary 3.4] (with H =H, U=UH=Hov=0, A=A 38=038,T=T, (OQF,P,(Ft)wcpr) =
(% F, P, (F)icpr1); Woiepr) = Wiiepry, B = B, Pr = Pr, Py = 1dy, x*'Y = ([0,T] x Q >
(t,w) — ILD‘IQ‘T(XtG’I(w)) € [0,1]), 0%V = Q%1 ¢ = 16p for 0 € wy, I € Py(H) in the notation
of [45, Corollary 3.4]) assure that

SUPgewmy SUP jepy(H) SUPse0,T7 E[exp(16p||0§"]||§{)] < 0. (228)

Furthermore, note that Lemma (with T =T, B = (U 3 v — 4,/pBu € H), P = Py,
(Q,F,P) = (,F,P), W)icpr) = (Wi)iep for I € Py(H) in the notation of Lemma [5.8)) shows
that for every I € Po(H), s € [0,T] with 32,05||B||12HS(U7H) < 1 it holds that

Elexp(16p]|0;7)] < (229)

2
1-1024p%2(| Bllys (17 1y~

Next observe that the fact that for every x € [0,00) it holds that z < 2e” implies that
4T||B||%IS(UH) < 26 T1Bliswm . This shows that 2T||B||I2_IS(UH)6_4T”B”I2“IS(U,H) < 1. Therefore, we
obtain that

2 32T Bllfis iy —2T(a+|BII2 ) 2 —4T(a+||B|2 )
32/)T”BHHS(U,H) < ——WH . isw,m) < QTHBHHS(U,H)e HS(U,H)

o 2 (230)
< 2T||B||1213(U,H)6_4T”B”HS<U’H> < 1.
This and (229)) imply that
SUD e py 11) SUPsefo,7) Blexp(16p]|Og[7)] < oo. (231)

Combining this, (221)), [221), ([22]), the assumption that E[exp(¢||£||%)] < oo, and the fact that
16p < € demonstrates that

SUPr jePy(H) SUPoew SUPse0,T] E[GXP (pHXse’J - O?J + Os{ + GSAPI\JéuH%{)} < 00. (232)

Next observe that the fact that & € £32PematO=0/SIH (P H, 0, 01), the fact that

I POl IPO_, ,
SUPE s T |+ | POy ToToTy, |+ | SWPoert, oo | <00 (233)

the assumption that Elexp(e||¢]|3)] < oo, @2IH), [224)-(220), the fact that e < exp(—2(a +
I Bllfisw,my)T), and Corollary B7 (with T =T, a =a,b=a, v=v,c=¢, e=¢, =, 7 =7,
B = Ba F = F7 D]{, = D]{,u PI = PI7 (Qufu IP)) = (Qufu IP))7 (Ft)tG[O,T} = (Ft)tE[O,T}a (Wt)tE[O,T} =

(Wohepory, € = & XOT = &% p = 8pemax{G=9/c, 1}, m = my, m2 = n2, ¢ = max{mp, 0,v,7},
a; = aq, ag = ay for h € (0,T], 0 € wr, I € Py(H) in the notation of Corollary [5.7]) prove that

0,1
SquEWT Supjefpo(H) Supte[oﬂ"} ”Xt ”Lch max{(’y_é)/c’l}(]P);Hmax{nQ,o',V,'y}) < 0. (234)
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Combining this and the fact that SUD 1, (1) SUPwve P, (H) ((||PIF(U)||H7_5)/(1+||U||§{J)) < 0o shows that

0,1
SUPgecwm, SUPrep, (1) SUPte(0,T] | PrE (X, )”z:@cmax{wfé)/cyl}(P;Hy,é)

PF(v 235
S | sup - sup %} {1 + sup sup sup HXteJ”iBPcmax{(v—&/c,l}(]P’-HU) < 0. 25
IePy(H) vePr(H) Ho O€wr I€Py(H) t€[0,T) ’

This and (234)) assure that

SUPge o SUD ey a1y SUPeo.1) I PIE (X D | cwieiar, ) + |1 PIF () v, )] <00 (236)

and

0,1 0,1
SUPrep, () SUPgew, SUPte[0,1) [HXt ||£4PC(JP>;HR) + [| A ||L2max{4p<w—6)/<’1}(P;HU)} < 0. (237)

In addition, note that (222]) and (237)) prove that

0,1 0,1
SUD repy i1y SUPgecr SUPsepo.] 1 X: L core @iy + 17 (A8 ) | cant-s)/s oy | < 00 (238)

