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Coupling FEM

with a multiple-subdomain Trefftz method

Daniele Casati · Ralf Hiptmair

Abstract We consider 2D electromagnetic scattering at bounded objects consisting of different, possibly
inhomogeneous materials. We propose and compare three approaches to couple the Finite Element Method
(FEM) in a meshed domain encompassing material inhomogeneities and the Multiple Multipole Program
(MMP) in the unbounded complement.

MMP is a Trefftz method, as it employs trial spaces composed of exact solutions of the homogeneous
problem. Each of these global basis functions is anchored at a point that, if singular, is placed outside the
respective domain of approximation.

In the MMP domain we assume that material parameters are piecewise constant, which induces a par-
tition: one unbounded subdomain and other bounded, but possibly very large, subdomains, each requiring
its own Trefftz trial space.

Coupling approaches arise from seeking stationary points of Lagrangian functionals that both enforce
the variational form of the equations in the FEM domain and match the different trial functions across
subdomain interfaces. Hence, on top of the transmission conditions connecting the FEM and MMP domains,
one also has to impose transmission conditions between the MMP subdomains.

Specifically, we consider the following coupling approaches:

1. Least-squares-based coupling using techniques from PDE-constrained optimization.
2. Multi-field variational formulation in the spirit of mortar finite element methods.
3. Discontinuous Galerkin coupling between the meshed FEM domain and the single-entity MMP subdo-

mains.

We compare these approaches in a series of numerical experiments with different geometries and material
parameters, including examples that exhibit triple-point singularities.
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1 Introduction

We consider the following second-order scalar elliptic boundary value problem:

−∇ ·
[
M−1

ǫ (x)∇u
]
− ω2µ(x)u = f in R

2, (1a)

∇u · x− ık‖x‖u = 0 for ‖x‖ → ∞ uniformly, (1b)

which models the scattering of transverse-electric polarized z-invariant time-harmonic electromagnetic
waves at penetrable objects [16, p. 356, Section 8.2]. Here,

– u : R
2 → C represents the longitudinal component of the magnetic field (usually denoted as Hz in

electromagnetism).
– Mǫ : R

2 → C
2,2 and µ : R

2 → C are material parameters corresponding to an inhomogeneous,
anisotropic permittivity (Mǫ with nonzero determinant) and an inhomogeneous, isotropic permeability,
respectively. Given a bounded domain Ω⋆ ⊂ R

2, we assume that, in R
2 \ Ω⋆, Mǫ = ǫ I and ǫ, µ are

piecewise constant.
– ω ∈ R is the angular frequency, while k := ω

√
ǫµ the piecewise-constant wavenumber in R

2 \Ω⋆.

– f : R
2 → R represents the stationary current that generates the electromagnetic field. f has compact

support in Ω⋆.
– (1b) is the Sommerfeld radiation condition; please refer to [9, p. 19, Definition 2.4].

Piecewise-constant ǫ, µ in R
2 \ Ω⋆ induce a natural partition of R2 \ Ω⋆ into m + 1 subdomains Ωi,

i = 0, . . . ,m, such that the pair (ǫ, µ) ∈ C
2 (and therefore the wavenumber k) is constant in each Ωi. We

denote the constant wavenumber in each subdomain with ki, i = 0, . . . ,m, and assume that there is only
one unbounded domain in this partition, which we refer to as Ω0.

To simplify the exposition and without loss of generality, from now on we assume that m = 1, i.e. that
Ω0∪Ω1 = R

2 \Ω⋆, with constant k0 ∈ C in the unbounded domain Ω0 and constant k1 ∈ C in the bounded
Ω1. Generalization to m > 1 is straightforward.

In Ω0, the weak solution u ∈ H1
loc(R

2) of (1) belongs to the continuous Trefftz space1

T (Ω0) :=
{
v ∈ H1

loc(Ω0) : ∇2v + k2
0 v = 0 , v satisfies radiation condition (1b)

}
; (2a)

in Ω1, u belongs to

T (Ω1) :=
{
v ∈ H1(Ω1) : ∇2v + k2

1 v = 0
}
. (2b)

Trefftz methods seek to approximate the unknown in R
2 \Ω⋆ using some finite-dimensional subspace of

T (Ω0), T (Ω1). Our approach uses spaces spanned by multipole expansions centered in points outside each
Ωi, i = 0, 1, which is being approximated. We refer to this discretization as the MMP approximation after
the Trefftz method known as Multiple Multipole Program; see Section 2 for details.

However, functions in Trefftz spaces cannot approximate the unknown in Ω⋆, where Mǫ, µ may vary in
space. There we employ a standard finite element space to discretize the usual primal variational form of
(1).

The main issue arising is how to impose the coupling between the domains of MMP and the domain of
the Finite Element Method (FEM). Several algorithms are presented in Section 3 and their convergence is
shown numerically in Section 4.

0 Abbreviations. MMP: Multiple Multipole Program. FEM: Finite Element Method. TPS: Triple-Point Singularity. PDE:
Partial Differential Equation. DG: Discontinuous Galerkin. DoF: Degree of Freedom. BEM: Boundary Element Method.
Subscript f in formulas: FEM. Subscript m in formulas: MMP. Superscript n in formulas: discrete.

1 The subscript “loc” indicates that functions belong to the reported space after multiplication with a compactly-
supported smooth function.
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1.1 State of the Art

The coupling between FEM and MMP for the Poisson’s equation in both 2D and 3D has been discussed
by the authors from the perspective of numerical analysis in [7], while [8] illustrates numerical experiments
for 3D Maxwell’s equations (magnetostatics). The approaches we propose here to realize the coupling have
been described in these works for the first time.

The FEM–MMP coupling has also been tackled before from an engineering perspective [24]. A different
methodology for coupling FEM and MMP is used in that work: the authors match field values, the Dirichlet
data, in selected points on the interface between the FEM and MMP domains (collocation method), while
the Neumann data enter through a boundary term of the variational form. The resulting overdetermined
FEM–MMP system of equations is solved in the least-squares sense.

To the best of our knowledge, apart from these papers little research has been devoted to the investi-
gation of strategies combining Trefftz methods with conventional finite element methods.

The novelty of this work lies in using FEM with more than one MMP domain, which allows to treat
piecewise-constant material parameters on potentially very large domains while keeping a minimal volume
mesh for the FEM domain. This mesh can be so small that it only surrounds points where the solution is
singular, like Triple-Point Singularities (TPS), which arise at the junction of three different materials [11].
At the same time, one also needs to impose transmission conditions between neighboring MMP domains,
which requires a mesh on the interface separating them.

