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Abstract. We establish the holomorphic dependence of the boundary integral operators (BIOs) com-

prising the Calderón projector for Laplacean in two dimensions on the shape of the boundary. More
precisely, we show that the Calderón projector, as an element of the Banach space of bounded linear

operators satisfying suitable mapping properties, depends holomorphically on a set of boundaries given
by a collection of C 2–smooth Jordan curves in R2. In turn, this result implies that the solution of a
well-posed first or second kind boundary integral equation (BIE) arising from the boundary reduction
of the Laplace problem set on a domain of class C 2 in two spatial dimensions depends holomorphi-
cally on the shape of the boundary, provided that the corresponding right-hand side does so as well.
This property of shape holomorphy is of crucial significance to mathematically justify the construction
of sparse surrogates of polynomial chaos type, and for dimension-independent convergence rates for
the approximation of parametric solution families of BIEs in forward and inverse computational shape
uncertainty quantification.

1. Introduction

Partial differential equations (PDEs) are ubiquitous as models of complex processes and phenomena
in science and engineering, for instance: optimal shape design, inverse problems, biomedical imaging and
non-destructive testing. These models are subject to the presence of sources of uncertainty, whose effects
we would like to characterize. Computational uncertainty quantification (UQ) addresses mathematical
models and numerical methods to assess in a quantitative manner how data and model uncertainty
impact predictions furnished by scientific computing. Two types of uncertainty can be distinguished in
a mathematical model: (i) epistemic uncertainty, which corresponds to uncertainty of the model itself
and (ii) aleatoric uncertainty, which deals with propagation of uncertain parameters (e.g. domains of
definition, material properties, external sources) into the so-called Quantities of Interest (QoI). In the
ensuing discussion, we focus on the latter and assume that the former is negligible.

Following a parametric approach to represent uncertainty (cp. [14, 12]), one may write a parametric
PDE together with its dependence on the uncertain parameters as follows: A(u,y) = 0, where y =
(y1, . . . , ys) ∈ [−1, 1]s, s ∈ N, denotes the input parameter vector, u ∈ X is the unknown solution of
the problem and A : X × [−1, 1]s → W is a linear or nonlinear partial differential or integral operator,
where X and W are Banach spaces. Assuming that for each parameter y ∈ [−1, 1]s there exists a unique
solution u = uy, one may define the uncertainty-to-solution map y ∈ [−1, 1]s 7→ uy ∈ X.

Even if the operator A describes a well-understood problem (e.g. elliptic PDEs with diffusion coeffi-
cients depending on the parameters in an affine manner), the numerical approximation of the uncertainty-
to-solution map becomes a challenge whenever the number of parameters s ∈ N is large or even infinity.
This phenomenon corresponds to the so-called curse of dimensionality: the computational effort required
for the numerical approximation of the uncertainty-to-solution map grows exponentially with the num-
ber of parameters. This issue also manifests itself as a deterioration of the convergence rates for the
numerical approximation of the uncertainty-to-solution map as the parametric dimension increases.

Recently in [12], a strategy to obtain algebraic convergence rates for the approximation of y 7→ uy for
s = ∞ has been proposed. This approach relies on the construction of an holomorphic extension z 7→ uz
of the uncertainty-to-solution map on a certain tensor product of ellipses in the complex domain. The
varying size of the so-called Bernstein ellipses quantifies the anisotropic dependence of the uncertainty-to-
solution map on the corresponding parametric variables. This observation is crucial to achieve dimension-
independent algebraic convergence rates for the approximation of the domain-to-solution map.

However, the holomorphic extension of the uncertainty-to-solution map has to be constructed and
studied separately for each particular instance of the operator A. So far, this analysis has been performed
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for elliptic diffusion equations with coefficients depending on the parameter vector in an affine and non-
affine manner, parabolic diffusion equations and nonlinear, monotone elliptic PDEs [12, 14]. In particular,
if the parameter vector y corresponds to a parametric representation for the physical domain of definition
of uy, we refer to the uncertainty-to-solution map as the domain-to-solution map and to the property of
holomorphic dependence of uy on the parameter vector y as shape holomorphy.

Shape holomorphy has been already established for different classes of differential operators A: time-
harmonic electromagnetic wave scattering by perfectly conducting and dielectric obstacles [35, 2], sta-
tionary Stokes and Navier-Stokes equation [15] and volume formulations for acoustic wave scattering
by a single penetrable obstacle in a low frequency regime [31]. To our knowledge, there are to date
no results on holomorphic dependence of the BIOs on the boundary shape. We recall that the integral
equation method allows the boundary reduction of certain classes of PDEs into BIEs by means of BIOs.
This approach offers advantages over domain methods for PDEs, such as the finite element and finite
difference methods. Hence the increasing interest during the last decades in this technique. Among these
advantages we highlight:

(i) The capability to numerically treat more complex geometries than domain methods. Only bound-
ary meshes are required for the numerical resolution of BIEs, as opposed to volume ones in domain
methods, thus making the process of mesh generation and refinement easier.

(ii) The use of the integral equation method and BIEs is particularly well-suited to deal with problems
in unbounded domains, such as acoustic and electromagnetic wave scattering.

The significance of holomorphic dependence of differential and integral operators, and of their inverses,
on the shape of the domain lies in the classical result on exponential convergence of polynomial approxi-
mation for holomorphic functions. Upon a suitable domain or boundary parametric representation, shape
holomorphy enables the construction of polynomial surrogates of operators and of solution manifolds,
which can be used to accelerate computational engineering design. The fact that many parameters might
be required for realistic modelling implies high dimensionality of the parametric surrogates. Recently
developed interpolation and quadrature processes will overcome the curse of dimensionality inherent in
classical numerical approaches (see, e.g., [10] for sensitivity-based surrogates, [12] for sparse-grid inter-
polation construction of surrogates, [22] for Quasi-Monte Carlo quadratures, [21, 29] for implications
in Bayesian shape identification and [2] for computational electromagnetics). The mathematical and
algorithmic development of these applications is beyond the scope of the present article, and will be
reported elsewhere.

We establish the holomorphic dependence of the Calderón projector for the Laplace equation on a
collection of C 2–smooth Jordan curves in R

2. Specifically, we establish holomorphy of the domain-to-
operator map associated to the Calderón projector. Again, this entails the holomorphic dependence of
solutions of first and second kind boundary integral formulation on the shape of the boundary, within
C 2 boundaries. We emphasize that this holomorphic dependence does not require smoothness or even
analytic regularity of the boundary.

In the line of previous works in this subject (e.g. [15, 35]), we establish shape holomorphy by proving
complex Fréchet differentiability of the Calderón projector (viewed as an element of the complex Banach
space of bounded linear operators) with respect to a collection of C 2–smooth Jordan curves in R

2. The
roadmap of our argument reads as follows. Firstly, let Γr be a Jordan curve in R

2 and let r : [0, 1] → R
2 be

a C 2–smooth boundary representation of Γr. Using a suitable pullback operator defined by means of the
boundary representation r ∈ [0, 1] → R

2, we transform the BIOs contained in the Calderón projector into
1-periodic integral operators, with mapping properties between appropriate periodic Sobolev spaces in the
interval [0, 1], usually referred to as the reference domain. The presence of the boundary representation
r : [0, 1] → R

2 is completely isolated in the integrand of the arising 1-periodic integral operator. Then,
we proceed to calculate and analyze the complex Fréchet derivative of the domain-to-operator map
associated to the Calderón projector with respect to the boundary representation r : I → R

2. However,
the exact meaning of complex differentiability with respect to the boundary representation of a Jordan
curve is not properly defined, as the BIOs are only defined for boundary representations with values in
R

2. Consequently, the main difficulty in the shape holomorphy analysis and the central achievement of
the present work is to provide a meaningful description of the complex Fréchet derivative of the BIOs
contained in the Calderón projector with respect to a suitable collection of complex-valued boundary
representations.

Establishing holomorphy by verification of Fréchet differentiability of (suitably “complexified”) domain-
to-operator maps is closely related to the so-called material derivatives of the BIOs. This concept nat-
urally appears in shape optimization [49]. In fact, the closest results to shape holomorphy of the BIOs
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that one may find in the literature are related to shape differentiability of the BIOs. Shape differentia-
bility of the BIOs has been studied in shape inverse problems in acoustic, elastic and electromagnetic
wave scattering [38, 39, 5, 51], shape optimization [49, 20, 26, 25, 28], electrical impedance tomography
[27, 24], shape sensitivity analysis [34, 13] and crack detection [33, 36], among others.

Although present in many applications, the literature on shape differentiability of the BIOs is limited.
In [41, 43] and [6] shape differentiability of the BIOs in the Fréchet sense for acoustic and elastic problems
is analyzed, respectively, by using a setting based on Hölder continuous and differentiable function spaces
and assuming boundaries of class C 2. Subsequently, this technique is extended to the BIOs arising in
electromagnetic wave scattering [42]. The approach used to obtain these results has been used as well
in [18] to prove that a collection of BIOs characterized by a class of pseudo-homogeneous kernels (for
a precise definition of this concept we refer to [18, Section 2] and references therein) are infinitely
differentiable with respect to the boundary. This analysis is later used to compute shape derivatives
of the BIOs in electromagnetic wave scattering [19, 51]. Nevertheless, these results are obtained under
the assumption that the boundaries taken into consideration in the analysis are smooth. Hence, only
derivatives in the Gâteaux sense were computed by means of this approach. Fréchet differentiability can
not be obtained directly, as one would need normed spaces as opposed to Fréchet ones. Regardless of
these issues, the above results do not imply an holomorphic dependence of the BIOs on the shape of the
boundary. To the best of our knowledge, shape holomophy of the BIOs has not been addressed so far.

This manuscript is structured as follows. In Section 2 we establish the notation to be used throughout
this work and also introduce the BIOs for the Laplace equation. In Section 3 we describe the class
of boundary representations to be considered in our analysis. In Section 4, we analyze the complex
Fréchet differentiability of a collection of 1-periodic integral operators (as elements of the Banach space
of bounded linear operators) with respect to a set of complex-valued boundary representations. This
result is built upon mathematical tools concerning holomorphic maps between Banach spaces, which
are properly introduced. The abstract framework presented therein will allow us not only to analyze
the BIOs for the Laplacean in R

2 but is also a stepping-stone to obtain shape holomorphy of the BIOs
associated, for example, to the Helmholtz and Stokes- as well as to the BIOs arising in the Lamé-
system in linear elasticity. Section 5 is devoted to our main result: shape holomorphy of the Calderón
projector. We prove the holomorphic dependence of the Calderón projector for the Laplace operator
on a collection of C 2–smooth Jordan curves in R

2. Using the pullback operator, introduced in Section
3.3, we transport the BIOs to the reference domain [0, 1]. As the result of this operation, we obtain a
collection of 1-periodic integral operators fitting the framework of Section 4. In Section 6 we introduce
a key concept for the approximation of a maps depending on a countable number of parameters, the
so-called (b, ε)-holomorphy. We prove (b, ε)-holomorphy of the BIOs, after the boundary representations
are parametrized in an affine manner. Moreover, we discuss implications of this notion in the construction
of surrogates of the polynomial type for the approximation of parametric maps, with convergence rates
that are independent of the number of parameters (i.e., of the dimension of the parameter space). We
further elaborate on the importance of this result as a foundational step in the analysis of state-of-
the-art techniques usually employed in forward and inverse computational UQ, which are capable of
achieving dimension-independent convergence rates in the approximation of parametric maps with high-
dimensional shape parametrizations. Finally, in Section 7 we provide concluding remarks and sketch
directions of future research.

2. Preliminaries

2.1. Notation. Let Ω ⊂ R
d, d = 1, 2 be a domain, let k ∈ N0 and λ ∈ (0, 1]. We denote by C k(Ω)

the space of k times continuously differentiable functions in Ω. Furthermore, we denote by C k,λ(Ω) the
subspace of k times continuously differentiable functions in Ω with Hölder continuous partial derivatives
of order λ. Throughout, we adopt the reference domain I := [0, 1] for the closed curve Γ = ∂Ω. On I, we
consider the closed subspace of C 0(R) of 1-periodic, complex-valued continuous functions, defined as

C
0
per(I) :=

{
u ∈ C

0(R) : u(x) = u(x+ 1), x ∈ R
}
.

Recursively, we define

C
k
per(I) :=

{
u ∈ C

k−1
per (I) : such that u(k) ∈ C

0
per(I)

}
, k ∈ N,
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where u(k) denotes the k-th derivative of the function u : I → C. We adopt the notation u′ to denote
the first derivative. The space C k

per(I) endowed with the norm

‖u‖
Ck

per(I)
:=

k∑

ℓ=0

∥∥∥u(ℓ)
∥∥∥

C 0
per(I)

for u ∈ C
k
per(I,K),

is a (complex) Banach space, where ‖u‖
C 0

per(I)
:= max

t∈I
|u(t)|. We also introduce the semi-norm

|u|
C 1

per(I)
:= max

t∈I
|u′(t)|

Equivalently, for a field K ∈ {R,C} one may define C k
per(I,K

2), but replacing the absolute value |·| by
the Euclidean norm ‖·‖.

Let C 0
per(I×I) be the closed subspace of 1-biperiodic (i.e., 1-periodic in each variable), complex-valued

functions which are continuous in I× I

C
0
per(I× I) :=

{
u ∈ C

0(R× R) :
u(t, x) = u(t, x+ 1), ∀t ∈ I and
u(x, s) = u(x+ 1, s), ∀s ∈ I

, ∀x ∈ R

}
.

Again, we define recursively

C
k
per(I× I) :=

{
u ∈ C

k−1
per (I× I) :

∂|α|u

∂tα2∂sα1
(t, s) ∈ C

0
per(I× I), |α| = k

}
, k ∈ N,

where α = (α1, α2) ∈ N
2
0 and |α| = α1 + α2. We adopt the notation ∂u

∂t
and ∂u

∂s
to denote the first

derivative with respect to the first and second variable, respectively, of the function u : I × I → C.
Equipped with the norm

‖u‖
Ck

per(I×I) :=

k∑

ℓ=0

∑

α∈N
2
0

|α|≤ℓ

∥∥∥∥
∂|α|u

∂tα2∂sα1

∥∥∥∥
C 0

per(I×I)

, u ∈ C
k
per(I× I),

where ‖u‖
C 0

per(I×I) := max
(t,s)∈I×I

|u(t, s)|, C k
per(I× I) is a (complex) Banach space.

Let D ⊂ R
2 be a bounded domain of class C k, for k ∈ N [32, Definition 3.3.1]. We denote by

L2(∂D) the set of scalar-valued, square integrable functions over ∂D and by C k,λ(∂D) the set of Hölder
continuous functions in ∂D [32, Section 1.2]. Let Hs(∂D), for s ∈ [0, k], be the the Sobolev space of
traces on ∂D ([46, Section 2.4], [32, Section 4.2]). As is customary, we identify H0(∂D) with L2(∂D)
and, for s ∈ [0, k], H−s(∂D) with the dual space of Hs(∂D). The duality pairing between H−s(∂D) and
Hs(∂D) is denote by 〈·, ·〉∂D, with the subscript accounting for the domain of definition. Finally, for
complex Banach spaces X and Y , we denote by L (X,Y ) the space of bounded linear operators from
X into Y and by Liso(X,Y ) the (open) subset of isomorphisms, i.e. bounded linear operators with a
bounded inverse. Recall that L (X,Y ) is a (complex) Banach space equipped with the standard operator
norm [44, Theorem III.2].

2.2. 1-Periodic Sobolev spaces. We recall results concerning 1-periodic Sobolev spaces that are re-
quired in the ensuing analysis. More details may found in [37, Chapter 8], [45, Setion 5.3] and [1, Section
6.5]. Define

L2(I) :=



u : I → C measurable such that :

1∫

0

|u(s)|2 ds <∞



 .

The Fourier expansion of u ∈ L2(I) is given by

u(t) =
∑

ℓ∈Z

aℓ(u) exp(ı2πℓt), t ∈ I, (2.1)

where the Fourier coefficients aℓ(u) in (2.1) are given by

aℓ(u) =

1∫

0

u(s) exp(−ı2πℓs)ds.
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We denote by (·, ·)L2(I) the L
2(I)-inner product understood in the bilinear sense, i.e.

(u, v)L2(I) =

1∫

0

u(s)v(s)ds, for all u, v ∈ L2(I).

Therefore, the L2(I)-norm is given by ‖u‖L2(I) := (u, u)
1
2

L2(I).

Remark 1. The operation of complex conjugation is not holomorphic. To show holomorphy of certain
maps, we have to avoid it in analytic continuation of real-valued functions. For that reason, we define
inner products and duality pairings in the bilinear sense, rather than in the sesquilinear one.

Definition 2.1 ([37, Definition 8.1]). Let 0 ≤ s < ∞. By Hs
per(I) we denote the space of all u ∈ L2(I)

with the property

‖u‖Hs
per(I)

:=

(∑

ℓ∈Z

(1 + ℓ2)s |aℓ(u)|2
) 1

2

<∞,

for the Fourier coefficients aℓ(u) of u ∈ L2(I).

Theorem 2.2 ([37, Theorem 8.2]). Let 0 ≤ s < ∞. The Sobolev space Hs
per(I) is a (complex) Hilbert

space with the following scalar product (to be understood in the bilinear sense)

(u, v)Hs
per(I)

=
∑

ℓ∈Z

(1 + ℓ2)saℓ(u)aℓ(v), u, v ∈ Hs
per(I),

The inner product (·, ·)Hs
per(I)

induces the norm ‖u‖Hs
per(I)

, i.e. ‖u‖Hs
per(I)

= (u, u)
1
2

Hs
per(I)

, for u ∈ Hs
per(I).

By the Riesz representation theorem, we identify H−s
per(I), for 0 ≤ s < ∞, with the dual space of

Hs
per(I) (i.e. the set all bounded linear functionals acting on Hs

per(I)). We denote by 〈·, ·〉per the H−s
per(I)-

Hs
per(I) duality pairing, again in the bilinear sense (without conjugation in the second argument). Adjoint

operators in the H−s
per(I)-H

s
per(I) duality pairing are labeled with a † superscript. For u, v ∈ L2(I), we

have

〈u, v〉per =
1∫

0

u(s)v(s)ds.

We endow H−s
per(I), for 0 ≤ s <∞, with the norm

‖u‖H−s
per(I)

:= sup
0 6=v∈Hs

per(I)

∣∣∣〈u, v〉per
∣∣∣

‖v‖Hs
per(I)

, u ∈ H−s
per(I).

Finally, we remark that H0
per(I) can be identified with L2(I).

Lemma 2.3 ([37, Theorem 8.5 & Theorem 8.6]). We have the following norm equivalences.

(i) Let k ∈ N0. For u ∈ C k
per(I), the norm ‖u‖Hk

per(I)
is equivalent to

‖u‖k,per :=
(

k∑

ℓ=0

∥∥∥u(ℓ)
∥∥∥
2

L2(I)

) 1
2

.

(ii) Let λ ∈ (0, 1). For u ∈ C 1
per(I), the norm ‖u‖Hλ

per(I)
is equivalent to

‖u‖λ,per :=


‖u‖2L2(I) +

1∫

0

1∫

0

|u(t)− u(s)|2

|sin(π(t− s))|2λ+1
dsdt




1
2

.

Lemma 2.4 ([45, Lemma 5.12.2]). Assume that for an operator A there holds A ∈ L
(
Hλ1

per(I), H
µ1
per(I)

)

and A ∈ L
(
Hλ2

per(I), H
µ2
per(I)

)
with some λ1 ≤ λ2 and µ1 ≤ µ2. Then for ̺ ∈ [0, 1],

‖A‖
L

(
H

̺λ1+(1−̺)λ2
per (I),H

̺µ1+(1−̺)µ2
per (I)

) ≤ ‖A‖̺
L

(
H

λ1
per(I),H

µ1
per(I)

) ‖A‖1−̺
L

(
H

λ2
per(I),H

µ2
per(I)

) .
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Lemma 2.5 ([45, Lemma 5.13.1] & [37, Corollary 8.8]). Let λ ∈ [−1, 1], u ∈ C 1
per(I) and v ∈ Hλ

per(I).

Then, we have u v ∈ Hλ
per(I) and

‖u v‖Hλ
per(I)

≤ Cλ ‖u‖C 1
per(I)

‖v‖Hλ
per(I)

,

for a constant Cλ > 0 depending only on λ.

2.3. Boundary Integral Operators. Let G(x,y) be the fundamental solution to the Laplace equation
in R

2 (cf. [50, Chapter 5] or [46, Section 3.1]), given by

G(x,y) = − 1

2π
log ‖x− y‖ , x,y ∈ R

2 and x 6= y.

