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ABSTRACT. We establish the holomorphic dependence of the boundary integral operators (BIOs) com-
prising the Calderén projector for Laplacean in two dimensions on the shape of the boundary. More
precisely, we show that the Calderén projector, as an element of the Banach space of bounded linear
operators satisfying suitable mapping properties, depends holomorphically on a set of boundaries given
by a collection of ¥2-smooth Jordan curves in R?. In turn, this result implies that the solution of a
well-posed first or second kind boundary integral equation (BIE) arising from the boundary reduction
of the Laplace problem set on a domain of class ¢2 in two spatial dimensions depends holomorphi-
cally on the shape of the boundary, provided that the corresponding right-hand side does so as well.
This property of shape holomorphy is of crucial significance to mathematically justify the construction
of sparse surrogates of polynomial chaos type, and for dimension-independent convergence rates for
the approximation of parametric solution families of BIEs in forward and inverse computational shape
uncertainty quantification.

1. INTRODUCTION

Partial differential equations (PDEs) are ubiquitous as models of complex processes and phenomena
in science and engineering, for instance: optimal shape design, inverse problems, biomedical imaging and
non-destructive testing. These models are subject to the presence of sources of uncertainty, whose effects
we would like to characterize. Computational uncertainty quantification (UQ) addresses mathematical
models and numerical methods to assess in a quantitative manner how data and model uncertainty
impact predictions furnished by scientific computing. Two types of uncertainty can be distinguished in
a mathematical model: (i) epistemic uncertainty, which corresponds to uncertainty of the model itself
and (ii) aleatoric uncertainty, which deals with propagation of uncertain parameters (e.g. domains of
definition, material properties, external sources) into the so-called Quantities of Interest (Qol). In the
ensuing discussion, we focus on the latter and assume that the former is negligible.

Following a parametric approach to represent uncertainty (cp. [I4, [12]), one may write a parametric
PDE together with its dependence on the uncertain parameters as follows: A(u,y) = 0, where y =
(y1,--.,9s) € [-1,1]°, s € N, denotes the input parameter vector, v € X is the unknown solution of
the problem and A : X x [-1,1]* — W is a linear or nonlinear partial differential or integral operator,
where X and W are Banach spaces. Assuming that for each parameter y € [—1, 1]° there exists a unique
solution u = u,, one may define the uncertainty-to-solution map y € [—1,1]° — u, € X.

Even if the operator A describes a well-understood problem (e.g. elliptic PDEs with diffusion coeffi-
cients depending on the parameters in an affine manner), the numerical approximation of the uncertainty-
to-solution map becomes a challenge whenever the number of parameters s € N is large or even infinity.
This phenomenon corresponds to the so-called curse of dimensionality: the computational effort required
for the numerical approximation of the uncertainty-to-solution map grows exponentially with the num-
ber of parameters. This issue also manifests itself as a deterioration of the convergence rates for the
numerical approximation of the uncertainty-to-solution map as the parametric dimension increases.

Recently in [12], a strategy to obtain algebraic convergence rates for the approximation of y — wu,, for
s = oo has been proposed. This approach relies on the construction of an holomorphic extension z +— u,
of the uncertainty-to-solution map on a certain tensor product of ellipses in the complex domain. The
varying size of the so-called Bernstein ellipses quantifies the anisotropic dependence of the uncertainty-to-
solution map on the corresponding parametric variables. This observation is crucial to achieve dimension-
independent algebraic convergence rates for the approximation of the domain-to-solution map.

However, the holomorphic extension of the uncertainty-to-solution map has to be constructed and
studied separately for each particular instance of the operator A. So far, this analysis has been performed
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for elliptic diffusion equations with coefficients depending on the parameter vector in an affine and non-
affine manner, parabolic diffusion equations and nonlinear, monotone elliptic PDEs [12],[14]. In particular,
if the parameter vector y corresponds to a parametric representation for the physical domain of definition
of uy, we refer to the uncertainty-to-solution map as the domain-to-solution map and to the property of
holomorphic dependence of u, on the parameter vector y as shape holomorphy.

Shape holomorphy has been already established for different classes of differential operators A: time-
harmonic electromagnetic wave scattering by perfectly conducting and dielectric obstacles [35] 2], sta-
tionary Stokes and Navier-Stokes equation [I5] and volume formulations for acoustic wave scattering
by a single penetrable obstacle in a low frequency regime [3I]. To our knowledge, there are to date
no results on holomorphic dependence of the BIOs on the boundary shape. We recall that the integral
equation method allows the boundary reduction of certain classes of PDEs into BIEs by means of BIOs.
This approach offers advantages over domain methods for PDEs, such as the finite element and finite
difference methods. Hence the increasing interest during the last decades in this technique. Among these
advantages we highlight:

(i) The capability to numerically treat more complex geometries than domain methods. Only bound-
ary meshes are required for the numerical resolution of BIEs, as opposed to volume ones in domain
methods, thus making the process of mesh generation and refinement easier.

(ii) The use of the integral equation method and BIEs is particularly well-suited to deal with problems
in unbounded domains, such as acoustic and electromagnetic wave scattering.

The significance of holomorphic dependence of differential and integral operators, and of their inverses,
on the shape of the domain lies in the classical result on exponential convergence of polynomial approxi-
mation for holomorphic functions. Upon a suitable domain or boundary parametric representation, shape
holomorphy enables the construction of polynomial surrogates of operators and of solution manifolds,
which can be used to accelerate computational engineering design. The fact that many parameters might
be required for realistic modelling implies high dimensionality of the parametric surrogates. Recently
developed interpolation and quadrature processes will overcome the curse of dimensionality inherent in
classical numerical approaches (see, e.g., [10] for sensitivity-based surrogates, [12] for sparse-grid inter-
polation construction of surrogates, [22] for Quasi-Monte Carlo quadratures, [2I], 29] for implications
in Bayesian shape identification and [2] for computational electromagnetics). The mathematical and
algorithmic development of these applications is beyond the scope of the present article, and will be
reported elsewhere.

We establish the holomorphic dependence of the Calderén projector for the Laplace equation on a
collection of ¥?~smooth Jordan curves in R?. Specifically, we establish holomorphy of the domain-to-
operator map associated to the Calderén projector. Again, this entails the holomorphic dependence of
solutions of first and second kind boundary integral formulation on the shape of the boundary, within
€? boundaries. We emphasize that this holomorphic dependence does not require smoothness or even
analytic regularity of the boundary.

In the line of previous works in this subject (e.g. [I5][35]), we establish shape holomorphy by proving
complez Fréchet differentiability of the Calderén projector (viewed as an element of the complex Banach
space of bounded linear operators) with respect to a collection of ¥?~smooth Jordan curves in R?. The
roadmap of our argument reads as follows. Firstly, let I',. be a Jordan curve in R? and let r : [0, 1] — R? be
a ¢?-smooth boundary representation of I',.. Using a suitable pullback operator defined by means of the
boundary representation r € [0, 1] — R?, we transform the BIOs contained in the Calderén projector into
1-periodic integral operators, with mapping properties between appropriate periodic Sobolev spaces in the
interval [0, 1], usually referred to as the reference domain. The presence of the boundary representation
r:[0,1] — R? is completely isolated in the integrand of the arising 1-periodic integral operator. Then,
we proceed to calculate and analyze the complexr Fréchet derivative of the domain-to-operator map
associated to the Calderén projector with respect to the boundary representation r : I — R2. However,
the exact meaning of complex differentiability with respect to the boundary representation of a Jordan
curve is not properly defined, as the BIOs are only defined for boundary representations with values in
R?. Consequently, the main difficulty in the shape holomorphy analysis and the central achievement of
the present work is to provide a meaningful description of the complex Fréchet derivative of the BIOs
contained in the Calderén projector with respect to a suitable collection of complez-valued boundary
representations.

Establishing holomorphy by verification of Fréchet differentiability of (suitably “complexified”) domain-
to-operator maps is closely related to the so-called material derivatives of the BIOs. This concept nat-
urally appears in shape optimization [49]. In fact, the closest results to shape holomorphy of the BIOs
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that one may find in the literature are related to shape differentiability of the BIOs. Shape differentia-
bility of the BIOs has been studied in shape inverse problems in acoustic, elastic and electromagnetic
wave scattering [38] [B9] Bl 5], shape optimization [49] 20} 26] 25] 28], electrical impedance tomography
[27, 24], shape sensitivity analysis [34, [13] and crack detection [33] [36], among others.

Although present in many applications, the literature on shape differentiability of the BIOs is limited.
In [411[43] and [6] shape differentiability of the BIOs in the Fréchet sense for acoustic and elastic problems
is analyzed, respectively, by using a setting based on Holder continuous and differentiable function spaces
and assuming boundaries of class 2. Subsequently, this technique is extended to the BIOs arising in
electromagnetic wave scattering [42]. The approach used to obtain these results has been used as well
in [I8] to prove that a collection of BIOs characterized by a class of pseudo-homogeneous kernels (for
a precise definition of this concept we refer to [I8 Section 2] and references therein) are infinitely
differentiable with respect to the boundary. This analysis is later used to compute shape derivatives
of the BIOs in electromagnetic wave scattering [19, [51]. Nevertheless, these results are obtained under
the assumption that the boundaries taken into consideration in the analysis are smooth. Hence, only
derivatives in the Gateaux sense were computed by means of this approach. Fréchet differentiability can
not be obtained directly, as one would need normed spaces as opposed to Fréchet ones. Regardless of
these issues, the above results do not imply an holomorphic dependence of the BIOs on the shape of the
boundary. To the best of our knowledge, shape holomophy of the BIOs has not been addressed so far.

This manuscript is structured as follows. In Section [2] we establish the notation to be used throughout
this work and also introduce the BIOs for the Laplace equation. In Section [3] we describe the class
of boundary representations to be considered in our analysis. In Section [4] we analyze the complex
Fréchet differentiability of a collection of 1-periodic integral operators (as elements of the Banach space
of bounded linear operators) with respect to a set of complex-valued boundary representations. This
result is built upon mathematical tools concerning holomorphic maps between Banach spaces, which
are properly introduced. The abstract framework presented therein will allow us not only to analyze
the BIOs for the Laplacean in R? but is also a stepping-stone to obtain shape holomorphy of the BIOs
associated, for example, to the Helmholtz and Stokes- as well as to the BIOs arising in the Lamé-
system in linear elasticity. Section [5|is devoted to our main result: shape holomorphy of the Calderén
projector. We prove the holomorphic dependence of the Calderén projector for the Laplace operator
on a collection of ¥2-smooth Jordan curves in R%. Using the pullback operator, introduced in Section
we transport the BIOs to the reference domain [0, 1]. As the result of this operation, we obtain a
collection of 1-periodic integral operators fitting the framework of Section [l In Section [f] we introduce
a key concept for the approximation of a maps depending on a countable number of parameters, the
so-called (b, £)-holomorphy. We prove (b, €)-holomorphy of the BIOs, after the boundary representations
are parametrized in an affine manner. Moreover, we discuss implications of this notion in the construction
of surrogates of the polynomial type for the approximation of parametric maps, with convergence rates
that are independent of the number of parameters (i.e., of the dimension of the parameter space). We
further elaborate on the importance of this result as a foundational step in the analysis of state-of-
the-art techniques usually employed in forward and inverse computational UQ, which are capable of
achieving dimension-independent convergence rates in the approximation of parametric maps with high-
dimensional shape parametrizations. Finally, in Section [7] we provide concluding remarks and sketch
directions of future research.

2. PRELIMINARIES

2.1. Notation. Let @ C R?, d = 1,2 be a domain, let k¥ € Ny and A € (0,1]. We denote by €*(Q)
the space of k times continuously differentiable functions in Q. Furthermore, we denote by €**(Q) the
subspace of k times continuously differentiable functions in 2 with Holder continuous partial derivatives
of order A. Throughout, we adopt the reference domain I := [0, 1] for the closed curve I' = 992. On I, we
consider the closed subspace of €°(R) of 1-periodic, complex-valued continuous functions, defined as

Con(D) = {uec € R): ulx)=ulz+1), zeR}.

per

Recursively, we define

Gk (1) = {u € €"=1(1) : such that u®) € CKI?er(I)} , keN,

per per
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where u(®) denotes the k-th derivative of the function u : I — C. We adopt the notation «’ to denote

the first derivative. The space ‘Kfer( ) endowed with the norm

el m —ZH (Z)‘

o = max|u(t)|. We also introduce the semi-norm
60, (1) =

k
for e %, (1,K),

Cger (D)

per

is a (complex) Banach space, where ||u

[uly,, 1y = max|u'(t)]
Equivalently, for a field K € {R,C} one may define €%, (I, K?), but replacing the absolute value || by
the Euclidean norm ||-||.

Let 67, (IxI) be the closed subspace of 1-biperiodic (i.e., 1-periodic in each variable), complex-valued
functions which are continuous in I x I

u(t,z) =u(t,x+1), Vtel and

0 _ 0 )
Gper(I % )_{ue%(RxR). u(z,s) =u(x+1,s), Vsel

, V:EGR}.

Again, we define recursively

olely,
%Ifer( ) = {u € Cglferl(l X I) 81&‘12350‘1 ( ) € %[())er(l X I)’ ‘O[l = k} ) ke Na
where a = (a1,a2) € N2 and |a| = a1 + as. We adopt the notation % and 6“ to denote the first
derivative with respect to the first and second variable, respectively, of the functlon u:lIxI— C.

Equipped with the norm

dlely .
Wl =2 5 [og] o we k),
£=0 eN nger(IXI)
\04|S5
where |ullgo (qx1) = ( n}ai( I| u(t,s)|, 6. (I x I) is a (complex) Banach space.
per t,5)elx

Let D C R? be a bounded domain of class €%, for & € N [32, Definition 3.3.1]. We denote by
L?(9D) the set of scalar-valued, square integrable functions over D and by €**(9D) the set of Holder
continuous functions in D [32, Section 1.2]. Let H*(dD), for s € [0, k], be the the Sobolev space of
traces on D ([46] Section 2.4], [32] Section 4.2]). As is customary, we identify H°(OD) with L?(dD)
and, for s € [0, k], H*(9D) with the dual space of H*(9D). The duality pairing between H*(dD) and
H*(0D) is denote by (-,-)yp, with the subscript accounting for the domain of definition. Finally, for
complex Banach spaces X and Y, we denote by £ (X,Y) the space of bounded linear operators from
X into Y and by Zs(X,Y) the (open) subset of isomorphisms, i.e. bounded linear operators with a
bounded inverse. Recall that .Z(X,Y) is a (complex) Banach space equipped with the standard operator
norm [44, Theorem III.2].

2.2. 1-Periodic Sobolev spaces. We recall results concerning 1-periodic Sobolev spaces that are re-

quired in the ensuing analysis. More details may found in [37, Chapter 8], [45], Setion 5.3] and [I, Section
6.5]. Define

1
L*(1) == { u: I — C measurable such that : /|u(s)|2 ds < o0
0
The Fourier expansion of v € L?(I) is given by

Zaz u) exp(127lt), tel, (2.1)
LEL

where the Fourier coefficients a,(u) in (2.1) are given by

1
/u s) exp(—127mls)ds.
0



We denote by (-,-)p2(y the L?(I)-inner product understood in the bilinear sense, i.e.
1
(u,v) 21 /u s)ds, forall wu,ve L*(I).
0

Therefore, the L?(I)-norm is given by [ull 2y = (u,ﬂ)%z(l).

Remark 1. The operation of complex conjugation is not holomorphic. To show holomorphy of certain
maps, we have to avoid it in analytic continuation of real-valued functions. For that reason, we define
inner products and duality pairings in the bilinear sense, rather than in the sesquilinear one.

Definition 2.1 ([37, Definition 8.1]). Let 0 < s < co. By H3,.(I) we denote the space of all u € L*(I)
with the property

||“HH NOE <Z(1+€2)sag(u)|2> < 0,

LET

for the Fourier coefficients as(u) of u € L*(I).

Theorem 2.2 (|37, Theorem 8.2]). Let 0 < s < co. The Sobolev space HE,.(I) is a (complex) Hilbert

per
space with the following scalar product (to be understood in the bilinear sense)

() e 1= (L+ ) a(war(v), u,ve H (1),

P
LEL

1
The inner product (-,-) . (1) induces the norm |lul|g. gy, i.e. [[ullgs @ = (u,0)F, @ foru € Hye (I).
L Ber Bor for

By the Riesz representation theorem, we identify H_;(I), for 0 < s < oo, with the dual space of
Hpo, (I) (i-e. the set all bounded linear functionals acting on H,, (I)). We denote by (-,-) . the H 5 (I)-

per per per

chr(I) duality pairing, again in the bilinear sense (without conjugation in the second argument). Adjoint

operators in the H_ g (I)-H;..(I) duality pairing are labeled with a { superscript. For u,v € L3(1), we

per
have

1

per /u
0

We endow H;(I), for 0 < s < oo, with the norm

(0, 0) e

||uHHper ) sup NTRTEER] u € Hper(I)

0AVEHS,,(T) HUHHs (1)

Finally, we remark that HO, (I) can be identified with L?(T).

per
Lemma 2.3 ([37, Theorem 8.5 & Theorem 8.6]). We have the following norm equivalences.
(i) Let k € Ng. Foru € €*

er(D), the norm ||u||Hk () s equivalent to

— (,,)‘
|u||k:,per <Z H L2(1)>

(), the norm |[ull g (1) s equivalent to
per

(ii) Let A € (0,1). Foru € €}

per

11
2 Ju(t) — u(s)|?
u o = U +// dsdt
| ||,\,p | ||L2(1) /) |sin(7r(tfs))\2>‘+l

Lemma 2.4 ([45, Lemma 5.12.2]). Assume that for an operator A there holds A € £ (H.(I), HEL.(T))

per per
and A € £ (H2.(1), HE2 (1)) with some Ay < Ay and py < pa. Then for o € [0,1],
1Al

A —o: - < |Al°
[ Hj(ngArﬁ(l D22y gerit( 9)»2(1)) <| ||$( HL (D), Hper(l)) ( 22.(1), Hper(l))
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Lemma 2.5 ([45, Lemma 5.13.1] & [37, Corollary 8.8]). Let A € [-1,1], u € €}, (I) and v € H}.(I).
Then, we have uv € H), (1) and

per
HUUHHSM(I) < Cx ||“||<gr}er(1) ||UHH3M(1) )
for a constant Cy > 0 depending only on A.