Another new aspect of this work is the application of the FEM–MMP coupling to scattering problems,
for which low-order mesh-based methods like FEM suffer from the well-known pollution effect [2]. MMP, on
the other hand, uses oscillating basis functions (see Section 2.1) which may achieve better approximation
properties than the classical piecewise-polynomial spaces of FEM [15].

2 Multiple Multipole Program

The concept of the Multiple Multipole Program was proposed by Ch. Hafner in his dissertation [13] based
on the much older work of G. Mie and I.N. Vekua [18,27]. Essentially, the Mie-Vekua approach expands
some field in a 2D multiply-connected domain by a multipole expansion supplemented with generalized
harmonic polynomials. Extending these ideas, MMP introduces more multipoles (multiple multipoles) than
required according to Vekua’s theory [27].

2.1 Multipoles

Basis functions spanning the MMP Trefftz spaces (2) are the so-called multipoles, potentials spawned by
(anisotropic) point sources. Multipoles are exact solutions of the homogeneous PDE (1a) that can be subject
to the decay condition (1b), depending on whether they are used to approximate the solution in Ω0.

A multipole can be written as v (x) := f (rxc) g (θxc) in a polar coordinate system in R
2 (r ∈ [0,∞),

θ ∈ [0, 2π)) with respect to its center c (x, c ∈ R
2 are position vectors in Cartesian coordinates). Here,

(rxc, θxc)
⊤ are polar coordinates of the vector xc := x− c.

The radial dependence f (rxc) has a center that may present a singularity, |f (r)| → ∞ for r → 0, and
the desired decay condition at infinity. If there is a singularity, multipoles have to be centered outside the
domain in which they are used for approximation. On the other hand, the angular dependence g is usually
formulated in terms of trigonometric functions.

More specifically, the multipoles chosen for the numerical experiments of this work have the forms

B0(krxc), B1(krxc) cos(θxc), B1(krxc) sin(θxc), . . . ,
Bℓ(krxc) cos(ℓ θxc), Bℓ(krxc) sin(ℓ θxc), . . .

(3)
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Bℓ is a Hankel function of the first kind H
(1)
ℓ [17, p. 280] or a Bessel function of the first kind Jℓ [17,

p. 278, (9.7)], depending on whether the Trefftz space is for Ω0 (2a) or Ω1 (2b). Indeed, multipoles with

H
(1)
ℓ satisfy the decay condition (1b). k := ω

√
ǫµ ∈ C is the wavenumber ki in Ωi, i = 0, 1.

Each multipole from (3) is characterized by a location, i.e. its center c, and the parameter ℓ (its degree).
When we place several multipoles at a given location up to a certain order, which is the maximum degree
of multipoles with that center, we use the term multipole expansion. Summing the number of terms of all
multipole expansions used for approximation yields the total number of degrees of freedom of the discretized
Trefftz space.

2.2 Approximation Error

Let the solution u of the Helmholtz problem (1a) allow an analytic extension beyond Ω0. Then, given
a discrete subspace T n(Ω0) of T (Ω0), u can be approximated by functions in T (Ω0) with an accuracy
exponential in dim T n(Ω0) with respect to the H1-seminorm. This paragraph still holds true if one replaces
Ω0 with Ω1.

Both of these convergence results can be proven in the same way as [7, p. 4] for the 2D Poisson’s
equation, i.e. by relying on the fact that (generalized) harmonic polynomials for approximation also achieve
exponential convergence in Hi-seminorms, i = 0, . . . , j, j ∈ N0, when solving 2D Helmholtz in a bounded
domain that satisfies certain assumptions [19, p. 61, Theorem 3.2.5].

Ωm Ωm
2

Ωm
0

Γ12

Γ01 Γ02

1

Fig. 1: The geometry represents Ω0
m, Ω1

m, and Ω2
m, the three MMP subdomains with different wavenumbers,

and their shared boundaries Γ01, Γ02, and Γ12.

To empirically show the typical convergence of a pure Trefftz discretization, we consider, as in (1), the
Helmholtz equation ∇2u+ k2 u = 0 subject to the Sommerfeld radiation condition (1b). The domain is R2

with a unit disk split into two halves: we call these subdomains Ω0
m, Ω1

m, and Ω2
m (see Figure 1). In each

of them, the wavenumber k is referred to as k1 in one half of the disk (Ω1
m), k2 in the other half (Ω2

m), and
k0 in the complement (Ω0

m). In Ω0
m we also assume that the solution u is decomposable as uincid + uscatt,
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with uincid := exp(ık0‖x‖) a known plane wave that gives rise to the right-hand side of the problem and
uscatt to be determined (compare with (27)).

At the endpoints of the segment splitting the disk in two the solution has triple-point singularities if
k0, k1, k2 are all different. Hence, assuming piecewise-constant k, we need to use different Trefftz spaces for
each subdomain. Multipoles are then chosen according to (3): Hankel functions are used on the unbounded
domain Ω0

m, Bessel functions on the bounded domains Ω1
m, Ω2

m.
We consider two configurations of multipoles:

1. Multipole expansions up to a fixed order 1 uniformly located on a circle at the center of each subdomain:
(−0.5, 0) for Ω1

m, (0.5, 0) for Ω2
m, and the origin for Ω0

m. Radii are 1.5, 1.5, and 0.5 for Ω1
m, Ω2

m, and
Ω0

m, respectively. During the convergence test we increase the number of expansions.
2. For each subdomain, one multipole expansion of a given order placed in the origin. During the test we

increase this order.

We solve this problem by collocation, imposing transmission conditions between multipoles approxi-
mating subdomains with different k. Specifically, these conditions are

ui
m

∣∣
Γij

= uj
m

∣∣
Γij

, (4a)

n · ∇ui
m

∣∣
Γij

= n · ∇uj
m

∣∣
Γij

, (4b)

with ui
m MMP solution in Ωi

m, i = 0, 1, 2, i < j; in Ω0
m, u0

m is shifted by the plane wave exp(ık0‖x‖).
Γij refers to the boundary Ωi

m ∩ Ωj
m (Figure 1), with n the normal vector. More details on transmission

conditions like (4) are given in the next section – see (9).
Matching points for collocation on Γij are found through the intersections of conforming meshes on the

disk Ω1
m ∪Ω2

m: these meshes are more refined depending on the number of degrees of freedom of T n(Ωi
m),

i = 0, 1, 2, such that the number of matching points is always larger than the sum of the dimensions
of the discrete Trefftz spaces (leading to overdetermined systems solved in a least-squares sense by QR
decomposition). We use volume meshes to identify matching points on boundaries Γij because we want to
track a volume error; specifically, the relative approximation error in H1(Ωi

m)-seminorm
∫

Ωi
m

∥∥∥∇
(
u− ui

m

)∥∥∥
2

ℓ2
dx (5)

on bounded domains Ω1
m, Ω2

m. (5) is approximated by a Gaussian quadrature rule that is exact for polyno-
mials of degree 2 (order 3). As benchmark u we rely on the numerical solution that MMP provides with a
number of degrees of freedom substantially higher than the highest number used in the convergence study.