Let D be an open bounded domain of class C 2 with boundary Γ = ∂D. Denote by Dc := R
2\D its

complement. We define the single layer potential

(SΓψ) (x) :=

∫

Γ

G(x,y)ψ(y)dsy, x ∈ D ∪Dc, (2.2)

and the double layer potential

(DΓφ) (x) :=

∫

Γ

νΓ(y) · gradyG(x,y)φ(y)dsy, x ∈ D ∪Dc, (2.3)

where the densities ψ and φ are defined on the boundary Γ and νΓ denotes the outer normal vector to
Γ. Furthermore, we define the boundary integral operators (BIOs) on Γ and for x ∈ Γ as follows

(VΓψ) (x) := lim
z∈D→x∈Γ

(SΓψ) (z), (2.4a)

(KΓφ) (x) := lim
z∈D→x∈Γ

(DΓφ) (z) +
1

2
φ(x), (2.4b)

(K′
Γψ) (x) := lim

z∈D→x∈Γ
νΓ(z) · gradz (SΓψ) (z)−

1

2
ψ(x), (2.4c)

(WΓφ) (x) :=− lim
z∈D→x∈Γ

νΓ(z) · gradz (DΓφ) (z), (2.4d)

In the following we refer to VΓ, KΓ, K
′
Γ and WΓ as the single layer, double layer, adjoint double layer and

hypersingular BIOs, respectively. The following result provides the explicit representation of the BIOs
on domain of class C 2.

Lemma 2.6 ([32, Lemma 1.2.1]). Let Γ be a boundary of class C 2 and let φ and ψ be continuous. Then
the limits (2.4a), (2.4b), (2.4c) and (2.4d) exist uniformly with respect to all x ∈ Γ and all φ and ψ with
sup
x∈Γ

|φ(x)| ≤ 1, sup
x∈Γ

|ψ(x)| ≤ 1. Furthermore, these limits can be expressed by

(VΓφ) (x) =

∫

Γ

G(x,y)φ(y)dsy,

(KΓψ) (x) =

∫

Γ

νΓ(y) · gradyG(x,y)ψ(y)dsy,

(K′
Γφ) (x) =

∫

Γ

νΓ(x) · gradxG(x,y)φ(y)dsy,

for x ∈ Γ, where these integrals are understood in the improper sense with weakly singular kernels.

For a vector v = (v1, v2) ∈ R
2 we introduce the notation [v]

⊥ := (v2,−v1). For a smooth function ϕ
defined on Γ, we define

(curlΓϕ)(x) := ν(x) · [∇ϕ̃(x)]⊥, x ∈ R
2,

where ϕ̃ is a smooth extension of ϕ to a neighborhood of Γ. The following lemma addresses the explicit
representation of the hypersingular operator on boundaries of class C 2.

Lemma 2.7 (Maue’s formula, [32, Lemma 1.2.2] & [50, Theorem 6.15]). Let Γ be a boundary of class
C 2 and let ϕ be a Hölder continuous differentiable function. Then the limit in (2.4d) exists uniformly
with respect to all x ∈ Γ and all ϕ with ‖ϕ‖

C 1,α(Γ) ≤ 1. Moreover, the operator WΓ satisfies

WΓ ϕ = −curlΓ ◦ VΓ ◦ curlΓ ϕ
for ϕ ∈ C 1(Γ).
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The BIOs defined in (2.4) possess the following mapping properties between Sobolev spaces.

Theorem 2.8 ([46, Theorem 3.1.16] & [17, Theorem 1]). Let D be a bounded Lipschitz domain with
boundary Γ := ∂D. The BIOs defined in (2.4) are linear and bounded according to

VΓ :H− 1
2 (Γ) → H

1
2 (Γ),

KΓ :H
1
2 (Γ) → H

1
2 (Γ),

K′
Γ :H− 1

2 (Γ) → H− 1
2 (Γ),

WΓ :H
1
2 (Γ) → H− 1

2 (Γ).

Ahead, for VΓ := H
1
2 (Γ)×H− 1

2 (Γ), we shall also require the Calderón projector

CΓ :=

(
1
2 I− KΓ VΓ

WΓ
1
2 I+ K′

Γ

)
∈ L (VΓ,VΓ) . (2.6)

3. Boundary Representations

3.1. Jordan Curves. In the following, we recall some concepts concerning arcs and curves in two
dimensions. These definitions will allow us to describe precisely the collection of boundaries of class C 2

to be considered throughout this work. For further details we refer to [45, Chapter 2].

Definition 3.1. (C k–smooth, regular boundary representation)

(i) A point set Γ ⊂ R
2 is an arc or curve if there exists a continuous vector-valued function r : I → R

2

such that Γ is the image of the interval I through the function r : I → R
2. We say that the map

r : I → R
2 is a boundary representation of Γ.

(ii) A point set Γ ⊂ R
2 is a Jordan arc (or a simple arc) if there exists a one-to-one, continuous

function r : I → R
2 such that Γ is the image of the interval I through the function r : I → R

2. If
r : I → R

2 is continuous, one-to-one in [0, 1) and r(0) = r(1), the point set Γ is referred to as a
Jordan curve (or a simple closed curve).

(iii) For k ∈ N given, we say that a boundary representation r : I → R
2 of a Jordan arc Γ is C k–smooth

(we also say that Γ is a C k–smooth Jordan arc) if r ∈ C k(I,R2). A boundary representation
r : I → R

2 of a Jordan curve Γ is said to be C k–smooth (we also say that Γ is a C k–smooth
Jordan curve) if r ∈ C k

per(I,R
2).

(iv) A boundary representation is said to be regular if it is C 1-smooth and if r′(t) 6= 0, for t ∈ I.

Proposition 3.2 (Jordan’s Theorem, [45, Theorem 2.4.2]). Let Γ be a Jordan curve in R
2. Then

R
2\Γ = D ∪ Dc, where D and Dc are two domains, exactly one of which is bounded. Furthermore, the

curve Γ is the boundary of D and of Dc.

We say that the bounded domain D defined by a Jordan curve Γ, according to Proposition 3.2, is called
the interior of Γ and the unbounded domain Dc = R

2\D is the exterior of Γ. Let r = (r1, r2)
⊤ : I → R

2

be a regular boundary representation of a Jordan curve Γ in the sense of Definition 3.1. Let us set
ř(t) := r1(t) + ı r2(t), where ı :=

√
−1 denotes the imaginary unit. Now, set ř(t) : I → C, i.e. ř ∈ C 2

per(I)
defines a curve in the complex plane. We define the winding number of a Jordan curve Γ corresponding
to a boundary representation r : I → R at a point x /∈ Γ as follows

ω(Γ, r,x) :=
1

2π
arg(ř(t)− x̌)

∣∣∣∣
t=1

t=0

,

where arg(z) denotes the argument of z ∈ C and x̌ = x1 + ı x2 ∈ C, for x = (x1, x2). Observe that if
x ∈ D, then ω(Γ, r,x) = ±1. On the other hand, if x ∈ Dc we have ω(Γ, r,x) = 0.

Definition 3.3. Let Γ be a Jordan curve with a regular boundary representation r : I → R
2. If

ω(Γ, r,x) = 1 for x ∈ D, then we say that Γ is positively oriented under the boundary representa-
tion r : I → R

2. Otherwise, we say that Γ is negatively oriented under the boundary representation
r : I → R

2.

Let τ and ν be orthonormal vectors in R
2. For ε > 0, we define a neighbourhood of x ∈ R

2 as

U(x, ε, τ ,ν) :=
{
y ∈ R

2 : y = x+ ζτ + ην : η, ζ ∈ R, |ζ| ≤ ε, |η| ≤ ε
}
.

Proposition 3.4 ([45, Theorem 2.4.3]). Let k ∈ N. Then, the following conditions are equivalent for a
subset Γ ⊂ R

2:

(i) Γ is a C k–smooth Jordan curve.
7



(ii) Γ is compact, connected, non-empty and for each x ∈ Γ there exist orthonormal vectors τ (x)
and ν(x) together with εx > 0, depending on x such that there holds

U(x, εx, τ ,ν) ∩ Γ =
{
y ∈ R

2 : y = x+ ζτ (x) + fx(ζ)ν(x), |ζ| ≤ εx
}
,

where fx : [−εx, εx] → R belongs to C k([−εx, εx]) and fx(0) = f ′x(0) = 0.

Remark 2. When Γ is a positively oriented Jordan curve under the regular boundary representation
r : I → R

2 (in the sense of Definition 3.3), the vectors τ (x) and ν(x) in Proposition 3.4 are given by

τ (r(t)) =
r′(t)

‖r′(t)‖ and ν(r(t)) =
[r′(t)]⊥

‖r′(t)‖ .

Remark 3. Let Γ be a Jordan curve with a boundary representation r : I → R
2. If Γ is positively oriented

(in the sense of Definition 3.3) the outer normal vector νΓ(x) from Section 2.3 coincides with ν(r(t))
from Remark 2 at x = r(t), with t ∈ I.

Lemma 3.5. Let k ∈ N and let Γ ⊂ R
2 be a compact, connected boundary of class C k. Then, Γ is a

C k–smooth, regular Jordan curve.

Proof. By [32, Definition 3.3.1], being Γ ⊂ R
2 a compact, connected boundary of class C 2, there exists a

finite number J ∈ N of orthogonal linear transformations {Bℓ}Jℓ=1 ⊂ R
2×2 (i.e. 2×2 orthogonal matrices),

the same number of points {xℓ}Jℓ=1 ⊂ Γ and functions χℓ : [−ε, ε] → R belonging to C k([−ε, ε]),
for ℓ = 1, . . . , J , where ε > 0 is a fixed constant such that for each x ∈ Γ there exists at least one
ℓ ∈ {1, . . . , J} providing the following representation of x ∈ Γ

x = xℓ + Bℓ(ζ, χℓ(ζ))⊤, |ζ| < ε.

Furthermore, there exists a ǫ > 0 such that for each ℓ ∈ {1, · · · , J} the open set

Bℓ :=
{
y ∈ R

2 : y = xℓ + Bℓ(ζ, η)⊤, |ζ| < ε, |η| < ǫ
}

is the union of the sets

B−
ℓ

:= Bℓ ∩D =

{
y ∈ R

2 : y = xℓ + Bℓ y,
y = (ζ, η)⊤ ∈ R

2, |ζ| < ε and
χℓ(ζ)− ǫ < η < χℓ(ζ)

}
,

B+
ℓ
:= Bℓ ∩Dc =

{
y ∈ R

2 : y = xℓ + Bℓ y,
y = (ζ, η)⊤ ∈ R

2, |ζ| < ε and
χℓ(ζ) < η < χℓ(ζ) + ǫ

}
,

and

Γℓ := Bℓ ∩ Γ =
{
y ∈ R

2 : y = xℓ + Bℓ (ζ, χℓ(ζ))⊤, |ζ| < ε
}
.

For each x ∈ Γ there exists a ℓ ∈ {1, . . . , J} such that x ∈ Γℓ and

x = xℓ + Bℓ(ζx, χℓ(ζx))⊤, (3.1)

for a ζx ∈ (−ε, ε), depending on x. Then, using (3.1) we get

Γℓ =
{
y ∈ R

2 : y = xℓ + Bℓ (ζ, χℓ(ζ))⊤, |ζ| < ε
}

=
{
y ∈ R

2 : y = x+ Bℓ (ζ − ζx, χℓ(ζ)− χℓ(ζx))
⊤, |ζ| < ε

}

=
{
y ∈ R

2 : y = x+ Bℓ (u, fx(u))⊤, −ε− ζx < u < ε− ζx
}
,

where u := ζ−ζx, fx(u) := χℓ(u+ζx)−χℓ(ζx) and εx := ε−ζx > 0. Observe that fx(0) = f ′x(0) = 0. Let
τ ℓ, νℓ be the first and second column of Bℓ, respectively. Observe that these vectors depend on x ∈ Γ
through the index ℓ. Then, item (ii) in Proposition 3.4 holds with these quantities. Then, it follows from
Proposition 3.4 that Γ is a C k–smooth, regular Jordan curve. �

3.2. Admissible Boundary Representations. Recall that we aim to prove the holomorphic depen-
dence of the Calderón projector on a collection of boundaries of class C 2. In view of Lemma 3.5 and as
a way to represent the said collection of boundaries of class C 2, throughout what follows we consider a
set {Γr}r∈T of C 2–smooth Jordan curves (in the sense of Definition 3.1), where r : I → R

2 is a boundary
representation of Γr :=

{
x ∈ R

2 : x = r(t), t ∈ I
}
and T ⊂ C 2

per(I,R
2) is a set of C 2–smooth, regular

boundary representations, whose properties we specify below. We encounter the following issues in the
description of the set T:
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• The boundary representation of a Jordan curve is not unique. Given a Jordan curve Γr charac-
terized by a boundary representation r : I → R

2 and provided a 1-periodic, twice continuously
differentiable, bijective function χ : I → I, such that χ′(t) > 0, we have that r ◦ χ : I → R

2 is
also a regular boundary representation of the Jordan curve Γr. Therefore Γr = Γr◦χ, i.e. both
curves are composed of the exact same set of points of R2.

• In the ensuing analysis, we need to work with regular boundary representations (in the sense
of Definition 3.1, item (iv)). This property allows the construction of an isomorphism between
Hs

per(I) and H
s(Γr), for |s| ≤ 1, as explained in Section 3.3 that allows us to transport the BIOs

from the boundary Γr to the reference interval I bijectively.

We address these issues by introducing the concept of admissible boundary representations of a collection
{Γr}r∈T of Jordan curves.

Definition 3.6. We say that T is a set of admissible boundary representations of a collection {Γr}r∈T

of Jordan curves if:

(i) Each r : I → R
2 belonging to T is a C 2–smooth, regular boundary representation (in the sense of

Definition 3.1) of the Jordan curve Γr.
(ii) Given two Jordan curves Γr1 and Γr2 belonging to {Γr}r∈T with boundary representations r1, r2 :

I → R
2, respectively, and satisfying Γr1 = Γr2 (i.e., both curves are composed of the exact same

point set in R
2), it holds that r1(t) = r2(t), for all t ∈ I.

Remark 4. The set T of admissible boundary representations of a collection {Γr}r∈T of regular Jordan
curves is not unique. For each boundary representation r ∈ T one may consider a 1-periodic, twice
continuously differentiable and a bijective function χr : I → I (depending on r) such that χ′

r(t) > 0, for
t ∈ I. Then, we have that r ◦ χr : I → R

2 is a regular boundary representation of the Jordan curve Γr.

Hence, the set T̃ := {r ◦ χr}r∈T is also a set of admissible boundary representations of the collection
{Γr}r∈T of regular Jordan curves.

Remark 5. We do not enforce the boundary representations belonging to the set T of admissible boundary
representations of a collection {Γr}r∈T to be parametrized by the arc-length, as we would like all the
boundary representations belonging to the set T to be functions mapping the (fixed) interval I = [0, 1]
to R

2.

In what follows we work under the following assumption.

Assumption 3.7. Let T be a set of admissible boundary representations of a collection {Γr}r∈T of
Jordan curves (in the sense of Definition 3.6). The set T has the following properties:

(i) For each r ∈ T, the Jordan curve Γr is positively oriented under the boundary representation
r : I → R

2 (in the sense of Definition 3.3).
(ii) The set T is a compact subset of C 2

per(I,R
2).

Example 3.8. Consider the collection of curves {Γr}r∈T ⊂ R
2 defined by the set of boundary represen-

tations

T =
{
r ∈ C

2
per(I,R

2) : r(t) = r0(t) + y ψσ(t) t ∈ I and y ∈ [−1, 1]
}
, (3.2)

where r0 : I → R
2 is a boundary representation of a C 2–smooth, regular nominal Jordan curve Γr0 ,

ψσ(t) = σ cos(2πt) and σ ∈ R+. Selecting σ ∈ R+ sufficiently small, T in (3.2) is actually a set of
admissible boundary representations of the collection {Γr}r∈T of Jordan curves. Assumption 3.7, item
(i), is satisfied by the set T in (3.2) of admissible boundary representations of the collection {Γr}r∈T of
Jordan curves. The compactness of T in C 2

per(I,R
2) follows from [14, Lemma 2.7]. Thus, item (ii) in

Assumption 3.7 holds.

Given r ∈ C 2
per(I,R

2), we define qr : I× I → R as follows

qr(t, s) :=





∥∥∥ r(t)−r(s)
sin(π(t−s))

∥∥∥ for t− s /∈ Z,

‖r′(s)‖
π

for t− s ∈ Z.

The following result establishes a crucial property of a set T of admissible boundary representations of
a collection {Γr}r∈T of Jordan curves.

Proposition 3.9. Let T be a set of admissible boundary representations of a collection {Γr}r∈T of
Jordan curves satisfying Assumption 3.7. Then, for each r ∈ T we have qr ∈ C 0

per(I× I) and there exists
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a constant α(T) > 0 (depending on T only) such that

inf
r∈T

(
inf

(t,s)∈I×I
qr(t, s)

)
≥ α(T) > 0. (3.3)

Proof. We observe that for (t, s) ∈ I × I such that t − s /∈ Z, the function qr : I × I → R is continuous.
We proceed to study qr when t approaches s ∈ I. For s ∈ I, let us compute

lim
t→s

qr(t, s) = lim
t→s

∥∥∥∥
r(t)− r(s)

sin(π(t− s))

∥∥∥∥ = lim
t→s

∥∥∥∥∥∥

1∫

0

r′(s+ ζ(t− s)dζ

∥∥∥∥∥∥
∣∣∣ sin(π(t−s))t−s

∣∣∣
=

‖r′(s)‖
π

= qr(s, s).

The continuity of qr for t approaching s + Z can be obtained by using the 1-biperiodicity of qr(t, s).
Hence, we conclude that qr ∈ C 0

per(I× I).
Let r ∈ T. We have that r : I → Γr is injective in [0, 1) and is also 1-periodic, i.e. r(t) = r(t + 1)

for all t ∈ R. Furthermore, since the boundary representation r : I → Γr is regular, we have r′(t) 6= 0,
for t ∈ I. It follows that qr is strictly positive in the compact domain I × I. Hence, qr ∈ C 0

per(I × I)

and qr(t, s) > 0 for all (t, s) ∈ I× I. Considering that I× I is a compact subset of R2, it follows that qr
attains a strictly positive minimum. Therefore, there exists a positive constant αr, solely depending on
the boundary transformation r ∈ T, such that

inf
(t,s)∈I×I

qr(t, s) ≥ αr > 0. (3.4)

The map

r ∈ T 7→ inf
(t,s)∈I×I

qr. (3.5)

is continuous. Indeed, for r ∈ T and ξ ∈ C 2
per(I,R

2) it holds

|qr+ξ(t, s)− qr(t, s)| ≤ qξ(t, s), for (t, s) ∈ I× I,

and it follows that

‖qr+ξ − qr‖C 0
per(I×I) ≤ ‖qξ‖C 0

per(I×I) . (3.6)

Observe that

‖qξ‖C 0
per(I×I) ≤

‖ξ‖
C 2

per(I,R
2)

π
.

Furthermore, it holds that∣∣∣∣ inf
(t,s)∈I×I

qr+ξ − inf
(t,s)∈I×I

qr

∣∣∣∣ ≤ sup
(t,s)∈I×I

|qr+ξ(t, s)− qξ(t, s)| .

Using (3.6), we obtain
∣∣∣∣ inf
(t,s)∈I×I

qr+ξ − inf
(t,s)∈I×I

qr

∣∣∣∣ ≤ ‖qξ‖C 0
per(I×I) .

Hence, for all ǫ > 0 we have that

‖ξ‖
C 2

per(I,R
2) < πǫ implies ‖qr+ξ − qr‖C 0

per(I×I) < ǫ.

We conclude that the map (3.5) is continuous and, furthermore, strictly positive according to (3.4).
Consequently, recalling that T is a compact subset of C 2

per(I,R
2) according to Assumption 3.7, the map

(3.5) attains a strictly positive minimum. Hence, there exists a constant α(T) > 0, depending only on
T, such that (3.3) holds. �

3.3. The Pullback Operator. Let T be a collection of admissible boundary representations of a col-
lection {Γr}r∈T of Jordan curves (in the sense of Definition 3.6). For r ∈ T and ϕ ∈ C 0(Γr) define
(τrϕ)(t) := (ϕ◦r)(t), for t ∈ I. Being the composition of continuous functions, we have that τrϕ ∈ C 0

per(I).

The operator τr admits an inverse τ−1
r given by

(
τ−1
r ϕ̂

)
(x) :=

(
ϕ̂ ◦ r−1

)
(x), for x ∈ Γr and ϕ̂ ∈ C 0

per(I).
In the following we refer to τr as the pullback operator.