2.3. Boundary Integral Operators. Let G(x,y) be the fundamental solution to the Laplace equation
in R? (¢f. [50, Chapter 5] or [46] Section 3.1]), given by

1
G(x,y) = —5-log[x —y], x,y ER® and x#y.

Let D be an open bounded domain of class ¢? with boundary I' = dD. Denote by D® := R?\D its
complement. We define the single layer potential

(Sry) (x) = /G(x, y)U(y)dsy, xe€DUDC, (2.2)
r
and the double layer potential
(Dr6) ()= [ r(y) - grad,Glx.y)6(y)dsy, x € DUDY, (23)
r

where the densities 1) and ¢ are defined on the boundary I" and vr denotes the outer normal vector to
I'. Furthermore, we define the boundary integral operators (BIOs) on I' and for x € T" as follows

(Vi) (x) =, _Tim_ (5r9) (2) (2.42)
(Kro) (x) = _lim _ (Drg) (2) + 56(x), (2.40)
(Kiw) (<) =, _lim _ wr(a) - grad, (Sr) (2) — J(x) (240
(Wro) (x) = — Zegig;er vr(z) - grad, (Dro) (z), (2.4d)

In the following we refer to Vr, Kr, K and Wr as the single layer, double layer, adjoint double layer and
hypersingular BIOs, respectively. The following result provides the explicit representation of the BIOs
on domain of class €2

Lemma 2.6 ([32, Lemma 1.2.1]). Let T be a boundary of class €% and let ¢ and 1) be continuous. Then
the limits (2.4a), (2.4b), (2.4c) and (2.4d)) exist uniformly with respect to all x € T' and all ¢ and ¢ with
sup |p(x)| < 1, sup |(x)| < 1. Furthermore, these limits can be expressed by

xel’ xel

(Vi) (x) = / G(x, y)b(y)dsy,

T

(Kedh) (x) = / vr(y) - grad, G(x, y)b(y)dsy.

T

(K60) () = [ vr(x) - grad,Glx,y)o(y)dsy.
r
for x € ', where these integrals are understood in the improper sense with weakly singular kernels.

For a vector v = (v1,v5) € R? we introduce the notation [v]" := (vy, —v1). For a smooth function ¢
defined on I', we define

(curlry) (x) = v(x) - [VE(x)], x€R?,

where ¢ is a smooth extension of ¢ to a neighborhood of I'. The following lemma addresses the explicit
representation of the hypersingular operator on boundaries of class €2.

Lemma 2.7 (Maue’s formula, [32) Lemma 1.2.2] & [50, Theorem 6.15]). Let I' be a boundary of class
€2 and let o be a Hélder continuous differentiable function. Then the limit in (2.4d)) exists uniformly
with respect to all x € I' and all ¢ with ||¢|l41.0 ) < 1. Moreover, the operator Wr satisfies

Wr ¢ = —curlp o Vp o curlp ¢
for p € €1(T).



The BIOs defined in (2.4]) possess the following mapping properties between Sobolev spaces.

Theorem 2.8 ([46l, Theorem 3.1.16] & [I7, Theorem 1]). Let D be a bounded Lipschitz domain with
boundary T' :== dD. The BIOs defined in (2.4) are linear and bounded according to

Vi :H 3(T) — H3(T),
Kp :H?(T) — H*(T),
Kp:H#(T) = H™3(D),
Wrp :H3(T) — H 3 (T).
Ahead, for Vi := H2(T') x H=2(T), we shall also require the Calderén projector

L —Kp Vr
Cr=1|(2 Wi 1 " Kiﬂ € Z(VF,VF) . (2.6)
2

3. BOUNDARY REPRESENTATIONS

3.1. Jordan Curves. In the following, we recall some concepts concerning arcs and curves in two
dimensions. These definitions will allow us to describe precisely the collection of boundaries of class €2
to be considered throughout this work. For further details we refer to [45, Chapter 2].

Definition 3.1. (¢*-smooth, regular boundary representation)

(i) A point setT' C R? is an arc or curve if there exists a continuous vector-valued functionr : T — R?
such that T' is the image of the interval I through the function v : 1 — R2. We say that the map
r:1 — R2 is a boundary representation of I'.

(ii) A point set I C R? is a Jordan arc (or a simple arc) if there exists a one-to-one, continuous
function r : T — R? such that T is the image of the interval I through the function r: 1 — R2. If
r:1— R? is continuous, one-to-one in [0,1) and r(0) = r(1), the point set T is referred to as a
Jordan curve (or a simple closed curve).

(iii) Fork € N given, we say that a boundary representationr : 1 — R? of a Jordan arc T is €*—smooth
(we also say that T is a €*-smooth Jordan arc) if r € €*(,R?). A boundary representation
r: 1 — R2? of a Jordan curve T is said to be €*-smooth (we also say that T is a €*-smooth
Jordan curve) if r € G, (I, R?).

(iv) A boundary representation is said to be regular if it is €1-smooth and if r'(t) # 0, fort € 1.

Proposition 3.2 (Jordan’s Theorem, [45, Theorem 2.4.2]). Let I' be a Jordan curve in R%. Then
R2\I' = D UD®, where D and D° are two domains, exactly one of which is bounded. Furthermore, the
curve I' is the boundary of D and of D°.

We say that the bounded domain D defined by a Jordan curve I', according to Proposition 3.2} is called
the interior of I' and the unbounded domain D¢ = R?\D is the exterior of I'. Let 7 = (ry,79) : I — R?
be a regular boundary representation of a Jordan curve I' in the sense of Definition Let us set
7(t) == r1(t) +172(t), where ¢ := /=1 denotes the imaginary unit. Now, set 7(t) : I — C, i.e. 7 € €2, (I)
defines a curve in the complex plane. We define the winding number of a Jordan curve I' corresponding
to a boundary representation r : I — R at a point x ¢ I' as follows

1 t=1
w(l,r,x) = o arg(7(t) — %) ]
where arg(z) denotes the argument of z € C and x = z1 + 122 € C, for x = (x1,22). Observe that if
x € D, then w(I',r,x) = £1. On the other hand, if x € D we have w(T',r,x) = 0.

Definition 3.3. Let I' be a Jordan curve with a reqular boundary representation v : 1 — R2. If
w(l,r,x) = 1 for x € D, then we say that I' is positively oriented under the boundary representa-

tion v : I — R2. Otherwise, we say that I' is negatively oriented under the boundary representation
r:I— R2

Let 7 and v be orthonormal vectors in R%. For £ > 0, we define a neighbourhood of x € R? as
Ux,e,m,v)={y eR*: y=x+(r+nw:n (eR, [(|<e [n<e}.

Proposition 3.4 ([45, Theorem 2.4.3]). Let k € N. Then, the following conditions are equivalent for a
subset T C R2:

(i) T is a €*-smooth Jordan curve.



(ii) T is compact, connected, non-empty and for each x € T' there exist orthonormal vectors T(x)
and v(x) together with ex > 0, depending on x such that there holds

Ulx,ex, 7,v)ND ={y e R*: y =x+(7(x) + [x(Qv(x), [¢|<ex},
where fx : [—ex,ex] — R belongs to €*([—ex,ex]) and fx(0) = fL(0) = 0.

Remark 2. When T' is a positively oriented Jordan curve under the regular boundary representation
r:1— R? (in the sense of Definition [3.3), the vectors 7(x) and v(x) in Proposition [3.4| are given by

L )
O = p ™ YO =EaT

Remark 3. Let T be a Jordan curve with a boundary representation r : I — R2. If T is positively oriented
(in the sense of Definition the outer normal vector vr(x) from Section coincides with v(r(t))
from Remark [2|at x = r(¢), with ¢t € L.

Lemma 3.5. Let k € N and let I' C R? be a compact, connected boundary of class €*. Then, T is a
€% —smooth, regqular Jordan curve.

Proof. By [32] Definition 3.3.1], being I' C R? a compact, connected boundary of class €2, there exists a
finite number J € N of orthogonal linear transformations {B,};_; C R?*2 (i.e. 2x2 orthogonal matrices),
the same number of points {x,}/_, C T and functions x; : [~¢,e] — R belonging to €*([—¢,¢]),
for £ = 1,...,J, where ¢ > 0 is a fixed constant such that for each x € T' there exists at least one
¢e{l,...,J} providing the following representation of x € T’

x =%+ Bo(Cxe(Q)T, ¢ <e

Furthermore, there exists a € > 0 such that for each £ € {1,--- , J} the open set

By = {y€R2 : y:X€+Bf(<an)T7 |C| <g, |77| <€}

is the union of the sets

~ = TEeR? [(|<e and
B ::B mD: Esz =X +B , y (C777) € 9 ’
’ ! {y YZHTPY Q) —e<n < xe(Q)

= TEeR? |¢|<e and
B+Z:B ND¢ = ERQ; =x,+ B , y (C777) € ’ :
‘ ‘ {y YZHTPY Q) << xe(Q) +e

and
Tpi=BNT={yeR: y=x+B(CxelC)T, ¢l <e}.
For each x € T" there exists a £ € {1,...,J} such that x € I'; and

X :XK_FBZ(CXaXf(CX))Tv (31)
for a (x € (—¢,¢), depending on x. Then, using (3.1)) we get

To={yeR*: y=x+B:(¢,xe(Q)", ¢l <e}
={yeR?: y=x+B,(C— G xe() —xel&x) ", [¢] <&}
z{y€R2:y:x+Bg(u,fx(u))T, —e— (e <u<e—(x},

where u == ( —x, fx(u) = xe(u+(x) —xe(Cx) and ex = e —(x > 0. Observe that fx(0) = fL(0) = 0. Let
T¢, Vg be the first and second column of By, respectively. Observe that these vectors depend on x € T’
through the index ¢. Then, item (ii) in Proposition holds with these quantities. Then, it follows from
Proposition that T is a €*-smooth, regular Jordan curve. (]

3.2. Admissible Boundary Representations. Recall that we aim to prove the holomorphic depen-
dence of the Calderén projector on a collection of boundaries of class €. In view of Lemma and as
a way to represent the said collection of boundaries of class €2, throughout what follows we consider a
set {', },ex of €?>~smooth Jordan curves (in the sense of Definition , where 7 : I — R? is a boundary
representation of I'y := {x e R?: x =r(t), t €I} and T C 672, (I,R?) is a set of €?-smooth, regular
boundary representations, whose properties we specify below. We encounter the following issues in the
description of the set %:



e The boundary representation of a Jordan curve is not unique. Given a Jordan curve I',. charac-
terized by a boundary representation r : I — R2? and provided a 1-periodic, twice continuously
differentiable, bijective function x : I — I, such that x/(¢) > 0, we have that r oy : I — R? is
also a regular boundary representation of the Jordan curve I',.. Therefore I', = I';.o, i.e. both
curves are composed of the exact same set of points of R2.

e In the ensuing analysis, we need to work with regular boundary representations (in the sense
of Definition item (iv)). This property allows the construction of an isomorphism between
Hy. (I) and H*(T',.), for [s| < 1, as explained in Sectionthat allows us to transport the BIOs
from the boundary I',. to the reference interval I bijectively.

We address these issues by introducing the concept of admissible boundary representations of a collection
{T'; }rex of Jordan curves.

Definition 3.6. We say that T is a set of admissible boundary representations of a collection {T')},cx
of Jordan curves if:

(i) Eachr :1— R? belonging to T is a €?-smooth, reqular boundary representation (in the sense of
Definition of the Jordan curve T,..

(ii) Given two Jordan curves 'y, and Ty, belonging to {T')},cx with boundary representations r1, ra :
I — R2, respectively, and satisfying T, = Ty, (i.e., both curves are composed of the exact same
point set in R?), it holds that v1(t) = ro(t), for all t € 1.

Remark 4. The set ¥ of admissible boundary representations of a collection {I';},cx of regular Jordan
curves is not unique. For each boundary representation r € ¥ one may consider a 1-periodic, twice
continuously differentiable and a bijective function y,. : I — I (depending on r) such that x/.(¢) > 0, for
t € I. Then, we have that r o x,. : I — R? is a regular boundary representation of the Jordan curve T,..
Hence, the set T = {r o x+}rex is also a set of admissible boundary representations of the collection
{T; }rex of regular Jordan curves.

Remark 5. We do not enforce the boundary representations belonging to the set T of admissible boundary
representations of a collection {I';},cs to be parametrized by the arc-length, as we would like all the
boundary representations belonging to the set ¥ to be functions mapping the (fixed) interval I = [0, 1]
to R2.

In what follows we work under the following assumption.

Assumption 3.7. Let T be a set of admissible boundary representations of a collection {T')}rex of
Jordan curves (in the sense of Definition @) The set X has the following properties:

(i) For each r € T, the Jordan curve I',. is positively oriented under the boundary representation
r:1— R? (in the sense of Definition .
(ii) The set T is a compact subset of €2, (I, R?).

Example 3.8. Consider the collection of curves {T',},ex C R? defined by the set of boundary represen-
tations

T={r e € (LR?) : r(t)=ro(t) +yvo(t) t€l and ye[-1,1]}, (3.2)

where 1o : 1 — R? is a boundary representation of a €*-smooth, regular nominal Jordan curve T,
Yo (t) = ocos(2nt) and o € Ry. Selecting o € Ry sufficiently small, T in is actually a set of
admissible boundary representations of the collection {T'}},cx of Jordan curves. Assumption item
(i), is satisfied by the set ¥ in of admissible boundary representations of the collection {T';},ex of
Jordan curves. The compactness of T in €2, (I, R?) follows from [14, Lemma 2.7]. Thus, item (i) in
Assumption [3.7 holds.

Given r € €2, (I, R?), we define g, : I x I — R as follows

per

sin(w(t—s))

M for t—seZ.

T

MH for t—s¢Z,
qr(t,s) =

The following result establishes a crucial property of a set T of admissible boundary representations of
a collection {T', },ex of Jordan curves.

Proposition 3.9. Let T be a set of admissible boundary representations of a collection {T';}rcx of
Jordan curves satisfying Assumption . Then, for each r € T we have q, € ‘gger(I x 1) and there exists
9



a constant a(T) > 0 (depending on T only) such that

inf ( inf q.(t,s)] > . .
it (g 0r09) > () >0 3

Proof. We observe that for (¢,s) € I x I such that ¢t — s ¢ Z, the function g, : I x I — R is continuous.
We proceed to study q, when t approaches s € I. For s € I, let us compute
1

/r’(s +((t—s)d¢
0 _ )l

= lim -
sin(m(t—s)) ’ ™

t—s

%er; qr(t,s) = lim =q,(s,5).

t—s

r(t) —r(s) H

sin(m(t — s)) n(t-

The continuity of g, for ¢ approaching s + Z can be obtained by using the 1-biperiodicity of q, (¢, s).
Hence, we conclude that q, € €p,, (I x I).

Let r € . We have that r : I — T',. is injective in [0,1) and is also 1-periodic, i.e. r(t) = r(t + 1)
for all t € R. Furthermore, since the boundary representation r : I — T, is regular, we have r/(t) # 0,
for t € 1. It follows that q, is strictly positive in the compact domain I x I. Hence, q, € ‘fgcr(I x 1)
and q,(t,s) > 0 for all (¢,s) € I x I. Considering that I x I is a compact subset of R?, it follows that q,
attains a strictly positive minimum. Therefore, there exists a positive constant «,., solely depending on

the boundary transformation r € ¥, such that

inf q,(t,8) > a. > 0. 3.4
(inf (t,s) >« (3.4)
The map
T inf q,. 3.5
re ~ (usl)nelxlq ( )

is continuous. Indeed, for r € T and £ € €2, (I, R?) it holds

ldrye(t,s) —ar(t,s)] < qe(t,s), for (t,s) eIx]I,
and it follows that
llar+e — q’“”‘gger(lxl) < ||CI§H<gger(1X1)~ (3.6)
Observe that
1€ll2,_1r2)

per

||q€||cgger(1><1) <

T
Furthermore, it holds that

inf — inf < su t.s) — t,s)|.
(et 7T @ gena T 7(t,s)£><1‘qr+£(7 ) — g (t, 5)|
Using (3.6)), we obtain
inf qgpy¢e— inf < .
(t,sl)nelxlq7+€ (t,sl)nelxlqr - ”qfn%”r?er(lxl)

Hence, for all € > 0 we have that
||£||<€pgcr(LR2) < me implies ||gyqe — qT”%,?er(le) < e.

We conclude that the map (3.5 is continuous and, furthermore, strictly positive according to (3.4]).
Consequently, recalling that T is a compact subset of €2 (I, R?) according to Assumption the map

per

(3.5) attains a strictly positive minimum. Hence, there exists a constant «(%) > 0, depending only on
¥, such that (3.3]) holds. O

3.3. The Pullback Operator. Let ¥ be a collection of admissible boundary representations of a col-
lection {T';},ex of Jordan curves (in the sense of Definition . For r € T and ¢ € €°(T,) define
(1rp)(t) == (por)(t), for t € I. Being the composition of continuous functions, we have that 7,¢ € G (I).
The operator 7, admits an inverse 7! given by (7,7'¢) (x) == (por™!) (x), for x € ', and ¢ € €2, (I).
In the following we refer to 7, as the pullback operator.

The pullback operator allows to transform the BIOs introduced in Section [2.3]into 1-periodic integral
operators, with mapping properties between appropriate Sobolev spaces of 1-periodic functions that do
not depend on the chosen boundary representation. The dependence on the boundary representation
will be completely isolated in the integrand of the arising 1-periodic integral operator.

10



Proposition 3.10. Let T be a collection of admissible boundary representations of a collection {T';},rcx
of Jordan curves (in the sense of Deﬁm’tion@) satisfying Assumption . The pullback operator admits
a unique extension, still denoted by 7., such that 7, € Lo (H(T'y), HS, (1)), for |o| <1 and r € T.

per

Proof. The result follows from [32, Lemmas 4.2.4 and 4.2.5]. O

Remark 6. It can be proved that the pullback operator admits a unique extension 7, having the mapping
properties stated in Proposition but with |o| < 2 for boundaries of class 4. However, for our
purposes, it is enough to have the mapping properties of the pullback operator for |o| < 1.