Firstly, we consider the case k1 = k2 = 1.59 k0 and k0 = 7.86 radm−1, i.e. without TPS. Figure 2 shows
the corresponding relative H1-errors: we can identify exponential convergence, as expected by [7, p. 4],
because in this example the solution possesses analytic extensions beyond the interface.

Conversely, Figure 3 shows these errors for k1 = 4 k0, k2 = 2 k0, and k0 = 7.86 radm−1: here we
can identify only algebraic convergence. In fact, exponential convergence is not preserved because the
solution has a TPS [7, p. 4]. Figure 4 presents more pronounced TPS with k1 = 100 k0, k2 = 10 k0, and
k0 = 7.86 radm−1: even algebraic convergence becomes difficult to recognize.

We observe that MMP without modifications cannot properly handle TPS or other singularities. There
are two ways to cope with this situation:

1. Augmenting the Trefftz spaces with basis functions that capture the singularities [3]. However, explicit
knowledge of the form of such singularities is required.

2. Coupling MMP with FEM applied to a locally-refined mesh that encompass the TPS and immediate
surrounding regions. This is the approach followed by this work (Section 4.2).
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Fig. 2: p-refinement semi-log error plots for 2D Helmholtz equation without TPS solved with three MMP
domains (geometry in Figure 1): exponential convergence in H1(Ωi)-seminorm, i = 1, 2. Parameters are
k1 = k2 = 1.59 k0 and k0 = 7.86 radm−1.
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Fig. 3: p-refinement log-log error plots for 2D Helmholtz equation with TPS solved with three MMP domains
(geometry in Figure 1): algebraic convergence in H1(Ωi)-seminorm, i = 1, 2. Parameters are k1 = 4 k0,
k2 = 2 k0, and k0 = 7.86 radm−1.

3 Coupling Strategies

We consider the partition (refer to Figure 5b)

R
2 = Ωf ∪Ω0

m ∪Ω1
m ∪ Γf0 ∪ Γf1 ∪ Γ01, (6)
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Fig. 4: p-refinement log-log error plots for 2D Helmholtz equation with TPS solved with three MMP domains
(geometry in Figure 1): algebraic convergence in H1(Ωi)-seminorm, i = 1, 2. Parameters are k1 = 100 k0,
k2 = 10 k0, and k0 = 7.86 radm−1.

with Γf0 := ∂Ωf∩∂Ω0
m, Γf1 := ∂Ωf∩∂Ω1

m, Γ01 := ∂Ω0
m∩∂Ω1

m and Ωf∩Ω0
m = ∅, Ωf∩Ω1

m = ∅, Ω0
m∩Ω1

m = ∅.
We also define Ωm := Ω0

m ∪Ω1
m and the skeleton Γ := Γf0 ∪ Γf1 ∪ Γ01.

We call Ωf, a bounded Lipschitz domain, the FEM domain, whereas Ω0
m is the unbounded and Ω1

m

the bounded MMP domain. The terminology indicates the type of approximation to be employed in each
domain. Coupling between the FEM and MMP domains is done across the interfaces Γfi, i = 0, 1, while
coupling between the two MMP domains occurs across the interface Γ01.

We demand Ω⋆ ⊂ Ωf, but not necessarily Ω⋆ = Ωf. If Ω⋆ 6= Ωf, Γf0∪Γf1 = ∂Ωf is an artificial interface.
Note that Ωf can be composed of disjoint regions (Figure 15).

We also demand that in Ω0
m, Ω1

m the equation parameters of (1a) are constant: Ωi
m ⊂ Ωi, i = 0, 1, given

the partition introduced in Section 1, i.e. constant wavenumbers k0, k1 for Ω0
m, Ω1

m. Hence, the Trefftz
spaces T (Ω0

m), T (Ω1
m) are still defined according to (2).

We now define the magnetic (“Neumann”) trace operator γ:

γ : H1(∇2, Ω�) → H̃−
1

2 (Γ�), γv := n ·M−1
ǫ ∇v, v ∈ H1(∇2, Ω�). (7)

– Ω� ∈
{
Ωf, Ω

0
m, Ω1

m

}
and Γ� ∈ {Γf0, Γf1, Γ01}.

– H1(∇2, Ω�) is the space of functions v ∈ H1(Ω�) for which ∇2v ∈ L2(Ω�).

– H̃−
1

2 (Γ�) is the dual space of H
1

2 (Γ�) [22, p. 59, (2.90)], to which the Dirichlet traces v|Γ�
belong.

– n is the normal vector on Γ�.

We also define

uf := u|Ωf
∈ H1(Ωf), u0

m := u|Ω0
m

∈ H1
loc(Ω

0
m), u1

m := u|Ω1
m

∈ H1(Ω1
m). (8)

Using this notation, we can write the transmission conditions that the solution of (1) has to satisfy
across Γfi, i = 0, 1 [20, p. 107, Lemma 5.3]:

uf

∣∣
Γfi

= ui
m

∣∣
Γfi

, (9a)

γuf

∣∣
Γfi

= γui
m

∣∣
Γfi

. (9b)
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(a) Sample domains Ω⋆, Ω0, and Ω1 (Section 1).
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(b) Sample domains Ωf, Ω
0
m, and Ω1

m (Section 3).

Fig. 5: Physical domains (Figure 5a) do not necessarily correspond to computational domains (Figure 5b):
Γf0, Γf1 can be artificial interfaces. Different colors in the figure represent regions with different parameters
ǫ, µ.

The same conditions hold across Γ01.

Transmission conditions (9) on Γf0, Γf1, Γ01 and the weak form of (1a) in Ωf are all the ingredients to
obtain a FEM–MMP coupled solution of (1). By testing the weak form of (1a) with suitable test functions,
integrating by parts over Ωf, and using the transmission condition (9b) on Γf0, Γf1, we obtain

∫
Ωf

[(
M−1

ǫ ∇uf

)
· ∇vf − ω2µuf vf

]
dx−

∫
Γf0

γu0
m vf dS −

∫
Γf1

γu1
m vf dS =

∫
Ωf

f vf dx

∀vf ∈ H1(Ωf).
(10)

We end up with different coupling approaches depending on how we impose the additional transmission
condition (9a) on Γf0, Γf1 and both transmission conditions (9) on Γ01. These coupling approaches are
discussed in the following sections as stationary points for different Lagrangian functionals. The resulting
linear variational saddle-point problems are also stated.