The pullback operator allows to transform the BIOs introduced in Section 2.3 into 1-periodic integral
operators, with mapping properties between appropriate Sobolev spaces of 1-periodic functions that do
not depend on the chosen boundary representation. The dependence on the boundary representation
will be completely isolated in the integrand of the arising 1-periodic integral operator.
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Proposition 3.10. Let T be a collection of admissible boundary representations of a collection {Γr}r∈T

of Jordan curves (in the sense of Definition 3.6) satisfying Assumption 3.7. The pullback operator admits
a unique extension, still denoted by τr, such that τr ∈ Liso

(
Hσ(Γr), H

σ
per(I)

)
, for |σ| ≤ 1 and r ∈ T.

Proof. The result follows from [32, Lemmas 4.2.4 and 4.2.5]. �

Remark 6. It can be proved that the pullback operator admits a unique extension τr having the mapping
properties stated in Proposition 3.10, but with |σ| ≤ 2 for boundaries of class C 2. However, for our
purposes, it is enough to have the mapping properties of the pullback operator for |σ| ≤ 1.

4. Holomorphic 1-Periodic Integral Operators

In this section, we consider 1-periodic integral operators depending on a collection of C 2–smooth,
regular Jordan curves in R

2 and establish sufficient conditions to obtain shape holomorphy of the cor-
responding domain-to-operator maps. As we will see in Section 5 ahead, the main result of the present
section (Theorem 4.13) provides a common framework to prove shape holomorphy of the BIOs for the
Laplace operator appearing in the Calderón projector (2.6). The results presented in this section are
developed in slightly greater generality than required in the subsequent development for the Calderón
projector for the Laplacean, and can be employed to establish shape holomorphy of more general BIOs
in two spatial dimensions.

In order to establish shape holomorphy, we verify complex Fréchet differentiability of the corresponding
domain-to-operator map. Shape differentiability of the BIOs in acoustic and electromagnetic scattering
and the numerical computation of shape gradients play an essential role in the implementation of iter-
ative optimization algorithms (for which a direction of maximum descent is required at each step) and
shape sensitivity analyses. Existing results in this regard aim to establish the real (Fréchet or Gâteaux)
differentiability of the domain-to-operator map and obtain explicit expressions for first and higher-order
derivatives. However, to our knowledge, none of the currently available results address the holomorphic
dependence of the Calderón projector in (2.6) on the boundary.

Recall that the computation and analysis of complex Fréchet derivatives necessarily requires a map
that is well-defined from one complex Banach space to another. However, the Calderón projector (2.6)
is only defined on boundaries that are contained in R

2. After the application of the pullback operator
introduced in Section 3.3, one can solely construct a domain-to-operator map that is properly defined
for a collection of Jordan curves {Γr}r∈T in R

2, where T ⊂ C 2
per(I,R

2) is a set of admissible boundary
representations. Hence, up to this point in our analysis, the domain-to-operator map can only be
understood for real-valued boundary representations.

To compute the complex Fréchet derivative of the domain-to-operator map one must firstly extend
the set T of admissible boundary representations of a collection {Γr}r∈T of Jordan curves to include
complex-valued boundary representations, i.e. vector-valued functions of the form r : I → C

2 belonging
to C 2

per(I,C
2). This extension is performed by considering an open neighborhood of boundary represen-

tations with values in C
2 in the topology induced by the metric d : C 2

per(I,C
2) × C 2

per(I,C
2) → R in

C 2
per(I,C

2) defined as

d (r1, r2) := ‖r1 − r2‖C 2
per(I,C

2) , r1, r2 ∈ C
2
per(I,C

2). (4.1)

The size δ > 0 of the complex open δ-neighborhood of T must be judiciously chosen so that the Calderón
projector admits a well-defined extension to a set of complex-valued boundary representations contained
in C 2

per(I,C
2). In particular, this extension must preserve the mapping properties of the original BIOs.

Once this extension is constructed, the complex Fréchet differentiability of the domain-to-operator map
can be performed.

This section is divided in two parts. Firstly, in Section 4.1 we introduce notation and results regarding
holomorphic maps in Banach spaces of relevance for the subsequent developments. Then, in Section
4.2 we consider a class of 1-periodic integral operators with an integrand defined as the product of a
continuous function that depends holomorphically on a set of complex-valued boundary representations
and a (possibly singular) function that is independent of the chosen boundary representation. The main
result of this section corresponds to Theorem 4.13. Therein, we establish sufficient conditions to prove
the holomorphic dependence of 1-periodic integral operators having the structure previously described
on a suitable collection of complex-valued, C 2–smooth boundary representations.

We remark that the abstract exercise of considering an open neighborhood of boundary representations
with values in C

2 and the subsequent extension of the Calderón projector is only required for theoretical
purposes. In concrete numerical applications, we neither numerically construct the BIOs for complex-
valued boundary representations nor solve BIEs set on complex-valued boundary curves. As will be
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discussed in Section 6, the presently obtained shape holomorphy result enables us to obtain parametric
regularity estimates for the parametric version of the Calderón projector, which are required for the
analysis of several techniques commonly used in forward and inverse UQ.

4.1. Holomorphic Maps in Banach Spaces. Let E and F be complex Banach spaces equipped with
the norms ‖·‖E and ‖·‖F , respectively. For m ∈ N, we denote by L (E(m), F ) the set of continuous
m-linear maps ([40, Definition 1.1])

Mr1,...,rm : (r1, · · · , rm) ∈ E × · · · × E︸ ︷︷ ︸
m times

→ F.

A mapping Pξ : ξ ∈ E → F is said to be an m-homogeneous polynomial if there exists M ∈ L (E(m), F )
such that

Pξ = Mξ, · · · , ξ︸ ︷︷ ︸
m times

.

for all ξ ∈ E. Furthermore, we denote by P(E(m), F ) the set of all continuous m-homogeneous polyno-
mials from E into F [40, Definition 2.1].

Definition 4.1 ([40, Definition 5.1]). Let U be an open, nonempty subset of E. A map Fr : r ∈ U → F
is said to be holomorphic if for each r ∈ U there exists a σ > 0, a ball B(σ) := {r ∈ E : ‖r‖E ≤ σ}
and a sequence of polynomials P(m)

ξ : ξ ∈ E → F belonging to P(E(m), F ) such that for all r ∈ U and

ξ ∈ B(σ) satisfying r + ξ ∈ U

Fr+ξ =
∞∑

m=0

P(m)
ξ

holds uniformly

Definition 4.2 ([40, Definition 13.1]). Let U be an open, nonempty subset of E. A map Fr : r ∈ U → F
is said to be complex Fréchet differentiable if for each point r ∈ U there exists a map ( d

dr
Fr)[r, ·] ∈

L (E,F ) such that
∥∥∥∥Fr+ξ −Fr −

(
d

dr
Fr
)
[r, ξ]

∥∥∥∥
F

= o (‖ξ‖E) .

We say that
(
d
dr
Fr
)
[r, ξ] is the Fréchet derivative of Fr : r ∈ U → F at r ∈ U in the direction ξ ∈ E.

In the case that the map r ∈ U → ( d
dr
Fr)[r, ξ] ∈ L (E,F ) is again complex Fréchet differentiable

with continuous derivative we say that the map Fr : r ∈ U → F is twice complex continuously Fréchet
differentiable. Then, we have that

(
d2

dr2
Fr
)
[r, ·, ·] := d

dr

((
d

dr
Fr
)
[r, ·]

)
[r, ·] ∈ L (E(2), F ).

Recursively, one may define higher-order Fréchet derivatives.

Definition 4.3. Let U be an open, nonempty subset of E and let m ∈ N. We say that the map
Fr : r ∈ U → F is m-times Fréchet differentiable if it is (m − 1)-times Fréchet differentiable and the
map

r ∈ U →
(
dm−1

drm−1
Fr
)
[r, ·, . . . , ·︸ ︷︷ ︸

m−1 times

] ∈ L

(
E(m−1), F

)

is Fréchet differentiable as well. We say that Fr : r ∈ U → F is infinitely complex Fréchet differentiable
if it is m-times Fréchet differentiable for all m ∈ N.

In the following, we adopt the notation
(
dm

drm
Fr
)
[r, ξ] =

(
dm

drm
Fr
)
[r, ξ, · · · , ξ︸ ︷︷ ︸

m times

], m ∈ N.

We recall results regarding the extension of Taylor’s formula to maps between Banach spaces.
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Lemma 4.4 ([23, Lemma 5.40]). Let U be an open, nonempty subset of E and let Fr : r ∈ U → F be
complex Fréchet differentiable. If the segment joining r ∈ U and r + ξ ∈ U is contained in U , then it
holds

Fr+ξ −Fr =
1∫

0

(
d

dr
Fr
)
[r + ηξ, ξ]dη.

Lemma 4.5 ([23, Theorem 5.42]). Let U be an open, nonempty subset of E and let Fr : r ∈ U → F be
m-times continuously complex Fréchet differentiable, for some m ∈ N. In case that the segment joining
r ∈ U and r + ξ ∈ U is contained in U it holds

Fr+ξ =
m∑

ℓ=0

1

ℓ!

(
dℓ

drℓ
Fr
)
[r, ξ] +

1∫

0

((
dm

drm
Fr
)
[r + ηξ, ξ]−

(
dm

drm
Fr
)
[r, ξ]

)
dϑm(η),

where ϑm(η) = −(1− η)m/m!, for η ∈ [0, 1].

Theorem 4.6 ([40, Theorem 14.7]). Let U be an open, nonempty subset of E. For the map Fr : r ∈
U → F the following conditions are equivalent:

(i) Fr is holomorphic.
(ii) Fr is complex Fréchet differentiable.
(iii) Fr is infinitely complex Fréchet differentiable.

Furthermore, for all r ∈ U and ξ ∈ E such that r + ξ ∈ U it holds(
dm

drm
Fr
)
[r, ξ] = m!P(m)

ξ , m ∈ N,

for all r ∈ U and ξ ∈ E such that r + ξ ∈ U , where P(m)
ξ is as in Definition 4.1, for m ∈ N.

Remark 7. As we aim to prove the holomorphic dependence of the BIOs on a collection of planar curves
of class C 2, we emphasize the complex nature of the Banach spaces E and F . Due to Theorem 4.6 it is
necessary and sufficient to prove complex Fréchet differentiability of the BIOs with respect to a suitable
collection of complex-valued planar curves of class C 2. We elaborate on this issue in Section 4.2.

We proceed to present further properties of holomorphic maps in complex Banach spaces, to be used
in the ensuing analysis.

Theorem 4.7. Let U be an open, nonempty subset of E and let Fr : r ∈ U → F be holomorphic. Then,
if the segment joining r ∈ U and r + ξ ∈ U is contained in U , for all m ∈ N0 it holds

Fr+ξ =
m∑

ℓ=0

1

ℓ!

(
dℓ

drℓ
Fr
)
[r, ξ] +

1∫

0

(1− η)m

m!

(
dm+1

drm+1
Fr
)
[r + ηξ, ξ]dη.

Proof. According to Lemma 4.4 and since Fr : r ∈ U → F is holomorphic,

(
dm

drm
Fr
)
[r + ηξ, ξ]−

(
dm

drm
Fr
)
[r, ξ] =

1∫

0

(
dm+1

drm+1
Fr
)
[r + tηξ, ξ]dt

=

η∫

0

(
dm+1

drm+1
Fr
)
[r + tξ, ξ]dt,

for η ∈ [0, 1]. Applying integration by parts

1∫

0

((
dm

drm
Fr

)

[r + ηξ, ξ]−

(
dm

drm
Fr

)

[r, ξ]

)

dϑm(η) =



ϑm(η)

η∫

0

(
dm+1

drm+1
Fr

)

[r + tξ, ξ]dt





∣
∣
∣
∣
∣
∣

1

η=0
︸ ︷︷ ︸

=0

−

1∫

0

(
dm+1

drm+1
Fr

)

[r + ηξ, ξ]ϑm(η)dη

=

1∫

0

(1− η)m

m!

(
dm+1

drm+1
Fr

)

[r + ηξ, ξ]dη,

and the result follows from these computations. �
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Let D(ϑ) := {z ∈ C : |z| < ϑ} be the complex open disc of radius ϑ > 0 centered in the origin of the
complex plane and let D(ϑ) be its closure. The following result corresponds to the version of Cauchy’s
integral formula for holomorphic maps in complex Banach spaces.

Proposition 4.8 ([40, Corollary 7.3]). Let U be an open and nonempty subset of E and let Fr : r ∈
U → F be Fréchet differentiable. Let r ∈ U , ξ ∈ E and ϑ > 0 be such that r+ σξ ∈ U , for all σ ∈ D(ϑ).
Then, for each m ∈ N0 we have the Cauchy’s integral formula

(
dm

d rm
Fr
)
[r, ξ] =

m!

2πı

∫

|λ|=ϑ

Fr+λξ
λm+1

dλ.

We conclude this section by recalling the following result that asserts the uniqueness of holomorphic
extensions.

Theorem 4.9 ([23, Theorem 5.34]). Let R be a real vector subspace of E such that the complex subspace
Rc := R+ ıR is dense in E. If Fr,Gr : r ∈ U → F are holomophic on a connected open set U in E, and
Fr = Gr on some nonempty set V ⊂ U ∩R, relatively open in R, then Fr = Gr on U.

4.2. Shape Holomorphy of 1-periodic Integral Operators. Let T be a set of admissible boundary
representations of a collection {Γr}r∈T of Jordan curves in R

2 (in the sense of Definition 3.6). Provided
a function f : R\Z → C and, for each r ∈ T, a function pr : I × I → C, we define for ϕ̂ ∈ C 0

per(I) the
following 1-periodic integral operator

(Pr ϕ̂) (t) :=

1∫

0

f(t− s) pr(t, s)ϕ̂(s)ds, t ∈ I. (4.2)

Observe that Pr depends on the boundary representation r ∈ T only through pr : I × I → C. In the
following and throughout this section we work under the following assumption.

Assumption 4.10. Let T be a set of admissible boundary representations of a collection {Γr}r∈T of
Jordan curves in R

2.

(i) For each r ∈ T, we have that pr ∈ C 0
per(I× I).

(ii) The function f is a 1-periodic, weakly singular kernel, i.e. there exists a υ ∈ (0, 1) and a finite
constant C(f, υ) > 0 (depending on f and υ only) such that

|f(t)| ≤ C(f, υ) |sin(πt)|−υ , t ∈ R\Z.
The function f is continuous in R\Z and does not depend on the boundary representation r ∈ T.

As we shall prove in Section 5, the BIOs appearing in the Calderón projector set on a Jordan curve
Γr with a boundary representation r : I → R

2 may be a cast as in (4.2). After the application of
pullback operator τr introduced for each for r ∈ T in Section 3.3 to the BIOs defined in Section 2.3, we
obtain 1-periodic integral operators defined in the reference domain I with the structure of Pr. Hence
the importance of 1-periodic integral operators satisfying this framework. The singular component of
the BIOs is contained in the function f, while the dependence on the boundary representation r : I → R

2

of Γr is isolated in the continuous function pr ∈ C 0
per(I× I). A detailed description of this procedure for

the components of the Calderón projector is provided in Section 5.
Under Assumption 4.10, the integral in (4.2) exists in the Lebesgue sense. The proof of the following

result may be found in Appendix A.

Lemma 4.11. Let T be a set of admissible boundary representations of a collection {Γr}r∈T of Jordan
curves in R

2 and let Assumption 4.10 be satisfied. For ϕ̂ ∈ C 0
per(I), the integral in (4.2), i.e. in the

definition of the 1-periodic operator Pr, exists in the Lebesgue sense. Furthermore, for each r ∈ T and
for all ϕ̂ ∈ C 0

per(I), we have that Pr ϕ̂ ∈ C 0
per(I).

The main goal of this subsection is to introduce sufficient conditions that allow us to establish the
holomorphic dependence of the 1-periodic integral operator Pr in (4.2) (as an element of the complex
Banach space of bounded linear operators satisfying suitable mapping properties) on a set T of admissible
boundary representations of a collection {Γr}r∈T of Jordan curves in R

2.
Due to Theorem 4.6 and as explained in Remark 7, we aim to prove complex Fréchet differentiability of

the 1-periodic integral operator Pr with respect to the boundary representation r ∈ T. In so doing, first
we have to extend the set T of admissible boundary representations of a collection {Γr}r∈T of Jordan
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curves to include complex-valued boundary representations, as described at the beginning of this section.
Given δ > 0, we define the complex open δ-neighborhood of T as

Tδ :=
{
r ∈ C

2
per(I,C

2) : ∃ r̃ ∈ T such that d(r̃, r) < δ
}
,

where d(·, ·) has been introduced in (4.1). For some δ > 0 to be specified, we define an extension of the
1-periodic integral operator Pr to the set Tδ and for ϕ̂ ∈ C 0

per(I) as

(Pr,C ϕ̂) (t) :=

1∫

0

f(t− s) pr,C(t, s)ϕ̂(s)ds, t ∈ I and r ∈ Tδ, (4.3)

where pr,C is a suitable extension of pr ∈ C 0
per(I× I) to the set Tδ. In the following, we work under the

assumption stated below.

Assumption 4.12. Let T be a set of admissible boundary representations of a collection {Γr}r∈T of
Jordan curves in R

2 (in the sense of Definition 3.6). There exists δ > 0 such that:

(i) for each r ∈ Tδ, the extension pr,C of pr ∈ C 0
per(I× I) to Tδ belongs to C 0

per(I× I),
(ii) the 1-periodic integral operator Pr,C defined in (4.3) admits a unique extension to 1-periodic

Sobolev spaces, still denoted by Pr,C, such that for some κ, ρ ∈ R and for all r ∈ Tδ the 1-periodic
integral operator Pr,C : Hκ

per(I) → Hρ
per(I) is linear and bounded.

(iii) the map

r ∈ Tδ 7→ Pr,C ∈ L
(
Hκ

per(I), H
ρ
per(I)

)

is uniformly bounded on the set Tδ, i.e. there exists a finite constant CP(T, δ) > 0 (depending
upon T and δ only) such that

sup
r∈Tδ

‖Pr,C‖L (Hκ
per(I),H

ρ
per(I)) ≤ CP (T, δ) , (4.4)

(iv) the map
r ∈ Tδ 7→ pr,C ∈ C

0
per (I× I)

is holomorphic.

Under Assumptions 4.10 and 4.12, the next theorem establishes the holomorphic dependence of Pr,C
on the set Tε for some ε > 0 to be specified.

Remark 8. When item (i) in Assumption 4.12 is satisfied, Assumptions 4.10 holds for Pr,C. Hence, the
statements of Lemma 4.11 hold for Pr,C as well.

Theorem 4.13. Let T be a set of admissible boundary representations of a collection {Γr}r∈T of Jordan
curves in R

2. Let Assumptions 4.10 and 4.12 hold with some δ > 0. Then, for any ε ∈ (0, δ) the map

r ∈ Tε 7→ Pr,C ∈ L
(
Hκ

per(I), H
ρ
per(I)

)
(4.5)

is holomorphic. Its Fréchet derivative at r ∈ Tε, for ε ∈ (0, δ), in the direction ξ ∈ C 2
per(I,C

2) and for

ϕ̂ ∈ C 0
per(I) reads

(
d

dr
Pr,C ϕ̂

)
[r, ξ](t) =

1∫

0

f(t− s)

(
d

dr
pr,C

)
[r, ξ](t, s)ϕ̂(s)ds, t ∈ I.

Proof. Let ε ∈ (0, δ] where δ > 0 is as in Assumption 4.12. The statements of Assumption 4.12 hold as
well for the set Tε.

The proof is divided into two steps:

(a) For m ∈ N, r ∈ Tε and ξ ∈ C 2
per(I,C

2), we define

(
P
(m)
r,ξ ϕ̂

)
(t) :=

1∫

0

f(t− s)

(
dm

d rm
pr,C

)
[r, ξ](t, s)ϕ̂(s)ds, t ∈ I,

where ϕ̂ ∈ C 0
per(I). Firstly, we prove that P

(m)
r,ξ : Hκ

per(I) → Hρ
per(I) is linear and bounded for all

r ∈ Tε and m ∈ N. More precisely, that the following estimate holds for all m ∈ N

∥∥∥P(m)
r,ξ

∥∥∥
L

(
Hκ

per(I),H
ρ
per(I)

) ≤ m!
CP (T, δ)

ϑmξ
,

where CP (T, δ) is as in Assumption 4.12 and ϑξ > 0 (depending upon ξ) together with ξ ∈
C 2
per(I,C

2) are chosen so that r + λξ ∈ Tδ, for all λ ∈ D(ϑξ).
15



(b) Using Taylor’s expansion we prove that
∥∥∥Pr+ξ,C − Pr,C − P

(1)
r,ξ

∥∥∥
L

(
Hκ

per(I),H
ρ
per(I)

) = o
(
‖ξ‖

C 2
per(I,C

2)

)
,

for r ∈ Tε. This implies complex Fréchet differentiability of the map (4.5) and that P
(1)
r,ξ ∈

L
(
Hκ

per(I), H
ρ
per(I)

)
is actually the Fréchet derivative of Pr,C at r ∈ Tε in the direction ξ ∈

C 2
per(I,C

2).