4. HOLOMORPHIC 1-PERIODIC INTEGRAL OPERATORS

In this section, we consider 1-periodic integral operators depending on a collection of %2-smooth,
regular Jordan curves in R? and establish sufficient conditions to obtain shape holomorphy of the cor-
responding domain-to-operator maps. As we will see in Section [5| ahead, the main result of the present
section (Theorem provides a common framework to prove shape holomorphy of the BIOs for the
Laplace operator appearing in the Calderén projector . The results presented in this section are
developed in slightly greater generality than required in the subsequent development for the Calderén
projector for the Laplacean, and can be employed to establish shape holomorphy of more general BIOs
in two spatial dimensions.

In order to establish shape holomorphy, we verify complex Fréchet differentiability of the corresponding
domain-to-operator map. Shape differentiability of the BIOs in acoustic and electromagnetic scattering
and the numerical computation of shape gradients play an essential role in the implementation of iter-
ative optimization algorithms (for which a direction of maximum descent is required at each step) and
shape sensitivity analyses. Existing results in this regard aim to establish the real (Fréchet or Gateaux)
differentiability of the domain-to-operator map and obtain explicit expressions for first and higher-order
derivatives. However, to our knowledge, none of the currently available results address the holomorphic
dependence of the Calderén projector in on the boundary.

Recall that the computation and analysis of complex Fréchet derivatives necessarily requires a map
that is well-defined from one complex Banach space to another. However, the Calderén projector
is only defined on boundaries that are contained in R2. After the application of the pullback operator
introduced in Section [3.3] one can solely construct a domain-to-operator map that is properly defined
for a collection of Jordan curves {I',},ex in R?, where T C %ﬁer(I,RQ) is a set of admissible boundary
representations. Hence, up to this point in our analysis, the domain-to-operator map can only be
understood for real-valued boundary representations.

To compute the complex Fréchet derivative of the domain-to-operator map one must firstly extend
the set T of admissible boundary representations of a collection {T';},cx of Jordan curves to include
complex-valued boundary representations, i.e. vector-valued functions of the form r : I — C2 belonging
to %p?er(l, C?). This extension is performed by considering an open neighborhood of boundary represen-
tations with values in C? in the topology induced by the metric d : €2, (I,C?) x €2, (I,C*) — R in
€2, (I,C?) defined as

per

d(ri,ra) =lr = rallgz a2y TT2 € G(L,CY). (4.1)
The size 6 > 0 of the complex open d-neighborhood of ¥ must be judiciously chosen so that the Calderén
projector admits a well-defined extension to a set of complex-valued boundary representations contained
in %ger(l, C?). In particular, this extension must preserve the mapping properties of the original BIOs.
Once this extension is constructed, the complex Fréchet differentiability of the domain-to-operator map
can be performed.

This section is divided in two parts. Firstly, in Section [.I] we introduce notation and results regarding
holomorphic maps in Banach spaces of relevance for the subsequent developments. Then, in Section
we consider a class of 1-periodic integral operators with an integrand defined as the product of a
continuous function that depends holomorphically on a set of complex-valued boundary representations
and a (possibly singular) function that is independent of the chosen boundary representation. The main
result of this section corresponds to Theorem [£.13] Therein, we establish sufficient conditions to prove
the holomorphic dependence of 1-periodic integral operators having the structure previously described
on a suitable collection of complez-valued, €?—smooth boundary representations.

We remark that the abstract exercise of considering an open neighborhood of boundary representations
with values in C? and the subsequent extension of the Calderén projector is only required for theoretical
purposes. In concrete numerical applications, we neither numerically construct the BIOs for complex-
valued boundary representations nor solve BIEs set on complex-valued boundary curves. As will be
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discussed in Section [6] the presently obtained shape holomorphy result enables us to obtain parametric
regularity estimates for the parametric version of the Calderén projector, which are required for the
analysis of several techniques commonly used in forward and inverse UQ.

4.1. Holomorphic Maps in Banach Spaces. Let E and F' be complex Banach spaces equipped with
the norms ||-||; and [|-|| -, respectively. For m € N, we denote by Z(E(™) F) the set of continuous
m-linear maps ([40, Definition 1.1])

M’I’l}.

"7’,""L

c(ry, o yrm) €EEX - X E— F.
[ ——
m times

A mapping P : £ € E — F is said to be an m-homogeneous polynomial if there exists M € .Z(E(™), F)
such that

,PSZMfaag

for all £ € E. Furthermore, we denote by Z(E (m) F ) the set of all continuous m-homogeneous polyno-
mials from F into F' [40, Definition 2.1].

Definition 4.1 ([40, Definition 5.1]). Let U be an open, nonempty subset of E. A map F.:r €U — F
is said to be holomorphic if for each r € U there exists a ¢ > 0, a ball B(o) == {r € E: |r||z < o}
and a sequence of polynomials Pg(m) 1 £ € E — F belonging to Z(E™), F) such that for all v € U and

¢ € B(o) satisfyingr +£ €U

fr+§ = Z Pg("l)
m=0
holds uniformly

Definition 4.2 ([40, Definition 13.1]). Let U be an open, nonempty subset of E. A map F.:r €U — F
is said to be complex Fréchet differentiable if for each point r € U there exists a map (=F,)[r,"] €
Z(E,F) such that

|7ve= 5= (57 ) | =otiel.

We say that (%]—}) [r,&] is the Fréchet derivative of F.: 7 € U — F at r € U in the direction £ € E.

In the case that the map r € U — (L£F,)[r,&] € L(E,F) is again complex Fréchet differentiable
with continuous derivative we say that the map F,. : r € U — F is twice complex continuously Fréchet
differentiable. Then, we have that

((j:?];) r,-, ] = d% <<$fr) [r, .]) [r,-] € Z(E®,F).

Recursively, one may define higher-order Fréchet derivatives.

Definition 4.3. Let U be an open, nonempty subset of E and let m € N. We say that the map
Fr:r €U — F is m-times Fréchet differentiable if it is (m — 1)-times Fréchet differentiable and the
map

m—1

rEU%( }')[r, .,...,~]e$(E<m*1>,F)
~——

drm=1""
m—1 times

is Fréchet differentiable as well. We say that F,. : v € U — F is infinitely complex Fréchet differentiable
if it is m-times Fréchet differentiable for all m € N.

In the following, we adopt the notation

dam dm
<drm]:r> [7",5]: (d?"m‘]:T) [7",67“-75], m € N.
m times

We recall results regarding the extension of Taylor’s formula to maps between Banach spaces.
12



Lemma 4.4 (|23] Lemma 5.40]). Let U be an open, nonempty subset of E and let F. : v € U — F be
complex Fréchet differentiable. If the segment joining r € U and r + £ € U is contained in U, then it

holds
i d
~7:r+§ _]:r = / (d?"]:T) [7“4‘77575]‘177

Lemma 4.5 ([23, Theorem 5.42]). Let U be an open, nonempty subset of E and let F. : v € U — F be
m-times continuously complex Fréchet differentiable, for some m € N. In case that the segment joining
relU andr+ & €U is contained in U it holds

fm=§;Gi)w]j«$ﬁﬁ+%ﬂ(fﬂﬁﬂy%m

where Y (n) = —(1 —n)™/ml, for n € [0,1].

Theorem 4.6 (|40, Theorem 14.7]). Let U be an open, nonempty subset of E. For the map F, : r €
U — F the following conditions are equivalent:
(i) F. is holomorphic.
(ii) Fy is complex Fréchet differentiable.
(iil) JF; is infinitely complex Fréchet differentiable.
Furthermore, for allrT € U and & € E such that r +& € U it holds

am (m)
<dr7n./—"»,«) [7’, f] = m' Pf s m e N,

forallr € U and £ € E such that r + & € U, where Pg(m) is as in Definition for m € N.

Remark 7. As we aim to prove the holomorphic dependence of the BIOs on a collection of planar curves
of class €2, we emphasize the complex nature of the Banach spaces E and F. Due to Theorem it is
necessary and sufficient to prove complex Fréchet differentiability of the BIOs with respect to a suitable
collection of complez-valued planar curves of class €2. We elaborate on this issue in Section

We proceed to present further properties of holomorphic maps in complex Banach spaces, to be used
in the ensuing analysis.

Theorem 4.7. Let U be an open, nonempty subset of E and let F,. : v € U — F be holomorphic. Then,
if the segment joining r € U and r +& € U is contained in U, for all m € Ny it holds

1
m 1 d@ 1—nm™ Jm+i
Fve= 2 (a7 ) n 0+ [ O (G ) b ne g
£=0 0

Proof. According to Lemma [£.4] and since F, : 7 € U — F is holomorphic,
1
P F Ve (o m ) e = (S F ) et
drm ) TTIS drm T ) DS drm17 T ) TS
0

a dm+1
0
for n € [0,1]. Applying integration by parts

!(( F )i nsdl - (G ) el av ( ;j(d:jl )v+¢&aﬁ>

=0

L dm+1
/( il )v+%£wmmm
0
1

dm+1
/ (drm+1f> [r + n&, E]dn,

0
and the result follows from these computations. O
13

1

n=0




Let 2(0) == {2 € C: |z| <} be the complex open disc of radius ¥ > 0 centered in the origin of the

complex plane and let 2(¢) be its closure. The following result corresponds to the version of Cauchy’s
integral formula for holomorphic maps in complex Banach spaces.

Proposition 4.8 ([40, Corollary 7.3]). Let U be an open and nonempty subset of E and let F, : r €
U — F be Fréchet differentiable. Letr € U, £ € E and ¥ > 0 be such that r + o€ € U, for all 0 € (V).
Then, for each m € Ny we have the Cauchy’s integral formula

(Wﬂ> e = [ Tenegy

drm 211 Amtl
[A]=0

We conclude this section by recalling the following result that asserts the uniqueness of holomorphic
extensions.

Theorem 4.9 ([23| Theorem 5.34]). Let R be a real vector subspace of E such that the complex subspace
R, =R+:1R is dense in E. If F,.,G, : 7 € U — F are holomophic on a connected open set U in E, and
Fr = G, on some nonempty set V.C U N R, relatively open in R, then F. = G, on U.

4.2. Shape Holomorphy of 1-periodic Integral Operators. Let ¥ be a set of admissible boundary
representations of a collection {I',.},ex of Jordan curves in R? (in the sense of Definition . Provided
a function f : R\Z — C and, for each r € T, a function p, : I x I — C, we define for ¢ € ‘ngr(l) the
following 1-periodic integral operator

1
(P ) () == /f(t —s)pr(t,s)p(s)ds, tel (4.2)
0

Observe that P, depends on the boundary representation r € ¥ only through p, : I x I — C. In the
following and throughout this section we work under the following assumption.

Assumption 4.10. Let T be a set of admissible boundary representations of a collection {I',},cx of
Jordan curves in R?.

(i) For each r € T, we have that p, € Cop, (I x I).
(ii) The function f is a 1-periodic, weakly singular kernel, i.e. there exists a v € (0,1) and a finite

constant C(f,v) > 0 (depending on f and v only) such that
[f(t)| < C(f,v) |sin(nt)| ™", teR\Z.
The function f is continuous in R\Z and does not depend on the boundary representation r € X.

As we shall prove in Section b, the BIOs appearing in the Calderén projector set on a Jordan curve
I', with a boundary representation r : I — R? may be a cast as in . After the application of
pullback operator 7, introduced for each for r € ¥ in Section [3.3] to the BIOs defined in Section 2.3 we
obtain 1-periodic integral operators defined in the reference domain I with the structure of P,.. Hence
the importance of 1-periodic integral operators satisfying this framework. The singular component of
the BIOs is contained in the function f, while the dependence on the boundary representation r : I — R?
of T, is isolated in the continuous function p, € €, (I x I). A detailed description of this procedure for
the components of the Calderén projector is provided in Section

Under Assumption the integral in exists in the Lebesgue sense. The proof of the following

result may be found in Appendix [A]

Lemma 4.11. Let ¥ be a set of admissible boundary representations of a collection {I'y},cx of Jordan
curves in R? and let Assumption be satisfied. For ¢ € €0, (1), the integral in ([A.2)), i.e. in the
definition of the 1-periodic operator P, exists in the Lebesque sense. Furthermore, for each v € T and

for all ¢ € €° (1), we have that P, € €2 (1).

per per

The main goal of this subsection is to introduce sufficient conditions that allow us to establish the
holomorphic dependence of the 1-periodic integral operator P, in (as an element of the complex
Banach space of bounded linear operators satisfying suitable mapping properties) on a set T of admissible
boundary representations of a collection {I'},cx of Jordan curves in R?.

Due to Theorem [4.6]and as explained in Remark[7] we aim to prove complex Fréchet differentiability of
the 1-periodic integral operator P, with respect to the boundary representation r € ¥. In so doing, first
we have to extend the set T of admissible boundary representations of a collection {I';},c< of Jordan
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curves to include complex-valued boundary representations, as described at the beginning of this section.
Given § > 0, we define the complex open d-neighborhood of ¥ as

Ty = {re per( ,C?): 37 € % such that d(7,r) < 6},

where d(+,-) has been introduced in . For some 6 > 0 to be speciﬁed7 we define an extension of the
1-periodic integral operator P, to the set T5 and for p € €%, (1) as

per
1

(Prco)(t) = /f(t —s)prc(t,s)p(s)ds, t€l and re T, (4.3)
0

where p,.c is a suitable extension of p, € €0

per(l x I) to the set T5. In the following, we work under the
assumption stated below.

Assumption 4.12. Let T be a set of admissible boundary representations of a collection {I'},ex of
Jordan curves in R? (in the sense of Definition . There exists 6 > 0 such that:

(1) for each r € s, the extension p,c of p, € %ger(I x 1) to Ts belongs to €, (I x 1),

(i) the 1-periodic integral operator P, c defined in admits a unique extension to 1-periodic
Sobolev spaces, still denoted by P,.c, such that for some k,p € R and for all v € T5 the 1-periodic
integral operator P, c : Hj, (1) — Hp,(I) is linear and bounded.

per
(iii) the map

TE‘Ig'—)PTCef(HK () H? (I))

per per

is uniformly bounded on the set Ts, i.e. there exists a finite constant Cp(T,0) > 0 (depending
upon ¥ and 6 only) such that

7"86113% HPT C”g([-jm (1), Hper (1 ) < C’P (‘E7 5) ) (4'4)
(iv) the map
r€Ts = prc € ‘Kl?er (IxI)
18 holomorphic.

Under Assumptions [£.10] and [£.12} the next theorem establishes the holomorphic dependence of P, ¢
on the set %, for some ¢ > 0 to be specified.

Remark 8. When item (i) in Assumption is satisfied, Assumptions holds for P, ¢. Hence, the
statements of Lemma hold for P, ¢ as well.

Theorem 4.13. Let T be a set of admissible boundary representations of a collection {T'y}rcx of Jordan
curves in R2. Let Assumptions and hold with some § > 0. Then, for any € € (0,0) the map

r €T s P € L(H (1), o (1)) (4.5)

per
is holomorphic. Its Fréchet derivative at v € T, for e € (0,9), in the direction £ € €2,.(1,C?) and for

€ €0_(1) reads
(;i TC@) /ft_s ( Prc> [r,&](t, s)@(s)ds, tel

per
Proof. Let e € (0,6] where § > 0 is as in Assumption The statements of Assumption hold as
well for the set %..

The proof is divided into two steps:

(a) FormeN,re%. and { €

per

C?), we define

per(

(Pi,nggﬁ /ft—s (d mprC) [r,€](t, s)p(s)ds, teT,

where ¢ € €%, (). Firstly, we prove that P(m) H. (I) = HE,, (1) is linear and bounded for all

per per
r € T. and m € N. More precisely, that the followmg estimate holds for all m € N
[Pt <m0
" 2 (B (0. H o () 72

where Cp (%,0) is as in Assumption [4.12] “ and ¥¢ > 0 (depending upon &) together with ¢ €
%2, (1,C?) are chosen so that r + A{ € Ty, for all A € D (V).
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(b) Using Taylor’s expansion we prove that
} (1)

Pr+§>(C - PT,C - P,«,g
for r € ¥.. This implies complex Fréchet differentiability of the map and that P(l)
Z(Hf,. (1), He,. (1)) is actually the Fréchet derivative of P,c at r € ig in the direction § €
€2, (1,C?).
per

We proceed with step (a). Let r € T, and 0 #£ € € per( ,C?). Let us assume, for the moment, that

there exists J¢ > 0 (depending on ) such that r + A € Ts for all A € Z (9¢). We will specify these
quantities in step (b) of the proof. Therefore, since r € Ts + p,.c € €2 (I x I) is holomorphic according

per

to Assumption item (iv), Cauchy’s integral formula (Proposition |4.8)) delivers
am ! - ¢
( prc) r,&)(t,5) = —— / p“fic(s)cu (t,s) €I x 1.

drm 21 Amtl
[A|=0¢

’ 2 (Hgor (1, HEer (1) -0 (”5”%5841,«:2))’

per

Hence, for t € T and $ € €2, (I) we have

per

1
m) A m' Pr4+x¢,C t S ~
(pore) 0 =2 [ee-9 | [ P2l psas
0 Al="¢
1

m! 1 )
- / AL /f(t_S)PrHs,c(t,S)np(s)ds d\

2m
I\ =0e 0
m! 1 .
=5 / Nt (Pryag @) ()dA.
A=

Using the uniform boundedness of P, over r € Ty, i.e. item (iil) in Assumption and recalling that
r+ X € %5 for A € (), for p € HY, (I) we obtain

per
‘ P

where the constant Cp (T,0) > 0 is that of estimate (4.4)). Then, using item (ii) in Assumption for
¢ € Hp, (I), we obtain

for r € T and ¢ € €3, (I,C?) such that r + A¢ € Ts5. This concludes step (a) of the proof.
We continue with step (b) of the proof. Recalling the holomorphic dependence of p, ¢ on the set Ts,
item (iv) in Assumption and an application of Taylor’s theorem (Theorem yields

m!