Moreover, observe that (224]) and Markov’s inequality ensure that for every 6 € wr, I € Py(H),
h € (0,77, t € [0,T] it holds that

0,1 _ 0,1
Hl B HD£<XLt49)”L4PC(P;R) - HILPI(H)\Di(XLtJe)Hz:4pc(P;R) < HH{C(1+I|Xft’f0||§{u)>vh—<} L4e(P;R)
< (PO A5 )17 > (vhms) o)
< (V)R BIC( A%, )1 ]) (239)
—\Y=9)/¢ — —9)/s 0, ( 76)/<
ol RO T CR VO (%l [ | s AR

e B B (v=9)
S ‘V‘ (6] 6)/§h7 50(7 6)/§(1 —'— ”Xft{(g”22max{4pc("/—5)/<71}(]P’,Hl,)) ’ /ql

Combining this and (237) demonstrates that there exists C € [1, 00) which satisfies that for every
0 € wp, I € Po(H), t € [0,T] it holds that

H 1 - ]lD‘IG‘T (X\igt’fe) ”£4PC(P;R

< Cll6l. (240)

This, (217), and [45] Corollary 3.3] (with H = H, U = U, H=H, v = v, A = A, § = 0,
T =T, (F,P(Fcior) = (,F P, (Foecpo,r), We)eepr) = Weeepr), B = B, Pr = P,
Py =Tdy, x\*"V = ([0,T] x Q> (t,w) — Lpi, (X7 (w)) € [0,1]), 0%V = Q% p = 4pe, C = C,
v =max{d,k}, n ==, p=7—-06, O :TO for 0 € wr, I € Py(H) in the notation of [45],
Corollary 3.3]) demonstrate that there exists ¢ € R which satisfies that for every I, .J € Py(H)
with I C J it holds that

sUPsefo 11 105" = OF [l core(®ittynungs,) < € (I1Pevs(=A) 7 [l + [012]7°). (241)

Moreover, observe that ([2I6) and the fact that (X")icjor], 0 € wr, I € Po(H), are (F)icfo 11
adapted stochastic processes with continuous sample paths ensure that (Of’l)te[o,T], 0 € wr,
I € Py(H), are (F;)icpm-adapted stochastic processes with continuous sample paths. This,
the assumption that for every I € Py(H), =,y € P;(H) it holds that (F'(x)y,y)ng <

(ell=llr, + OWMyllz + Iyl ,» 1P1(F (@) = F)lla < Clle = ylla; (1 + llellg, + lyl,), and
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(v, Az + F(z +y))m < @(y)(1 + [lz||%), the fact that ¢ < Zexp(—2(a + || Bl[fgp g))7T)- the fact

that & € L% (Plsy; Hunaxfyy), the fact that E[J|¢]5"] < oo, @15), @16), @13), @219,
223), 229), 232), [233), @234), 238), @241), and Proposition @5 (with T'=T, v = v, ¢ =,
a=y—bd,a=a,t=7—06,p=p, C=max{C,C, €}, c=c,p=p, F=0,7v=7,0 =0, k=K,
7’]1:7’]1,7’]2:7’]2,0(1:Ozl,()zQZOZQ,B:B,Ef:E,F:F,T:T,D{L:D{L,(I):(I),P]:P[,
(L F,P) = (@, F,P), (Fo)epor) = Fo)icpor), Wileepr) = Wiepr), € =& X =X, 0 =0,
X0 = x0%1 0% = Q% for § € wy, I € Py(H), h € (0,T] in the notation of Proposition EH)
therefore establish (2I3). The proof of Theorem is thus completed. O

Corollary 5.10. Assume Setting [I.3, let T € (0,00), s € (0,/18), a € [0,00), C,¢c,p € [1,00),
(Cectomy € [:50), B € [0,3), 7 € [26,12+ 8) N (0,00), 8 € (3 — 12r7) (1 [0,00), 1 €
[077]ﬂ[07 1/2+ﬁ_7+5)7 Mo = 07 o,V,m € [07 1/2_'_6)7 UPRS [7]17 1/2_'_6)7 ap € [07 1_771)7 Qo € [07 1_772)7
a3 =0, Be HS(U, Hp), F € C'(H,, H), let ®: H — [0,00) be a function, let (Pr)iepm € L(H)
satisfy for every I € P(H), v € H that Pr(x) = Y, (h,x)gh, assume for every I € P(H)
that (Pi(H) 2 v — ®(v) € [0,00)) € C(P;(H),[0,00)), assume for every I € Py(H), =,y €
Pi(H), € € (0,00) that (z, F(z))y < a(1+|lz|[7). (F'(x)y,y)u < (Ell2ll,, + Collyll + 1yl ,
1)~ F@l < Clle a0+ el + ). (e, Az + Fla+ ) < 2(0)(1+ Jalfy), and