We proceed with step (a). Let r ∈ Tε and 0 6= ξ ∈ C 2
per(I,C

2). Let us assume, for the moment, that

there exists ϑξ > 0 (depending on ξ) such that r + λξ ∈ Tδ for all λ ∈ D (ϑξ). We will specify these
quantities in step (b) of the proof. Therefore, since r ∈ Tδ 7→ pr,C ∈ C 0

per (I× I) is holomorphic according
to Assumption 4.12, item (iv), Cauchy’s integral formula (Proposition 4.8) delivers

(
dm

drm
pr,C

)
[r, ξ](t, s) =

m!

2πı

∫

|λ|=ϑξ

pr+λξ,C(t, s)

λm+1
dλ, (t, s) ∈ I× I.

Hence, for t ∈ I and ϕ̂ ∈ C 0
per(I) we have

(
P
(m)
r,ξ ϕ̂

)
(t) =

m!

2πı

1∫

0

f(t− s)




∫

|λ|=ϑξ

pr+λξ,C(t, s)

λm+1
dλ


 ϕ̂(s)ds

=
m!

2πı

∫

|λ|=ϑξ

1

λm+1




1∫

0

f(t− s)pr+λξ,C(t, s)ϕ̂(s)ds


 dλ

=
m!

2πı

∫

|λ|=ϑξ

1

λm+1
(Pr+λξ ϕ̂) (t)dλ.

Using the uniform boundedness of Pr over r ∈ Tδ, i.e. item (iii) in Assumption 4.12, and recalling that

r + λξ ∈ Tδ for λ ∈ D(ϑξ), for ϕ̂ ∈ Hκ
per(I), we obtain

∥∥∥P(m)
r,ξ ϕ̂

∥∥∥
H

ρ
per(I)

≤ m!

2π

∫

|λ|=ϑξ

1

|λ|m+1 ‖Pr+λξϕ̂‖Hρ
per(I)

dλ ≤ CP (T, δ)
m!

ϑmξ
‖ϕ̂‖Hκ

per(I)
,

where the constant CP (T, δ) > 0 is that of estimate (4.4). Then, using item (ii) in Assumption 4.12, for
ϕ̂ ∈ Hκ

per(I), we obtain
∥∥∥P(m)

r,ξ

∥∥∥
L (Hκ

per(I),H
ρ
per(I))

≤ CP (T, δ)
m!

ϑmξ
,

for r ∈ Tε and ξ ∈ C 2
per(I,C

2) such that r + λξ ∈ Tδ. This concludes step (a) of the proof.
We continue with step (b) of the proof. Recalling the holomorphic dependence of pr,C on the set Tδ,

item (iv) in Assumption 4.12 and an application of Taylor’s theorem (Theorem 4.7) yields

pr+ξ,C(t, s) = pr,C(t, s) +

(
d

dr
pr,C

)
[r, ξ](t, s) +

1∫

0

(1− η)

(
d2

dr2
pr,C

)
[r + ηξ, ξ](t, s)dη,

Let ϕ̂ ∈ C 0
per(I), then using Lemma 4.11 and Remark 8 we obtain

(Pr+ξϕ̂) (t) = (Prϕ̂) (t) +
(
P
(1)
r,ξ ϕ̂

)
(t) +

1∫

0

(1− η)
(
P
(2)
r+ηξ,ξ ϕ̂

)
(t)dη, t ∈ I,

and it holds that ∥∥∥
(
Pr+ξ − Pr − P

(1)
r,ξ

)
ϕ̂
∥∥∥
H

ρ
per(I)

≤ sup
η∈[0,1]

∥∥∥P(2)
r+ηξ,ξ ϕ̂

∥∥∥
H

ρ
per(I)

. (4.6)

Let r ∈ Tε and consider 0 6= ξ ∈ C 2
per(I,C

2) such that ‖ξ‖
C 2

per(I,C
2) < δ − ε. We claim that by choosing

ϑξ as follows

0 < ϑξ :=
δ − ε

‖ξ‖
C 2

per(I,C
2)

− 1,
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it holds that r + ηξ + λξ ∈ Tδ for all λ ∈ D(ϑξ) and for all η ∈ [0, 1]. Indeed, we have that

‖r + ηξ + λξ − r̃‖
C 2

per(I,C
2) < ε+ (1 + ϑξ) ‖ξ‖C 2

per(I,C
2) < δ

where r̃ ∈ T is such that ‖r − r̃‖
C 2

per(I,C
2) < ε (recall that r ∈ Tε). Then, according to step (a) of the

proof, one obtains for r ∈ Tε and 0 6= ξ ∈ C 2
per(I,C

2) the bound

sup
η∈[0,1]

∥∥∥P(2)
r+ηξ,ξ

∥∥∥
L

(
Hκ

per(I),H
ρ
per(I)

) ≤ 2
CP (T, δ)

ϑ2ξ
.

Observe that
1

ϑ2ξ
= o

(
‖ξ‖

C 2
per(I,C

2)

)
.

Then, from (4.6) one may conclude that
∥∥∥Pr+ξ − Pr − P

(1)
r,ξ

∥∥∥
L

(
Hκ

per(I),H
ρ
per(I)

) = o
(
‖ξ‖

C 2
per(I,C

2)

)
,

for r ∈ Tε and 0 6= ξ ∈ C 2
per(I,C

2) such that ‖ξ‖
C 2

per(I,C
2) < δ − ε. Hence, for any ε ∈ (0, δ), the map

r ∈ Tε 7→ Pr ∈ L
(
Hκ

per(I), H
ρ
per(I)

)

is complex Fréchet differentiable and, furthermore, its Fréchet derivative at r ∈ Tε in the direction

ξ ∈ C 2
per(I,C

2) is P
(1)
r,ξ ∈ L

(
Hκ

per(I), H
ρ
per(I)

)
. This concludes step (b) of the proof and shows that the

map (4.5) is holomorphic by invoking Theorem 4.6. �

5. Shape Holomorphy of the Calderón Projector

In this section, we prove shape holomorphy of the Calderón projector introduced in (2.6). We proceed
as follows. Firstly, we consider a set T of admissible boundary representations of a collection {Γr}r∈T

of C 2–smooth Jordan curves in R
2 (in the sense of Definition 3.6). Then, using the pullback operator

defined in Section 3.3, we transform the BIOs originally posed on the boundary Γr into 1-periodic integral

operators defined on the reference domain I. For r ∈ T, we define Ĉr := τr ◦ Cr ◦ τ−1
r (the application of

the pullback operator to Cr is understood component-wise), where Cr := CΓr
is the Calderón projector,

introduced in Section 2.3. Recalling that for |σ| ≤ 1 and for all r ∈ T we have τr ∈ Liso

(
Hσ(Γr)H

σ
per(I)

)

(Proposition 3.10) and together with the mapping properties of the BIOs (Theorem 2.8), we analyze the
smoothness of the map

r ∈ T 7→ Ĉr ∈ L (Vper,Vper) , (5.1)

where Vper := H
1
2
per(I) × H

− 1
2

per (I). More precisely, we study the holomorphic dependence of Ĉr (as an
element of the complex Banach space of bounded linear operators) on a set Tδ, for some δ > 0 to be

specified. In so doing, we first need to construct a well-defined extension of Ĉr to r ∈ Tδ, denoted by

Ĉr,C, satisfying the appropriate mapping properties between 1-periodic Sobolev spaces, as indicated in
(5.1). Then, in view of Theorem 4.6, we must study the complex1 Fréchet differentiability of the map

r ∈ Tδ 7→ Ĉr,C ∈ L (Vper,Vper) . (5.2)

The complex Fréchet differentiability of the map in (5.2) is equivalent to that of the four 1-periodic
integral operators contained in the Calderón projector.

This section is structured as follows. In Section 5.1 we investigate holomorphic functions of relevance
for the subsequent analysis. In Sections 5.2 and 5.3 we establish shape holomorphy of the single and
double layer BIOs, respectively. These results are based on the framework developed in Section 4.2, hence
the main task here is to verify that the extension of these 1–periodic integral operators to complex-valued
boundary representations satisfy Assumptions 4.10 and 4.12. Then, Theorem 4.13 provides the sought
shape holomorphy result.

In Sections 5.4 and 5.5 we establish shape holomorphy of the adjoint double layer and hypersingular
BIOs, respectively. Therein, the arguments to obtain shape holomorphy read differently. The technique
used in Section 5.4 for the adjoint double layer operator hinges on the result obtained for double layer
operator in Section 5.3. For the hypersingular operator, we construct an extension to complex-valued
boundary representations using Maue’s formula (Lemma 2.7) and the result for the single layer operator.

1In this section we study the complex Fréchet differentiability of maps between complex Banach spaces. For the sake of
readability, we drop the word “complex” as it is already implied that Fréchet differentiability only in this sense is established
here, as we work only with complex Banach spaces.
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Shape holomorphy is obtained by observing that this extension can be written as composition of holo-
mophic maps. In Section 5.6 we put together the results for each of the 1-periodic integrals operators
analyzed here and establish shape holomorphy of the Calderón projector. Finally, in Section 5.7, we
introduce an abstract framework to obtain the holomorphic dependence of the solution of a well-posed
BIE on a family of boundary curves in R

2. As an example we consider the boundary integral formulations
used to convert the Laplace problem equipped with Dirichlet boundary conditions into a BIE.

5.1. Holomorphic Boundary Representations. Let T be a set of admissible boundary representa-
tions of a collection {Γr}r∈T of Jordan curves in R

2 (in the sense of Definition 3.6). For some δ > 0 to
be specified and r ∈ Tδ we define

mr,C(t, s) :=

{
(r(t)−r(s))·(r(t)−r(s))

sin2(π(t−s)) t− s /∈ Z,
(r′·r′)(s)

π2 t− s ∈ Z.
(5.3)

We present a technical result that will be used extensively throughout this work. Its proof may be found
in Appendix B.

Proposition 5.1. Let T be a set of admissible boundary representations of a collection {Γr}r∈T of
C 2–smooth Jordan curves in R

2 (in the sense of Definition 3.6) satisfying Assumption 3.7. Then, for
δ = δ(T) > 0 given by

δ =
1

2
inf
r∈T

(
− |r|

C 1
per(I,R

2) +
√
|r|2

C 1
per(I,R

2) + (α(T))2
)
,

where α(T) > 0 is as in Proposition 3.9, there exists a finite constant α̃(T, δ) > 0 (depending only on T

and δ) such that

inf
r∈Tδ

inf
(t,s)∈I×I

ℜ{mr,C(t, s)} ≥ α̃(T, δ). (5.4)

As explained in Remark 7, we must provide a well-defined holomorphic extension of the BIOs to the
set Tδ, for some δ > 0. This implies that we have to construct a well-defined holomorphic extension of
the map x ∈ R

2 7→ ‖x‖ ∈ R. Let us define for x ∈ C
2

‖x‖
C
:=

√
x · x, where x · x̃ :=

2∑

i=1

xi x̃i

for x = (x1, x2) and x̃ = (x̃1, x̃2). Here, considering U := C\(−∞, 0], we denote by
√· : U → C

the principal branch of the square root defined as
√
z =

√
r exp(ı θ2 ), where z = r exp(ıθ) is such that

θ ∈ (−π, π). This branch is holomorphic and its complex derivative is d
dz

√
z = 1

2
√
z
, for z ∈ U.

Lemma 5.2. Let T be a set of admissible boundary representations of a collection {Γr}r∈T of C 2–smooth
Jordan curves in R

2 satisfying Assumption 3.7 and let δ > 0 be as in Proposition 5.1. The maps

r ∈ Tδ → r, r′, r′′ ∈ C
0
per(I,C

2)

are holomorphic and uniformly bounded on the set Tδ, i.e. there exists a finite constant C(T, δ) > 0
(depending on T and δ only) such that

sup
r∈Tδ

‖r‖
C 2

per(I,C
2) ≤ C(T, δ). (5.5)

Proof. For each r ∈ Tδ, there exists a r̃ ∈ T such that ‖r − r̃‖
C 2

per(I,C
2) < δ. The map r̃ ∈ T 7→

‖r̃‖
C 2

per(I,R
2) ∈ R is continuous and considering that T is a compact subset of C 2

per(I,R
2), according to

Assumption 3.7, it attains its maximum in T. Therefore,

‖r‖
C 2

per(I,C
2) ≤ ‖r − r̃‖

C 2
per(I,C

2) + ‖r̃‖
C 2

per(I,R
2) ≤ δ + sup

r̃∈T

‖r̃‖
C 2

per(I,C
2)

︸ ︷︷ ︸
C(T,δ)

<∞.

Consequently, (5.5) holds with a finite constant C(T, δ) > 0 that depends only on T and δ. �

Lemma 5.3. Let T be a set of admissible boundary representations of a collection {Γr}r∈T of Jordan
curves in R

2 satisfying Assumption 3.7 and let δ > 0 be as in Proposition 5.1.

(i) For all r ∈ Tδ, we have that mr,C ∈ C 1
per(I× I).

(ii) The map

r ∈ Tδ 7→ mr,C ∈ C
1
per (I× I) (5.6)

is holomorphic.
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(iii) There exists a finite constant Cm(T, δ) > 0, depending only on T and δ only, such that

sup
r∈Tδ

‖mr,C‖C 1
per(I×I) ≤ Cm(T, δ). (5.7)

(iv) The Fréchet derivative of the map in (5.6) at r ∈ Tδ in the direction ξ ∈ C 2
per(I,C

2) reads
(
d

d r
mr,C

)
[r, ξ](t, s) = 2

(r(t)− r(s)) · (ξ(t)− ξ(s))

sin2 (π(t− s))
, (t, s) ∈ I× I and t− s /∈ Z.

Proof. Let δ > 0 be as in Proposition 5.1. Firstly, we prove that for all r ∈ Tδ we have that mr,C(t, s) ∈
C 1
per(I × I). Due to Proposition 5.1 mr,C is continuously differentiable for t − s /∈ Z. The only possible

discontinuity is located at t− s ∈ Z. We analyze the behaviour for t ∈ I approaching s ∈ I. For a fixed
s ∈ I, let us compute

lim
t→s

mr,C(t, s) = lim
t→s

(r(t)− r(s)) · (r(t)− r(s))

sin2 (π(t− s))

= lim
t→s

(t− s)2

sin2 (π(t− s))




1∫

0

r′(s+ ζ(t− s))dζ


 ·




1∫

0

r′(s+ ζ(t− s))dζ




=
(r′ · r′)(s)

π2
= mr,C(s, s).

The extension to t−s ∈ Z is based on the 1-biperiodicity of mr,C(t, s). Therefore, mr,C(t, s) ∈ C 0
per(I× I).

We prove that mr,C(t, s) belongs to C 1
per (I× I). We calculate

∂

∂t
mr,C(t, s) =

{
2 r

′(t)·(r(t)−r(s))
sin2(π(t−s)) − 2π (r(t)−r(s))·(r(t)−r(s))

sin2(π(t−s)) cotg (π(t− s)) , t− s /∈ Z,
(r′·r′′)(s)

π2 , t− s ∈ Z.

To analyze the behaviour when t approaches s ∈ I, with a second order Taylor expansion of r(s) at t we
get

r(s) = r(t) + (s− t)r′(t) + (s− t)2
1∫

0

(1− ζ)r′′(t+ ζ(s− t))dζ. (5.8)

For s ∈ I, we compute

lim
t→s

∂

∂t
mr,C(t, s) = lim

t→s
2
(r(t)− r(s))

sin2 (π(t− s))
·
(
r′(t)− r(t)− r(s)

t− s

)

+ lim
t→s

2π
(r(t)− r(s)) · (r(t)− r(s))

sin2 (π(t− s))

(
1

π(t− s)
− cotg (π(t− s))

)
.

Using (5.8),

lim
t→s

2(r(t)− r(s))

sin2 (π(t− s))
·

(

r
′(t)−

r(t)− r(s)

t− s

)

= lim
t→s

2(t− s)

sin2 (π(t− s))
(r(t)− r(s)) ·

1∫

0

(1− ζ)r′′(t+ ζ(s− t))dζ

= lim
t→s

2(t− s)2

sin2 (π(t− s))

1∫

0

r
′(t+ ζ(t− s))dζ ·

1∫

0

(1− ζ)r′′(t+ ζ(s− t))dζ =
(r′ · r′′)(s)

π2
.

Furthermore,

lim
t→s

2π
(r(t)− r(s)) · (r(t)− r(s))

2 sin2 (π(t− s))

(
1

π(t− s)
− cotg (π(t− s))

)
= 0,

and

lim
t→s

∂

∂t
mr,C(t, s) =

(r′ · r′′)(s)
π2

=

(
∂

∂t
mr,C(t, s)

)∣∣∣∣
t=s

.

Again, the analysis for t ∈ I approaching s+Z can be approached via the 1-biperiodicity of ∂
∂t
mr,C(t, s).

Therefore, ∂
∂t
mr,C ∈ C 0

per(I × I). Similarly, one can prove that ∂
∂s
mr,C ∈ C 0

per(I × I) and we have that

mr,C ∈ C 1
per(I× I), for all r ∈ Tδ.
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We claim that the map r ∈ Tδ 7→ mr,C ∈ C 0
per(I × I) is holomorphic and its Fréchet derivative at

r ∈ Tδ in the direction ξ ∈ C 2
per(I,C

2) reads

(
d

d r
mr,C

)
[r, ξ](t, s) :=

{
2 (r(t)−r(s))·(ξ(t)−ξ(s))

sin2(π(t−s)) , t− s /∈ Z,

2
(r′·ξ′)(s)

π2 , t− s ∈ Z.

Indeed, we have
∣∣∣∣mr+ξ,C(t, s)−mr,C(t, s)−

(
d

d r
mr,C

)
[r, ξ](t, s)

∣∣∣∣ ≤
{ |(ξ(t)−ξ(s))·(ξ(t)−ξ(s))|

sin2(π(t−s)) , t− s /∈ Z,

|(ξ′·ξ′)(s)|
π2 , t− s ∈ Z,

and, using Lemma B.1, we obtain∥∥∥∥mr+ξ,C −mr,C −
(
d

d r
mr,C

)
[r, ξ]

∥∥∥∥
C 0

per(I×I)

≤ 1

π2
‖ξ‖2

C 2
per(I,C

2) .

Hence, it follows that mr,C ∈ C 0
per(I× I) depends holomorphically on r ∈ Tδ. Using Lemmas B.1 and 5.2

one obtains the uniform boundedness claimed in (5.7). Using the exact same arguments, one can prove
that the derivatives of mr,C (as elements of C 0

per(I× I)) depend holomorphically on Tδ and conclude that

r ∈ Tδ 7→ mr,C ∈ C 1
per(I× I) is holomorphic. �

Let Jr(t) := ‖r′(t)‖ for t ∈ I denote the Jacobian of the boundary representation r ∈ T of the curve
Γr. For r ∈ Tδ, with δ > 0 as in Proposition 5.1, we consider an extension of Jr, denoted by Jr,C, to the
set Tδ defined as Jr,C(t) := ‖r′(t)‖

C
, for t ∈ I. Observe that due to Proposition 5.1 the function Jr,C is

well-defined for each r ∈ Tδ. We study the holomorphic dependence of this function on r ∈ Tδ.

Lemma 5.4. Let T be a set of admissible boundary representations of a collection {Γr}r∈T of C 2–smooth
Jordan curves in R

2 satisfying Assumption 3.7 and let δ > 0 be as in Proposition 5.1.

(i) For all r ∈ Tδ, we have that Jr,C ∈ C 1
per(I).

(ii) The map

r ∈ Tδ 7→ Jr,C ∈ C
1
per(I) (5.9)

is holomorphic.
(iii) There exists a finite constant CJ (T, δ) > 0 (depending on T and δ only) such that

sup
r∈Tδ

‖Jr,C‖C 1
per(I)

≤ CJ (T, δ). (5.10)

(iv) The Fréchet derivative of the map in (5.9) at r ∈ Tδ in the direction ξ ∈ C 2
per(I,C

2) reads
(
d

d r
Jr,C

)
[r, ξ](t) =

r′(t) · ξ′(t)
‖r′(t)‖

C

, t ∈ I. (5.11)

Proof. Let δ > 0 be as in Proposition 5.1. It follows from Proposition 5.1 that ‖r′(t)‖
C
6= 0 for t ∈ I and

r ∈ Tδ. Furthermore, we have that

J ′
r,C(t) =

(r′ · r′′)(t)
‖r′(t)‖

C

, t ∈ I.