< =
Hfer() — 27 Al
IAI=0¢

Do

m!
m+1 IPrsxe@ll e, 1y dX < Cp (T, 0) s 1Pl £z,
13

L(Hp (1), Hper (D) ~ <Cr(5.9) 5 19’"’

per

2

price(tss) =pre(tos) +  gronc ) 1n€es) + (=0 (Gpne ) I+ at €t s)in
0

Let ¢ € €9,.(I), then using Lemma and Remark |8 we obtain
1
N 5 2
(Pricd) (0= (Pr) 0+ (PL2) (0 + [0 =) (P2ec0) (0dn, 2,
0
and it holds that

p®

[(Prve =P —Pre) 4

Let r € T. and consider 0 # £ € €2, (I,C?) such that [|¢]|- (,c2) < 0 —¢e. We claim that by choosing
per\*
¢ as follows

< sup ’
Hger(D)  pefo,1)

(4.6)

Hper ()

0—c¢

0< e = —-—
© ez .02

_]_7
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it holds that r 4+ né + A\ € T; for all A € Z(J¢) and for all 5 € [0,1]. Indeed, we have that
[[r+né + A — FH%ger(L((?) <e+ (1+9) Hf”%ger(l,@) <9

where 7 € T is such that |[r —7|[42 5 c2) <€ (recall that r € T.). Then, according to step (a) of the
per\*»
proof, one obtains for r € T, and 0 # £ € €2, (I,C?) the bound

sup p2 ‘ Cr(%,9)
neo I T8 e (mp, 0, B ) T 0
Observe that
1
9 =o0 (||§||<gger(1,<c2)) :
Then, from (4.6) one may conclude that
=P ) =2 ()
‘ e T el (g g m) 1€llz,, a.c2) ) -

for r € T, and 0 # € € 62,,(I, C?) such that ||§||<gger(1,c2) < 6 — . Hence, for any ¢ € (0,0), the map

r € T Pp€ Z(Hp, (1), Hp, (1))
is complex Fréchet differentiable and, furthermore, its Fréchet derivative at r € ¥, in the direction
£ €62, (1,C?) s Pglg € Z(Hf, (1), HE,.(I)). This concludes step (b) of the proof and shows that the

map (4.5)) is holomorphic by invoking Theorem 4.6 O

5. SHAPE HoLOMORPHY OF THE CALDERON PROJECTOR

In this section, we prove shape holomorphy of the Calderén projector introduced in . We proceed
as follows. Firstly, we consider a set ¥ of admissible boundary representations of a collection {T';},cx
of €*~smooth Jordan curves in R? (in the sense of Definition [3.6). Then, using the pullback operator
defined in Section[3.3] we transform the BIOs originally posed on the boundary I, into 1-periodic integral
operators defined on the reference domain I. For r» € ¥, we define C,=71.0Cr0 7,71 (the application of
the pullback operator to C, is understood component-wise), where C,. := Cr, is the Calderén projector,
introduced in Section Recalling that for |o| < 1 and for all r € T we have 7, € Lo (H (L)) HZ,. (1))

(Proposition [3.10) and together with the mapping properties of the BIOs (Theorem , we analyze the
smoothness of the map

reT—Cr e L (Vier, Vper) (5.1)

1 _1 .
where Ve = Hier(I) X HpeZ (I). More precisely, we study the holomorphic dependence of C, (as an
element of the complex Banach space of bounded linear operators) on a set ¥, for some § > 0 to be
specified. In so doing, we first need to construct a well-defined extension of C, to r € Ts, denoted by

C,c, satisfying the appropriate mapping properties between 1-periodic Sobolev spaces, as indicated in
(5.1). Then, in view of Theorem we must study the compleaﬂ Fréchet differentiability of the map

re %5 Crc €2 (Vpers Vper) - (5.2)

The complex Fréchet differentiability of the map in is equivalent to that of the four 1-periodic
integral operators contained in the Calderén projector.

This section is structured as follows. In Section [5.1| we investigate holomorphic functions of relevance
for the subsequent analysis. In Sections [5.2] and we establish shape holomorphy of the single and
double layer BIOs, respectively. These results are based on the framework developed in Section [.2] hence
the main task here is to verify that the extension of these 1—periodic integral operators to complex-valued
boundary representations satisfy Assumptions and Then, Theorem [£.13] provides the sought
shape holomorphy result.

In Sections [5.4] and we establish shape holomorphy of the adjoint double layer and hypersingular
BIOs, respectively. Therein, the arguments to obtain shape holomorphy read differently. The technique
used in Section for the adjoint double layer operator hinges on the result obtained for double layer
operator in Section For the hypersingular operator, we construct an extension to complex-valued
boundary representations using Maue’s formula (Lemma and the result for the single layer operator.

IIn this section we study the complex Fréchet differentiability of maps between complex Banach spaces. For the sake of
readability, we drop the word “complex” as it is already implied that Fréchet differentiability only in this sense is established
here, as we work only with complex Banach spaces.
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Shape holomorphy is obtained by observing that this extension can be written as composition of holo-
mophic maps. In Section [5.6| we put together the results for each of the 1-periodic integrals operators
analyzed here and establish shape holomorphy of the Calderén projector. Finally, in Section [5.7] we
introduce an abstract framework to obtain the holomorphic dependence of the solution of a well-posed
BIE on a family of boundary curves in R?. As an example we consider the boundary integral formulations
used to convert the Laplace problem equipped with Dirichlet boundary conditions into a BIE.

5.1. Holomorphic Boundary Representations. Let ¥ be a set of admissible boundary representa-
tions of a collection {I',.},ex of Jordan curves in R? (in the sense of Definition [3.6)). For some § > 0 to
be specified and r € T5 we define
(r(t)=r(s))-(r(t)=r(s))
: t— Z,
mr(C(ty 8) — smz/(rrgtis)) s ¢
7 (e )(s) t—seZ.

2

(5.3)

We present a technical result that will be used extensively throughout this work. Its proof may be found
in Appendix [B]

Proposition 5.1. Let T be a set of admissible boundary representations of a collection {T';},cx of
€2 -smooth Jordan curves in R? (in the sense of Deﬁnition satisfying Assumption . Then, for
d =0(%) > 0 given by

1. 2
0= B 7}22 (* "l re) + \/|7’|<gl;er(1,m2) + (04(‘3:))2) )

where a(T) > 0 is as in Pmposition there exists a finite constant @(%,0) > 0 (depending only on T
and 0) such that

inf inf ot s)} > &(%,0). 4
Tlen%(t’sl)nelxl%{m c(t,s)} > a(%,9) (5.4)

As explained in Remark [7] we must provide a well-defined holomorphic extension of the BIOs to the
set Tg, for some § > 0. This implies that we have to construct a well-defined holomorphic extension of
the map x € R? — ||x|| € R. Let us define for x € C?

2
|x[|c = vx-x, where x-X:= le z;
i=1
for x = (w1,z2) and X = (T1,72). Here, considering i = C\(—o0,0], we denote by /- : 4 — C
the principal branch of the square root defined as \/z = \/rexp(:4), where z = rexp(:6) is such that

6 € (—m, ). This branch is holomorphic and its complex derivative is 4 /z = 2—\1/2, for z € 4.

Lemma 5.2. Let T be a set of admissible boundary representations of a collection {T',}rex of €2 -smooth
Jordan curves in R? satisfying Assumption and let 6 > 0 be as in Proposition , The maps

(L,C?)

are holomorphic and uniformly bounded on the set Ts, i.e. there exists a finite constant C(%,§) > 0
(depending on T and 6 only) such that

SUp Iz, 1.0 < C(%.6). (55)
rc¥s per

re%s—nrr, r"e?°

per

Proof. For each r € Ts, there exists a 7 € T such that [[r —7llg2 c2) < 6. The map 7 € T
per\*»
[7ll2 (1re) € R is continuous and considering that T is a compact subset of %2, (I, R?), according to
per\»

Assumption it attains its maximum in ¥. Therefore,

HT‘Hggger(ch) S ||7" — ?H(gger(lvc2) + ||’7:H<g§er(LR2) S 5 =+ ilég ||;||<gger(17(c2) < 0.

C(%,8)
Consequently, (5.5) holds with a finite constant C(¥,d) > 0 that depends only on T and 4. O

Lemma 5.3. Let T be a set of admissible boundary representations of a collection {T')},.ex of Jordan
curves in R? satisfying Assumption and let 6 > 0 be as in Proposition .

(i) For all v € Ts, we have that m,.c € Cpe, (I x I).

(ii) The map

rE€Tsmuc € G, (Ix]) (5.6)

per

s holomorphic.
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(iil) There exists a finite constant C,(T,d) > 0, depending only on T and & only, such that

sup HmTCH%1 ax1) < Cm(%,9). (5.7)
re¥s

(iv) The Fréchet derivative of the map in at r € Ts in the direction & € 62, (1,C?) reads
(dm,,c) €]t 5) = 27 = T(S)) ' (’5“) —86)  (1s)elxI and t—s¢7Z

dr sin? (7(t — s)) ’

Proof. Let 6 > 0 be as in Proposition Firstly, we prove that for all r € T; we have that m,c(t,s) €
%I}er(I x I). Due to Proposition m, ¢ is continuously differentiable for ¢t — s ¢ Z. The only possible
discontinuity is located at ¢t — s € Z. We analyze the behaviour for ¢ € I approaching s € I. For a fixed

s € I, let us compute

hm myc(t,s) = hm

—s sin? (7 (t —3))
= lim L 1 s — ) . / (s —5)
RGN

The extension to ¢t —s € Z is based on the 1-biperiodicity of m,.c(t,s). Therefore, m,.c(t,s) € €3, (IxI).
We prove that m,.c(t, s) belongs to €y, (I x I). We calculate

9 [ 2Ol an GO L ot (n(t - 5)),  t-s¢Z,
6t mric( 78) - (T/ ’l"”)(s)

t—s€Z.

To analyze the behaviour when ¢ approaches s € I, with a second order Taylor expansion of r(s) at ¢t we

get
r(s) =r(t) + (s — t)r'(t) + (s — t)? / ' (t+ (s —t))dC. (5.8)
0

For s € I, we compute

(r(t) = (s))
’ )

lim ngc(t s) =lim 2

t—s Ot t—s gin® (n(t — s
)~ r8) - () — r(s) o
+ jim 2 sin? (n(t — 9)) (ﬁ(t— j ~cote (m(t )))

Using (5.8)),

—tim—2079) () (). [a=on e+ cts—vyc

t=ssin? (7(t — s))

L2 [ e [ e e e — )
= lim / (t-+ ¢t~ 8))d¢ / (1= (gl — e = 0
Furthermore,
: (r(t) —r(s)) - (r(t) —r(s)) 1 _
fim 27 2sin? (7(t — s)) (ﬂ(t s) cot (m(t - S))) =0
and
9 7 a

Again, the analysis for ¢t € I approaching s+ Z can be approached via the 1-biperiodicity of %mnc(t, s).
Therefore, aatmr,C € €5..(I x I). Similarly, one can prove that mTc € €5..(I x I) and we have that

Myc € G, (I X T), for all r € Ty
19



We claim that the map r € 5 — m, ¢ € €0 (I x I) is holomorphic and its Fréchet derivative at

per

r € Ts in the direction £ € per( ,C2) reads
9 (r(®)=r(s))-(£(t) - 5(8)) _
(der> [r,€](t,s) = w(lr(w(s(ss))) t—s¢Z,
o 2 2 ’ t—seZ.

Indeed, we have

sin? (7w (t—s))

[GRIIO]
71—2

Mytec(t,s) —mec(t,s) — (ddrmT’C> [r,&](2, s)

[ED—E)) - (M€ t—s¢?z,
<
, t—seZ,

and, using Lemma [B.1] we obtain
d
‘ Myye.c — MypC — <drmr(c> [7’ g]‘

Hence, it follows that m, ¢ € €2, (I x I) depends holomorphically on r € T5. Using Lemmas and

per
one obtains the uniform boundedness claimed in (5.7)). Using the exact same arguments, one can prove

that the derivatives of m,.c (as elements of €7, (I x I)) depend holomorphically on s and conclude that

r € Ts— m.c € €L, (I x1) is holomorphic. O

per

= 2 ”gH%” (,c2) -

per

%Ser(lxl)

Let J.(t) == ||r'(¢)]| for t € T denote the Jacobian of the boundary representation r € T of the curve
T',.. For r € T5, with § > 0 as in Proposition we consider an extension of 7., denoted by J; ¢, to the
set Ts defined as J,.c(t) := ||r'(t)||¢, for t € I. Observe that due to Proposition the function J, ¢ is
well-defined for each r € T5. We study the holomorphic dependence of this function on r € Ts.

Lemma 5.4. Let T be a set of admissible boundary representations of a collection {I', },ex of €*—smooth
Jordan curves in R? satisfying Assumptionm and let 6 > 0 be as in Proposition .
(i) For all v € Ts, we have that J.c € €pe,(I).
(ii) The map
re s = TIrc € per(I) (5.9)

18 holomorphic.
(iii) There exists a finite constant C7(%,d) > 0 (depending on T and § only) such that

SUP T, C”cgl (D < Cy(%,6). (5.10)
r€T
(iv) The Fréchet derivative of the map in at r € T in the direction § € 62 (1,C?) reads
d r'(t) - €'(t)
j,.,(c) L €](t) = e (5.11)
(7)1 =705

Proof. Let § > 0 be as in Proposition It follows from Propositionthat |7 (t)||c # 0 for t € T and
r € T5. Furthermore, we have that

("))

T c(t) = , tel
. I ()l
Since r € 62, (I,C?), it follows that J ¢ € €5, (1) and, therefore J,.c € 6, (I). The map
re%s—r-re (fpler( ) (5.12)

is holomorphic and its Fréchet derivative at r € Ts in the direction & € €2, (I, C?) is

(50" O =260, ter

Due to Proposition the holomorphy of the map (5.12)) and that of the principal branch of the
square root, we may conclude that the map (| is holomorphic. Using the chain rule for Fréchet
differentiable maps, we obtain the expression for the Fréchet derivative of the map , namely -

Finally, recalling Propomtlonand the uniform boundedness of the maps r € T5 — 1/, 1"’ € €0, .(I,C?),
established in Lemma it follows that (5.10) holds with a constant C7(%, ) that depends on T and
0 only. O

As a consequence of Proposition [5.1] and Lemma [5.4] one may obtain the following result.

Corollary 5.5. Let ¥ be a set of admissible boundary representations of a collection {T,.},ex of Jordan
curves in R? satisfying Assumption and let 6 > 0 be as in Proposition .
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(i) Forr € %5, we have that 7.0 € ‘Kﬁer( )-
(ii) The map

e ¢l (D) (5.13)

TETg'—)jT(C per

is holomorphic.
(iii) There exists a finite constant C% (%,0) > 0 (depending on T and 6 only) such that
1
jr(C Clee(D)

(iv) The Fréchet derivative of the map in at r € Ts in the direction & € €., (1,C?) reads

(jrji,(c) = jj?c ( Jm) el

5.2. Shape Holomorphy of the Single Layer Operator. We analyze the map
1
re¥—V, e .Z( per( ), szer(I)),

< C1(%,9).

sup

1
rexs 7

where V, := 7,0V, o7, ! yields a representation of V,. in the reference domain I = [0, 1] with the notation
V = Vr,, for r € T. The explicit representation of the operator V, given in Lemma provides for
‘50 @

per

(vr @) (t) = / Vi (t, 8)p(s) T (s)ds, tel,
0

where
1
v (t, 8) = —2—1og lr(@®) = r(s)|l, (t,s) €IxI and t—s¢Z.
T

We decompose V, as follows
\7r - Sr + G'm
where, for ¢ € €2, (I), the operator

per

1
1

(S,¢) (1) == —— [ log (45in? (x(t — 5))) T ()$(s)ds, el
0

contains the logarithmic singularity of V,. and for ¢ €€’ (1)

per

1
/grtsjr P(s)ds, tel,
0

is a l-periodic integral operator with g, : I x I — R defined as

g (t,s) = —ilog ) =) T(S)HQ (t,s) €IxI and t—s¢Z.
Y 4 4sin? (n(t —s)) )’ 7
Let Log z : 4 — C be the principal branch of the logarithm (recall that Y := C\(—o00,0]). For a
complex number z = r exp(f) with —7 < 6 < 7 we have that Log z = log r + 0. The principal branch
of the logarithm is holomorphlc and its complex derivative is - Log( ) = 2z~ [16, Corollary 2.21]. For
0 > 0 as in Proposition we consider an extension g, c : I x I — C of g, to the set T5 given by

1 (r(t) —r(s)) - (r(t) —T(S)))
rc(t,s) = ——Lo , (t,s)elxI and t—sé&Z.

grelts) =~ g( 4sin? (n(t — s)) (t:5) ¢
Observe that g, ¢ is actually the composition of the principal branch of the logarithm and m, ¢ : IxI =+ C
defined in (5.3]). It follows from Proposition that g, c is well-defined for each r € ¥5. This is due to
the the fact that the argument of the logarithm has a real part that is bounded from below away from

zero, according to Proposition

We define an extension of the 1-periodic integral operator V,. to the set T as follows

Vg =S.c+Gre, (5.14)
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where for ¢ € €°,.(I)

(Srce)(t) = —% / log (4 sin? (7(t — 5))) Trc(s)p(s)ds, tel,
0

and
1

6290 (1) = [ Bt ) Tc()s(s)ds, tel
0
The following result provides the regularity of g, c and establishes its holomorphic dependence on the
set Ts, with 6 > 0 as in Proposition [5.1

Lemma 5.6. Let T be a set of admissible boundary representations of a collection {T,},ex of Jordan
curves in R? satisfying Assumption and let 6 > 0 be as in Proposition .

(i) For each r € %5, we have g.c € Cpe, (I X T).

(ii) The map

7 ETs > grc € ooy IxT) (5.15)

per
is holomorphic and uniformly bounded on the set Ts,
(i) There exists a finite constant Cg(%,0) > 0 (depending on T and § only) such that

Sé}g ||gr,C||<gger(1x1) < Cg(T,9). (5.16)
re¥s

(iv) The Fréchet derwative of the map in (5.15) at r € T in the direction & € €3, (I,C?) reads

4 el sy = — L () = 7(s) - (€(t) — £(s)) 5 and f—s
(drg"c>[’5](t’) o (r () () (D) —+(3))’ (t,s)€Ix1 and t—s¢Z.  (5.17)

Proof. From Proposition [5.1] we have
R{m,c(t,s)} > a(T) >0 forall (t,s) eI x]I, (5.18)

where § > 0 is as in Proposition The function g, ¢ : I xI — C corresponds to the composition of the
principal branch of the logarithm and m, ¢ : I x I — C. Due to , we have that g, ¢ is holomorphic
and its Fréchet derivative at r € T in the direction & € 62, (I, C*) is given in (5.17). From Proposition
and Lemma it follows that the map 7 € Ts — m, ¢ € €L, (I x I) is uniformly bounded from

per
below away from zero and, considering that the principal branch of the logarithm is holomorphic in i,
we conclude that (5.16)) holds. O

We proceed to prove that G, ¢ and S, ¢ are bounded linear operator for each r: 1 — C? belonging to
the set T5. Furthermore, we show their holomorphic dependence upon the set ¥., for some £ > 0 that
depends on ¢ > 0 from Proposition [5.1]

Remark 9. In the following, we adopt the notation < to denote boundedness up to a multiplicative
constant that is completely independent of any complex-valued boundary representation r € T3 and of
the set Ty itself.