2
PyF(v 1Py F@)lla, IF@a_,,
SUD jepo (1) SUPveP; (H) {”1.‘i||v(||2i,”f+ E 6}}*2 [Supvemeh,m —1+||v||%,n,+l] < 00, (242)
=0 S

let (2, F,P) be a probability space with a normal filtration (Fy)wcpor), let (Wi be an
Idy-cylindrical (Fy)iepo,r- Wiener process, let & € L3ema{0=0/SI(P|g « Hyaxtn owny) Satisfy
inf e (0,00) Elexp(e]|€]|7)] < oo, let X:[0,T] x Q@ — H, be an (Fy)ieo.r1-adapted stochastic pro-
cess with continuous sample paths which satisfies for every t € [0, T that

t t
(X )e 5001, = le“‘§+ / IAR(X,) ds} + / AR AW, (243)
0 P,B(H~) 0

and let X% [0,T] x Q — Pr(H), 0 € wr, I € Po(H), be (Fy)iepo,r-adapted stochastic processes
which, satisfy for every 6 € wr, I € Po(H), t € [0,T] that X' = P& and

0,1 _ t—Ltg) A~y 0,1 t—Ltig)A 0,1
[X't ]P7B(PI(H)) = |:e( 9) X\_tJQ + 1{1+||X9£i6”?V-IVSHG‘T]_(}e( 9) PIF(X\_tJQ)(t - LtJ@)}P,B(P](H))

t (t—Ltag)A
Joo Tioixsy 2, <iotg <y PrB AW,

t
L+ | [, PiB W%

(244)

Then there ezists ¢ € R such that for every 6 € wr, I € Py(H) it holds that
supyeio 1) |1 X — X0 | oy < (|| Pene(—A)° 7 nany + [1017])70). (245)

Proof of Corollary[510. Throughout this proof let D} € P(H), h € (0,T], I € Py(H), be the sets
which satisfy for every I € Py(H), h € (0,T] that

Dy ={veP(H): 1+ |3, <k}, (246)
let € € (0, exp(—2(a + || Bllfisw.)T)]; € C € (0, 00) satisty that
C = max{C., 1} max{||B|lus(w,m, 1} max{||(=A) ||, 1}

. (247)
+ max{ SUpP jep, H) SUPvep; (H) wa ||B||HS(U7H)}>
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exp(—2(a+||B||%IS(U’H))T) . 2 1
< To mln{e exp(—2(a + ||B||HS(U,H))T), G a8 gy r) 1) max(T 112 }, (248)

and Elexp(e||€]|3,)] < oo, and let r: H, — [0,00) be the function which satisfies for every v € H,
that

C(1 2 : Hppoxrw
o) = { A+ 1lv%) v € Huaxgun (249)

0 NS (H’y\Hmax{V,'y})-

Observe that, e.g., Becker et al. [5, Lemma 5.3] (with V = Huyaxpuqry, W = Hy, (S,S) =
([0,00), B(]0,00))), ¥ = r in the notation of Becker et al. [5, Lemma 5.3]) ensures that

r € M(B(H,),B([0,0))). (250)
Next note that for every @ € Hyax{y,y} it holds that

1Bl usw.m) + elloll; < max{|| Bllusw.m), et(1 + l|z[l)

s (251)
< max{||B|lus(w.m), €} max{||(=A) |5 L1+ [[2l7,) < CO+ |l2]lF,) = r(z).
Moreover, observe that for every I € Py(H), h € (0,7 it holds that
Di ={v e Pi(H): r(v) < Ch™*}. (252)

This, ([250), and, e.g., Andersson et al. [3, Lemma 2.2] (with V; = H,, Vi = P;(H) for I € Py(H)
in the notation of Andersson et al. [3, Lemma 2.2]) assure that for every I € Py(H), h € (0,77 it
holds that

D} € B(H.,). (253)