Discretization Throughout we use triangular meshes Mf on Ωf and simple polygonal approximations of
Γ01 for the sake of numerical integration.

We discretize uf ∈ H1(Ωf) with piecewise-linear Lagrangian finite elements, i.e.

V n(Mf) = S0
1 (Mf) :=

{
vn ∈ C0(Ωf) : vn

∣∣
K
(x) = aK + bK · x,

aK ∈ R, bK ∈ R
2, x ∈ K ∀K ∈ Mf

}
.

(11)

For Ω0
m, Ω1

m we let a finite number of multipoles span the discrete Trefftz spaces T n(Ωi
m) ⊂ T (Ωi

m),
i = 0, 1. The dimension of each T n(Ωi

m) is determined by the number of multipole expansions chosen for
the approximation and their orders.
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3.1 PDE-constrained Least-Squares Coupling

Taking the cue from (9a), we seek uf ∈ H1(Ωf), u
0
m ∈ T (Ω0

m), and u1
m ∈ T (Ω1

m)

1. minimizing

JΓ (uf, u
0
m, u1

m) :=
∥∥uf − u0

m

∥∥2
H

1

2 (Γf0)
+

∥∥uf − u1
m

∥∥2
H

1

2 (Γf1)
+

∥∥u0
m − u1

m

∥∥2
H

1

2 (Γ01)
+

∥∥γ
(
u0
m − u1

m

)∥∥2
H

− 1

2 (Γ01)

(12)

2. and satisfying the constraint (10).

These two conditions determine a quadratic minimization problem under a linear variational constraint
where we switch the usual meaning of these two components: here the constraint is given by the variational
form of the minimization problem that satisfies the system of PDEs (1a) in Ωf, while the functional JΓ to
be minimized is composed of the transmission conditions not imposed by the FEM variational form.

This problem can be rephrased as seeking a saddle point of the following Lagrangian:

L(uf, u
0
m, u1

m, pf) :=
1

2
JΓ (uf, u

0
m, u1

m)+
∫

Ωf

[(
M−1

ǫ ∇uf

)
· ∇pf − ω2µuf pf

]
dx−

∫

Γf0

γu0
m pf dS −

∫

Γf1

γu1
m pf dS −

∫

Ωf

f pf dx,
(13)

where pf ∈ H1(Ωf) is the Lagrange multiplier imposing (10).
The norms ‖·‖

H
± 1

2 (Γ�)
for any Γf0, Γf1, Γ01 are nonlocal. Thus, for practicality we replace them with

the L2(Γ�)-norm in (12). Given this substitution, the necessary and sufficient optimality conditions of (13)
give rise to the saddle-point problem

Seek uf ∈ H1(Ωf), u
0
m ∈ T (Ω0

m), u1
m ∈ T (Ω1

m), pf ∈ H1(Ωf) :



aLS[
(
uf, u

0
m, u1

m

)
,
(
vf, v

0
m, v1m

)
] + bLS[

(
vf, v

0
m, v1m

)
, pf] = 0

bLS[
(
uf, u

0
m, u1

m

)
, qf] =

∫
Ωf

f qf dx

∀vf ∈ H1(Ωf), ∀v0m ∈ T (Ω0
m), ∀v1m ∈ T (Ω1

m), ∀qf ∈ H1(Ωf),

(14)

where

aLS

[ (
uf, u

0
m, u1

m

)
,
(
vf, v

0
m, v1m

) ]
:=

∫

Γf0

(
uf − u0

m

) (
vf − v0m

)
dS +

∫

Γf1

(
uf − u1

m

) (
vf − v1m

)
dS+

∫

Γ01

[(
u0
m − u1

m

) (
v0m − v1m

)
+ γ

(
u0
m − u1

m

)
γ
(
v0m − v1m

)]
dS,

(15a)

bLS

[ (
uf, u

0
m, u1

m

)
, qf

]
:=

∫

Ωf

[(
M−1

ǫ ∇uf

)
· ∇qf − ω2µuf qf

]
dx+

∫

Γf0

γu0
m qf dS +

∫

Γf1

γu1
m qf dS.

(15b)

Discretization We propose the following discretization for (14):

– uf, vf, pf, qf ∈ V n(Mf) of (11),
– u0

m, v0m ∈ T n(Ω0
m), and

– u1
m, v1m ∈ T n(Ω1

m).
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3.2 Multi-Field Coupling

The multi-field domain decomposition method allows to use FEM with nonconforming meshes on different
neighboring domains for the same boundary value problem [5]. This is well-suited for the coupling because
one can think of MMP as FEM with special trial and test functions used on a “mesh” with two entities:
Ω0

m and Ω1
m.

The multi-field approach imposes the continuity (9a) for any Γf0, Γf1, Γ01 in a weak sense by means of

Lagrange multipliers: λf0, λf1, λ01. Note that (9a) is an equation connecting traces in H
1

2 (Γ�), and therefore

any λ� has to belong to the dual space H̃−
1

2 (Γ�).

Hence, the multi-field coupling can be expressed by the following Lagrangian:

L(uf, u
0
m, u1

m, λf0, λf1, λ01) := JΩf
(uf) + JΩm

(u0
m, u1

m)+
∫

Γf0

(
uf − u0

m

)
λf0 dS +

∫

Γf1

(
uf − u1

m

)
λf1 dS +

∫

Γ01

(
u0
m − u1

m

)
λ01 dS, (16)

where λf0, λf1, λ01 belong to H̃−
1

2 (Γf0), H̃
−

1

2 (Γf1), H̃
−

1

2 (Γ01), respectively.

The functional JΩf
expresses the saddle-point problem that satisfies (1a) in Ωf:

JΩf
(uf) :=

1

2

∫

Ωf

[(
M−1

ǫ ∇uf

)
· ∇uf − ω2µ

∣∣uf

∣∣2
]
dx−

∫

Ωf

f uf dx. (17a)

The functional JΩm
for u0

m, u1
m has a similar formulation, but for homogeneous problems:

JΩm
(u0

m, u1
m) :=

1

2

∫

Ω0
m

(∥∥∇u0
m

∥∥2
ℓ2

− k2
0

∣∣u0
m

∣∣2
)
dx+

1

2

∫

Ω1
m

(∥∥∇u1
m

∥∥2
ℓ2

− k2
1

∣∣u1
m

∣∣2
)
dx. (17b)

Because ui
m ∈ T (Ωi

m), i = 0, 1, one can rewrite the volume integrals in (17b) as boundary integrals:

1

2

∫

Ωi
m

(∥∥∇ui
m

∥∥2
ℓ2

− k2
i

∣∣ui
m

∣∣2
)
dx =

1

2

∫

∂Ωi
m

γui
m ui

m dS. (17c)

The signs of the boundary integrals in (17c) are set by choosing n pointing outwards from Ωi
m, i = 0, 1.