Lemma 5.7. Let T be a set of admissible boundary representations of a collection {T';}rex of Jordan
curves satisfying Assumption and let § > 0 be as in Proposition[5.1]

1 1
(1) For each r € X5, the 1-periodic integral operator S, ¢ : Hpe? (I) = Hger(I) is linear and bounded.
(ii) For any e € (0,9), the map

r €T S € L (Hped (1), Hier (1)) (5.19)

is holomorphic.
(iil) There ezists a constant Cs (T,d) > 0 (depending upon T and § only) such that for any € € (0, 9)

< Cs(%,0). (5.20)

sup ||S, 3 (1).H2
S I3nell (4t i, mhn)

(iii) The Fréchet derivative of the map in (5.19) at r € T, in the direction & € €3, (I,C*) and for
¢ € 69 (I) reads

(5 5nee) ey = - 4= / g (t5in? (n(t — ) (- ) In€l)plo)ds, e
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Proof. The 1-periodic integral operator S, ¢ fits the framework of Section and satisfies Assumption
4.10| with f(t) = log(4sin®(7(t)) and p,.c(t,s) = J.c(s). It remains to prove that S, ¢ fulfils Assumption
4.12| with § > 0 as in Proposition

(i) It follows from Lemma 4fthat for each r € T5 we have J, ¢ € ‘Kgcr( ).
(ii) The operator S : H? (1) = HELN(I) defined for ¢ € €7, (1) as

per per
(Scp =—— /1og (4sin® (n(t — 5))) ¢(s)ds, tel,
is linear and bounded for all p € R [37, Theorem 8.29]. According to Lemma we have
1991,y S ey, 191, 3., (5.21)

for p € ‘Kplcr( ). Observe that Shc ¢=S (Jr.c ¢). Using the mapping properties of S and (5.21)),

we obtain for ¢ € €., (I)

HS (Trc®)

P r,C _1
1 (1) H H v (1. HA (D) 77 &l Hpe? (1)

(5.22)
< ||$,<c||<grger(1) HS P

) el -

per (I) Hpex (I) per (I)

Recalling that 4. (I) is dense in H;é (I), we conclude that S, : Hp_e? 10 — Hp%er(l) is linear
and bounded.

(iii) Using and the uniform boundedness of the map r € T5 = J.c € €, (I) established in
Lemma [5.4] we get

IS,.cll ) SNV HSH

2 (Hy? (0.H2.()

C7(%,9).

2 (Hpe? (0,HZ(D

= S
w12

Hence, the map r €T Spc € L (Hpe (I) Hﬁer(I)) is uniformly bounded, for any ¢ € (0, d].
Therefore, holds for a finite constant Cs (%, d) > 0, depending upon T and ¢ only.
(iv) The map r € ‘Ig = Jrc € €, (1) is holomorphic according to Lemma
Therefore, Theorem asserts that the map in (5.19)) is holomorphic for any e € (0, ) and provides
the expression of the corresponding Fréchet derivative. O

The following lemma establishes the holomorphic dependence of the 1-periodic integral operator G, ¢
on r € T, for some £ > 0 to be specified.

Lemma 5.8. Let T be a set of admissible boundary representations of a collection {T';},ex of Jordan
curves in R? satisfying Assumption and let 6 > 0 be as in Proposition .

(i) For each r € T, the 1-periodic integral operator G, c : Hp_eé I — Hp%er(I) is linear and bounded.
(ii) For any e € (0,9), the map

r €T G € L (Hpk (1), Hiun(1) (5.23)

1s holomorphic and uniformly bounded on the set X,
(iii) There exists a constant Cg (%,0) > 0 (depending upon ¥ and § only) such that for any € € (0,0)

sup ||G, < (Cg(%,9). 5.24

2 l6nell, ( et ), Hpera)) c (%) (524

(iv) The Fréchet derivative of the map in at v € T, in the direction £ € €7, (1,C?) and for
€ 60, (1) reads

(er”w) 0/1< gmcjr(c)[ §)(t,s)p(s)ds, tel

Proof. The 1-periodic integral operator G, ¢ fits the framework of Section @ and satisfies Assumption

with f(¢) = 1 and p,c(?, s) = g,c(t,5)Trc(s). We show that Assumption with § > 0 as in
Proposition [5.1] is fulfilled by G, ¢

(i) Accordmg to Lemmas and [5.6} . 6| for each r € T5 we have g, cJrc € G, (I x I).
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(ii) For r € T5 and ¢ € €2, (1), we obtain

(iii)

(iv)

per
1
0
r(CQP 6—g,«<cts Jrc() (s)ds, tel
0
Therefore,
HGT,(C @H[ﬁ(l) = 0, (IX1) HJT,CHcgger(I) H‘»Z’HL?(I)
and
1(Gre @)l 2y < Hagrc 1Trclgo o 1812
: L2(T) ot €0.axD Per (D)
Recalling that in €3, (I) is dense in L*(I), that L*(I) can be identified with HJ, (I) and the

norm equivalence stated in Lemma we conclude that G,.c : H).,(I) = HJ.(I) is linear and
bounded. Furthermore, we obtain

0
||GT,C|| (Ho (I) Hl (I)) (”gr(c”cgo I><I) + Hatg’r(c ) ||\7”‘,C|‘<gger(l) .

€0 (Ix1)

per

The f-adjoint operator of G, ¢ is given by
(6lc#) ()= / Trc(s)grc(t, )p(t)dt, sl

It follows that GI,C HO. (1) — H} (1) is linear and bounded and that

per per
0
GT H ,S r + H - Tr ,
‘ | g (g, 0,13, ) l&r.cllgs, 1xn) 538nC - 1Trclleg,
For ¢ € €., (I), we have
‘< r,C @a 12}>per
HGT',(C @HHOEF(I) = ASup T TE——
i 0#peHY,, (1) )
ngr(I)
‘<% GI«,C ’(2}>
= sup el <t el
0#DEHS,, (1) £ (HO., (1), H}, (D)
HY,, (1)

Again, considering that in €, (I) is dense in H__1(I), we conclude that G, ¢ : H 1 (I) = HJ ()

per per per
is linear and bounded. Recalling Lemma we conclude that for each r € T5 we have that

Grc: Hp_e% 1) — Hp%er(I) is linear and bounded. Moreover, the following bounds hold

HGT,CH N ||gT’C||<g;}er(IXI) ”jr’(:”(@”éer(l) . (5~25)

2 (H2 (0,12,(1)
Using (5.25)), the uniform boundedness of r € T5 — Jy.c € ©per(I) (Lemma [5.4) and that of

r€Ts > gre € Cpor(l) (Lemma we have that the map r €T Go € L (Hpet (I) ngr(l))
is uniformly bounded, for any € € (0, ¢]. Hence, ) holds for a finite constant Cg (%,d) > 0
that depends on ¥ and § only.

The map r€%s—grcIrc € per(I X I) is holomorphic according to Lemmas and |5 .

Theorem asserts that the map in is holomorphic and provides the expression for the

corresponding Fréchet derivative. O

Lemmas and m allow us to establish the uniform boundedness of the operator \A/T,C and its

(i)

holomorphic dependence on the set €., for some ¢ > 0 that depends on ¢ > 0 from Proposition

Theorem 5.9. Let T be a set of admissible boundary representations of a collection {T';},ex of Jordan
curves in R? satisfying Assumption and let 6 > 0 be as in Proposition .

For each r € S, the 1-periodic integral operator Vy.c : Hpe? (1) = HZer(1) is linear and bounded.
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(ii) For any e € (0,9), the map
r €T Vpe € 2 (Hpk (1), Hiu(1) (5.26)

s holomorphic.
(ili) there exists a constant Cy, (%,6) > 0 (depending upon T and § only) such that for any e € (0,9)

Vr,(C

sup ‘L(mmmaﬁ

(iv) The Fréchet derivative of the map in at r € T, in the direction € € €., (1,C?) reads

(50ne) Inel = (irgva (5:6e) Inel

Proof. The result follows directly from Lemmas and together with (5.14)). O

< 0y (%,0).

5.3. Shape Holomorphy of the Double Layer Operator. We analyze the map
1
re¥—K,eZ( pCr( ), Her (1)),

where RT =T,0K,oT~ ! yields a representation of K,. in the reference domain I = [0, 1] with the notation
K, == Kr,, for » € T. The explicit representation of the double layer operator K, on a boundary curve
of class €2 (c¢f. Lemma , yields the following expression of the operator K, for ¢ € ‘ﬁper( )

1

/k,tsJT H(s)ds, tel,

0

Here, k. : I x I — R is given by

1 (r(t) - () - 92(5)
kr(t,s) = —
= e =)

where ©,. := 7w, is given (for a positively oriented Jordan curves) by

, (t,s)€lIxI, and t—s¢Z,

1
; [r'(s)]
v = , el
O=er
In the previous expression, for a vector v = (vy,v5) € R? we use the notation [v]" = (vy, —v1). We

proceed to define an extension of the double layer operator K, to the set T5. In so doing, we define first
the corresponding extension for k.. For r € €5, with 6 > 0 as in Proposition [5.1] we set

oo L () —1(s) - Prels) 5 and f— s
knc(t,8) = o COEEORCOETOL (t,s)€Ix1 and t—s¢Z, (5.27)
where
PR i C)
T,C( ) '_ ||7’/(S)||(C’ S Ia

is an extension of U, to the set T5. We define an extension of the operator Rr to the set Ts and for
€ €0, (I) as follows
1

(RT,C @) (t) = / kec(t, 8)Trc(s)p(s)ds, teL

0

To facilitate the forthcoming analysis, we define for r € T4
n,.c(t,s) == —k.c(t,s)sin(m(t —s)), (¢t,s)€IxI, and t—s¢Z.

Lemma 5.10. Let T be a set of admissible boundary representations of a collection {T'y},cx of Jordan
curves in R? satisfying Assumptionm 3.7 and let § > 0 be as in Proposition .

(i) For each r € S5, we have D¢ € €., (1,C?).
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(ii) The map
r€Ts > Ure € € (1,C?) (5.28)

18 holomorphic and uniformly bounded on the set of complex-valued, i.e. there exists a finite
constant Cy(T,8) > 0 (depending only on T and § only) such that

sup [|Dr.cllgy 1.2 < Co(%,0). (5.29)
re¥s e
(iii) The Fréchet derivative of the map in at r € Ts in the direction £ € €., (1,C?) is

(e ) el = i~ 760 O, e

Proof. Let § > 0 be as in Proposition [5.1] Observe that for all » € Ts the extension of the normal
derivative D, ¢ is well-defined due to Proposition Furthermore, being the quotient of 1-periodic
continuously differentiable functions with a denominator that does not vanish, it follows that &, ¢ €
‘ngr( ,C?). The holomorphy of the map in is a consequence of that of the map in , the fact
that [|7/(s)|| # 0 for s € I and the linearity of the operator [-]*. The statement for the Fréchet derivative
of the map can be deduced using the Fréchet derivative of the map and the product rule
for Fréchet differentiable maps. The uniform boundedness claimed in follows from Proposition
and Lemma O

Lemma 5.11. Let ¥ be a set of admissible boundary representations of a collection {T'y},cx of Jordan
curves in R? satisfying Assumptionm 3.7 and let § > 0 be as in Proposition .

(i) For each r € Ts, we have kyc € €, (I x 1) and n,c € € (I x I).
(ii) The map
r € Ts ke € G (I 1) (5.30)

with kyc as defined in (5.27)) is holomorphic.
(iii) There exists a finite constant Cx(%,5) > 0 (depending on T and 6 only) such that

Su%) Hkr,C||3gger(1><1) < Ck(%,0).

rets

(iv) The Fréchet derivative of the map in at r € T in the direction £ € 62,.(1,C?) and for
(t,s) € I x1 such thatt — s ¢ Z reads

Dy Vet oy o L EO €6 Dre(s) + (1) ~r(s) - (i) [, (5
(ke ) el =5 el + 010 —rt)- 4
1) = r(s) - Bre(s) (6() = £(s)) - (r(t) = 7(s)
m [(r(1) = 7(5)) - (r(8) = r(s))]2 :

(v) There exists a finite constant Co(%,0) > 0 (depending on T and § only) such that

S 15clly 1) < Ca(T,0).

rels

Proof. Let § > 0 be as in Proposition[5.1} Observe that k;. ¢ is well-defined for 7 € %5, due to Proposition
We claim that k, ¢ : I x I — C is continuous. Indeed, k, ¢ can be continuously extended as follows

1 Drc(s)(r(t)—r(s))
& , t-s¢Z,
kr,(C(t,S) — { 27 (r(t)—r(s)) (v (t() (5))

1 Drc(s)r’(s) .
4~ (') (s) t—sci.

We now study the behaviour when ¢ tends to s. Since r € €2,,.(I,C?), for (t,s) € IxIsuch that |t — s| < 3
Taylor’s expansion delivers

1
r(t) = (s) + (£ — ) () + (t— 5 2/ (s 4 C(t — 8))dC.
0
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Observe that r/(s) - &, c(s) = 0, for s € I. Let us calculate

1 () ()~ r(s)
2 10 (7 (0) = 1(5)) - (r(8) — 7(5))

%1_{1; knC (t, S) =

1
Brc(s / (s + C(t — 8))dC
0

1 1
/ P(s+ C(t - 5))dC | - / P+ ¢t — 5))dC
0

A (r'-r')(s)
= kyc(s, )
If follows straightforwardly that n,.c € €5, (I x I). Moreover, we have
(r(t)—r(s))-Pr,c(s)
L sin(w(t—s))
nr,C(ta 8) - ) (tv S) € (I X I)

81 m,c(t,s)

Hence, for each r € Ts the function n, ¢ can be expressed as the quotient of 1-biperiodic, continuously
differentiably function with a nonvanishing denominator, according to Proposition Observe that for
each for each r € T
Drc(s)-(r(t)—r(s))
sin?(w(t—s))

kr7(:(t,8) = 7§W7 (t,s) € (I X I)

It follows from Proposition and Lemma together with the holomorphy of the map
Pre(s) () = (&) o gy

sin?(m(t — s)) per
that the map in (5.30)) is holomorphic as well. O

re%Ts—

Proposition 5.12. Let T be a set of admissible boundary representations of a collection {T')},.cx of
Jordan curves satisfying Assumption [3.7 and let § > 0 be as in Proposition[5.1. Then, for each r € Ts
and ¢ € €L, (1) we have that K,.c ¢ € €L, (1) and

per per

sin(m(t — s))

(RTM)'@): / (aatnrc(t s) — kT,c(t,s)cos(ﬂ(t—s))> Toc(s) 2W =20y e (531
0

Proof. Let 6 > 0 be as in Proposition For ¢ € €1, (1) and r € T5, we have

per

1 1

(RT,C <ﬁ> (t)= O/”r,C(t 8)~7T7C(8)SS§1(2T(_ 0

Let us prove that for all r € T5 and for all ¢ € I it holds

1
1
/kT,C(tv s)jr,C(S)ds = _§~ (5.32)
0
For a given ry € ¥, we define
B(rg,d) = {r € per(I, R?) : d(rg,r) < 6},

where d(-,-) : Cgerr( C?) x €2, (I,C?) — R is defined in (@.1)). Throughout this proof we set By (ro,d) =
B(ro,8) N €2, (I,R?). Observe that for each rq € T5 we have By(ro,d) C B(rg,d) and

= |J B(r0,9). (5.34)

roET
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Define 1(x) = 1, for x € T, where r € By(ro,8) and ro € T. According to Lemma[2.6]and [37, Example
6.14], for all r € Bg(ro,d) and ro € ¥ it holds that

1
(1) () = [ wr, () grad, Glx.y)dsy, =5, x€ T,

T,
Using the pullback operator, we obtain 7. o (K, 1) o 7,71 = —%. For rg € T, let us consider the map
1
r € Bg(ro,0) — 7 o (K, /krtsjr dse‘ﬁger()
0
Observe that the map
1
r € B(ry, 8) /k,g (t, 8)Toc(s)ds € GO (D), (5.35)
0

is a well-defined extension to B(rg,d) of the map r € Bg(rg,d) + 7 o (K, 1) o 7,71, This map also

admits the extension r € B(rg,d) —» —4. These two extensions coincide for real-valued boundary

transformations r € Bg(ro,d), with ro € T. The set B(ro,d) is open in €2, (I, C?). Hence, By(ro,?)

per

is relatively open in 42 (I,C?). For rq € ¥, due to Lemma and Lemma the map (5.35)

per

is holomorphic on the connected open set B(ro,d). Clearly, €5 (I, R?) is a real vector subspace of

€2, (I,C?). Since each r € ¢?(I,C?) admits the unique decomposition r(t) = R{r(t)} +13{r(t)}, where

per

R{r(t)}, 3{r(t)} € €5, (I,R?), we have 62, (I,C?) = €2 (I,R?) + 12, (I, R?). Recalling Theorem
—

we conclude that the extension to complex-valued boundary reprebentatlons of the map r € By (rg,d
o(K.1)ort = f% is unique It follows that the map is constant and equal to f%, for all
r € B(ro, ). Recalhng - holds for all r € T together with

(RT,C 95) (t) = /nr,(C(ta 5)\77‘,(:(8)8?15(7)1_(_15())(1 - %@( ) tel
0
For t € 1, let us compute
(Kico) = [ et Az 20as =0 [ koclt. )T, cle)ds
0 0

— w/kr’@(t, s) cos(m(t — s))Trc(s )Mds — 1g2>’(t)
0

_/ <§fnTC(t §) = mkrc(t; ) cos(m(t — S))) jr,c(s)wds.

sin(m(t — s))
0
It follows that for all ¢ € €., (I) and r € T5 we have Rr,c @ € €, (I) and that (5.31)) holds. O

Theorem 5.13. Let T be a set of admissible boundary representations of a collection {I';},cx of Jordan
curves satisfying Assumption[3.7 and let § > 0 be as in Proposition [5.1}

1
(i) For each r € T, the 1-periodic integral operator K,C Hper(I) — HZer(1) is linear, bounded and
compact.
(ii) For any e € (0,0), the map

re T o Koo € L (Hia(l), Hiu (), (5.36)

s holomorphic.
(iii) Thezﬂe e:)m'sts a finite constant Cy (%,0) > 0 (depending upon T and 0 only) such that for any
€ (0,6

Kr,(C

sup
re¥.