Furthermore, note that (246) and (247) imply that for every I € Py(H), h € (0,T], x € DI it
holds that

max{|| P F ()| m, | Bllasw,m}
P;F (v
< max{ (SupJePO(H) SUDyep; (H) Hli”v(H%ILH) (1+ ||x||§fy)a ||B||HS(U,H)} (254)

PjF(v _
< mavs sup e 5P LT | Bllusm (1 + 12l ) < OB~

Combining this, (242), [24]), 250)-(253), the fact that E[exp(e||£||%)] < oo, the assumption that
for every I € Po(H), x,y € P;(H) it holds that (F'(z)y,y)g < (5||2€||%,1/2 + C)lyll% + ||y||§{1/2,
(e F@)ar < a0+ 2l3), 1F@) ~ Pl < Clla— gl (1 125, + Iyl5.), and {z, A+ P(a+
y)a < ®(y)(1 + ||z]|%), and Theorem B9 (with T =T, v=C,c=¢,a=a, C =C, ¢ =,
p:p,ﬁzﬁ,"y:"}/,(;:(;,/‘f,:/{,'l']ozno,CT:CT,l/:l/,771:771,7]227]2,0412041,0[22042,
043:0(3,B:B,EZE,gzg,F:F,TIT,DI:D}IL,@:@,PIIPI, (Q,I,P)I<Q,F,P),
(Ft)te[o,T} = (Ft>te[0,T]7 (Wt)te[o,T} = (Wt)te[O,T}a §=¢§ X=X, X! = X% for 0 € wr, I € P(](H)u
h € (0,T] in the notation of Theorem [.9)) establishes (245]). The proof of Corollary is thus
completed. O
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6 Strong convergence rates for space-time discrete ap-
proximations of stochastic Burgers equations

In this section we illustrate Corollary 5.0 in the case of stochastic Burgers equations. For this we
combine some of the regularity results in [47] with Corollary 510 to prove in Corollary strong
convergence for the numerical approximations (X?’I)te[oﬂ, 0 € wr, I € Py(H), (see ([256) below)
of the mild solution of a stochastic Burgers equation with additive trace-class noise (see (255))
below). Finally, Corollary presents the findings from Corollary in a further simplified
setting.

Corollary 6.1. Assume Setting [1.2, let T,cq € (0,00), ¢c1 € R, ¢ € (0,/18), p € [1,00), B €
(0,1/2), v € ([max{Y/2,20},Y2 + B)\{Y/2,3/4}), let X\: B((0,1)) — [0,1] be the Lebesgue-Borel
measure on (0,1), let (H, (-, ) u, ||-[lz) = (L*(AR), () n2ar). | 2my)s let (en)nen © H satisfy
for everyn € N that e, = [(V2sin(nmx))sco.1))rsr), let H C H satisfy that H = {e,: n € N}, let
A: D(A) C H — H be the linear opemtor which satisfies D(A) = {v € H: > .°7 [n*(en, v)u|* <
oo} and Vv € D(A): Av = —co Y " w*n*(en, V) gen, let (He, () m, |I-llg ), 7 € R, be a family
of interpolation spaces associated to —A, for everyv € WH2((0,1),R) let Ov € H satisfy for every

C:;t(( ) ]R) that (61} [ ]AB]R))H = —<U, [QOI]A7B(R)>H, let B € HS(H, Hg), let F': HI/Q — H
be the function which satisfies for every v € Hy, that F'(v) = cv0v, let (Pr)repmy € L(H) satisfy
for every I € P(H), v € H that Pr(v) = Y, ., (h,v)y h, let (Q,F,P) be a probability space with
a normal filtration (Fy)icpor, let (Wi)wcpr be an Idg-cylindrical (Fy).eqo. - Wiener process, let
¢ € £3mad{=D/COI (Pl - H) satisfy infeeo,00) Elexp(el|€]|%)] < oo, let X:[0,T] x Q — H,
be an (Fy)icpo,m-adapted stochastic process with continuous sample paths which satisfies for every
t € [0,7] that

t t
[(XtlpBer,) = {e“‘5+ / IAR(X,) ds} + / AR AW, (255)
0 P,B(H-) 0

and let X%1: [0,T] x Q — Pr(H), § € wr, I € Po(H), be (Fy)iepo,r1-adapted stochastic processes
which satisfy for every € wyp, I € Po(H), t € (0,T] that X3" = Py(€) and