We finally obtain the following saddle-point problem:

Seek uf ∈ H1(Ωf), u
0
m ∈ T (Ω0

m), u1
m ∈ T (Ω1

m),

λf0 ∈ H̃−
1

2 (Γf0), λf1 ∈ H̃−
1

2 (Γf1), λ01 ∈ H̃−
1

2 (Γ01) :



aMF[(uf, u
0
m, u1

m), (vf, v
0
m, v1m)] + bMF[(vf, v

0
m, v1m), (λf0, λf1, λ01)] =

∫
Ωf

f vf dx

bMF[(uf, u
0
m, u1

m), (χf0, χf1, χ01)] = 0

∀vf ∈ H1(Ωf), ∀v0m ∈ T (Ω0
m), ∀v1m ∈ T (Ω1

m),

∀χf0 ∈ H̃−
1

2 (Γf0), ∀χf1 ∈ H̃−
1

2 (Γf1), ∀χ01 ∈ H̃−
1

2 (Γ01),

(18)
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where

aMF

[(
uf, u

0
m, u1

m

)
,
(
vf, v

0
m, v1m

)]
:=

∫

Ωf

[(
M−1

ǫ ∇uf

)
· ∇vf − ω2µuf vf

]
dx

+

∫

∂Ω0
m

γu0
m v0m dS +

∫

∂Ω1
m

γu1
m v1m dS, (19a)

bMF

[(
uf, u

0
m, u1

m

)
,
(
χf0, χf1, χ01

)]
:=

∫

Γf0

(
uf − u0

m

)
χf0 dS +

∫

Γf1

(
uf − u1

m

)
χf1 dS

+

∫

Γ01

(
u0
m − u1

m

)
χ01 dS. (19b)

Discretization For the discretization of (18), we suggest uf, vf ∈ V n(Mf) of (11), u0
m, v0m ∈ T n(Ω0

m), and
u1
m, v1m ∈ T n(Ω1

m).

The discretization of λf0, λf1, λ01 ∈ H̃−
1

2 (Γ�) is a topic debated in the literature [21, Section 4]. In
the spirit of mortar element methods, we opt for the Dirichlet traces on each Γ� of the trial space used to
discretize one of the neighboring domains [21, p. B426]:

– for λfi, i = 0, 1, the Dirichlet traces on each Γfi of the elements in the piecewise-linear space V n(Mf) ⊂
H1(Ωf);

– for λ01, the Dirichlet traces on Γ01 of the multipoles in either T n(Ω0
m) or T n(Ω1

m).

3.3 Discontinuous Galerkin

As for the multi-field coupling (Section 3.2), we again treat each MMP discretization as a finite element
method with special functions. Here we exploit the other main approach for imposing weak continuity on
nonconforming meshes, which is the Discontinuous Galerkin (DG) method [1].

Following this idea, the coupling can be expressed as a discrete minimization problem for the following
Lagrangian:

L(un
f , u

n,0
m , un,1

m ) := JΩf
(un

f ) + JΩm
(un,0

m , un,1
m ) +

∫

Γf0

(
un
f − un,0

m

)
Pn(un

f , u
n,0
m ) dS

+

∫

Γf1

(
un
f − un,1

m

)
Pn(un

f , u
n,1
m ) dS +

∫

Γ01

(
un,0
m − un,1

m

)
Pn(un,0

m , un,1
m ) dS,

(20)

where JΩf
and JΩm

are the same as in (17a) and (17b). un
f ∈ V n(Mf) of (11), un,0

m ∈ T n(Ω0
m), and

un,1
m ∈ T n(Ω1

m).

Depending on the choice of the operator Pn : H
1

2 (Γ�)×H
1

2 (Γ�) → H̃−
1

2 (Γ�), we obtain different DG
approaches. We follow the (symmetric) Interior Penalty DG method [25]:

Pn(u, v) := −n ·M−1
ǫ ∇ (u+ v) + η ǫ−1 (u− v) . (21)

– Mǫ(x) : R
2 → C

2,2 is the mean of material parameters Mǫ in Ωf and Ωi
m when integrating on each

Γfi, i = 0, 1:

Mǫ(x) :=
Mǫ(x) + ǫi I

2
∀x ∈ Γfi, (22)

and of Mǫ in Ω0
m and Ω1

m when integrating on Γ01:

Mǫ(x) :=
ǫ0 + ǫ1

2
I ∀x ∈ Γ01. (23)
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– η ∈ R is a penalty parameter that needs to be assigned heuristically. On any Γfi, i = 0, 1, η should
be proportional to N i

m/h, where N i
m is the number of degrees of freedom of T n(Ωi

m) and h ∈ R the
meshwidth of Mf restricted to Γfi. On Γ01, η should be proportional to N0

mN1
m. Both choices are inspired

by η ∼ p2/h, setting used in case of polynomial DG-FEM [26, p. 229] (with p ∈ N
∗ polynomial degree).

Finding the stationary point of (20) leads to the discrete problem

Seek un
f ∈ V n(Mf), u

n,0
m ∈ T n(Ω0

m), un,1
m ∈ T n(Ω1

m) :

anDG

[ (
un
f , u

n,0
m , un,1

m

)
,
(
vnf , v

n,0
m , vn,1

m

) ]
=

∫

Ωf

f vnf dx

∀vnf ∈ V n(Mf), ∀vn,0
m ∈ T n(Ω0

m), ∀vn,1
m ∈ T n(Ω1

m),

(24)

where we define the symmetric bilinear form anDG(·, ·) as

anDG

[ (
un
f , u

n,0
m , un,1

m

)
,
(
vnf , v

n,0
m , vn,1

m

) ]
:=

∫

Ωf

[(
M−1

ǫ ∇un
f

)
· ∇vnf − ω2µun

f vnf

]
dx−

∑

i=0,1

∫

Γfi

{[
γ
(
un
f + un,i

m

)] (
vnf − vn,i

m

)
+

(
un
f − un,i

m

) [
γ
(
vnf + vn,i

m

)]}
dS+

∑

i=0,1

∫

Γfi

2 η
(
un
f − un,i

m

) (
vnf − vn,i

m

)
dS +

∑

i=0,1

∫

∂Ωi
m

γui
m vim dS−

∫

Γ01

{[
γ
(
un,0
m + un,1

m

)] (
vn,0
m − vn,1

m

)
+

(
un,0
m − un,1

m

) [
γ
(
vn,0
m + vn,1

m

)]}
dS+

∫

Γ01

2 η
(
un,0
m − un,1

m

)(
vn,0
m − vn,1

m

)
dS.