; cme) 5.37
Hx(ngr(I)1H}>29T(I)) K( ) ( )
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(iv) The Fréchet derivative of the map in at v € T, in the direction § €
€ ¢°,.(1) reads

CIEDITUE / (fke e ) el ptelds. tet,

Proof. The 1-periodic integral operator K, ¢ fits the framework of Section and satisfies Assumption
with f(t) = 1 and p,c(t,s) = krc(t, $)Trc(s). We proceed to prove that the operator K, ¢ fulfils
Assumption [£.12] with § > 0 as in Proposition [5.1]

(i) According to Lemma and Lemma . we have that k¢ J.c € €, (I x 1), for all r € T;.

(ii) The 1-periodic integral operator K, c : HO..(I) — H9,.(I) is linear and bounded, for all r € ;.
Furthermore, it holds for all r € T5

I,C?) and for

per(

KT,C H

2 (HQ,,(1),H,,(1) < krcllgg, axn 19nellag, @ -

per

Recalling Proposition [5.12] we have that

~ /
Kr,<c¢) H Ny + 7 ||kr.c|l oo 1 Trcllwo o 121 oo -
H ( L2(I) ot %BST(IXI) Cgper(IXI) Cgper(l) 2P

It follows from the norm equivalences stated in Lemma that

KT,C H

+ ||kr,C||<gI?er(I><I)> ||g7r,(CH<gIt))er(I) . (538)

Ny cC
$(H§er(1) Héer(l) (H ot €0er (IXI)

1 A 1
Since 4, (I) is dense in szcr(l)7 the 1-periodic integral operator K,c : Hger(I) = H}. (I) C

1
Hz:(1) is linear, bounded and compact due to the compactness of the embedding H!, (I) C

per
HZ.: (1), see e.g. [37, Theorem 8.3].
(iii) Due to the uniform boundedness of the maps r € 5 — J,.¢c € %CY(I) r € %5 kec € €01

per
and r € Ts — n,.c € CfI}er( ) established in Lemmas and respectively, together with

(5-38), the map r € T, K.c € X(ngr(l),ngr(I)) is uniformly bounded for any e € (0, d].
Therefore, (5.37)) holds for a finite constant Cy (%, ) > 0 that depends upon T and ¢ only.
(iv) Finally, the map r € T5 — k. cJrc € €2, (I x I) is holomorphic according to Lemmas and

per
bEI1l

Assumption is fulfilled by the operator Kr,c- Consequently, Theorem implies that the map

(5.36)) is holomorphic and provides the expression for the corresponding Fréchet derivative. (I

5.4. Shape Holomorphy of the Adjoint Double Layer Operator. We analyze the map
it
reTe— K eZ( per( ), Hpei (),

where R; = 7, 0 Kl o 771 yields a representation of K/ in the reference domain I with the notation
_1 - 1
K. == K., for 7 € T. For each r € ¥ and for all ¢ € Hpe? (I) and ¢ € Hper(T) it holds
<R;~ 957 ¢E> = <¢v TIr Rr (jr_lé)> . (539)
per per

It follows from ([5.39) that
. - T
K = (M, ok, oM 1)

where for each r € T5 the map M, : Héer(l) — Hp%er(I) is defined as M, ¢ = J,¢$ with inverse M ! :

Hp%er(l) — Hp%er(l) given by M 1p = J71¢, for ¢ € Hp%er(l). Observe that for a set T of admissible
boundary representations of a collection {I';},cx of Jordan curves in R? and due to Lemma these
maps are linear and bounded. We define an extension of the adjoint double layer operator to the set Ts,
with § > 0 as in Proposition as

! Y, —1 T
T(C = (Mh(c o Kn(c () M?",(C) 5
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where M, ¢ and M;’é are extended to T5 by using J,c, i.e. Mpc¢ = J,cp and l\/l;’égb = jrj(clgb,

1
respectively, for ¢ € Hjer(I). Again, due to Lemmas and these maps are linear and bounded.
Furthermore, it follows from Lemma [5.4] and Corollary [5.5] that the maps

reTs o Mg € Z(Hiw(l), Hier(D)) and 1 € Ty s Mok € £ (Hiur (1), Hier (1)) (5.40)

are holomorphic and uniformly bounded on T5. We now proceed to the main result regarding shape
holomorphy of the adjoint double layer operator. Its proof relies on Theorem [5.13

Theorem 5.14. Let T be a set of admissible boundary representations of a collection {T'}.},.cx of Jordan
curves in R? satisfying Assumption and let 6 > 0 be as in Proposition .
. _1 1
(i) For each for r € Ts, the 1-periodic integral operator K, ¢ : Hpe? (I) = Hpef (1) is linear, bounded
and compact.
(ii) For any e € (0,0), the map

reT. o Ko € 2 (Hped (1), Hpdd (1)), (5.41)

s holomorphic and uniformly bounded on the set %,
(iii) There exists a finite constant Cy, (%,0) > 0 (depending upon T and § only) such that for any
e €(0,9)

sup ||K/ H .
reg{H "Cll (Hpe? (1), 12 )

(iv) The Fréchet derwative of the map in (5.41) at r € T, in the direction & € €., (I,C?) reads

< Cp (T, 6). (5.42)

d ., d ; -1 f
(d?“KT’C> [Ta g] (t) = (dTMr,C[Ta g] © KT7C o Mr,C)

d f - d f
+ (MT,C © aKr,c[T, 5] ° M;é) + (MT,C © Kr,(C © 7M;(I1:[r5 §]> .

dr
Proof. Let § > 0 be as in Proposition The 1-periodic integral operator R/r,c corresponds to the
composition of bounded linear operators that are uniformly bounded on the set Ts, therefore it is linear,
bounded and holds with a finite constant Cy, (¥,d) > 0, depending upon ¥ and J only. The
application of { to a bounded linear operator is linear, thus holomorphic. Recalling the holomorphy of
the maps in and Theorem the map in can be expressed as the successive application
of holomorphic maps. Therefore, it is holomorphic itself. U

5.5. Shape Holomorphy of the Hypersingular Operator. We consider the map
N 1 1
ref—W,e .,?(szer(I), Hye? (I)),

where WT = 7.0 W, o7~ ! yields a representation of W,. and where W,. := Wr, for r € T. According to
Lemma (the so-called Maue’s formula), for each » € T and ¢ € €*(T,.) it holds

Wr, ¢ = —curlp, o Vr,_ o curlp, .
For each r € T we have
W, ¢ = —(rp ocurlp, o7 ") oV, o (rocurlp, o7 ') @, (5.43)
where ¢ = 7.0 € €L, (I). Let us define curl, = 7,0 curlp, o7~ 1. For each 7 € T and ¢ € €L, (I) it holds

per per
~

— ¢'(t)
(curlrgo> (t) ADK tel

The strategy to establish the shape holomorphy result for the hypersingular operator differs from
that of the the single layer operator (Section and that of the double layer operator (Section .
The proof hinges on the following ingredients. Firstly, we use the representation of W, in (5.43) to
construct an extension of the hypersingular operator to s, with § > 0 as in Proposition by using
the extension of the single layer operator V, studied in Section This entails the construction of a
well-defined extension of the operator curl,. to the set Ts that depends holomorphically on the set Ts.
Secondly, recalling the shape holomorphy result for the single layer operator established in Theorem
(-2 and by writing the extension of the hypersingular operator to Ts as the successive application of
holomorphic maps, one may obtain the desired result.
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For r € T, with § > 0 as in Proposition we define the extension to T of the 1-periodic integral
operator W,. as

— —

VAVMc = —curl,c o \A/T,(c o curly ¢, (5.44)
where, for ¢ € €., (I), we define
— ¢'(t)
curl,. ) t) = , tel
( C P ( ) jr,(C (t)

Due to Proposition the operator c/u\l"lr@ is well-defined for all r € T5.

Lemma 5.15. Let T be a set of admissible boundary representations of a collection {T'y},.cx of Jordan
curves satisfying Assumption[3.7 and let § > 0 be as in Proposition [5.1]

— 1 1
(1) For each r € T5, the operator curl, ¢ : Hior(I) = Hpe? (1), is linear and bounded.
(ii) The map

1

r e S5 curl,c € £ (Hio (L), Hiex (1)) (5.45)

s holomorphic.
(iii) There exists a finite constant C-— (%,9) > 0 (depending upon T and & only) such that

ur
—

sup ||curl, c

re¥s

(iv) The Fréchet derivative of the map in (5.45) at r € Ts in the direction & € 62, (1,C?) reads

) SCC/U?I(S,(S).

.
2 (HZ. (1), Hye? (1)

d — 1 d —
(drcurlr,c> [r,&] = ~Te (drjr’(c> [r, €] curl, . (5.46)

Proof. Let § > 0 be as in Proposition For r € S5 and @, ¢ € ©per (L), We have

0/ (cutlc o) (e =~ [ o1t ( ij> (t)dt.

0

Then, we obtain

A~ / ~ !
o TN (¥ R v
Cll]f'lr([j ) > = ) S 1
< coY per <S0 (Z_,(C - ||90||Hp2€r(1) Trc g
; V
Slell s
Hia® || Irc ||, 4 o
1 N
< 2P (17
‘jnc %1, (D) ”(pHHvzer(I) v Hiu (D)

Recalling that €1 (1) is dense in Hp%er(I)7 we get

per
H —

Curl,,«’(c

< 1
HX(H%.(I) H_%(I)) ~ N Trc ’
per sd4diper T, (g}%er(LC)

1
Ir,c

on the set Ts. Therefore (;l?lh(c :

Corollary provides the uniform boundedness of ’ €L

1 —1
HZor(I) — Hpet (I) is linear and bounded for all » € 5 and the map (5.45)) is uniformly bounded.
According to Corollary [5.5] the map

e€l (1
«77",((: per( )

is holomorphic and its Fréchet derivative at r € Ts in the direction & € €2, (I, C?) is

d 1 1 d
<d7‘ \77“,([:) [7"7 f] = _T%C (drjr,([:) [Ta 6]
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Recalling Lemma we have that for ¢ € €, (I) it holds

_ _ d —
’ (curlrﬁ,c — curl, ¢ — (drcuﬂ”c> [r, E]) @ .
Hye? (I)

(e -z (@) ve)e
- jr+§,(C jr,(C dr jr,C 4

Hpet (1)
1 1 d 1
|- -G re)| e,
jr+§,(C J’r‘,(C dr jr,(C (gr}cr(l) Hper (I)
=0 (Wellag,rc) 19,3 -
Therefore, recalling that )., (I) is dense in ngr(I) and that ||¢ || § ||¢||H% ) for ¢ € €, (1), w
obtain et -
_ _ d —
curly ¢ = curlyc — | —curlc ) [r, €] . =0 (HSH%ZH(LC%) -
r 2 (HA 0,12 1) .
It follows that the map (5.45)) is holomorphic and its Fréchet derivative is given by (5.46]). O

Lemma [5.15] together with Theorem [5.9] allows us to establish the boundedness of the 1-periodic
integral operator W,. ¢ and its holomorphic dependence on the set T, for some € > 0 to be specified.

Theorem 5.16. Let T be a set of admissible boundary representations of a collection {T'y},cx of Jordan
curves in R? satisfying Assumption and let 6 > 0 be as in Proposition .

. 1 _1
(i) For eachr € T, the 1-periodic integral operator W,. ¢ : Hger (1) — HpeZ (1) is linear and bounded.
(ii) For any € € (0,9), the map

re%. W, ceZ( pe,( ), Hpet () (5.47)

is holomorphic.
(ili) There exists a finite constant C;,(T,0) > 0 (depending upon T and § only) such that

< Oy (T, 9).

re¥. T.’CH"%(HPQELA(I) Hper (I))

(iv) The Fréchet derivative of the map in at r € T in the direction & € €. (1,C?) reads

—

d . d — - — d ~ —
<err7C> [r,&] =— (drcurln(c) [r,€] oV, ¢ ocurl, ¢ —curl, ¢ o (Clrvm) [r,€] o curl, ¢

. . d —
—curl,coV,co (cuﬂn(c) [r, &].
dr

Proof. Let 6 > 0 be as in Proposition Recalling (|5.44)) and using Lemma together with Theorem

we conclude that the 1-periodic integral operator W,.c : Hp%er(l) — Hpe? (1) is linear and bounded,
for all r € ¥s5. Furthermore, for any € € (0, 0)

(T,0))" Cy (%,0),

< (C—

curl

WTCH 1 _1
re¥e Z (szer(l)preg (I))

therefore the map (5.47)) is uniformly bounded on T.. We observe that VAVNC is defined as the successive
application of holomorphic maps. Therefore, the map in (5.47)) is holomorphic itself. Indeed, the com-
position of bounded linear operators being linear on each component is holomorphic. Hence, the map in

(5.47) can be written as the composition of the maps in ([5.45)) and (5.26]). Then, it follows from Theorem
and Lemma that the map in (5.47) is holomorphic. O

5.6. Shape Holomorphy of the Caldorén Projecto;‘. Let § > 0 be as in Proposition[5.1] We define
the extension of the Calderén operator C, (recall that C, := 7. 0 C. o 7, and that C, is the Caldefon
projector defined on I';.) to the set Ts as follows

R LK. Ve
Cc=12. " o , Ts.
< < Woe LK) TSR
As a consequence of T heorems (.9 (.13 [5.14] and [5.16] we may establish the following result. Recall
that Vper = Hper(I) X Hper D).
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Theorem 5.17. Let T be a set of admissible boundary representations of a collection {T'y},.cx of Jordan
curves in R? satisfying Assumption and let 6 > 0 be as in Proposition .

(i) For each r € T, the 1-periodic integral operator Cn(c : Vper = Viper 18 linear and bounded.
(ii) For any € € (0,0), the map

re % Coc €2 (Vper, Vper)

s holomorphic.
(iii) There exists a finite constant C¢(T, ), depending on T and 6 > 0 only, such that

CT(C

)

sup

re%.

5.7. Shape Holomorphy of the Domain-to-Solution Map. Theorem in Section [5.6] establishes

the holomorphic dependence of the Calderén projector on a family of ¥2-smooth Jordan curves in R2.

However, one is also interested in the shape holomorphy of the domain-to-solution map associated to a

BIE, which in turn is obtained by means of a boundary reduction of the original boundary value problem
using the BIOs contained in the Calderén projector.

Different approaches may be used to derive a boundary integral formulation for a particular boundary
value problem. As an example, we consider the Laplace problem in an open bounded domain equipped
with Dirichlet boundary conditions. We proceed to summarize the commonly available approaches to
convert this problem into an equivalent BIE.

< CA(%,6).
L(Vper:Viper) ¢(%:9)

Example 5.18 (Interior Laplace problem with Dirichlet boundary conditions). Let T be a set
of admissible boundary representation of a collection {U',},ex of Jordan curves in R2. Let D, C R? be
the open bounded domain enclosed by T',. (the existence of this open bounded domain is guaranteed by
Proposition , i.e. I, = 0D,.. We assume that

sup diam{D, } < 1, (5.48)
re¥

where, for each r € ¥, diam{D,.} signifies the diameter of the bounded domain D,.. For each r € T, let
us consider the Dirichlet problem of finding u, € H*(D,.) such that

—Au, =0 in D, and wu,=g, on I, (5.49)
where g, € Hz (T)) is the boundary data on T',. Set S, = Sr, and D, := Dr,, where Sr, and Dr,
correspond to the single and double layer potentials on T, respectively, as introduced in (2.2)) and (2.3)).

We review the approaches to obtain a boundary integral formulation for (5.49), i.e. to cast (5.49) as an
equivalent BIE.

v Direct method. We express u, € H'(D,) by using Green’s representation formula, i.e.
up =Sy (Op,ur) — Dy (UT‘F,.) m D,

where 8, : H(D,., A) — H~(T,) stands for the Neumann trace operator and uy|  corresponds
to the Dirichlet trace of u, € H'(D,) on T',.
o First kind BIE. Find ¢, = 8, u, € H2(T,) such that

1
V,dy = <2| + Kr> g in HZ2(T,).
o Second kind BIE Find x, = 8, u, € H2(T,) such that

1
<2|—K;‘> Xr =W,g, in H_%(FT)

v' Indirect method. Recalling that both the single and double layer potentials are solutions to the
Laplace equation in R? [50, Lemmas 6.6 & 6.10], we express u, € H'(D,) in terms of one of
them only.

o First kind BIE. We use the single layer ansatz for u, € H'(D,.)

ur =8, (9,) in D,
where 9, € H_%(I‘T) is the unknown. The BIE reads: find 9, € H_%(FT) such that

V0, =g, in H2(T,)
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o Second kind BIE. We use the double layer ansatz for u, € H'(D,)
ur = D, (wr) m D’I‘7
where 1, € H2(T,) is the unknown. The BIE reads: find v, € H=(T,) such that

(;I - Kr> Uy = —gr in HZ(T,).

Remark 10 (Solvability of the first kind BIEs in Example [5.18]). For each r» € T, it follows from the
Lax-Milgram Lemma and the H _%(FT)—ellipticity property of the integral operator V, stated in [50]
Theorem 6.23] (in two dimensions, it suffices to hold in order to have this property) that V, €
Lo(H _%(FT),H %(FT)). Hence, the first kind formulations introduced in Example are uniquely
solvable. In turn, due to Proposition for all r € ¥ we have that

. _1 1
Vi € Lso(Hpet (1), Hper (1)), (5.50)
provided that (5.48) holds. Therefore, the domain-to-solution maps
R ~ 1 N _1
reI e =V, " <2| + Kr> g € Hpe% 48] (5.51)
and
reT s Dy = V18, € Hout (1) (5.52)
are well-defined, where for each r € T we have set g, := 7,.g;.