0,1 Ltag)A~Nr 0,1 Ltig)A 0,1
(X eB(pi () = [(t HOAXE, Laixty, i3, <loir)-)© AP R(XT,) (t— L)

t (t—Ltug)A
Sty et 1, <toir-o @ FrB AW

N t (256)
L+ | [, PrBdWill3
Then there ezists C € R such that for every 8 € wr, I € Py(H) it holds that
supreio ) [1Xe — X | zoeary < C (11 Pia (=)™ |y + [16]2]77). (257)

Proof of Corollary[61. Throughout this proof let ®: H — [0,00) be the function which satisfies
for every w € H that

2

3ler|? llull Loo (x;R) lulla 0\ m) 2 \2 .
(I)(’w) _ 8lco] SupueHl/Q\{O} ||u||H1/2 + SU.pueHl/Q\{O} 7”1”'%[1/2 (1 + ”U}HHI/Q) TWE H1/2
0 cw € (H\Hys,).

(258)
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We intend to prove Corollary through an application of Corollary 5. I0L For this note that,
e.g., [47, item (ii) of Lemma 4.13] shows that for every v,w € H, C H., it holds that

1E(0) = Fw)lln < Zg=ollm,, + lwllm)llv = wllm,,. (259)

In addition, observe that, e.g., [47, Lemma 4.19] and the fact that H, C H., continuously imply
that

(a) it holds that F € C'(H,, H) and

(b) it holds that there exists C' € (0, 00) which satisfies for every € € (0,00), v,w € H, C Hy,
that

(F'(wyv,v)i < ellwliy, lvlE + Sloll + vl ,- (260)

Furthermore, note that the fact that 0 < fy—% < %, the fact that v # %, and, e.g., [47, Lemma 4.20]
(with & = 7 — £ in the notation of [47, Lemma 4.20]) ensure that

||P1F(U)||H7_(1/2)
SUDP Py () SUPveH,\ {0} (W) < 00. (261)

Moreover, observe that, e.g., [47, Lemma 4.20] (with @ = 0 in the notation of [47, Lemma 4.20])
proves that

PrF(v
SUP 1P, (H) SupveHlm\{O}(W) < 00. (262)

In addition, note that, e.g., [47, Lemma 4.23] proves that for every I € Py(H), z € P;(H) it holds
that
(x, F(z))y = 0. (263)

Furthermore, observe that, e.g., [47, Corollary 4.22] (with a3 = ay, ag = ap for oy € (3/4,00), g €
(1/4,1/2] in the notation of [47, Corollary 4.22]) shows that for every ay € (3/4,00), ag € (1/4,1/2] it
holds that

F(v IF @&, IF@)a_,

SUPyem, ,\{0} W} + |:Supv€H1/2\{0} W] + |:Supv€H1/2\{0} ez | <o (264)
a2)/3

Moreover, note that, e.g., [47, Corollary 4.24] (with ¢ = /2, v = v, w = w for v,w € H.j, in the
notation of [47, Corollary 4.24 |) assures that for every v,w € Hij, it holds that

(v, F(v+w))g < w)(1+||vlz) — (v, Av)n. (265)

Combining this, the assumption that inf.e( o0) Elexp(e[|£]|7,)] < oo, items (@) and (b)), @219), [259),
an @T)-(25) with Corollary B0 (with (I, (V. [-1) = (. &, s |-l (0o 1) =