(25)

4 Numerical Results

Throughout we use piecewise-linear Lagrangian finite elements, i.e. V n(Mf) = S0
1 (Mf) of (11), on triangu-

lar meshes Mf of Ωf. To study the convergence we employ uniform h-refinement of Mf and p-refinement of
the Trefftz approximations, in the sense that we increase the number of multipoles. The p-refinement of the
multipoles forming T n(Ωi

m), i = 0, 1, is linked to the h-refinement of Mf; specifically, to the logarithm of
the number of intersections of the mesh entities of Mf on Γfi. This choice is motivated by the exponential
convergence of the MMP approximation error (see Section 2.2).

Here we monitor the following errors:

– The volume errors in the bounded domains Ωf, Ω
1
m. These are the relative L2(Ωf)- and L2(Ω1

m)-errors
of the FEM and MMP (in Ω1

m) approximations compared to the reference solution u, i.e.
∥∥∥∥∥∥
u−

Nf∑

j=1

αj
f v

j
f (x)

∥∥∥∥∥∥
L2(Ωf)

/
‖u‖L2(Ωf) and

∥∥∥∥∥∥
u−

N1

m∑

j=1

αj,1
m vj,1m (x)

∥∥∥∥∥∥

2

L2(Ω1
m
)

/
‖u‖L2(Ω1

m
) ,

(26)

with αj
f , α

j,1
m ∈ C, vjf ∈ V n(Mf), v

j,1
m ∈ T n(Ω1

m), and Nf, N
1
m numbers of degrees of freedom of the

discrete spaces V n(Mf) and T n(Ω1
m), respectively.
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On the bounded MMP domain Ω1
m we define an auxiliary volume mesh for the numerical quadrature

of the error (26). However, on top of Mf, only a mesh on the 1-dimensional hypersurface Γ01 is really
necessary for the coupling, in order to compute the numerical integrals on that interface.

– The boundary error on ∂Ω0
m = Γf0 ∪ Γ01, union of the (bounded) interfaces between the unbounded

domain Ω0
m and the other (bounded) domains Ωf, Ω

1
m. This is the relative L2(∂Ω0

m)-error of the MMP
approximation in Ω0

m compared to the reference solution.

The sum of the relative L2(Ωf)- and L2(Ω1
m)-errors and the relative L2(∂Ω0

m)-error is the total relative
error of the coupling.

We can ignore the impact of numerical integration for FEM because we use a local Gaussian quadrature
rule that is exact for polynomials of degree 2 (order 3).

Implementation Meshes were generated using Gmsh [10]. Our code is written in C++14, using C++11 mul-
tithreading for parallelization. We use Eigen v3.3.7 [12] for linear algebra and HyDi [6] for the FEM com-
ponent. The PARDISO v6.0 solver [23] provides the sparse LU decomposition to solve the systems of the
coupling, characterized by nontrivial sparsity patterns.

4.1 2D Scattering Problem with Exact Solution

We solve ∇ ·
(
ǫ−1∇u

)
+ ω2µu = 0 in R

2 subject to the Sommerfeld radiation condition (1b) with
piecewise-constant permittivity ǫ = 100 ǫ0 in a unit disk centered in the origin, which we dub Ω•, and
ǫ = ǫ0 = 8.85 · 10−12 Fm−1 (permittivity of free space) elsewhere. µ and ω are everywhere equal to
µ0 = 4π · 10−7 Hs−1 (permeability of free space) and 23.56 · 107 rad s−1, respectively. Wavenumbers are
therefore k• = 10 k0 in Ω• and k0 = 0.79 radm−1 elsewhere.

We assume that u is subject to an excitation by an incident plane wave propagating along the x-axis
outside Ω•, i.e.

u = uincid + uscatt in R
2 \Ω•, uincid := exp(ık0‖x‖), x := (x1, x2)

⊤, (27)

where uscatt represents the unknown scattered potential. This problem has an exact solution that can be
derived using Mie theory [4, Chapter 4, pp. 82–101] in 2D:

u = uincid + uscatt =
∞∑

ℓ=−∞

ıℓJℓ(k0r)e
ıℓθ +

∞∑
ℓ=−∞

AℓH
(1)
ℓ (k0r)e

ıℓθ in R
2 \Ω•,

u = urefr =
∞∑

ℓ=−∞

BℓJℓ(k•r)e
ıℓθ in Ω•.

(28)

Here uincid is the Jacobi–Anger expansion of the exciting plane wave [9, p. 33, (2.46)], given Jℓ and H
(1)
ℓ

Bessel and Hankel functions of the first kind and r ∈ [0,∞), θ ∈ [0, 2π) canonical polar coordinate system
in R

2 (see Section 2.1). urefr is the unknown refracted potential.
Coefficients Aℓ, Bℓ in (28) are

Aℓ = ıℓ
ǫ−1
• k•Jℓ(k0r•)J

′

ℓ(k•r•)− ǫ−1
0 k0Jℓ(k•r•)J

′

ℓ(k0r•)

ǫ−1
0 k0H

′(1)
ℓ (k0r•)Jℓ(k•r•)− ǫ−1

• k•H
(1)
ℓ (k0r•)J ′

ℓ(k•r•)
,

Bℓ =
AℓH

(1)
ℓ (k0r•) + ıℓJℓ(k0r•)

Jℓ(k•r•)
.

(29)

r• is the radius of the disk Ω•, here = 1m.
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For our numerical tests, we consider the terms in the expansions of (28) for ℓ = 0, . . . , 20, identify Ω•

with Ωf and R
2 \ Ω• with a single MMP domain Ωm, and therefore set Γ := ∂Ωf ∩ ∂Ωm on the physical

boundary of the disk. Given that we use triangular meshes, Γ is actually a polygonal approximation of a
circle.
T n(Ωm) is generated by a single multipole expansion centered in the origin.
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Fig. 6: h-refinement log-log error plots for 2D Helmholtz equation with exact solution. Parameters are
ǫ• = 100 ǫ0 and ω = 23.56 · 107 rad s−1.

Figure 6 shows h-refinement convergence plots for all coupling approaches, which yield very similar
results. We can clearly see algebraic convergence of the FEM and MMP errors with rate 2.
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Fig. 7: Meshwidth h vs. MMP degrees of freedom for 2D Helmholtz equation with exact solution: total
relative error. The h- and error-dimensions are in logarithmic scale. Parameters are ǫ• = 100 ǫ0 and ω =
23.56 · 107 rad s−1.

Figure 7 shows surface plots of the total relative L2-error for all coupling approaches. The error decreases
with h (algebraic convergence) and is generally independent from the number of multipoles: the FEM error
dominates. This is a consequence of the exponential convergence of MMP (Section 2.2): the exact solution
is so easy to approximate in the MMP domain that it can already be represented by a multipole expansion
of the lowest considered order, which is 8, leading to 17 terms of the expansion – see (3).