Since r ∈ C 2
per(I,C

2), it follows that J ′
r,C ∈ C 0

per(I) and, therefore Jr,C ∈ C 1
per(I). The map

r ∈ Tδ 7→ r′ · r′ ∈ C
1
per(I) (5.12)

is holomorphic and its Fréchet derivative at r ∈ Tδ in the direction ξ ∈ C 2
per(I,C

2) is
(
d

dr
(r′ · r′)

)
[r, ξ](t) = 2 (r′ · ξ′)(t), t ∈ I.

Due to Proposition 5.1, the holomorphy of the map (5.12) and that of the principal branch of the
square root, we may conclude that the map (5.9) is holomorphic. Using the chain rule for Fréchet
differentiable maps, we obtain the expression for the Fréchet derivative of the map (5.9), namely (5.11).
Finally, recalling Proposition 5.1 and the uniform boundedness of the maps r ∈ Tδ 7→ r′, r′′ ∈ C 0

per(I,C
2),

established in Lemma 5.2, it follows that (5.10) holds with a constant CJ (T, δ) that depends on T and
δ only. �

As a consequence of Proposition 5.1 and Lemma 5.4, one may obtain the following result.

Corollary 5.5. Let T be a set of admissible boundary representations of a collection {Γr}r∈T of Jordan
curves in R

2 satisfying Assumption 3.7 and let δ > 0 be as in Proposition 5.1.
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(i) For r ∈ Tδ, we have that 1
Jr,C

∈ C 1
per(I).

(ii) The map

r ∈ Tδ 7→
1

Jr,C
∈ C

1
per(I) (5.13)

is holomorphic.
(iii) There exists a finite constant C 1

J
(T, δ) > 0 (depending on T and δ only) such that

sup
r∈Tδ

∥∥∥∥
1

Jr,C

∥∥∥∥
C 1

per(I)

≤ C 1
J
(T, δ).

(iv) The Fréchet derivative of the map in (5.13) at r ∈ Tδ in the direction ξ ∈ C 2
per(I,C

2) reads
(
d

d r

1

Jr,C

)
[r, ξ] = − 1

J 2
r,C

(
d

d r
Jr,C

)
[r, ξ].

5.2. Shape Holomorphy of the Single Layer Operator. We analyze the map

r ∈ T 7→ V̂r ∈ L
(
H

− 1
2

per (I), H
1
2
per(I)

)
,

where V̂r := τr ◦Vr ◦τ−1
r yields a representation of Vr in the reference domain I = [0, 1] with the notation

Vr := VΓr
, for r ∈ T. The explicit representation of the operator Vr given in Lemma 2.6 provides for

ϕ̂ ∈ C 0
per(I)

(
V̂r ϕ̂

)
(t) =

1∫

0

vr(t, s)ϕ̂(s)Jr(s)ds, t ∈ I,

where

vr(t, s) := − 1

2π
log ‖r(t)− r(s)‖ , (t, s) ∈ I× I and t− s /∈ Z.

We decompose V̂r as follows

V̂r = Sr + Gr,

where, for ϕ̂ ∈ C 0
per(I), the operator

(Sr ϕ̂) (t) := − 1

4π

1∫

0

log
(
4 sin2 (π(t− s))

)
Jr(s)ϕ̂(s)ds, t ∈ I,

contains the logarithmic singularity of V̂r and for ϕ̂ ∈ C 0
per(I)

(Gr ϕ̂) (t) :=

1∫

0

gr(t, s)Jr(s)ϕ̂(s)ds, t ∈ I,

is a 1-periodic integral operator with gr : I× I → R defined as

gr(t, s) := − 1

4π
log

(
‖r(t)− r(s)‖2

4 sin2 (π(t− s))

)
, (t, s) ∈ I× I and t− s /∈ Z.

Let Log z : U → C be the principal branch of the logarithm (recall that U := C\(−∞, 0]). For a
complex number z = r exp(ıθ) with −π < θ < π we have that Log z = log r + ıθ. The principal branch
of the logarithm is holomorphic and its complex derivative is d

dz
Log(z) = z−1 [16, Corollary 2.21]. For

δ > 0 as in Proposition 5.1, we consider an extension gr,C : I× I → C of gr to the set Tδ given by

gr,C(t, s) := − 1

4π
Log

(
(r(t)− r(s)) · (r(t)− r(s))

4 sin2 (π(t− s))

)
, (t, s) ∈ I× I and t− s /∈ Z.

Observe that gr,C is actually the composition of the principal branch of the logarithm and mr,C : I×I → C

defined in (5.3). It follows from Proposition 5.1 that gr,C is well-defined for each r ∈ Tδ. This is due to
the the fact that the argument of the logarithm has a real part that is bounded from below away from
zero, according to Proposition 5.1.

We define an extension of the 1-periodic integral operator V̂r to the set Tδ as follows

V̂r,C := Sr,C + Gr,C, (5.14)
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where for ϕ̂ ∈ C 0
per(I)

(Sr,C ϕ̂) (t) := − 1

4π

1∫

0

log
(
4 sin2 (π(t− s))

)
Jr,C(s)ϕ̂(s)ds, t ∈ I,

and

(Gr,C ϕ̂) (t) :=

1∫

0

gr,C(t, s)Jr,C(s)ϕ̂(s)ds, t ∈ I.

The following result provides the regularity of gr,C and establishes its holomorphic dependence on the
set Tδ, with δ > 0 as in Proposition 5.1

Lemma 5.6. Let T be a set of admissible boundary representations of a collection {Γr}r∈T of Jordan
curves in R

2 satisfying Assumption 3.7 and let δ > 0 be as in Proposition 5.1.

(i) For each r ∈ Tδ, we have gr,C ∈ C 1
per(I× I).

(ii) The map

r ∈ Tδ 7→ gr,C ∈ C
1
per (I× I) (5.15)

is holomorphic and uniformly bounded on the set Tδ,
(iii) There exists a finite constant Cg(T, δ) > 0 (depending on T and δ only) such that

sup
r∈Tδ

‖gr,C‖C 1
per(I×I) ≤ Cg(T, δ). (5.16)

(iv) The Fréchet derivative of the map in (5.15) at r ∈ Tδ in the direction ξ ∈ C 2
per(I,C

2) reads
(
d

d r
gr,C

)
[r, ξ](t, s) = − 1

2π

(r(t)− r(s)) · (ξ(t)− ξ(s))

(r(t)− r(s)) · (r(t)− r(s))
, (t, s) ∈ I× I and t− s /∈ Z. (5.17)

Proof. From Proposition 5.1, we have

ℜ{mr,C(t, s)} ≥ α̃(T) > 0 for all (t, s) ∈ I× I, (5.18)

where δ > 0 is as in Proposition 5.1. The function gr,C : I× I → C corresponds to the composition of the
principal branch of the logarithm and mr,C : I× I → C. Due to (5.18), we have that gr,C is holomorphic
and its Fréchet derivative at r ∈ Tδ in the direction ξ ∈ C 2

per(I,C
2) is given in (5.17). From Proposition

5.1 and Lemma 5.3 it follows that the map r ∈ Tδ 7→ mr,C ∈ C 1
per(I × I) is uniformly bounded from

below away from zero and, considering that the principal branch of the logarithm is holomorphic in U,
we conclude that (5.16) holds. �

We proceed to prove that Gr,C and Sr,C are bounded linear operator for each r : I → C
2 belonging to

the set Tδ. Furthermore, we show their holomorphic dependence upon the set Tε, for some ε > 0 that
depends on δ > 0 from Proposition 5.1.

Remark 9. In the following, we adopt the notation . to denote boundedness up to a multiplicative
constant that is completely independent of any complex-valued boundary representation r ∈ Tδ and of
the set Tδ itself.

Lemma 5.7. Let T be a set of admissible boundary representations of a collection {Γr}r∈T of Jordan
curves satisfying Assumption 3.7 and let δ > 0 be as in Proposition 5.1.

(i) For each r ∈ Tδ, the 1-periodic integral operator Sr,C : H
− 1

2
per (I) → H

1
2
per(I) is linear and bounded.

(ii) For any ε ∈ (0, δ), the map

r ∈ Tε 7→ Sr,C ∈ L
(
H

− 1
2

per (I), H
1
2
per(I)

)
(5.19)

is holomorphic.
(iii) There exists a constant CS (T, δ) > 0 (depending upon T and δ only) such that for any ε ∈ (0, δ)

sup
r∈Tε

‖Sr,C‖
L

(
H

− 1
2

per (I),H
1
2
per(I)

) ≤ CS (T, δ) . (5.20)

(iii) The Fréchet derivative of the map in (5.19) at r ∈ Tε in the direction ξ ∈ C 2
per(I,C

2) and for

ϕ̂ ∈ C 0
per(I) reads

(
d

dr
Sr,C ϕ̂

)
[r, ξ](t) := − 1

4π

1∫

0

log
(
4 sin2 (π(t− s))

)( d

d r
Jr,C

)
[r, ξ](s)ϕ̂(s)ds, t ∈ I.
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Proof. The 1-periodic integral operator Sr,C fits the framework of Section 4.2 and satisfies Assumption

4.10 with f(t) = log(4 sin2(π(t)) and pr,C(t, s) = Jr,C(s). It remains to prove that Sr,C fulfils Assumption
4.12 with δ > 0 as in Proposition 5.1.

(i) It follows from Lemma 5.4 that for each r ∈ Tδ we have Jr,C ∈ C 0
per(I).

(ii) The operator S̃ : Hp
per(I) → Hp+1

per (I) defined for ϕ̂ ∈ C 0
per(I) as

(
S̃ ϕ̂
)
(t) := − 1

4π

1∫

0

log
(
4 sin2 (π(t− s))

)
ϕ̂(s)ds, t ∈ I,

is linear and bounded for all p ∈ R [37, Theorem 8.29]. According to Lemma 2.5 we have

‖Jr,C ϕ̂‖
H

− 1
2

per (I)
. ‖Jr,C‖C 1

per(I)
‖ϕ̂‖

H
− 1

2
per (I)

, (5.21)

for ϕ̂ ∈ C 1
per(I). Observe that Sr,C ϕ̂ = S̃ (Jr,C ϕ̂). Using the mapping properties of S̃ and (5.21),

we obtain for ϕ̂ ∈ C 1
per(I)∥∥∥S̃ (Jr,C ϕ̂)
∥∥∥
H

1
2
per(I)

≤
∥∥∥S̃
∥∥∥

L

(
H

− 1
2

per (I),H
1
2
per(I)

) ‖Jr,C ϕ̂‖
H

− 1
2

per (I)

. ‖Jr,C‖C 1
per(I)

∥∥∥S̃
∥∥∥

L

(
H

− 1
2

per (I),H
1
2
per(I)

) ‖ϕ̂‖
H

− 1
2

per (I)
.

(5.22)

Recalling that C 1
per(I) is dense in H

− 1
2

per (I), we conclude that Sr,C : H
− 1

2
per (I) → H

1
2
per(I) is linear

and bounded.
(iii) Using (5.22) and the uniform boundedness of the map r ∈ Tδ 7→ Jr,C ∈ C 1

per(I) established in
Lemma 5.4 we get

‖Sr,C‖
L

(
H

− 1
2

per (I),H
1
2
per(I)

) . ‖Jr,C‖C 1
per(I)

∥∥∥S̃
∥∥∥

L

(
H

− 1
2

per (I),H
1
2
per(I)

)

.
∥∥∥S̃
∥∥∥

L

(
H

− 1
2

per (I),H
1
2
per(I)

) CJ (T, δ).

Hence, the map r ∈ Tε 7→ Sr,C ∈ L
(
H

− 1
2

per (I), H
1
2
per(I)

)
is uniformly bounded, for any ε ∈ (0, δ].

Therefore, (5.20) holds for a finite constant CS (T, δ) > 0, depending upon T and δ only.
(iv) The map r ∈ Tδ 7→ Jr,C ∈ C 0

per(I) is holomorphic according to Lemma 5.4.

Therefore, Theorem 4.13 asserts that the map in (5.19) is holomorphic for any ε ∈ (0, δ) and provides
the expression of the corresponding Fréchet derivative. �

The following lemma establishes the holomorphic dependence of the 1-periodic integral operator Gr,C
on r ∈ Tε, for some ε > 0 to be specified.

Lemma 5.8. Let T be a set of admissible boundary representations of a collection {Γr}r∈T of Jordan
curves in R

2 satisfying Assumption 3.7 and let δ > 0 be as in Proposition 5.1.

(i) For each r ∈ Tδ, the 1-periodic integral operator Gr,C : H
− 1

2
per (I) → H

1
2
per(I) is linear and bounded.

(ii) For any ε ∈ (0, δ), the map

r ∈ Tε 7→ Gr,C ∈ L
(
H

− 1
2

per (I), H
1
2
per(I)

)
(5.23)

is holomorphic and uniformly bounded on the set Tε,
(iii) There exists a constant CG (T, δ) > 0 (depending upon T and δ only) such that for any ε ∈ (0, δ)

sup
r∈Tε

‖Gr,C‖
L

(
H

− 1
2

per (I),H
1
2
per(I)

) ≤ CG (T, δ) . (5.24)

(iv) The Fréchet derivative of the map in (5.23) at r ∈ Tε in the direction ξ ∈ C 2
per(I,C

2) and for

ϕ̂ ∈ C 0
per(I) reads

(
d

dr
Gr,C ϕ̂

)
[r, ξ](t) :=

1∫

0

(
d

d r
gr,C Jr,C

)
[r, ξ](t, s)ϕ̂(s)ds, t ∈ I.

Proof. The 1-periodic integral operator Gr,C fits the framework of Section 4.2 and satisfies Assumption
4.10 with f(t) = 1 and pr,C(t, s) = gr,C(t, s)Jr,C(s). We show that Assumption 4.12 with δ > 0 as in
Proposition 5.1 is fulfilled by Gr,C.

(i) According to Lemmas 5.4 and 5.6 for each r ∈ Tδ we have gr,CJr,C ∈ C 0
per(I× I).
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(ii) For r ∈ Tδ and ϕ̂ ∈ C 0
per(I), we obtain

(Gr,Cϕ̂)
′
(t) =

1∫

0

∂

∂t
gr,C(t, s)Jr,C(s)ϕ̂(s)ds, t ∈ I.

Therefore,

‖Gr,C ϕ̂‖L2(I) ≤ ‖gr,C‖C 0
per(I×I) ‖Jr,C‖C 0

per(I)
‖ϕ̂‖L2(I)

and
∥∥(Gr,C ϕ̂)′

∥∥
L2(I)

≤
∥∥∥∥
∂

∂t
gr,C

∥∥∥∥
C 0

per(I×I)

‖Jr,C‖C 0
per(I)

‖ϕ̂‖L2(I) .

Recalling that in C 0
per(I) is dense in L2(I), that L2(I) can be identified with H0

per(I) and the

norm equivalence stated in Lemma 2.3, we conclude that Gr,C : H0
per(I) → H1

per(I) is linear and
bounded. Furthermore, we obtain

‖Gr,C‖
L

(
H0

per(I),H
1
per(I)

) .
(
‖gr,C‖C 0

per(I×I) +

∥∥∥∥
∂

∂t
gr,C

∥∥∥∥
C 0

per(I×I)

)
‖Jr,C‖C 1

per(I)
.

The †-adjoint operator of Gr,C is given by

(
G
†
r,C ϕ̂

)
(s) =

1∫

0

Jr,C(s)gr,C(t, s)ϕ̂(t)dt, s ∈ I.

It follows that G†
r,C : H0

per(I) → H1
per(I) is linear and bounded and that

∥∥∥G†
r,C

∥∥∥
L

(
H0

per(I),H
1
per(I)

) .
(
‖gr,C‖C 0

per(I×I) +

∥∥∥∥
∂

∂s
gr,C

∥∥∥∥
C 0

per(I×I)

)
‖Jr,C‖C 1

per(I)
,

For ϕ̂ ∈ C 1
per(I), we have

‖Gr,C ϕ̂‖H0
per(I)

= sup
0 6=ψ̂∈H0

per(I)

∣∣∣∣
〈
Gr,C ϕ̂, ψ̂

〉
per

∣∣∣∣
∥∥∥ψ̂
∥∥∥
H0

per(I)

= sup
0 6=ψ̂∈H0

per(I)

∣∣∣∣
〈
ϕ̂,G†

r,C ψ̂
〉
per

∣∣∣∣
∥∥∥ψ̂
∥∥∥
H0

per(I)

≤
∥∥∥G†

r,C

∥∥∥
L

(
H0

per(I),H
1
per(I)

) ‖ϕ̂‖H−1
per(I)

.

Again, considering that in C 1
per(I) is dense in H−1

per(I), we conclude that Gr,C : H−1
per(I) → H0

per(I)
is linear and bounded. Recalling Lemma 2.4, we conclude that for each r ∈ Tδ we have that

Gr,C : H
− 1

2
per (I) 7→ H

1
2
per(I) is linear and bounded. Moreover, the following bounds hold

‖Gr,C‖
L

(
H

− 1
2

per (I),H
1
2
per(I)

) . ‖gr,C‖C 1
per(I×I) ‖Jr,C‖C 1

per(I)
. (5.25)

(iii) Using (5.25), the uniform boundedness of r ∈ Tδ 7→ Jr,C ∈ C 1
per(I) (Lemma 5.4) and that of

r ∈ Tδ 7→ gr,C ∈ C 1
per(I) (Lemma 5.6) we have that the map r ∈ Tε 7→ Gr,C ∈ L

(
H

− 1
2

per (I), H
1
2
per(I)

)

is uniformly bounded, for any ε ∈ (0, δ]. Hence, (5.24) holds for a finite constant CG (T, δ) > 0
that depends on T and δ only.

(iv) The map r ∈ Tδ 7→ gr,C Jr,C ∈ C 0
per(I× I) is holomorphic according to Lemmas 5.4 and 5.6.

Theorem 4.13 asserts that the map in (5.19) is holomorphic and provides the expression for the
corresponding Fréchet derivative. �

Lemmas 5.7 and 5.8 allow us to establish the uniform boundedness of the operator V̂r,C and its
holomorphic dependence on the set Tε, for some ε > 0 that depends on δ > 0 from Proposition 5.1.

Theorem 5.9. Let T be a set of admissible boundary representations of a collection {Γr}r∈T of Jordan
curves in R

2 satisfying Assumption 3.7 and let δ > 0 be as in Proposition 5.1.

(i) For each r ∈ Tδ, the 1-periodic integral operator V̂r,C : H
− 1

2
per (I) → H

1
2
per(I) is linear and bounded.
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(ii) For any ε ∈ (0, δ), the map

r ∈ Tε 7→ V̂r,C ∈ L
(
H

− 1
2

per (I), H
1
2
per(I)

)
(5.26)

is holomorphic.
(iii) there exists a constant C

V̂
(T, δ) > 0 (depending upon T and δ only) such that for any ε ∈ (0, δ)

sup
r∈Tε

∥∥∥V̂r,C
∥∥∥

L

(
H

− 1
2

per (I),H
1
2
per(I)

) ≤ C
V̂
(T, δ) .

(iv) The Fréchet derivative of the map in (5.26) at r ∈ Tε in the direction ξ ∈ C 2
per(I,C

2) reads

(
d

dr
V̂r,C

)
[r, ξ] =

(
d

dr
Sr,C

)
[r, ξ] +

(
d

dr
Gr,C

)
[r, ξ].

Proof. The result follows directly from Lemmas 5.7 and 5.8 together with (5.14). �

5.3. Shape Holomorphy of the Double Layer Operator. We analyze the map

r ∈ T 7→ K̂r ∈ L
(
H

1
2
per(I), H

1
2
per(I)

)
,

where K̂r := τr ◦Kr ◦τ−1
r yields a representation of Kr in the reference domain I = [0, 1] with the notation

Kr := KΓr
, for r ∈ T. The explicit representation of the double layer operator Kr on a boundary curve

of class C 2 (cf. Lemma 2.6), yields the following expression of the operator K̂r for ϕ̂ ∈ C 0
per(I)

(
K̂r ϕ̂

)
(t) =

1∫

0

kr(t, s)Jr(s)ϕ̂(s)ds, t ∈ I,

Here, kr : I× I → R is given by

kr(t, s) :=
1

2π

(r(t)− r(s)) · ν̂r(s)
‖r(t)− r(s)‖2

, (t, s) ∈ I× I, and t− s /∈ Z,

where ν̂r := τrνΓr
is given (for a positively oriented Jordan curves) by

ν̂r(s) =
[r′(s)]⊥

‖r′(s)‖ , s ∈ I.