Remark 11 (Solvability of the second kind Fredholm BIEs in Example [5.18). For each r € ¥, the
single layer operator V,. : H~2(T,) — Hz(T',) is H~2(T',)-elliptic, i.e. there exists a constant a, > 0,
depending on r € T, such that

_ 2 _1
R{(Vro. D), } > arllely -y, forall peH 3T,
and self-adjoint in the (-,-)p ~duality pairing, i.e.
_1
<Vr90,1/1>pr = <<P,Vr¢>pr for all ¢, € H 2(T,).
Then, for each r € T and for all ¢ € H~2(T',) and ¢ € Hz (T,

HSDHVT = <V7‘SD7¢>FT and H¢||V;1 = \/ <V;1¢a$>1“r

are norms equivalent to ||| _1 and to ||¢|| respectively. According to [50, Corollaries 6.27

1
H™2(T,) H2(T,.)’
& 6.30] for each r € T there exists ¢, € (0,1), (depending on r € T) such that for all ¢ € H~2(T,) and

¢ e H2(T,)
1 , 1
§I+Kr ¥ SCTH@HVT and §I+Kr @

The solution to the second kind formulations introduced in Example [5.18| are formally given by the
Neumann series

<cp H(b”Vr_l . (553)
vt

Vi

[ee] 1 L o0 1 4
9y = Z <2| + K’T> W.,g, and .= — Z <2| + Kr> gr- (5.54)
=0 £=0

Due to (5.53)), the Neumann series in (5.54)) converge in the norms ||-||, and [|-||,-1, respectively. Re-
_1 1

a3, and ||-||H%(FT) and that K/ : H—2(T',) - H2(T,)
1

together with K. : Hz(I',) — Hz(T,.) are linear and bounded, we conclude that

calling the equivalence with the norms |||

%l ~ Kl € Zo(H 3(I)), H73(,)) and %I — Ky € Loo(H? (T,), HA(T,)).

In turn
1

1 - 1 _1 1 - 1 1
§I — K/ € Leo(Hpet (1), HpeZ (1)) and §I — Ki € Liso(Hger (1), Her (1))). (5.55)
It follows that the domain-to-solution maps
—1
1 " _1
rETH Xy = (2I — K;,) W, g, € Hpe% (D (5.56)
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and
R 1 -1 1
reX > = — <2| — Kr> gr € Hier(D) (5.57)

are well-defined.

Remark 12. In Remarks[10]and 11| we have established the “pointwise solvability” of the first and second
kind boundary integral formulations introduced in Example i.e. for each boundary representation
r € T we have proved well-posednes of the aforementioned formulations. Under Assumption the set
% of admissible boundary representation of a collection {T'; },ex of Jordan curves is a compact subset of

%”ger(I, C?). Moreover, the implied constants in the boundedness of the isomorphisms from Remarks

and [L1| depend continuously on the set T. It follows that the isomorphisms in (5.50) and in (5.55) from
Remarks and respectively, and their inverses are uniformly bounded (in the corresponding operator

norm) on the set T. As a consequence, the domain-to-solution maps (5.51)—(5.52)) and (5.56)—(5.57) in
Remarks and respectively, are also uniformly bounded on ¥, provided that the right-hand sides

of the first and second kind BIEs in Example [5.18]| possess this property as well.

Let X, Y and Z be complex Banach spaces equipped with the norms ||-|| i, ||-|ly and ||-|| ;, respectively.
As usual, let ¥ be a set of admissible boundary representations of a family {T', },.cx of Jordan curves in
R2. Consider the following domain-to-operator maps

re¥—AeZX,Y) and re¥— B, e X(ZY) (5.58)
together with the domain-to-data map
re¥—g, €2 (5.59)
Throughout this section we assume that for each r € ¥ we have that A, € % (X,Y).

Problem 5.19. Let T be a set of admissible boundary representations of a family {T)},cx of Jordan
curves. For each r € T, we seek ¢, € X such that

A7' $r = BrgT-
Recalling that A, € % (X,Y) for each r € T, there exists a unique ¢, € X solution to Problem
Consequently, we may define the domain-to-solution map associated to Problem [5.19] as follows
re€T . =A 1B, g € X. (5.60)

Observe that, after the application of the pullback operator introduced in Subsection all four
formulations presented in Example [5.18fit the framework of Problem [5.19] After these preparations, we
turn to the main purpose of this section. We proceed to establish shape holomorphy of the domain-to-
solution map in . We work under the assumption stated below.

Assumption 5.20. Let T be a set of admissible boundary representations of a family {T')},cx of Jordan
curves in R? satisfying Assumption . There exists € > 0 such that:
(i) the domain-to-operator maps in (5.58|) admit extensions to the set T. denoted by
ref—AceZX)Y) and r€%. —B,ce L(ZY), (5.61)
(ii) the maps in (5.61) are holomorphic and uniformly bounded on the set T., i.e. there exist finite
constants Ca(%,€) > 0 and Cg(%,e) > 0 depending upon T and & only) such that

sup ||AT,C||3(X7y) < COa(%,e) and sup ||BT,C||g(z,y) < Cs(%,¢),

rele rele
(iii) the domain-to-data map in (5.59) admits an extension to T. denoted by
re%. — gr.c € A

that is holomorphic and uniformly bounded on the set T,
(iv) there ezist a finite constant Cx(%,€) > 0, depending on T and € only, such that
sup [lgrcll; < Cg(F, €).
re¥.
Theorem 5.21. Let T be a set of admissible boundary representations of a family {T';}rex of Jordan
curves satisfying Assumption [3.7 and let Assumption [5.20 hold with € > 0. Then, there exists n =
n(T,e) > 0, depending only on T and e, such that:
(i) for each r € T, we have that A, ¢ € Lso(X,Y),
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(ii) the map in (5.60) admits an extension to the set T, given by
re T, orne = A Brcgne € X, (5.62)

(ili) the map in (5.62) is holomorphic and uniformly bounded on the set T, i.e. there exists a finite
constant C(ZT,n,e) > 0 (depending on T, n and € only) such that

sup ||(pT,C||X < C(‘Ivnve)' (563)
r€ET,

Before presenting the proof of this result, we introduce a technical proposition regarding holomorphic
maps in complex Banach spaces.

Proposition 5.22. Let X, Y be compler Banach spaces.
(i) Let M € Lso(X,Y). Then

Cy = {T ELXY): [M=Tlgxy) < HM71||:?1(Y,X)} C Zso(X,Y)
and for all T € Cy it holds
o My
ZVX) = 1—|M— Tlexy) IM T Hlgw x)

(ii) The inversion map
inv: ZolX,Y) = LY, X) : M i—» M1
18 holomorphic.
(iii) The application map
app: (Z(X,Y),X)—=Y: (M,g) —» Mg (5.64)
s holomorphic.
Proof. Ttems (i) and (ii) have been stated in [2, Proposition 4.2]. For the sake of completeness, we include
the proofs.
(i) Let T € Cm. Using the Neumann series expansion of (I — (M — T)M~1)~! [37] Theorem 2.14] we

obtain
T l=M-M-T) =M1 -M-T)) =M i (M-T)M]". (5.65)
£=0

Since T € Cp, the above series converges absolutely. We conclude that T~! € .Z(Y, X) and that
CM - Zso(xv Y)

(ii) The series in corresponds to the power series expansion of the map T € Z(X,Y) —
T-1 € Z(Y, X). According to [4, Section 11.12], maps having this structure are complex Fréchet
differentiable, thus holomorphic according to Theorem

(iii) The application map introduced in is linear on each component, hence is holomorphic.

O

Proof of Theorem[5.21, We proceed to prove the claims of Theorem [5.21]
(i) We divide the proof of item (i) into two parts.
Part A. Throughout this part of the proof, let ¥ € ¥ be arbitrary but fixed. According to
Assumption @, item (ii), the map r € T, = A, ¢ € Z(X,Y) is holomorphic. It follows from
Theorem [£7] and Proposition that for » € T, it holds

CA(T,E) ~
[Arc — A?Hg(x,y) < 2? I — r||<gger(1,c2) :

For 7 € T, define
€

— -1~
nmax(?) = m HA? ||$(Y,X) : (566)

Since Ay € ZLiso(X,Y), we have that nmax(7) is strictly positive. Set 1(7) € (0, fmax(7)). Then,
for a fixed ¥ € T and for all » € B(7,n(7)), it holds
—_1—1
1Are = Afll o x vy [AF o vy < 1o
where for ¢ > 0
B(r,e) = {r € 62,(1,C*) : d(r,7) <&},
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with d(-, -) as defined in (4.1)). Then, according to Proposition [5.22} item (i), for all r € B(¥, n(7))
we have that A, ¢ € Zeo(X,Y).
Part B. The set ¥ admits the following covering by open sets

T C UB(?,”a).

TeX
According to Assumption T is a compact subset of ‘KPQH( 2). Therefore, there exist J € N
and a set {ry,...,7;} C T such that

ich <Fj, ”(gj)>, (5.67)

where 1) (75) € (0, Nmax(7;)) and Nmax(7;) is as in (5.66)), but with 7; instead of 7, for j =1,..., J.

Set
L i @) >0 (5.68)
K e A :
With J € N as in (5.67)), the following inclusions hold true
J
TcT,c JB@Ea).
j=1

Hence, for each r € T, with n > 0 as in , there exists 7; € T such that r € B (7}, n (7;)).
It follows from Part A of the proof that for all r € T, we have that A, ¢ € Z(X,Y).

(ii) Using the inversion and application map from Proposition one may cast the map in (5.62))
as follows

r € %y — @rc = app (inv(A.c), app(Brc, grc)) € X. (5.69)

On the one hand, according to Assumption and Proposition item (iii), the map r €
T, +— app(B,.c,8rc) € Y is holomorphic. On the other hand, it follows from Assumption
and Proposition item (ii), that the map r € T, — inv(A,¢c) € Z(Y,X) is holomorphic.
Recalling again Proposition item (iii), we have that the map in (5.69) is holomorphic.

(iii) Observe that

s llprcly < CalT.2)Ce(%.e) swp A2,
r€ET, re

According to Proposition | item (i), for all » € T, with n > 0 as in (5.68) there exists 7; € T
as in the proof of item (i) such that

‘ A

2(V.X)

—1

‘A~

Tj

-1 2L (Y, X)

r,C

Hz(Y,X) 1Ay -

2L(Y,X)
B (5.70)

(A~

Tj
2CA ‘3:5

E’(YX)

< oQ.

j

L(Y,X)
The bound in (5.70) is uniform over r € B(r;,n(r;)). Hence,

_1H < max su ‘ A_lu
. < 1Y
mCllewx) T i=toad \venmmey |l C e

A—l
‘f(YX)

sup
r€ET,

Tj

< max
Jj=1,....J 1— ZCA (%,¢)

< 00.

il v,x)

Then (5.63]) holds with a finite constant C(%,n,e) > 0 that depends only on ¥, n and e.
U

As a consequence of Theorem Theorem [5.21] and Remarks [I0] and [II]} one may establish the
following result for the domain-to-solution maps assoc1ated to the BIEs from Example [5.18 We remind

that the 1-periodic Sobolev space H, (I) for s € R are complex-valued ones, according to Section
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Corollary 5.23. Let ¥ be a set of admissible boundary representations of a family {T';}rex of Jordan
curves satisfying Assumption[3.7 and let us consider the setting from Ezample[5.18 Assume that there

1
exists € > 0 such that the map r € T, — g,.c € Hier(I) is holomorphic and uniformly bounded on the T,
1 1
and that g, c € Hier (1) extends g, € Hier(I) to T.. Then, there exists n > 0 such that:
(i) the map in (5.51)) admits an extension to T, given by

N B 1 ~ _1
re ‘In — (br,(C = V?__,(Il: <2| + Kr7c> ér,(C S Hpe% (I), (5.71)
(ii) the map in (5.52) admits an extension to T, given by
N - _1
re Ty Unc =V, ¢ 8re € Hyet (1), (5.72)
(iii) the map in (5.56) admits an extension to T, given by
—1
1 . ~ _1
rET, o Reg = (2| - ’NC> Wi grc € Hpel (1), (5.73)
(iv) the map in (5.57) admits an extension to T, given by
. 1 N -1 . 1
e T»,] = ¢r,C = - <2| — K.,-7(c> gr,C € chr(l). (574)

Moreover, the maps in (5.71)), (5.72), (5.73) and (5.74) are holomorphic and uniformly bounded on the
set %,).

6. PARAMETRIC HOLOMORPHY

The presently obtained result establishes the holomorphic dependence of the Calderén projector on a
collection of ¥’2-smooth, regular Jordan curves. However, in practical applications and for computational
purposes, one usually deals with a parametric representation of the boundary. Namely, each boundary
representation belonging to a set ¥ of admissible boundary representations of a collection {I';},ex of
Jordan curves is identified by means of a parameter sequence y € [—1, 1]°, where s € N corresponds to the
parametric dimension. Examples of parametric representation of the boundary may be constructed by
means of Fourier polynomials, wavelets bases, B-splines and NURBS (Non-uniform rational B-spline).
This parametric representation naturally defines the map y € [-1,1]* = ry, € T C €2, (I,R?) and
motivates us to consider the following parametric version of the Calderén projector

y— Cy=Cr,) €2 (Vier, Vper) - (6.1)

It follows from the shape holomorphy result established in Theorem that the parametric Calderén
projector depends holomorphically on the parameter sequence y provided that the parametric boundary
representations r, € T does so as well.

Nevertheless, the efficient approximation of the parametric Calderén projector, and of every parametric
map having a structure similar to that of , is a challenge due to the high dimensionality of the
input parameter sequence y. In fact, the construction of sparse surrogates of polynomials type for
the approximation of these maps is a non-trivial task and suffer generally from the so-called curse of
dimensionality.

Recent results regarding the polynomial approximation of parametric maps have identified a precise
notion of holomorphy that allows us to obtain dimension-independent convergence rates for the polyno-
mial approximation of these maps: the so-called (b, €)-holomorphy (Definition ahead). This concept,
originally introduced in [I2], has been recognized as a paramount property to obtain algebraic conver-
gence rate that are independent of the parametric dimension in several techniques used in forward and
inverse UQ. As a consequence of the results to be presented in this section, sparse tensor interpolation
methods [111 63, [47] 48], [52], [10], higher-order quasi-Monte Carlo quadratures [29, 30} 22] 2T] and model
order reduction techniques [9, [7, [8, [3] will be available and mathematically justified for the analysis of
forward and inverse shape UQ by means of BIOs and BIEs, with convergence rates that are immune to
the growth of the parametric dimension of the underlying problem.

In this section, we analyze the holomorphic dependence of the parametric Calderén projector defined
in on the parameter sequence y € U used to construct a parametric description of the boundary.
In Section we introduce a collection of affine-parametric boundary representations and establish
sufficient conditions to obtain a set of admissible boundary representations of a collection of Jordan
curves. Then, in Section [6.2] we establish parametric holomorphy of the Calderén projector. More
precisely, we prove (b,e)-holomorphy of the map provided that an affine-parametric boundary
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representation is used. Finally, using the framework established in Section[5.7] in Section [6.3] we establish
parametric holomorphy of the domain-to-solution map.

6.1. Affine-Parametric Boundary Representations. Recall that I = [0, 1] and define U := [—1, 1]
Let us consider the following class of affine-parametric boundary representations
—’I“o —l—zy]’l“] tel, y= (yj)]Zl e, (62)
j>1

where 7; € 62, (I, R?), for j € No. Let us define

ri(t)—r;(s)

SO s t—s¢Z, .

q;(t,s) =q I° ||(r<((tt)||)) j € No.
L t—seZ,

We work under the assumptions stated below.

Assumption 6.1. Let b = {b;}jen be defined by b; = |[rj|ly2 1 gey, for j € N. We assume that ro is
per\ 5

a positively oriented and regular boundary representation of a €*—smooth Jordan curve (in the sense of
Definition[3.1]), that there exists a p € (0,1) such that b € (7(N) and that for some n € (0,1) it holds

sup q;(t,s) <n inf qo(t,s). 6.3
(ts)EIxI; ! (t,s)€IXI oft,s) (6:3)

Assumption enables us to prove the following properties of the map y € U ry € %ger( ).
Lemma 6.2. Let Assumption[6.1] hold. Then, the set
T={ry: yeU} C 6, (LR?).

is a set of admissible boundary representations (in the sense of Definition @) of a collection {T'y}rex
of Jordan curves satisfying Assumption [3.7

Proof. Let us show that the affine-parametric boundary representation actually provides a boundary
representation of a %2-smooth, regular Jordan curve (in the sense of Definition satisfying the
properties listed in Assumption First we observe that Assumption entails absolute convergence
of ry (as defined in (6.2)) in €7 ( 2), uniformly with respect to y € U, in the sense that

per
SUPZ ||erJ||<g2 L(LR2) Z ”rj”(g};"er(LRZ’) < 00
yeU j>1 j>1

since b € (?(N) C ¢(N) for some p € (0,1). Hence, ¥ is actually contained in 62, (I, R?). For (¢,s) € IxI
and for y € U, we have

ry(t) = ry(s)
sin(r(t — s))

‘: ro( )—To(s Z jrj )_rj(s)

sin(m(t — s)) (m(t—s))
Using the triangle inequality, we get

r TS
‘> qo(t, s) — Z;bljn) ji); o y={y;j}j>1 €U.

Due to (6.3)) in Assumption we have that for (¢,s) € I x I it holds

(t,s) (t,s) inf t,s) su (t,s) inf t,s).
ol ;% (t,s)€lx qO( (t s) eI;xI;qJ =) (t,s)GIXIqO( )

ry(t) —ry(s)
sin(r(t — s))

By Assumption 7o is the boundary representation of a ©2-smooth, regular Jordan curve, there exists
a constant 7o, depending on 7o € €2 (I, R?) only, such that

per

inf t,8) >~ > 0.
(t;)nelxlqo( 5) >

Hence, for (t,s) € I x I and y € U we have that

ry(t) —ry(s)
sin(r(t — s))
and we conclude that ry : [0,1) — R? is injective and 1-periodic, for all y € U. Computing the limit of

t € I tending to s € I, we obtain Hry || > 7m(1—n)y >0, for s € I, and the boundary representation
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is regular for all y € U. The parametric boundary representation ry, € €2, (I, R?) inherits the orientation

per
of ro € €3, (I, R?). The compactness of T in €2, (I, R?) has been proved in [I4, Lemma 2.7]. O

per

6.2. Parametric Holomorphy of the Calderén Projector. For s > 1, we consider the Bernstein
ellipse in the complex plane

2
This ellipse has foci at z = £1 and semi-axes of length a = (s +s7!)/2 and b :== (s — s71)/2. For
p ={p;};j>1 with p; > 1, for j € N, consider the tensorized poly-ellipse

Ep =&, c T

Jj=1

—1
55::{z+2 :1§|Z§S}C(C.