We have also considered different material parameters, leading to similar convergence rates. For example,
Figure 8 shows h-refinement convergence plots for ǫ• = 2.5281 ǫ0 and ω = 23.56 · 108 rad s−1, which entails
k• = 1.59 k0 and k0 = 7.86 radm−1. Datapoints are slightly noisier than before because we consider a higher
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value for the frequency ω, which causes the pollution effect for FEM. However, with these parameters one
can observe an interesting physical phenomenon.
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Fig. 8: h-refinement log-log error plots for 2D Helmholtz equation with exact solution. Parameters are
ǫ• = 100 ǫ0 and ω = 23.56 · 108 rad s−1.

4.1.1 Photonic Nanojet

Parameters r• = 1m, ǫ• = 2.5281 ǫ0, µ• = µ0, and ω = 23.56 · 108 rad s−1 permit to observe a photonic
nanojet [14, p. 1985, Fig. 4.a] if one considers the full plane wave as excitation. This can be seen in
Figure 7, which illustrates the magnitude of the Poynting vector [16, p. 259, (6.109)] for a simulation with
the PDE-constrained least-squares coupling. The other coupling schemes yield comparable results.

4.1.2 Two MMP Domains

Parameters are still r• = 1m, ǫ• = 2.5281 ǫ0, µ• = µ0, and ω = 23.56 · 108 rad s−1. Similarly to the
numerical example of Section 2.2, we split the disk Ω• into two halves, one modeled by FEM (Ωf), the
other by MMP (Ω1

m): the coupling interface Γf1 is therefore artificial. MMP also models the complement
R

2 \ Ω• (Ω0
m): the coupling boundaries Γf0 and Γf1, on the two halves of the circle, correspond to the

physical discontinuity of ǫ. The geometry is shown in Figure 10a, with a sample mesh in Figure 10b.
As excitation we consider terms for ℓ = 0, . . . , 20 from the expansion of a plane wave given by (28).

To approximate in Ω1
m, a single multipole expansion with Bessel functions as radial dependence is centered

in the origin (Bessel functions of the first kind have no singularities in that point, which lies on ∂Ω1
m).

To approximate in Ω0
m, a single multipole expansion with Hankel functions as radial dependence is also

centered in the origin.
Figure 11 shows h-refinement convergence plots for all coupling approaches, which yield very similar

results except for the multi-field coupling with λn
01 discretized by T n(Ω0

m): there is no convergence for the
most refined mesh. This is because the number of degrees of freedom of T n(Ω0

m) for that mesh is not large
enough to properly impose the continuity between Ω0

m and Ω1
m.

In all the other plots we can clearly see algebraic convergence of the FEM and MMP errors with rate ∼ 1.7.
We have also considered a different configuration of multipoles. To approximate in Ω1

m, multipole ex-
pansions of order 1 are uniformly positioned on a circle of radius 1.5 centered in (0.5, 0)⊤. To approximate
in Ω0

m, multipole expansions of order 1 are uniformly positioned on a circle of radius 0.5 centered in the
origin.
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Fig. 9: Magnitude of the Poynting vector for ǫ• = 2.5281 ǫ0 and ω = 23.56 · 108 rad s−1. The beam on the
circumference of the disk is the photonic nanojet.
Numerical solution obtained with the PDE-constrained least-squares coupling.

Figure 12 shows the corresponding h-refinement convergence plots, which look almost the same as
Figure 11 but without any problem with the multi-field coupling for λn

01 ∈ T n(Ω0
m).

4.2 2D Scattering Problem with Triple-Point Singularities

We consider different values of ǫ in each half of the disk Ω•. Specifically, we take ǫ+ = 4 ǫ0 in the left side
of Ω• and ǫ− = 2.5281 ǫ0 in the right side. ω is still = 23.56 · 108 rad s−1: wavenumbers are k+ = 2 k0 and
k− = 1.59 k0. Hence, at the extremes of the segment splitting Ω• we have triple-point singularities.

We fully surround the points with TPS by a mesh, and therefore also model with FEM a small region
on the other side of the physical discontinuity of Ω• and an “airbox” in R

2 \ Ω•. The coupling interfaces
Γf0 and Γf1 are therefore auxiliary; only the interface Γ01 is physical. The FEM mesh is also locally refined
towards the points with TPS: the meshwidth goes like h0+r3 (algebraically-graded mesh), with h0 minimum
meshwidth and r distance from the closest triple point. The geometry is shown in Figure 13a, with a sample
mesh in Figure 13b.

Given the TPS, there is no exact solution: as reference we rely on the numerical solution provided by a
mesh substantially more refined than the finest mesh used in the convergence study.
To approximate in Ω1

m, multipole expansions of order 1 with Bessel functions as radial dependence are
uniformly positioned on a circle of radius 1.5 centered in (0.5, 0)⊤. To approximate in Ω0

m, multipole
expansions of order 1 with Hankel functions as radial dependence are uniformly positioned on a circle of
radius 0.5 centered in the origin.
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Γ
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Γf0 Γ01

(a) The geometry represents Ωf, Ω
0
m, and Ω1

m. The disk
of radius 1 is Ω•, the area where ǫ 6= ǫ0. The vertical
segment splitting the disk in half represents the artificial
coupling interface Γf1, while the two halves of the circle
represent the physical coupling interfaces Γf0 and Γ01.

(b) 2D mesh of Ωf and Ω1
m (the latter meshed for nu-

merical quadrature of the error). The blue mesh covers
Ωf, the purple mesh Ω1

m.

Fig. 10: Geometry and sample mesh of the FEM domain Ωf and the MMP domains Ω0
m, Ω1

m for simulations
with exact solution.

Figure 14 shows DoF-refinement convergence plots for all coupling approaches. The PDE-constrained
and DG-based coupling approaches have similar algebraic convergence patterns, but the datapoints of the
multi-field coupling with multiplier λn

01 ∈ T n(Ω0
m) or T n(Ω1

m), while they converge, are more irregular.

We repeat this experiment with the geometry shown in Figure 15a, where only the points with TPS and
their immediate surrounding regions are modeled with FEM, so to minimize the meshed region. A sample
mesh is shown in Figure 15b.

To approximate in Ω1
m and Ω2

m, multipole expansions of order 1 are uniformly positioned on two circles
of radius 1.5 centered in (−0.5, 0)⊤ and (0.5, 0)⊤, respectively. To approximate in Ω0

m, multipole expansions
of order 1 are uniformly positioned on a circle of radius 0.5 centered in the origin.

Figure 16 shows DoF-refinement convergence plots for the PDE-constrained and DG-based coupling
approaches: we can still guess algebraic convergence.