In the previous expression, for a vector v = (v1, v2) ∈ R
2 we use the notation [v]

⊥ := (v2,−v1). We

proceed to define an extension of the double layer operator K̂r to the set Tδ. In so doing, we define first
the corresponding extension for kr. For r ∈ Tδ, with δ > 0 as in Proposition 5.1, we set

kr,C(t, s) :=
1

2π

(r(t)− r(s)) · ν̂r,C(s)
(r(t)− r(s)) · (r(t)− r(s))

, (t, s) ∈ I× I and t− s /∈ Z, (5.27)

where

ν̂r,C(s) :=
[r′(s)]⊥

‖r′(s)‖
C

, s ∈ I,

is an extension of ν̂r to the set Tδ. We define an extension of the operator K̂r to the set Tδ and for
ϕ̂ ∈ C 0

per(I) as follows

(
K̂r,C ϕ̂

)
(t) =

1∫

0

kr,C(t, s)Jr,C(s)ϕ̂(s)ds, t ∈ I.

To facilitate the forthcoming analysis, we define for r ∈ Tδ

nr,C(t, s) := −kr,C(t, s) sin(π(t− s)), (t, s) ∈ I× I, and t− s /∈ Z.

Lemma 5.10. Let T be a set of admissible boundary representations of a collection {Γr}r∈T of Jordan
curves in R

2 satisfying Assumption 3.7 and let δ > 0 be as in Proposition 5.1.

(i) For each r ∈ Tδ, we have ν̂r,C ∈ C 1
per(I,C

2).
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(ii) The map

r ∈ Tδ 7→ ν̂r,C ∈ C
1
per(I,C

2) (5.28)

is holomorphic and uniformly bounded on the set of complex-valued, i.e. there exists a finite
constant Cν̂(T, δ) > 0 (depending only on T and δ only) such that

sup
r∈Tδ

‖ν̂r,C‖C 1
per(I,C

2) ≤ Cν̂(T, δ). (5.29)

(iii) The Fréchet derivative of the map in (5.28) at r ∈ Tδ in the direction ξ ∈ C 2
per(I,C

2) is

(
d

dr
ν̂r,C

)
[r, ξ](s) =

[ξ′(s)]⊥

‖r′(s)‖
C

− [r′(s)]
⊥ r′(s) · ξ′(s)

‖r′(s)‖3
C

, s ∈ I.

Proof. Let δ > 0 be as in Proposition 5.1. Observe that for all r ∈ Tδ the extension of the normal
derivative ν̂r,C is well-defined due to Proposition 5.1. Furthermore, being the quotient of 1-periodic
continuously differentiable functions with a denominator that does not vanish, it follows that ν̂r,C ∈
C 1
per(I,C

2). The holomorphy of the map in (5.28) is a consequence of that of the map in (5.9), the fact

that ‖r′(s)‖
C
6= 0 for s ∈ I and the linearity of the operator [·]⊥. The statement for the Fréchet derivative

of the map (5.28) can be deduced using the Fréchet derivative of the map (5.13) and the product rule
for Fréchet differentiable maps. The uniform boundedness claimed in (5.29) follows from Proposition 5.1
and Lemma 5.2. �

Lemma 5.11. Let T be a set of admissible boundary representations of a collection {Γr}r∈T of Jordan
curves in R

2 satisfying Assumption 3.7 and let δ > 0 be as in Proposition 5.1.

(i) For each r ∈ Tδ, we have kr,C ∈ C 0
per(I× I) and nr,C ∈ C 1

per(I× I).
(ii) The map

r ∈ Tδ 7→ kr,C ∈ C
0
per(I× I) (5.30)

with kr,C as defined in (5.27) is holomorphic.
(iii) There exists a finite constant Ck(T, δ) > 0 (depending on T and δ only) such that

sup
r∈Tδ

‖kr,C‖C 0
per(I×I) ≤ Ck(T, δ).

(iv) The Fréchet derivative of the map in (5.30) at r ∈ Tδ in the direction ξ ∈ C 2
per(I,C

2) and for
(t, s) ∈ I× I such that t− s /∈ Z reads

(
d

dr
kr,C

)
[r, ξ](t, s) =

1

2π

(ξ(t)− ξ(s)) · ν̂r,C(s) + (r(t)− r(s)) ·
(
d
dr
ν̂r,C

)
[r, ξ](s)

(r(t)− r(s)) · (r(t)− r(s))

− 1

π

(r(t)− r(s)) · ν̂r,C(s) (ξ(t)− ξ(s)) · (r(t)− r(s))

[(r(t)− r(s)) · (r(t)− r(s))]2
.

(v) There exists a finite constant Cn(T, δ) > 0 (depending on T and δ only) such that

sup
r∈Tδ

‖nr,C‖C 1
per(I×I) ≤ Cn(T, δ).

Proof. Let δ > 0 be as in Proposition 5.1. Observe that kr,C is well-defined for r ∈ Tδ, due to Proposition
5.1. We claim that kr,C : I× I → C is continuous. Indeed, kr,C can be continuously extended as follows

kr,C(t, s) :=

{
1
2π

ν̂r,C(s)·(r(t)−r(s))
(r(t)−r(s))·(r(t)−r(s)) , t− s /∈ Z,

1
4π

ν̂r,C(s)·r′′(s)
(r′·r′)(s) , t− s ∈ Z.

We now study the behaviour when t tends to s. Since r ∈ C 2
per(I,C

2), for (t, s) ∈ I×I such that |t− s| < 1
2

Taylor’s expansion delivers

r(t) = r(s) + (t− s)r′(s) + (t− s)2
1∫

0

(1− ζ)r′′(s+ ζ(t− s))dζ.
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Observe that r′(s) · ν̂r,C(s) = 0, for s ∈ I. Let us calculate

lim
t→s

kr,C(t, s) =
1

2π
lim
t→s

ν̂r,C(s) · (r(t)− r(s))

(r(t)− r(s)) · (r(t)− r(s))

=
1

2π
lim
t→s

ν̂r,C(s) ·
1∫

0

(1− ζ)r′′(s+ ζ(t− s))dζ




1∫

0

r′(s+ ζ(t− s))dζ


 ·




1∫

0

r′(s+ ζ(t− s))dζ




=
1

4π

ν̂r,C(s) · r′′(s)
(r′ · r′)(s)

= kr,C(s, s).

If follows straightforwardly that nr,C ∈ C 0
per(I× I). Moreover, we have

nr,C(t, s) = − 1

8π

(r(t)−r(s))·ν̂r,C(s)
sin(π(t−s))
mr,C(t, s)

, (t, s) ∈ (I× I).

Hence, for each r ∈ Tδ the function nr,C can be expressed as the quotient of 1–biperiodic, continuously
differentiably function with a nonvanishing denominator, according to Proposition 5.1. Observe that for
each for each r ∈ Tδ

kr,C(t, s) = − 1

8π

ν̂r,C(s)·(r(t)−r(s))
sin2(π(t−s))
mr,C(t, s)

, (t, s) ∈ (I× I).

It follows from Proposition 5.1 and Lemma 5.10 together with the holomorphy of the map

r ∈ Tδ 7→
ν̂r,C(s) · (r(t)− r(s))

sin2(π(t− s))
∈ C

0
per(I× I)

that the map in (5.30) is holomorphic as well. �

Proposition 5.12. Let T be a set of admissible boundary representations of a collection {Γr}r∈T of
Jordan curves satisfying Assumption 3.7 and let δ > 0 be as in Proposition 5.1. Then, for each r ∈ Tδ

and ϕ̂ ∈ C 1
per(I) we have that K̂r,C ϕ̂ ∈ C 1

per(I) and

(
K̂r,C ϕ̂

)′
(t) =

1∫

0

(
∂

∂t
nr,C(t, s)− π kr,C(t, s) cos(π(t− s))

)
Jr,C(s)

ϕ̂(t)− ϕ̂(s)

sin(π(t− s))
ds, t ∈ I. (5.31)

Proof. Let δ > 0 be as in Proposition 5.1. For ϕ̂ ∈ C 1
per(I) and r ∈ Tδ, we have

(
K̂r,C ϕ̂

)
(t) =

1∫

0

nr,C(t, s)Jr,C(s)
ϕ̂(t)− ϕ̂(s)

sin(π(t− s))
ds+ ϕ̂(t)

1∫

0

kr,C(t, s)Jr,C(s)ds,

Let us prove that for all r ∈ Tδ and for all t ∈ I it holds

1∫

0

kr,C(t, s)Jr,C(s)ds = −1

2
. (5.32)

For a given r0 ∈ T, we define

B(r0, δ) :=
{
r ∈ C

2
per(I,R

2) : d(r0, r) < δ
}
,

where d(·, ·) : C 2
per(I,C

2)×C 2
per(I,C

2) → R is defined in (4.1). Throughout this proof we set Bℜ(r0, δ) :=
B(r0, δ) ∩ C 2

per(I,R
2). Observe that for each r0 ∈ Tδ we have Bℜ(r0, δ) ⊂ B(r0, δ) and

Tδ =
⋃

r0∈T

B(r0, δ). (5.34)
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Define ✶(x) = 1, for x ∈ Γr, where r ∈ Bℜ(r0, δ) and r0 ∈ T. According to Lemma 2.6 and [37, Example
6.14], for all r ∈ Bℜ(r0, δ) and r0 ∈ T it holds that

(Kr ✶) (x) =

∫

Γr

νΓr
(y) · gradyG(x,y)dsy = −1

2
, x ∈ Γr.

Using the pullback operator, we obtain τr ◦ (Kr ✶) ◦ τ−1
r = − 1

2 . For r0 ∈ T, let us consider the map

r ∈ Bℜ(r0, δ) 7→ τr ◦ (Kr ✶) ◦ τ−1
r =

1∫

0

kr(t, s)Jr(s)ds ∈ C
0
per(I).

Observe that the map

r ∈ B(r0, δ) 7→
1∫

0

kr,C(t, s)Jr,C(s)ds ∈ C
0
per(I), (5.35)

is a well-defined extension to B(r0, δ) of the map r ∈ Bℜ(r0, δ) 7→ τr ◦ (Kr ✶) ◦ τ−1
r . This map also

admits the extension r ∈ B(r0, δ) 7→ − 1
2 . These two extensions coincide for real-valued boundary

transformations r ∈ Bℜ(r0, δ), with r0 ∈ T. The set B(r0, δ) is open in C 2
per(I,C

2). Hence, Bℜ(r0, δ)
is relatively open in C 2

per(I,C
2). For r0 ∈ T, due to Lemma 5.4 and Lemma 5.11, the map (5.35)

is holomorphic on the connected open set B(r0, δ). Clearly, C 2
per(I,R

2) is a real vector subspace of

C 2
per(I,C

2). Since each r ∈ C 2(I,C2) admits the unique decomposition r(t) = ℜ{r(t)}+ ıℑ{r(t)}, where
ℜ{r(t)},ℑ{r(t)} ∈ C 2

per(I,R
2), we have C 2

per(I,C
2) ∼= C 2

per(I,R
2) + ıC 2

per(I,R
2). Recalling Theorem 4.9,

we conclude that the extension to complex-valued boundary representations of the map r ∈ Bℜ(r0, δ) 7→
τr ◦ (Kr ✶) ◦ τ−1

r = − 1
2 is unique. It follows that the map (5.35) is constant and equal to − 1

2 , for all
r ∈ B(r0, δ). Recalling (5.34), (5.32) holds for all r ∈ Tδ together with

(
K̂r,C ϕ̂

)
(t) =

1∫

0

nr,C(t, s)Jr,C(s)
ϕ̂(t)− ϕ̂(s)

sin(π(t− s))
ds− 1

2
ϕ̂(t), t ∈ I.

For t ∈ I, let us compute

(
K̂r,C ϕ̂

)′
(t) =

1∫

0

∂

∂t
nr,C(t, s)Jr,C(s)

ϕ̂(t)− ϕ̂(s)

sin(π(t− s))
ds− ϕ̂′(t)

1∫

0

kr,C(t, s)Jr,C(s)ds

− π

1∫

0

kr,C(t, s) cos(π(t− s))Jr,C(s)
ϕ̂(t)− ϕ̂(s)

sin(π(t− s))
ds− 1

2
ϕ̂′(t)

=

1∫

0

(
∂

∂t
nr,C(t, s)− π kr,C(t, s) cos(π(t− s))

)
Jr,C(s)

ϕ̂(t)− ϕ̂(s)

sin(π(t− s))
ds.

It follows that for all ϕ̂ ∈ C 1
per(I) and r ∈ Tδ we have K̂r,C ϕ̂ ∈ C 1

per(I) and that (5.31) holds. �

Theorem 5.13. Let T be a set of admissible boundary representations of a collection {Γr}r∈T of Jordan
curves satisfying Assumption 3.7 and let δ > 0 be as in Proposition 5.1.

(i) For each r ∈ Tδ, the 1-periodic integral operator K̂r,C : H
1
2
per(I) → H

1
2
per(I) is linear, bounded and

compact.
(ii) For any ε ∈ (0, δ), the map

r ∈ Tε 7→ K̂r,C ∈ L
(
H

1
2
per(I), H

1
2
per(I)

)
, (5.36)

is holomorphic.
(iii) There exists a finite constant C

K̂
(T, δ) > 0 (depending upon T and δ only) such that for any

ε ∈ (0, δ)

sup
r∈Tε

∥∥∥K̂r,C
∥∥∥

L

(
H

1
2
per(I),H

1
2
per(I)

) ≤ C
K̂
(T, δ) . (5.37)
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(iv) The Fréchet derivative of the map in (5.36) at r ∈ Tε in the direction ξ ∈ C 2
per(I,C

2) and for

ϕ̂ ∈ C 0
per(I) reads

(
d

dr
K̂r,C ϕ̂

)
[r, ξ](t) =

1∫

0

(
d

d r
kr,C Jr,C

)
[r, ξ](t, s)ϕ̂(s)ds, t ∈ I.

Proof. The 1-periodic integral operator Kr,C fits the framework of Section 4.2 and satisfies Assumption

4.10 with f(t) = 1 and pr,C(t, s) = kr,C(t, s)Jr,C(s). We proceed to prove that the operator K̂r,C fulfils
Assumption 4.12, with δ > 0 as in Proposition 5.1.

(i) According to Lemma 5.4 and Lemma 5.11, we have that kr,C Jr,C ∈ C 0
per(I× I), for all r ∈ Tδ.

(ii) The 1-periodic integral operator K̂r,C : H0
per(I) → H0

per(I) is linear and bounded, for all r ∈ Tδ.
Furthermore, it holds for all r ∈ Tδ∥∥∥K̂r,C

∥∥∥
L

(
H0

per(I),H
0
per(I)

) ≤ ‖kr,C‖C 0
per(I×I) ‖Jr,C‖C 0

per(I)
,

Recalling Proposition 5.12, we have that
∥∥∥∥
(
K̂r,C ϕ̂

)′∥∥∥∥
L2(I)

.

(∥∥∥∥
∂

∂t
nr,C

∥∥∥∥
C 0

per(I×I)

+ π ‖kr,C‖C 0
per(I×I)

)
‖Jr,C‖C 0

per(I)
‖ϕ̂‖ 1

2 ,per
.

It follows from the norm equivalences stated in Lemma 2.3 that

∥∥∥K̂r,C
∥∥∥

L

(
H

1
2
per(I),H1

per(I)
) .

(∥∥∥∥
∂

∂t
nr,C

∥∥∥∥
C 0

per(I×I)

+ ‖kr,C‖C 0
per(I×I)

)
‖Jr,C‖C 0

per(I)
. (5.38)

Since C 1
per(I) is dense in H

1
2
per(I), the 1-periodic integral operator K̂r,C : H

1
2
per(I) → H1

per(I) ⊂
H

1
2
per(I) is linear, bounded and compact due to the compactness of the embedding H1

per(I) ⊂
H

1
2
per(I), see e.g. [37, Theorem 8.3].

(iii) Due to the uniform boundedness of the maps r ∈ Tδ 7→ Jr,C ∈ C 0
per(I), r ∈ Tδ 7→ kr,C ∈ C 0

per(I)

and r ∈ Tδ 7→ nr,C ∈ C 1
per(I) established in Lemmas 5.4 and 5.11, respectively, together with

(5.38), the map r ∈ Tε 7→ K̂r,C ∈ L
(
H

1
2
per(I), H

1
2
per(I)

)
is uniformly bounded for any ε ∈ (0, δ].

Therefore, (5.37) holds for a finite constant C
K̂
(T, δ) > 0 that depends upon T and δ only.

(iv) Finally, the map r ∈ Tδ 7→ kr,CJr,C ∈ C 0
per(I × I) is holomorphic according to Lemmas 5.4 and

5.11.

Assumption 4.12 is fulfilled by the operator K̂r,C. Consequently, Theorem 4.13 implies that the map
(5.36) is holomorphic and provides the expression for the corresponding Fréchet derivative. �

5.4. Shape Holomorphy of the Adjoint Double Layer Operator. We analyze the map

r ∈ T 7→ K̂′
r ∈ L

(
H

− 1
2

per (I), H
− 1

2
per (I)

)
,

where K̂′
r := τr ◦ K′

r ◦ τ−1
r yields a representation of K′

r in the reference domain I with the notation

K′
r := K′

Γr
, for r ∈ T. For each r ∈ T and for all ϕ̂ ∈ H

− 1
2

per (I) and φ̂ ∈ H
1
2
per(I) it holds

〈
K̂′
r ϕ̂, φ̂

〉
per

=
〈
ϕ̂,Jr K̂r

(
J−1
r φ̂

)〉
per

. (5.39)

It follows from (5.39) that

K̂′
r =

(
Mr ◦ K̂r ◦M−1

r

)†
,

where for each r ∈ Tδ the map Mr : H
1
2
per(I) → H

1
2
per(I) is defined as Mrϕ̂ := Jrϕ̂ with inverse M−1

r :

H
1
2
per(I) → H

1
2
per(I) given by M−1

r ϕ̂ := J−1
r ϕ̂, for ϕ̂ ∈ H

1
2
per(I). Observe that for a set T of admissible

boundary representations of a collection {Γr}r∈T of Jordan curves in R
2 and due to Lemma 2.5 these

maps are linear and bounded. We define an extension of the adjoint double layer operator to the set Tδ,
with δ > 0 as in Proposition 5.1, as

K̂′
r,C :=

(
Mr,C ◦ K̂r,C ◦M−1

r,C

)†
,
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where Mr,C and M−1
r,C are extended to Tδ by using Jr,C, i.e. Mr,C ϕ̂ := Jr,Cϕ̂ and M−1

r,C ϕ̂ := J−1
r,C ϕ̂,

respectively, for ϕ̂ ∈ H
1
2
per(I). Again, due to Lemmas 2.5 and 5.4, these maps are linear and bounded.

Furthermore, it follows from Lemma 5.4 and Corollary 5.5 that the maps

r ∈ Tδ 7→ Mr,C ∈ L
(
H

1
2
per(I), H

1
2
per(I)

)
and r ∈ Tδ 7→ M−1

r,C ∈ L
(
H

1
2
per(I), H

1
2
per(I)

)
(5.40)

are holomorphic and uniformly bounded on Tδ. We now proceed to the main result regarding shape
holomorphy of the adjoint double layer operator. Its proof relies on Theorem 5.13.

Theorem 5.14. Let T be a set of admissible boundary representations of a collection {Γr}r∈T of Jordan
curves in R

2 satisfying Assumption 3.7 and let δ > 0 be as in Proposition 5.1.

(i) For each for r ∈ Tδ, the 1-periodic integral operator K̂′
r,C : H

− 1
2

per (I) → H
− 1

2
per (I) is linear, bounded

and compact.
(ii) For any ε ∈ (0, δ), the map

r ∈ Tε 7→ K̂′
r,C ∈ L

(
H

− 1
2

per (I), H
− 1

2
per (I)

)
, (5.41)

is holomorphic and uniformly bounded on the set Tε,
(iii) There exists a finite constant C

K̂′ (T, δ) > 0 (depending upon T and δ only) such that for any
ε ∈ (0, δ)

sup
r∈Tε

∥∥∥K̂′
r,C

∥∥∥
L

(
H

− 1
2

per (I),H
− 1

2
per (I)

) ≤ C
K̂′(T, δ). (5.42)

(iv) The Fréchet derivative of the map in (5.41) at r ∈ Tε in the direction ξ ∈ C 2
per(I,C

2) reads

(
d

dr
K̂′
r,C

)
[r, ξ](t) =

(
d

dr
Mr,C[r, ξ] ◦ K̂r,C ◦M−1

r,C

)†

+

(
Mr,C ◦ d

dr
K̂r,C[r, ξ] ◦M−1

r,C

)†
+

(
Mr,C ◦ K̂r,C ◦ d

dr
M−1
r,C[r, ξ]

)†
.