(H, (-, >H,||||H)]HI—H Uen:—coﬂn A—AH H T = Tg—g,a 0, C =

maX{l \61\/60} c = 1 p = = 0/5 6 - Ba Y= / = 1/27 o =79 V= 1/2
m = (- a2/3,'r]2:1/2,al—al,ag—ag,B:B,F:(H 9x|—>F( )EH), ®=o, P =Py,
(Q7I7 ]P)) = (Q7I7 ]P))a (Ft)tE[O,T} = (Ft)tE[O,T}7 (Wt)tE[O,T] (Wt)tEOT é é X = X XGI XGI
forn e N, r € R, e € (0,00), ag € (1/4,1/2), ay € (31, 2ta2)/3), 0 € wp, I € Py(H) in the notation
of Corollary 5.10]) therefore establishes ([257). The proof of Corollary is thus completed. [
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Corollary 6.2. Assume Setting [I.3, let T,e,co € (0,00), 1 € R, ¢ € (0,Y18), p € [1,00),
B e (0,Y2], v € [Yo, Y2+ f3), let X: B((0,1)) — [0,1] be the Lebesgue-Borel measure on (0,1),
let (L ()1, [-llr) = (LG R), )izt [l nm)s let (enhnex © H satisfy for every n € N
that e, = [(vV2sin(nmx))seo.))rsm), let A: D(A) C H — H be the linear operator which satisfies
D(A) = {v e H: Y07 In*(en,v)u|* < o0} and Yv € D(A): Av = —co Yoo m*n2{e,, V) pen,
let (Hy, (-, )m,,|"lg), v € R, be a family of interpolation spaces associated to —A, for ev-
ery v € WH((0,1),R) let dv € H satisfy for every ¢ € C3,((0,1),R) that (9, [¢]rsm))n =
—(v, [¢'|\Bw)) 1, let B € HS(H, Hg), £ € Hippyp, let F: Hijy — H be the function which satisfies
for every v € Hyy, that F(v) = civv, let (Py)nen € L(H) satisfy for every N € N, v € H that
Px(v) = 20 (en, v)gen, let (Q, F,P) be a probability space with a normal filtration (Ft)ecio,115
let (Wy)er) be an Idg-cylindrical (Fy)ieor)- Wiener process, and let X%V : [0,T] x Q — Py(H),
0 € wp, N € N, be (Fy)cjo,r1-adapted stochastic processes which satisfy for every 6 € wp, N € N,
t € (0,7] that X0N = Py(€) and

t (t—Ltog)A
Sty Ve i, <torr-o " EvB AW,

0,N
[Xe " Je.B(Py () =

L+ |1 [, PxB AW, (266)
(t—ctag)A 0,N (t—Ltug)A 6,N .
TR Ly, <o PNERL) o) |y

Then

(i) there exists an up to indistinguishability unique (Fy)icor-adapted stochastic process
X:[0,T] x Q — H, with continuous sample paths which satisfies for every t € [0,T] that

t t
(Xilpsm,) = [emf—i— / eI R(X,) ds] + / e=9AB qW, (267)
0 P,B(H) 0

and

(i1) there exists C € R such that for every 0 € wy, N € N it holds that
supyeio,r) | Xe = X0 ooy < C(NED 4 [16]7)C7). (268)

Proof of Corollary[6.3. Observe that [47, Theorem 5.10] (with T =T, ¢ = Y2+ 58—, ¢co = ¢o, ¢1 =
C1, ﬁ = ﬁ, Y=, H = H, €y = €n, A= A, H, = Hr, (Q,.F, ]P) = (Q,.F, P), (Ft)te[O,T] = (Ft)te[O,T}a
Wo)eetor) = Woiepor), B=B, (= Q3w € Hiypp) forr e R, ne N,y e [l/2,12+7)in
the notation of [47, Theorem 5.10]) shows that there exist up to modification unique (IF;)scpo,r-
adapted stochastic processes X7: [0,7] xQ — H,, 7y € [/2,1/2+ (), with continuous sample paths
which satisfy for every v € [I/2,1/2+ (), t € [0,T] that

t t
(X7 ]eBeH,) = le”‘§+ / e(t_S)AF(X;’)ds} + / AR WV, (269)
0 P,B(H) 0

This establishes item (il). In the next step we note that for every ¢ € (0,00), N € N, v € H it
holds that

o0

1(Idy —Py)(—A)"vllF = leol ™ D (7*0°) (v, en)u |’
. =N (270)
< leo| > (@N?) 7 D [, en)ul® < leol (72N> ol
n=N+1
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This shows that for every ¢ € (0,00), N € N it holds that
1(Ides = Pr)(=A) "Ml < leo| ' N7 < feg| N7 (271)

The fact that for every 8 € wy, € € (0,00) it holds that [|0]7]P~(72) < T%[|6|7]¥~9, ([269),
and Corollary 6.1 (with ' =T, ¢g = cp, c1 = ¢, s =6, p=p, B=8—-4, 7= %Jrﬁ—%,
H=H e, =¢e,, A=A H =H,, B=DB,F=F, Py c..ey=Fn (QFP) = (QFP),
(Fo)eepor) = (Fo)eeor; Wolteor) = Waieor)s § = (23 w = § € Hupayap(eh2)), X = ([0, T]x 2>
(tw) — XDy ¢ Huysp—(2)), XOlevezmment = X0 for p € R, 6 € wr, n € N,
€ € ((0,28)\{26 — 1/2}) in the notation of Corollary [6.1]) therefore establish item (). The proof
of Corollary is thus completed. O
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