We adopt the convention & := [—1, 1] to include the case p; = 1.
Definition 6.3 ([12] Definition 2.1]). Let X be a complex Banach space equipped with the norm ||-|| .
Fore >0 and p € (0,1), we say that map y € U uy € X is (b,e)-holomorphic if and only if

(i) The map y € U uy € X is uniformly bounded, i.e.

sup [|uy|| y < Co,
yelU

for some finite constant Cy > 0.
(ii) There exists a positive sequence b = {b;};>1 € LP(N) and a constant C. > 0 such that for any
sequence p == {p;};>1 of numbers strictly larger than one that is (b, €)-admissible, i.e. satisyfing

D (=1 <e,
Jj=1
the map y = uy admits a complex extension z +— u, that is holomorphic with respect to each
variable z; on a set of the form
Op = ® Op;

Jj=1
where O, C C is an open set containing E,,. This extension is bounded on &, according to

sup [Juz||x < C-. (6.4)
z€&p

Given s > 1, let us define
T ={2€C: dist(z,[-1,1]) <s—1} and T,:= ®’7;j7
Jj=21
where p == {p;},;>1 is such that p; > 1, for j € N. For a (b,¢)-admissible sequence p = {p;};en, let
us consider the following extension of the affine-parametric boundary representation to complex-valued
parametric inputs

re(t) =ro(t) + Y zri(t), tel and z={z}, €T (6.5)
i>1
Lemma 6.4. Let Assumption hold. Then the map y € U — ry € €2, (L, R?) is (b,e)-holomorphic

with the same b and p € (0,1) used in Assumption and for any € > 0.
Proof. Observe that

< i .
Sup lrylecz, ) < Irollecy, ) +;1 I7illegz,, z2)
Hence, item (i) in Definition [6.3)is satisfied with Co = [[roll42_(1r2) + bl (). Being an affine function
per\*»
in each variable, we conclude that the extension (6.5 is holomorphic in each variable z; in the set 7,
for any (b, ¢)-admissible sequence p := {p;};en of numbers strictly larger than 1. Recalling that 7; is
an open neighborhood of & [I2] Lemma 4.4], we have that item (ii) in Definition is satisfied as well.
Furthermore, for any (b, €)-admissible sequence p := {p;}en of numbers strictly larger than 1 and any
z = {zj}jen € T, there exists a y € U such that |z; —y;| < p; — 1, for all j € N. Then, for such y € U,
we have
||7“z||<gger(1,<c2) <|r=— Ty”(g}ger(ch) + ||7”y||<g}ger(17c2) ’
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which implies

M8

<

HTzH%ger(L«:z) 1z =yl I @2, (r2) T [y %2,,(1,C2)

<.
I
—

o,

<
I
—

(pj = Dbj +sup ryllge 2y
sup 2

<

™

+ ||7"0||<gger(17R2) + [1bller )

and

zsélg) I72llg2, c2y < €+ Irollgz, mey + 10l gy -

Therefore, the estimate (6.4) in Definition [6.3|is satisfied with C, =€ + ”m”ﬁ?er(LRZ) + 116l 2 (rvy- O

Lemma 6.5. Let Assumption hold. Then, the map y € U 1y € CKPQCY(I,R2) is continuous provided
U s endowed with the product topology.

Proof. We take our cue from [I5, Lemma 5.7]. According to Assumption we have that b € ¢}(N).

o0
Hence, for all € > 0 there exists a J; = Ji(e) € N such that Z b; < e Lety, ={yntjen €U
j=J+1
be a sequence converging to y = {y; }j en € U pointwise. This implies that for all e > 0, there exists

Jo = Ja(€) € Nsuch that max lyj — yjn| <€, foralln > Jy. Then, for all € > 0 we select J = max{.J;, Jo}
J€

and we obtain

J
7w =7 llga qmey < D2 105 = Uil Irillgs, qzey +2 D Wil mey < € (IBllsgry +2) -
j=1

i>J

It follows that y € U+ ryy € €% (I, R?) is continuous. O

per

For y € U, recall that Cy = CTy. The following result establishes the holomorphic dependence of the
Calderén projector on U in the sense of Definition [6.3}

Theorem 6.6. Let Assumptz'on hold and let § > 0 be as in Proposition . Then, for any e € (0,9),
the map

yelU—=CyeZ (Vi Vo). (6.6)

is (b, €)-holomorphic, with the same b € (P(N) and p € (0,1) as in Assumption[6.1 Moreover, the map
s continuous when U is equipped with the product topology.

Proof. Let 6 > 0 be as in Proposition For any ¢ € (0,6), we consider a (b, e)-admissible sequence
p = {p;j}jen of numbers strictly larger than one. Observe that z € T, = r, € T, where r,, is as in (6.5)).
Therefore, the chain of compositions

zeTpr. €% = Cr €2 (Vper, Viper) -

is well-defined. The map y € 7, — ry € T, is (b, e)-holomorphic with the same b and p € (0,1) as in
Assumption and any € > 0. The map
re%. = Coe €2 (Vier, Vper) -

is holomorphic and uniformly bounded, according to Theorem Therefore, the composition is (b, €)-
holomorphic, again with the same b € ¢?(N) and p € (0, 1) as in Assumption and any ¢ € (0,9).
The map y € U — r, € %, is continuous for any ¢ € (0,9), according to Lemma Being

holomorphic, the map r € T, Cn(c is continuous as well. Therefore, the composition is continuous
itself. O

6.3. Parametric Holomorphy of the Domain-to-Solution Map. We consider the setting from
Section For y € U, we define

Ay =A,, € Z(X,)Y), By=B, €Z(ZY) and g,=g,, €Y.
Moreover, for y € U we set

oy =A, ' Bygy € X.
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Theorem 6.7. Let Assumptions[5.20 and [6.1] hold and let n > 0 be as in Theorem[5.21l Then, for any
e € (0,m) the map

yeUm p,eX (6.7)

is (b, €)-holomorphic, with the same b € ¢P(N) and p € (0,1) as in Assumption . Moreover, the map
(6.7) is continuous when U is equipped with the product topology.

Proof. The proof follows the exact same steps of that of Theorem According to Assumptions [5.20
and Theorem the map

-1
re {SW = Qrc = Ar,(C Br,(C gr.Cc € X

is holomorphic and uniformly bounded. As in the proof of Theorem [6.6] it follows that the map y €
Tp = 1y € T, is (b, e)-holomorphic with the same b and p € (0,1) as in Assumption and any ¢ > 0.
It follows that the map in is also is (b, €)-holomorphic with the exact same b € ¢P(N) and p € (0, 1)
and p € (0,1) as in Assumption [6.1] and any & € (0,7).

Again, the map y € U~ r, € T, is continuous for any ¢ € (0,7), according to Lemma Recalling
that » € T, = ¢, c € X is holomorphic, we have that this map is also continuous. One concludes that
is continuous as well. O

Remark 13. Since the inversion operation of linear isomorphisms is holomorphic as stated in Proposition
the (b, €)-holomorphy property of the Calderén projector obtained in Theorem implies that the
parametric counterparts of the domain-to-solution maps from Corollaryinherit the (b, €)-holomorphy
property with the same b € ¢P(N) and p € (0,1), however possibly with a different ¢ > 0.

7. CONCLUDING REMARKS

We consider the Calderén projector for the Laplace equation in two dimensions and prove its holomor-
phically dependence on a collection of ¥2-smooth Jordan curves in R2. The presently obtained result
allows us to establish that the solution of well-posed BIE both of the first or second kind arising from
the boundary reduction of the Laplace equation (equipped with suitable boundary conditions) depends
holomorphically on the shape of the boundary, provided that the corresponding right-hand side possesses
this property as well. Moreover, shape holomorphy of the Calderén projector for the Laplace equation
entails the holomorphic dependence of the discrete solution to a well-posed BIE obtained, for instance,
by means of Galerkin or collocation discretization methods upon the boundary shape.

We remark that the framework constructed in Section[d], used in the present work only for the Calderén
projector for the Laplace equation, can also be employed to establish shape holomorphy of the BIOs
arising in the Helmholtz, Stokes and linear elasticity problems.

After considering a suitable affine-parametric boundary representation, shape holomorphy of the BIOs
implies parametric holomorphy of the corresponding parametric versions of these operators and of the
solution of well-posed BIEs set on a %?-smooth, regular Jordan curve. This property provides the
mathematical justification for the construction of sparse surrogates of the polynomial type for the ap-
proximation of the resulting parametric BIEs and their numerical approximations by means of either
Galerkin or collocation techniques, with convergence rates that do not suffer from the so-called curse of
dimensionality of the parameter space. Moreover, as discussed in Section [} the theoretical foundations of
several algorithms used in forward and in inverse UQ and their capability to afford dimension-independent
convergence rates rely on the notion of parametric holomorphy presented in Definition Although we
have considered an affine-parametric representation of the boundary, we remark that the results obtained
in Section@ remain valid inasmuch as the parametric boundary representation y € U — 7y, € (gerr (I, R?%)
is (b, €)-holomorphic (in the sense of Definition[6.3) with b € ¢7(N) and for some p € (0,1). An analysis of
the implications of our findings in computational UQ using BIEs and BIOs, with the appropiate Galerkin
discretization of the BIEs and for the forward and inverse problems, will be elaborated elsewhere.
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APPENDIX A. PROOF OF LEMMA [.17]

Let ¢ € €3, (I) and let B; C R be an open interval containing the point ¢ € I. Assume that the length
of By is strictly smaller than 1. For r € T, we split the integral in (4.2) as follows

(P, 3) (1) = / £t — ) pr(t, $)p(s)ds + / f(t - 5)py(t, 5)p(s)ds, tel
sel\By selnB;

Observe that, for ¢ € €2, (I), we have

per
f(t - S) pT(t7 8)¢(S)d87 < C(f7 U) Hpr @H%gcr(lxl) / |Sin(7r(t - S))|_U dsa tel (Al)

€lNnB; selnBy

Since s € INB; and ¢ € L, it follows that [t — s| < 1. Moreover, for (t,s) € I x I such that [t — s| < 1, it
holds [sin(7(t — s))| = sin(w |t — s|) > |t — s|. Using this estimate together with (A.1l) and recalling that
v € (0,1), we obtain

t—inf{INB,}
isin(r(t — 5))|~ ds < / It — s~V ds = / |~ dn
se€INB; seINB; t—sup{INB;}
t—inf{INB;} sup{INB:}—t
= n~"dn + / n~“dn
0 0
(t —inf{INB )Y + (sup{IN B} — )17

1—w
Hence, for each fixed ¢t € T and denoting |B;| the length of B, we have that

f(t —s) pr(t,s)p(s)ds - 0, as |Bi — 0.
selnB,
Therefore, the integral in (4.2)) exists in the Lebesgue sense.
Let x : [0,00) — R be a continuous function satisfying the following properties: x(t) = 0 for ¢ € [0, %],
x(t)=1fort > 1 and x(t) € [0,1] for t € [0,00). Let us define
M(t,s) =y (nsin®(r(t —s))) pr(t,s), me€N and (ts)elxL

Moreover, we set
1
(pi") ¢) () = /f(t —§) P (L, $)p(s)ds, teT
0

Observe that f(t — s)pgﬂ") (t,s) € € (I x 1) and that (Ps«n) gb) € €. (), for ¢ € €2,.(I) and r € T. For
teland ¢ € €2, (I x I), we have
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1

[(Pr) (6= (P ) (0] < CCE.0) Ipr Dl [ Isin((e = )| 1= xnsin(a(e = s)Dlds (2.2)

per
0
Let us consider the change of variables u = sin(n (¢t — s)). For t € I, we have for n € N, n > 2
1
Jul ™"

. —v . 1
0/ sin(r(t — )|~ 1~ x (nsin(t =) < [ / m

1

n

Furthermore, recalling that v € (0,1), we find for n € N, n > 2

1 v 717 1 n?
/ 1—u2 - / \/ 11-v, Tl-uviZ—1

0 0
Recalling (A.2] , we obtain

(P 2) (1) = (P& ) (8)] < C(F.0) b,
Hence, for a fixed ¢ € €7, (I) we have
|ro) = (P ¢)

Since the uniform limit of continuous functions is continuous, we conclude that P, ¢ € €5 (I), for all
r € T provided that ¢ € €%, (1).

per

neN, n>2 tel

5 n*
SOH‘KSH(IXI) \/ﬁv

—0 asn— oo.
CPer (1)

APPENDIX B. PROOF OF PROPOSITION [5.1]

Lemma B.1. For allr € €1,.(1,C?) we have that for all (t,s) € I x I it holds

per

(@) = ()l < [7ley, .02y Isin(m(t = )]

per

Proof. Let t, s € I and we assume w.l.o.g. that ¢ > s. If t—s € [0, 1], we have that sin(w(t—s)) >
Then, for r € ¢, (I,C?) it holds

per

IN

2 :
; |r|<@ﬂ[§er(11c2) Sln(ﬂ'(t — S))
"l .2y sin(m(t = s)).

On the other hand, if t —s € [%, 1], 1—(t—s) € [O, %} Hence, using the 1-periodicity of r € %pler( ),
we get

Ir(t) = ()]l < Irley 0o £ — 5]

IN

lr(#) = r(s)] = llr(s) = r(t = DI < |rlg 1,02 sin(m(t = s)).
It follows that |[r(t) — r(s)[| < |rlg (1 ce) [sin(m(t — s))| holds for all (¢,s) € I x L. O

Proof of Proposition[5.1} Let T be a set of admissible boundary representations of a collection {I'; },.ex
of Jordan curves satisfying Assumption Given 7 € T C 42 ,(I,R?), we consider the open ball in

per

%2, (I,C?) centered in 7 and of size 6 (¥) > 0 (with a dependence on 7 to be specified later) i.e.
(r5 {TE per(7(C2): al(rﬂ“)<(5(ﬂ}7
where d(-,-) has been defined in (£.I). Let r € B(7,§(F)). For (t,s) € I x I, we have
(r(t) = r(s)) - (r(t) - 7"(8)) =(r(t) = 7(s)) - (7(t) = 7())
+2(r(t) = 7(s)) - ((r =) (@) = (r = 7)(s))
+((r=7)(t) = (r=7)(s)) - (r =7)(t) = (r = 7)(s).
On the one hand, using Lemma [B.I] we obtain
(7(t) = 7(s)) - ((r =7)(t) = (r =7)(s))| < () = 7 ()| | (r = 7)(2) = (r = F)(s)]
<|r— T|<5$er(1 c2) M‘fﬁer(l R2) Sin A(r(t - s)).
On the other hand, again using Lemma [B.I] we get
((r =7)() = (r =7)(8)) - (r = 7)(t) = (r = PYDI < |r = TGy qco) sin® (w(t — 5)).
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Thus, we obtain
(r(t) = r(s)) - (r(t) = r(s)) = |F(t) = F(s)||* + E(r,7), (B.1)
where |E(r,7)| < U(r,T)sin*(n(t — s)) and
Ur,T) =2r =Tlg 2 ITler qpey + 17— F|<2gger(1,c2) :
Observe that
U 7) < 260 [Pl o zs) + (7)) (B.2)
Using (B.1)), we obtain the following lower bound
5 { (r(t) —r(s)) -r(t) — 7“(8)} >

sin?(7(t — s))
Recalling Proposition we obtain

(r(®) = () T =)\ < (Tn? — sl 7
8%{ sin(m(t — s)) } > (a(%))” = U(r,7),

where (%) > 0 is as in Proposition and (¢,s) € I x I are such that t — s ¢ Z. We proceed to find
Smax(7) > 0 (depending on the boundary representation 7 € T) such that («(%))? — U(r,7) > 0, for all

§ € (0,0max(7)). Using (B.2), we obtain
Smax(7) = = [Pl ey + /17T, ) + (@(D))2 (B.3)
By selecting 6(7) € (0, 0max (7)), we get the following bound
(r(t) —r(s)) - (r(t) —7‘(8))} 2
R > (%)) —U(r,
{ sin?(m(t — s) 2 (a(%)) (r.7)
> ()2 = 2609 [y 0y — O > O,

=:a(7,6(7)

for (t,s) € I x I such that t — s ¢ Z and for all r € B(7,0(7)). Observe that as s approaches t + Z, we
obtain

2

GORGON S

sin(7(t — s))

(B.4)

a%{(r’”)(t)} > a7, 6(7), %), (B.5)

T2

for all » € B(7,(7)). The bounds and are uniform over r € B(7, (7)), therefore
inf  inf R { (r(t) = r(s)) - (r(t) = r(s)) } > a7, (7)), (B.6)

reBF5(7) (t,g):lxl sin? (7 (t — s))
t#s

and

, : (r-r®\ o~
> .

reBl(IFl,fé(r))ltIelg %{ 72 2 &(F, o), (B-7)
where §(7) € (0, dmax(7)). As in the proof of Theorem (Part B) and recalling that according to
Assumption the set ¥ is a compact subset of %ger(I, R?), there exist J € N and a set {7,...,7;} C T
such that

chB <ﬁ,5(;i)>, (B.8)

where 6 (7;) € (0, 0max (7)) and dmax(7;) is as in (B.3)), but with 7; instead of 7, for s = 1,...,J. Let us
set

1, 2
6(%) = 5 inf (‘ "l re) + \/|7“|<ggcr(1,m2) + (04(5))2) :

We claim that §(%) is strictly positive. Observe that the map

2
reT e —Irlg age) t+ \/|7“|<g;er(1,R2) +((%))? eR
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is continuous and strictly positive over T C €2, (I, R?). According to Assumption T is a compact

per
subset of €72, (I, R?). Consequently, this map attains a strictly positive minimum, thereby providing the
strict positiveness of 6(T). With J € N as in (B.8)), the following inclusions hold true
J
TcT B, d(m). (B.9)
i=1
Together with and (B.7), leads us to
inf inf R{m,c(t,s)} > inf inf inf R {m,c(t,
L S B mecths)y 2l B ) S ™ e )}

> ] al(r; T .
> i:ﬁ?_f_,Ja(T“ 5(r5)) >0

=a(%,5)
We conclude that (5.4]) holds with the strictly positive constant (%, ). O
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