Proof. Let δ > 0 be as in Proposition 5.1. The 1–periodic integral operator K̂′
r,C corresponds to the

composition of bounded linear operators that are uniformly bounded on the set Tδ, therefore it is linear,
bounded and (5.42) holds with a finite constant C

K̂′ (T, δ) > 0, depending upon T and δ only. The
application of † to a bounded linear operator is linear, thus holomorphic. Recalling the holomorphy of
the maps in (5.40) and Theorem 5.13, the map in (5.41) can be expressed as the successive application
of holomorphic maps. Therefore, it is holomorphic itself. �

5.5. Shape Holomorphy of the Hypersingular Operator. We consider the map

r ∈ T 7→ Ŵr ∈ L
(
H

1
2
per(I), H

− 1
2

per (I)
)
,

where Ŵr := τr ◦Wr ◦ τ−1
r yields a representation of Wr and where Wr := WΓr

, for r ∈ T. According to
Lemma 2.7 (the so-called Maue’s formula), for each r ∈ T and ϕ ∈ C 1(Γr) it holds

WΓr
ϕ = −curlΓr

◦ VΓr
◦ curlΓr

ϕ.

For each r ∈ T we have

Ŵr ϕ̂ = −(τr ◦ curlΓr
◦ τ−1

r ) ◦ V̂r ◦ (τr ◦ curlΓr
◦ τ−1

r ) ϕ̂, (5.43)

where ϕ̂ = τrϕ ∈ C 1
per(I). Let us define ĉurlr := τr ◦ curlΓr

◦ τ−1
r . For each r ∈ T and ϕ̂ ∈ C 1

per(I) it holds

(
ĉurlrϕ̂

)
(t) =

ϕ̂′(t)

Jr(t)
, t ∈ I.

The strategy to establish the shape holomorphy result for the hypersingular operator differs from
that of the the single layer operator (Section 5.2) and that of the double layer operator (Section 5.3).

The proof hinges on the following ingredients. Firstly, we use the representation of Ŵr in (5.43) to
construct an extension of the hypersingular operator to Tδ, with δ > 0 as in Proposition 5.1, by using

the extension of the single layer operator V̂r studied in Section 5.2. This entails the construction of a

well-defined extension of the operator ĉurlr to the set Tδ that depends holomorphically on the set Tδ.
Secondly, recalling the shape holomorphy result for the single layer operator established in Theorem
5.2 and by writing the extension of the hypersingular operator to Tδ as the successive application of
holomorphic maps, one may obtain the desired result.
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For r ∈ Tδ, with δ > 0 as in Proposition 5.1, we define the extension to Tδ of the 1-periodic integral

operator Ŵr as

Ŵr,C := −ĉurlr,C ◦ V̂r,C ◦ ĉurlr,C, (5.44)

where, for ϕ̂ ∈ C 1
per(I), we define

(
ĉurlr,C ϕ̂

)
(t) :=

ϕ̂′(t)

Jr,C(t)
, t ∈ I.

Due to Proposition 5.1 the operator ĉurlr,C is well-defined for all r ∈ Tδ.

Lemma 5.15. Let T be a set of admissible boundary representations of a collection {Γr}r∈T of Jordan
curves satisfying Assumption 3.7 and let δ > 0 be as in Proposition 5.1.

(i) For each r ∈ Tδ, the operator ĉurlr,C : H
1
2
per(I) → H

− 1
2

per (I), is linear and bounded.
(ii) The map

r ∈ Tδ 7→ ĉurlr,C ∈ L
(
H

1
2
per(I), H

1
2
per(I)

)
(5.45)

is holomorphic.
(iii) There exists a finite constant C

ĉurl
(T, δ) > 0 (depending upon T and δ only) such that

sup
r∈Tδ

∥∥∥ĉurlr,C
∥∥∥

L

(
H

1
2
per(I),H

− 1
2

per (I)
) ≤ C

ĉurl
(T, δ) .

(iv) The Fréchet derivative of the map in (5.45) at r ∈ Tδ in the direction ξ ∈ C 2
per(I,C

2) reads
(
d

dr
ĉurlr,C

)
[r, ξ] = − 1

Jr,C

(
d

dr
Jr,C

)
[r, ξ] ĉurlr,C. (5.46)

Proof. Let δ > 0 be as in Proposition 5.1. For r ∈ Tδ and ϕ̂, ψ̂ ∈ C 1
per(I), we have

1∫

0

(
ĉurlr,C ϕ̂

)
(t)ψ̂(t)dt = −

1∫

0

ϕ̂(t)

(
ψ̂

Jr,C

)′

(t)dt.

Then, we obtain

∣∣∣∣
〈
ĉurlr,C ϕ̂, ψ̂

〉
per

∣∣∣∣ =

∣∣∣∣∣∣

〈
ϕ̂,

(
ψ̂

Jr,C

)′〉

per

∣∣∣∣∣∣
≤ ‖ϕ̂‖

H
1
2
per(I)

∥∥∥∥∥

(
ψ̂

Jr,C

)′∥∥∥∥∥
H

− 1
2

per (I)

. ‖ϕ̂‖
H

1
2
per(I)

∥∥∥∥∥
ψ̂

Jr,C

∥∥∥∥∥
H

1
2
per(I)

.

∥∥∥∥
1

Jr,C

∥∥∥∥
C 1

per(I)

‖ϕ̂‖
H

1
2
per(I)

∥∥∥ψ̂
∥∥∥
H

1
2
per(I)

.

Recalling that C 1
per(I) is dense in H

1
2
per(I), we get

∥∥∥ĉurlr,C
∥∥∥

L

(
H

1
2
per(I),H

− 1
2

per (I)
) .

∥∥∥∥
1

Jr,C

∥∥∥∥
C 1

per(I,C)

.

Corollary 5.5 provides the uniform boundedness of
∥∥∥ 1
Jr,C

∥∥∥
C 1

per(I)
on the set Tδ. Therefore ĉurlr,C :

H
1
2
per(I) → H

− 1
2

per (I) is linear and bounded for all r ∈ Tδ and the map (5.45) is uniformly bounded.
According to Corollary 5.5 the map

r ∈ Tδ 7→
1

Jr,C
∈ C

1
per(I)

is holomorphic and its Fréchet derivative at r ∈ Tδ in the direction ξ ∈ C 2
per(I,C

2) is
(
d

dr

1

Jr,C

)
[r, ξ] = − 1

J 2
r,C

(
d

dr
Jr,C

)
[r, ξ].

31



Recalling Lemma 2.5, we have that for ϕ̂ ∈ C 1
per(I) it holds∥∥∥∥

(
ĉurlr+ξ,C − ĉurlr,C −

(
d

dr
ĉurlr,C

)
[r, ξ]

)
ϕ̂′
∥∥∥∥
H

− 1
2

per (I)

≤
∥∥∥∥
(

1

Jr+ξ,C
− 1

Jr,C
−
(
d

dr

1

Jr,C

)
[r, ξ]

)
ϕ̂′
∥∥∥∥
H

− 1
2

per (I)

.

∥∥∥∥
(

1

Jr+ξ,C
− 1

Jr,C
−
(
d

dr

1

Jr,C

)
[r, ξ]

)∥∥∥∥
C 1

per(I)

‖ϕ̂′‖
H

− 1
2

per (I)

= o
(
‖ξ‖

C 2
per(I,C

2)

)
‖ϕ̂′‖

H
− 1

2
per (I)

.

Therefore, recalling that C 1
per(I) is dense in H

1
2
per(I) and that ‖ϕ̂′‖

H
− 1

2
per (I)

. ‖ϕ̂‖
H

1
2
per(I)

for ϕ̂ ∈ C 1
per(I), we

obtain ∥∥∥∥
(
ĉurlr+ξ,C − ĉurlr,C −

(
d

dr
ĉurlr,C

)
[r, ξ]

)∥∥∥∥
L

(
H

1
2
per(I),H

− 1
2

per (I)
) = o

(
‖ξ‖

C 2
per(I,C

2)

)
.

It follows that the map (5.45) is holomorphic and its Fréchet derivative is given by (5.46). �

Lemma 5.15 together with Theorem 5.9 allows us to establish the boundedness of the 1-periodic

integral operator Ŵr,C and its holomorphic dependence on the set Tε, for some ε > 0 to be specified.

Theorem 5.16. Let T be a set of admissible boundary representations of a collection {Γr}r∈T of Jordan
curves in R

2 satisfying Assumption 3.7 and let δ > 0 be as in Proposition 5.1.

(i) For each r ∈ Tδ, the 1-periodic integral operator Ŵr,C : H
1
2
per(I) → H

− 1
2

per (I) is linear and bounded.
(ii) For any ε ∈ (0, δ), the map

r ∈ Tε 7→ Ŵr,C ∈ L
(
H

1
2
per(I), H

− 1
2

per (I)
)

(5.47)

is holomorphic.
(iii) There exists a finite constant C

Ŵ
(T, δ) > 0 (depending upon T and δ only) such that

sup
r∈Tε

∥∥∥Ŵr,C

∥∥∥
L

(
H

1
2
per(I),H

− 1
2

per (I)
) ≤ C

Ŵ
(T, δ).

(iv) The Fréchet derivative of the map in (5.47) at r ∈ Tε in the direction ξ ∈ C 2
per(I,C

2) reads
(
d

dr
Ŵr,C

)
[r, ξ] =−

(
d

dr
ĉurlr,C

)
[r, ξ] ◦ V̂r,C ◦ ĉurlr,C − ĉurlr,C ◦

(
d

dr
V̂r,C

)
[r, ξ] ◦ ĉurlr,C

− ĉurlr,C ◦ V̂r,C ◦
(
d

dr
ĉurlr,C

)
[r, ξ].

Proof. Let δ > 0 be as in Proposition 5.1. Recalling (5.44) and using Lemma 5.15 together with Theorem

5.9, we conclude that the 1-periodic integral operator Ŵr,C : H
1
2
per(I) → H

− 1
2

per (I) is linear and bounded,
for all r ∈ Tδ. Furthermore, for any ε ∈ (0, δ)

sup
r∈Tε

∥∥∥Ŵr,C

∥∥∥
L

(
H

1
2
per(I),H

− 1
2

per (I)
) ≤

(
C

ĉurl
(T, δ)

)2
C

V̂
(T, δ) ,

therefore the map (5.47) is uniformly bounded on Tε. We observe that Ŵr,C is defined as the successive
application of holomorphic maps. Therefore, the map in (5.47) is holomorphic itself. Indeed, the com-
position of bounded linear operators being linear on each component is holomorphic. Hence, the map in
(5.47) can be written as the composition of the maps in (5.45) and (5.26). Then, it follows from Theorem
5.9 and Lemma 5.15 that the map in (5.47) is holomorphic. �

5.6. Shape Holomorphy of the Calderón Projector. Let δ > 0 be as in Proposition 5.1. We define

the extension of the Calderón operator Ĉr (recall that Ĉr := τr ◦ Cr ◦ τ−1
r and that Cr is the Caldeŕon

projector defined on Γr) to the set Tδ as follows

Ĉr,C :=

(
1
2 I− K̂r,C V̂r,C

Ŵr,C
1
2 I+ K̂′

r,C

)
, r ∈ Tδ.

As a consequence of Theorems 5.9, 5.13, 5.14 and 5.16, we may establish the following result. Recall

that Vper = H
1
2
per(I)×H

− 1
2

per (I).
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Theorem 5.17. Let T be a set of admissible boundary representations of a collection {Γr}r∈T of Jordan
curves in R

2 satisfying Assumption 3.7 and let δ > 0 be as in Proposition 5.1.

(i) For each r ∈ Tδ, the 1-periodic integral operator Ĉr,C : Vper → Vper is linear and bounded.
(ii) For any ε ∈ (0, δ), the map

r ∈ Tε 7→ Ĉr,C ∈ L (Vper,Vper)

is holomorphic.
(iii) There exists a finite constant C

Ĉ
(T, δ), depending on T and δ > 0 only, such that

sup
r∈Tε

∥∥∥Ĉr,C
∥∥∥

L (Vper,Vper)
≤ C

Ĉ
(T, δ).

5.7. Shape Holomorphy of the Domain-to-Solution Map. Theorem 5.17 in Section 5.6 establishes
the holomorphic dependence of the Calderón projector on a family of C 2–smooth Jordan curves in R

2.
However, one is also interested in the shape holomorphy of the domain-to-solution map associated to a
BIE, which in turn is obtained by means of a boundary reduction of the original boundary value problem
using the BIOs contained in the Calderón projector.

Different approaches may be used to derive a boundary integral formulation for a particular boundary
value problem. As an example, we consider the Laplace problem in an open bounded domain equipped
with Dirichlet boundary conditions. We proceed to summarize the commonly available approaches to
convert this problem into an equivalent BIE.

Example 5.18 (Interior Laplace problem with Dirichlet boundary conditions). Let T be a set
of admissible boundary representation of a collection {Γr}r∈T of Jordan curves in R

2. Let Dr ⊂ R
2 be

the open bounded domain enclosed by Γr (the existence of this open bounded domain is guaranteed by
Proposition 3.2), i.e. Γr = ∂Dr. We assume that

sup
r∈T

diam{Dr} < 1, (5.48)

where, for each r ∈ T, diam{Dr} signifies the diameter of the bounded domain Dr. For each r ∈ T, let
us consider the Dirichlet problem of finding ur ∈ H1(Dr) such that

−∆ur = 0 in Dr and ur = gr on Γr, (5.49)

where gr ∈ H
1
2 (Γr) is the boundary data on Γr. Set Sr := SΓr

and Dr := DΓr
, where SΓr

and DΓr

correspond to the single and double layer potentials on Γr, respectively, as introduced in (2.2) and (2.3).
We review the approaches to obtain a boundary integral formulation for (5.49), i.e. to cast (5.49) as an
equivalent BIE.

X Direct method. We express ur ∈ H1(Dr) by using Green’s representation formula, i.e.

ur = Sr (∂νr
ur)−Dr

(
ur|Γr

)
in Dr,

where ∂νr
: H1(Dr,∆) → H− 1

2 (Γr) stands for the Neumann trace operator and ur|Γr
corresponds

to the Dirichlet trace of ur ∈ H1(Dr) on Γr.

⋄ First kind BIE. Find φr := ∂νr
ur ∈ H− 1

2 (Γr) such that

Vrφr =

(
1

2
I+ Kr

)
gr in H

1
2 (Γr).

⋄ Second kind BIE Find χr := ∂νr
ur ∈ H− 1

2 (Γr) such that
(
1

2
I− K′

r

)
χr = Wrgr in H− 1

2 (Γr).

X Indirect method. Recalling that both the single and double layer potentials are solutions to the
Laplace equation in R

2 [50, Lemmas 6.6 & 6.10], we express ur ∈ H1(Dr) in terms of one of
them only.

⋄ First kind BIE. We use the single layer ansatz for ur ∈ H1(Dr)

ur = Sr (ϑr) in Dr,

where ϑr ∈ H− 1
2 (Γr) is the unknown. The BIE reads: find ϑr ∈ H− 1

2 (Γr) such that

Vrϑr = gr in H
1
2 (Γr)
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⋄ Second kind BIE. We use the double layer ansatz for ur ∈ H1(Dr)

ur = Dr (ψr) in Dr,

where ψr ∈ H
1
2 (Γr) is the unknown. The BIE reads: find ψr ∈ H

1
2 (Γr) such that

(
1

2
I− Kr

)
ψr = −gr in H

1
2 (Γr).

Remark 10 (Solvability of the first kind BIEs in Example 5.18). For each r ∈ T, it follows from the

Lax-Milgram Lemma and the H− 1
2 (Γr)-ellipticity property of the integral operator Vr stated in [50,

Theorem 6.23] (in two dimensions, it suffices (5.48) to hold in order to have this property) that Vr ∈
Liso(H

− 1
2 (Γr), H

1
2 (Γr)). Hence, the first kind formulations introduced in Example 5.18 are uniquely

solvable. In turn, due to Proposition 3.10, for all r ∈ T we have that

V̂r ∈ Liso(H
− 1

2
per (I), H

1
2
per(I)), (5.50)

provided that (5.48) holds. Therefore, the domain-to-solution maps

r ∈ T 7→ φ̂r := V̂−1
r

(
1

2
I+ K̂r

)
ĝr ∈ H

− 1
2

per (I) (5.51)

and

r ∈ T 7→ ϑ̂r := V̂−1
r ĝr ∈ H

− 1
2

per (I) (5.52)

are well-defined, where for each r ∈ T we have set ĝr := τrgr.

Remark 11 (Solvability of the second kind Fredholm BIEs in Example 5.18). For each r ∈ T, the

single layer operator Vr : H− 1
2 (Γr) → H

1
2 (Γr) is H− 1

2 (Γr)-elliptic, i.e. there exists a constant αr > 0,
depending on r ∈ T, such that

ℜ
{
〈Vrϕ,ϕ〉Γr

}
≥ αr ‖ϕ‖2

H
− 1

2 (Γr)
for all ϕ ∈ H− 1

2 (Γr),

and self-adjoint in the 〈·, ·〉Γr
duality pairing, i.e.

〈Vrϕ, ψ〉Γr
= 〈ϕ,Vrψ〉Γr

for all ϕ, ψ ∈ H− 1
2 (Γr).

Then, for each r ∈ T and for all ϕ ∈ H− 1
2 (Γr) and φ ∈ H

1
2 (Γr)

‖ϕ‖Vr
:=
√
〈Vrϕ,ϕ〉Γr

and ‖φ‖V−1
r

:=
√〈

V−1
r φ, φ

〉
Γr

are norms equivalent to ‖ϕ‖
H

− 1
2 (Γr)

and to ‖φ‖
H

1
2 (Γr)

, respectively. According to [50, Corollaries 6.27

& 6.30] for each r ∈ T there exists cr ∈ (0, 1), (depending on r ∈ T) such that for all ϕ ∈ H− 1
2 (Γr) and

φ ∈ H
1
2 (Γr) ∥∥∥∥

(
1

2
I+ K′

r

)
ϕ

∥∥∥∥
Vr

≤ cr ‖ϕ‖Vr
and

∥∥∥∥
(
1

2
I+ Kr

)
φ

∥∥∥∥
V

−1
r

≤ cr ‖φ‖V−1
r
. (5.53)

The solution to the second kind formulations introduced in Example 5.18 are formally given by the
Neumann series

ϑr =

∞∑

ℓ=0

(
1

2
I+ K′

r

)ℓ
Wrgr and ψr = −

∞∑

ℓ=0

(
1

2
I+ Kr

)ℓ
gr. (5.54)

Due to (5.53), the Neumann series in (5.54) converge in the norms ‖·‖Vr
and ‖·‖V−1

r
, respectively. Re-

calling the equivalence with the norms ‖·‖
H

− 1
2 (Γr)

and ‖·‖
H

1
2 (Γr)

and that K′
r : H− 1

2 (Γr) → H− 1
2 (Γr)

together with K′
r : H

1
2 (Γr) → H

1
2 (Γr) are linear and bounded, we conclude that

1

2
I− K′

r ∈ Liso(H
− 1

2 (Γr), H
− 1

2 (Γr)) and
1

2
I− Kr ∈ Liso(H

1
2 (Γr), H

1
2 (Γr)).

In turn
1

2
I− K̂′

r ∈ Liso(H
− 1

2
per (I), H

− 1
2

per (I))) and
1

2
I− K̂r ∈ Liso(H

1
2
per(I), H

1
2
per(I))). (5.55)

It follows that the domain-to-solution maps

r ∈ T 7→ χ̂r :=

(
1

2
I− K′

r

)−1

Ŵr ĝr ∈ H
− 1

2
per (I) (5.56)
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and

r ∈ T 7→ ψ̂r := −
(
1

2
I− Kr

)−1

ĝr ∈ H
1
2
per(I) (5.57)

are well-defined.

Remark 12. In Remarks 10 and 11 we have established the “pointwise solvability” of the first and second
kind boundary integral formulations introduced in Example 5.18, i.e. for each boundary representation
r ∈ T we have proved well–posednes of the aforementioned formulations. Under Assumption 3.7, the set
T of admissible boundary representation of a collection {Γr}r∈T of Jordan curves is a compact subset of
C 2
per(I,C

2). Moreover, the implied constants in the boundedness of the isomorphisms from Remarks 10
and 11 depend continuously on the set T. It follows that the isomorphisms in (5.50) and in (5.55) from
Remarks 10 and 11, respectively, and their inverses are uniformly bounded (in the corresponding operator
norm) on the set T. As a consequence, the domain-to-solution maps (5.51)–(5.52) and (5.56)–(5.57) in
Remarks 10 and 11, respectively, are also uniformly bounded on T, provided that the right-hand sides
of the first and second kind BIEs in Example 5.18 possess this property as well.

Let X, Y and Z be complex Banach spaces equipped with the norms ‖·‖X , ‖·‖Y and ‖·‖Z , respectively.
As usual, let T be a set of admissible boundary representations of a family {Γr}r∈T of Jordan curves in
R

2. Consider the following domain-to-operator maps

r ∈ T 7→ Ar ∈ L (X,Y ) and r ∈ T 7→ Br ∈ L (Z, Y ) (5.58)

together with the domain-to-data map

r ∈ T 7→ gr ∈ Z. (5.59)

Throughout this section we assume that for each r ∈ T we have that Ar ∈ Liso(X,Y ).