4.3 Conclusions

Compared to other hybrid methods, such as FEM coupled with the Boundary Element Method (BEM),
MMP presents the advantages of

– a simpler assembly process, as there are no singular integrals, and
– an exponentially-convergent approximation error given loose requirements on the positions of the multi-

poles, which can be proven rigorously for 2D Helmholtz (Section 2.2). As long as the coupling boundaries
are far from sources and field singularities of the problem, the FEM–MMP coupling is also indifferent
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Fig. 11: h-refinement log-log error plots for 2D Helmholtz equation with exact solution solved with two
MMP domains. A single multipole expansion is used for each MMP domain. Parameters are ǫ• = 2.5281 ǫ0
and ω = 23.56 · 108 rad s−1.

towards where the multipoles are placed, and the exponential convergence of the MMP approximation
error is preserved.

– Furthermore, the locally-supported piecewise-polynomial basis functions of boundary element methods
[22, p. 183, Chapter 4] do not work well for high-frequency scattering problems due to the pollution
effect, which is not a problem for the oscillating multipoles of MMP.

However, similarly to other hybrid methods, the FEM–MMP coupling also suffers from ill-conditioning.
This is still more limited than FEM coupled with BEM due to the low number of degrees of freedom
required for MMP, given its exponential convergence: the MMP dense blocks in the coupling matrices are
therefore small.

Among the three coupling approaches (Sections 3.1 to 3.3), we recommend the DG-based coupling
thanks to its reliability and lower number of degrees of freedom compared to the PDE-constrained coupling.
The multi-field coupling has a similar amount of degrees of freedom to the DG-based one, but can have
stability issues caused by the nonconforming discretization of its Lagrange multipliers.

A future paper will present the FEM–MMP coupling with multiple MMP domains applied to vector
scattering problems in R

3 (time-harmonic Maxwell’s equations).
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2. Babuška, I.M., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high
wave numbers? SIAM Review 42(3), 451–484 (2000). DOI 10.2307/2653302

3. Barnett, A.H., Betcke, T.: An exponentially convergent nonpolynomial finite element method for time-harmonic scat-
tering from polygons. SIAM Journal on Scientific Computing 32(3), 1417–1441 (2010). DOI 10.1137/090768667

4. Bohren, C.F., Huffman, D.R.: Absorption and scattering of light by small particles. Wiley (2007). DOI
10.1002/9783527618156



Coupling FEM with a multiple-subdomain Trefftz method 19

10
-2

meshwidth h

10
-2

10
-1

10
0

L
2

 r
e

la
ti
v
e

 e
rr

o
r

PDE-constrained Coupling
FEM

MMP
1

MMP
0

10
-2

meshwidth h

10
-2

10
-1

10
0

L
2
 r

e
la

ti
v
e
 e

rr
o
r

Multi-Field Coupling
FEM

MMP
1

MMP
0

(a) λn
01 ∈ T n(Ω0

m)

10
-2

meshwidth h

10
-2

10
-1

10
0

L
2
 r

e
la

ti
v
e
 e

rr
o
r

DG-based Coupling
FEM

MMP
1

MMP
0

10
-2

meshwidth h

10
-2

10
-1

10
0

L
2
 r

e
la

ti
v
e
 e

rr
o
r

Multi-Field Coupling
FEM

MMP
1

MMP
0

(b) λn
01 ∈ T n(Ω1

m)

Fig. 12: h-refinement log-log error plots for 2D Helmholtz equation with exact solution solved with two
MMP domains. Many multipole expansions on circles are used for each MMP domain. Parameters are
ǫ• = 2.5281 ǫ0 and ω = 23.56 · 108 rad s−1.

5. Brezzi, F., Marini, L.D.: A three-field domain decomposition method. In: Domain decomposition methods in science
and engineering (Como, 1992), Contemp. Math., vol. 157, pp. 27–34. Amer. Math. Soc., Providence, RI (1994). DOI
10.1090/conm/157/01402

6. Casagrande, R., Winkelmann, C.: Hybrid Discontinuous finite elements for power devices (HyDi) (2016). ABB Corpo-
rate Research Center

7. Casati, D., Hiptmair, R.: Coupling finite elements and auxiliary sources. Computers & Mathematics with Applications
77(6), 1513–1526 (2019). DOI 10.1016/j.camwa.2018.09.007

8. Casati, D., Hiptmair, R., Smajic, J.: Coupling finite elements and auxiliary sources for Maxwell’s equations. Interna-
tional Journal of Numerical Modelling: Electronic Networks, Devices and Fields (forthcoming). DOI 10.1002/jnm.2534

9. Colton, D., Kress, R.: Inverse acoustic and electromagnetic scattering theory, Applied Mathematical Sciences, vol. 93,
3rd edn. Springer, Heidelberg (2013)

10. Geuzaine, C., Remacle, J.F., et al.: Gmsh v4.1.4 (2019). http://gmsh.info/
11. Greengard, L., Lee, J.Y.: Stable and accurate integral equation methods for scattering problems with multiple material

interfaces in two dimensions. J. Comput. Phys. 231, 2389–2395 (2012). DOI 10.1016/j.jcp.2011.11.034
12. Guennebaud, G., Jacob, B., et al.: Eigen v3.3.7 (2018). http://eigen.tuxfamily.org
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Fig. 14: DoF-refinement log-log error plots for 2D Helmholtz equation with TPS solved with two MMP
domains (geometry in Figure 13a). Parameters are ǫ+ = 4 ǫ0, ǫ− = 2.5281 ǫ0, and ω = 23.56 · 108 rad s−1.
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(a) The geometry represents Ωf, Ω
1
m, and Ω2

m. The disk
of radius 1 is Ω•: in one half, ǫ = ǫ+; in the other, = ǫ−.
In the small squares outside the disk, ǫ = ǫ0.

(b) 2D mesh of Ωf, Ω
1
m, and Ω2

m (the last two meshed
for numerical quadrature of the error). The light blue,
pink, and green meshes cover Ωf and are characterized
by parameters ǫ+, ǫ−, and ǫ0, respectively. The blue
mesh covers Ω1

m and is characterized by ǫ+, the purple
mesh covers Ω2

m and is characterized by ǫ−.

Fig. 15: Geometry and sample mesh of the FEM domain Ωf and the (bounded) MMP domains Ω1
m and

Ω2
m for simulations with triple-point singularities.
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Fig. 16: DoF-refinement log-log error plots for 2D Helmholtz equation with TPS solved with three MMP
domains (geometry in Figure 15a). Parameters are ǫ+ = 4 ǫ0, ǫ− = 2.5281 ǫ0, and ω = 23.56 · 108 rad s−1.