Problem 5.19. Let T be a set of admissible boundary representations of a family {Γr}r∈T of Jordan
curves. For each r ∈ T, we seek ϕr ∈ X such that

Ar ϕr = Brgr.

Recalling that Ar ∈ Liso(X,Y ) for each r ∈ T, there exists a unique ϕr ∈ X solution to Problem 5.19.
Consequently, we may define the domain-to-solution map associated to Problem 5.19 as follows

r ∈ T 7→ ϕr := A−1
r Br gr ∈ X. (5.60)

Observe that, after the application of the pullback operator introduced in Subsection 3.3, all four
formulations presented in Example 5.18 fit the framework of Problem 5.19. After these preparations, we
turn to the main purpose of this section. We proceed to establish shape holomorphy of the domain-to-
solution map in (5.60). We work under the assumption stated below.

Assumption 5.20. Let T be a set of admissible boundary representations of a family {Γr}r∈T of Jordan
curves in R

2 satisfying Assumption 3.7. There exists ε > 0 such that:

(i) the domain-to-operator maps in (5.58) admit extensions to the set Tε denoted by

r ∈ Tε 7→ Ar,C ∈ L (X,Y ) and r ∈ Tε 7→ Br,C ∈ L (Z, Y ), (5.61)

(ii) the maps in (5.61) are holomorphic and uniformly bounded on the set Tε, i.e. there exist finite
constants CA(T, ε) > 0 and CB(T, ε) > 0 depending upon T and ε only) such that

sup
r∈Tε

‖Ar,C‖L (X,Y ) ≤ CA(T, ε) and sup
r∈Tε

‖Br,C‖L (Z,Y ) ≤ CB(T, ε),

(iii) the domain-to-data map in (5.59) admits an extension to Tε denoted by

r ∈ Tε 7→ gr,C ∈ Z

that is holomorphic and uniformly bounded on the set Tε,
(iv) there exist a finite constant Cg(T, ε) > 0, depending on T and ε only, such that

sup
r∈Tε

‖gr,C‖Z ≤ Cg(T, ε).

Theorem 5.21. Let T be a set of admissible boundary representations of a family {Γr}r∈T of Jordan
curves satisfying Assumption 3.7 and let Assumption 5.20 hold with ε > 0. Then, there exists η =
η(T, ε) > 0, depending only on T and ε, such that:

(i) for each r ∈ Tη, we have that Ar,C ∈ Liso(X,Y ),
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(ii) the map in (5.60) admits an extension to the set Tη given by

r ∈ Tη 7→ ϕr,C := A−1
r,C Br,C gr,C ∈ X, (5.62)

(iii) the map in (5.62) is holomorphic and uniformly bounded on the set Tη, i.e. there exists a finite
constant C(T, η, ε) > 0 (depending on T, η and ε only) such that

sup
r∈Tη

‖ϕr,C‖X ≤ C(T, η, ε). (5.63)

Before presenting the proof of this result, we introduce a technical proposition regarding holomorphic
maps in complex Banach spaces.

Proposition 5.22. Let X, Y be complex Banach spaces.

(i) Let M ∈ Liso(X,Y ). Then

CM :=
{
T ∈ L (X,Y ) : ‖M− T‖

L (X,Y ) <
∥∥M−1

∥∥−1

L (Y,X)

}
⊆ Liso(X,Y )

and for all T ∈ CM it holds

∥∥T−1
∥∥

L (Y,X)
≤

∥∥M−1
∥∥

L (Y,X)

1− ‖M− T‖
L (X,Y ) ‖M−1‖

L (Y,X)

.

(ii) The inversion map

inv : Liso(X,Y ) 7→ Liso(Y,X) : M 7→ M−1

is holomorphic.
(iii) The application map

app : (L (X,Y ), X) → Y : (M, g) 7→ Mg (5.64)

is holomorphic.

Proof. Items (i) and (ii) have been stated in [2, Proposition 4.2]. For the sake of completeness, we include
the proofs.

(i) Let T ∈ CM. Using the Neumann series expansion of (I− (M− T)M−1)−1 [37, Theorem 2.14] we
obtain

T−1 = (M− (M− T))−1 = M−1(I− (M− T))−1 = M−1
∞∑

ℓ=0

[
(M− T)M−1

]ℓ
. (5.65)

Since T ∈ CM, the above series converges absolutely. We conclude that T−1 ∈ L (Y,X) and that
CM ⊆ Liso(X,Y ).

(ii) The series in (5.65) corresponds to the power series expansion of the map T ∈ L (X,Y ) 7→
T−1 ∈ L (Y,X). According to [4, Section 11.12], maps having this structure are complex Fréchet
differentiable, thus holomorphic according to Theorem 4.6.

(iii) The application map introduced in (5.64) is linear on each component, hence is holomorphic.

�

Proof of Theorem 5.21. We proceed to prove the claims of Theorem 5.21.

(i) We divide the proof of item (i) into two parts.
Part A. Throughout this part of the proof, let r̃ ∈ T be arbitrary but fixed. According to
Assumption 5.20, item (ii), the map r ∈ Tε 7→ Ar,C ∈ L (X,Y ) is holomorphic. It follows from
Theorem 4.7 and Proposition 4.8 that for r ∈ Tε it holds

‖Ar,C − Ar̃‖L (X,Y ) ≤ 2
CA(T, ε)

ε
‖r − r̃‖

C 2
per(I,C

2) .

For r̃ ∈ T, define

ηmax(r̃) :=
ε

2CA(T, ε)

∥∥A−1
r̃

∥∥−1

L (Y,X)
. (5.66)

Since Ar̃ ∈ Liso(X,Y ), we have that ηmax(r̃) is strictly positive. Set η(r̃) ∈ (0, ηmax(r̃)). Then,
for a fixed r̃ ∈ T and for all r ∈ B(r̃, η(r̃)), it holds

‖Ar,C − Ar̃‖L (X,Y )

∥∥A−1
r̃

∥∥−1

L (Y,X)
< 1,

where for ε > 0

B(r̃, ε) =
{
r ∈ C

2
per(I,C

2) : d(r, r̃) < ε
}
,
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with d(·, ·) as defined in (4.1). Then, according to Proposition 5.22, item (i), for all r ∈ B(r̃, η(r̃))
we have that Ar,C ∈ Liso(X,Y ).
Part B. The set T admits the following covering by open sets

T ⊂
⋃

r̃∈T

B

(
r̃,
η (r̃)

2

)
.

According to Assumption 3.7, T is a compact subset of C 2
per(I,R

2). Therefore, there exist J ∈ N

and a set {r̃1, . . . , r̃J} ⊂ T such that

T ⊂
J⋃

j=1

B

(
r̃j ,

η (r̃j)

2

)
, (5.67)

where η (r̃j) ∈ (0, ηmax(r̃j)) and ηmax(r̃j) is as in (5.66), but with r̃j instead of r̃, for j = 1, . . . , J .
Set

η =
1

2
min

j=1,...,J
η (r̃j) > 0. (5.68)

With J ∈ N as in (5.67), the following inclusions hold true

T ⊂ Tη ⊂
J⋃

j=1

B (r̃j , η (r̃j)) .

Hence, for each r ∈ Tη, with η > 0 as in (5.68), there exists r̃j ∈ T such that r ∈ B (r̃j , η (r̃j)).
It follows from Part A of the proof that for all r ∈ Tη we have that Ar,C ∈ Liso(X,Y ).

(ii) Using the inversion and application map from Proposition 5.22, one may cast the map in (5.62)
as follows

r ∈ Tη 7→ ϕr,C = app (inv(Ar,C), app(Br,C, gr,C)) ∈ X. (5.69)

On the one hand, according to Assumption 5.20 and Proposition 5.22, item (iii), the map r ∈
Tη 7→ app(Br,C, gr,C) ∈ Y is holomorphic. On the other hand, it follows from Assumption 5.20
and Proposition 5.22, item (ii), that the map r ∈ Tη 7→ inv(Ar,C) ∈ L (Y,X) is holomorphic.
Recalling again Proposition 5.22, item (iii), we have that the map in (5.69) is holomorphic.

(iii) Observe that

sup
r∈Tη

‖ϕr,C‖X ≤ CB(T, ε)Cg(T, ε) sup
r∈Tη

∥∥∥A−1
r,C

∥∥∥
L (Y,X)

.

According to Proposition 5.22, item (i), for all r ∈ Tη with η > 0 as in (5.68) there exists r̃j ∈ T

as in the proof of item (i) such that

∥∥∥A−1
r,C

∥∥∥
L (Y,X)

≤

∥∥∥A−1
r̃j

∥∥∥
L (Y,X)

1−
∥∥Ar̃j − Ar,C

∥∥
L (X,Y )

∥∥∥A−1
r̃j

∥∥∥
L (Y,X)

≤

∥∥∥A−1
r̃j

∥∥∥
L (Y,X)

1− 2CA(T,ε)
ε

η
∥∥∥A−1

r̃j

∥∥∥
L (Y,X)

<∞.

(5.70)

The bound in (5.70) is uniform over r ∈ B(r̃j , η(r̃j)). Hence,

sup
r∈Tη

∥∥∥A−1
r,C

∥∥∥
L (Y,X)

≤ max
j=1,...,J

(
sup

r∈B(r̃j ,η(r̃j))

∥∥∥A−1
r,C

∥∥∥
L (Y,X)

)

≤ max
j=1,...,J

∥∥∥A−1
r̃j

∥∥∥
L (Y,X)

1− 2CA(T,ε)
ε

η
∥∥∥A−1

r̃j

∥∥∥
L (Y,X)

<∞.

Then (5.63) holds with a finite constant C(T, η, ε) > 0 that depends only on T, η and ε.

�

As a consequence of Theorem 5.17, Theorem 5.21 and Remarks 10 and 11, one may establish the
following result for the domain-to-solution maps associated to the BIEs from Example 5.18. We remind
that the 1–periodic Sobolev space Hs

per(I) for s ∈ R are complex-valued ones, according to Section 2.2.
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Corollary 5.23. Let T be a set of admissible boundary representations of a family {Γr}r∈T of Jordan
curves satisfying Assumption 3.7 and let us consider the setting from Example 5.18. Assume that there

exists ε > 0 such that the map r ∈ Tε 7→ gr,C ∈ H
1
2
per(I) is holomorphic and uniformly bounded on the Tε

and that gr,C ∈ H
1
2
per(I) extends gr ∈ H

1
2
per(I) to Tε. Then, there exists η > 0 such that:

(i) the map in (5.51) admits an extension to Tη given by

r ∈ Tη 7→ φ̂r,C := V̂−1
r,C

(
1

2
I+ K̂r,C

)
ĝr,C ∈ H

− 1
2

per (I), (5.71)

(ii) the map in (5.52) admits an extension to Tη given by

r ∈ Tη 7→ ϑ̂r,C := V̂−1
r,C ĝr,C ∈ H

− 1
2

per (I), (5.72)

(iii) the map in (5.56) admits an extension to Tη given by

r ∈ Tη 7→ χ̂r,C :=

(
1

2
I− K̂′

r,C

)−1

Ŵr,C ĝr,C ∈ H
− 1

2
per (I), (5.73)

(iv) the map in (5.57) admits an extension to Tη given by

r ∈ Tη 7→ ψ̂r,C := −
(
1

2
I− K̂r,C

)−1

ĝr,C ∈ H
1
2
per(I). (5.74)

Moreover, the maps in (5.71), (5.72), (5.73) and (5.74) are holomorphic and uniformly bounded on the
set Tη.

6. Parametric Holomorphy

The presently obtained result establishes the holomorphic dependence of the Calderón projector on a
collection of C 2–smooth, regular Jordan curves. However, in practical applications and for computational
purposes, one usually deals with a parametric representation of the boundary. Namely, each boundary
representation belonging to a set T of admissible boundary representations of a collection {Γr}r∈T of
Jordan curves is identified by means of a parameter sequence y ∈ [−1, 1]s, where s ∈ N corresponds to the
parametric dimension. Examples of parametric representation of the boundary may be constructed by
means of Fourier polynomials, wavelets bases, B-splines and NURBS (Non-uniform rational B-spline).
This parametric representation naturally defines the map y ∈ [−1, 1]s 7→ ry ∈ T ⊂ C 2

per(I,R
2) and

motivates us to consider the following parametric version of the Calderón projector

y 7→ Ĉy := Ĉry ∈ L (Vper,Vper) . (6.1)

It follows from the shape holomorphy result established in Theorem 5.17 that the parametric Calderón
projector depends holomorphically on the parameter sequence y provided that the parametric boundary
representations ry ∈ T does so as well.

Nevertheless, the efficient approximation of the parametric Calderón projector, and of every parametric
map having a structure similar to that of (6.1), is a challenge due to the high dimensionality of the
input parameter sequence y. In fact, the construction of sparse surrogates of polynomials type for
the approximation of these maps is a non-trivial task and suffer generally from the so-called curse of
dimensionality.

Recent results regarding the polynomial approximation of parametric maps have identified a precise
notion of holomorphy that allows us to obtain dimension-independent convergence rates for the polyno-
mial approximation of these maps: the so-called (b, ε)-holomorphy (Definition 6.3 ahead). This concept,
originally introduced in [12], has been recognized as a paramount property to obtain algebraic conver-
gence rate that are independent of the parametric dimension in several techniques used in forward and
inverse UQ. As a consequence of the results to be presented in this section, sparse tensor interpolation
methods [11, 53, 47, 48, 52, 10], higher-order quasi-Monte Carlo quadratures [29, 30, 22, 21] and model
order reduction techniques [9, 7, 8, 3] will be available and mathematically justified for the analysis of
forward and inverse shape UQ by means of BIOs and BIEs, with convergence rates that are immune to
the growth of the parametric dimension of the underlying problem.

In this section, we analyze the holomorphic dependence of the parametric Calderón projector defined
in (6.1) on the parameter sequence y ∈ U used to construct a parametric description of the boundary.
In Section 6.1, we introduce a collection of affine-parametric boundary representations and establish
sufficient conditions to obtain a set of admissible boundary representations of a collection of Jordan
curves. Then, in Section 6.2, we establish parametric holomorphy of the Calderón projector. More
precisely, we prove (b, ε)-holomorphy of the map (6.1) provided that an affine-parametric boundary
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representation is used. Finally, using the framework established in Section 5.7, in Section 6.3 we establish
parametric holomorphy of the domain-to-solution map.

6.1. Affine-Parametric Boundary Representations. Recall that I = [0, 1] and define U := [−1, 1]N.
Let us consider the following class of affine-parametric boundary representations

ry(t) := r0(t) +
∑

j≥1

yjrj(t), t ∈ I, y = (yj)j≥1 ∈ U, (6.2)

where rj ∈ C 2
per(I,R

2), for j ∈ N0. Let us define

qj(t, s) :=





∥∥∥ rj(t)−rj(s)sin(π(t−s))

∥∥∥ , t− s /∈ Z,

‖r′j(t)‖
π

, t− s ∈ Z,
j ∈ N0.

We work under the assumptions stated below.

Assumption 6.1. Let b = {bj}j∈N be defined by bj := ‖rj‖C 2
per(I,R

2), for j ∈ N. We assume that r0 is

a positively oriented and regular boundary representation of a C 2–smooth Jordan curve (in the sense of
Definition 3.1), that there exists a p ∈ (0, 1) such that b ∈ ℓp(N) and that for some η ∈ (0, 1) it holds

sup
(t,s)∈I×I

∑

j≥1

qj(t, s) ≤ η inf
(t,s)∈I×I

q0(t, s). (6.3)

Assumption 6.1 enables us to prove the following properties of the map y ∈ U 7→ ry ∈ C 2
per(I,R

2).

Lemma 6.2. Let Assumption 6.1 hold. Then, the set

T := {ry : y ∈ U} ⊂ C
2
per(I,R

2).

is a set of admissible boundary representations (in the sense of Definition 3.6) of a collection {Γr}r∈T

of Jordan curves satisfying Assumption 3.7.

Proof. Let us show that the affine-parametric boundary representation (6.2) actually provides a boundary
representation of a C 2–smooth, regular Jordan curve (in the sense of Definition 3.1) satisfying the
properties listed in Assumption 3.7. First we observe that Assumption 6.1 entails absolute convergence
of ry (as defined in (6.2)) in C 2

per(I,R
2), uniformly with respect to y ∈ U, in the sense that

sup
y∈U

∑

j≥1

‖yjrj‖C 2
per(I,R

2) =
∑

j≥1

‖rj‖C 2
per(I,R

2) <∞,

since b ∈ ℓp(N) ⊂ ℓ1(N) for some p ∈ (0, 1). Hence, T is actually contained in C 2
per(I,R

2). For (t, s) ∈ I×I
and for y ∈ U, we have

∥∥∥∥
ry(t)− ry(s)

sin(π(t− s))

∥∥∥∥ =

∥∥∥∥∥∥
r0(t)− r0(s)

sin(π(t− s))
+
∑

j≥1

yj
rj(t)− rj(s)

sin(π(t− s))

∥∥∥∥∥∥
.

Using the triangle inequality, we get

∥∥∥∥
ry(t)− ry(s)

sin(π(t− s))

∥∥∥∥ ≥

∣∣∣∣∣∣
q0(t, s)−

∥∥∥∥∥∥
∑

j≥1

yj
rj(t)− rj(s)

sin(π(t− s))

∥∥∥∥∥∥

∣∣∣∣∣∣
, y = {yj}j≥1 ∈ U.

Due to (6.3) in Assumption 6.1, we have that for (t, s) ∈ I× I it holds

q0(t, s)−
∑

j≥1

qj(t, s) ≥ inf
(t,s)∈I×I

q0(t, s)− sup
(t,s)∈I×I

∑

j≥1

qj(t, s) ≥ (1− η) inf
(t,s)∈I×I

q0(t, s).

By Assumption 6.1, r0 is the boundary representation of a C 2–smooth, regular Jordan curve, there exists
a constant γ0, depending on r0 ∈ C 2

per(I,R
2) only, such that

inf
(t,s)∈I×I

q0(t, s) ≥ γ0 > 0.

Hence, for (t, s) ∈ I× I and y ∈ U we have that
∥∥∥∥
ry(t)− ry(s)

sin(π(t− s))

∥∥∥∥ ≥ (1− η)γ0 > 0

and we conclude that ry : [0, 1) → R
2 is injective and 1-periodic, for all y ∈ U. Computing the limit of

t ∈ I tending to s ∈ I, we obtain
∥∥r′

y
(s)
∥∥ ≥ π(1−η)γ0 > 0, for s ∈ I, and the boundary representation ry
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is regular for all y ∈ U. The parametric boundary representation ry ∈ C 2
per(I,R

2) inherits the orientation

of r0 ∈ C 2
per(I,R

2). The compactness of T in C 2
per(I,R

2) has been proved in [14, Lemma 2.7]. �

6.2. Parametric Holomorphy of the Calderón Projector. For s > 1, we consider the Bernstein
ellipse in the complex plane

Es :=
{
z + z−1

2
: 1 ≤ |z| ≤ s

}
⊂ C.

This ellipse has foci at z = ±1 and semi-axes of length a := (s + s−1)/2 and b := (s − s−1)/2. For
ρ := {ρj}j≥1 with ρj > 1, for j ∈ N, consider the tensorized poly-ellipse

Eρ :=
⊗

j≥1

Eρj ⊂ C
N.

We adopt the convention E1 := [−1, 1] to include the case ρj = 1.

Definition 6.3 ([12, Definition 2.1]). Let X be a complex Banach space equipped with the norm ‖·‖X .
For ε > 0 and p ∈ (0, 1), we say that map y ∈ U 7→ uy ∈ X is (b, ε)-holomorphic if and only if

(i) The map y ∈ U 7→ uy ∈ X is uniformly bounded, i.e.

sup
y∈U

‖uy‖X ≤ C0,

for some finite constant C0 > 0.
(ii) There exists a positive sequence b := {bj}j≥1 ∈ ℓp(N) and a constant Cε > 0 such that for any

sequence ρ := {ρj}j≥1 of numbers strictly larger than one that is (b, ε)-admissible, i.e. satisyfing
∑

j≥1

(ρj − 1)bj ≤ ε,

the map y 7→ uy admits a complex extension z 7→ uz that is holomorphic with respect to each
variable zj on a set of the form

Oρ :=
⊗

j≥1

Oρj ,

where Oρj ⊂ C is an open set containing Eρj . This extension is bounded on Eρ according to

sup
z∈Eρ

‖uz‖X ≤ Cε. (6.4)

Given s > 1, let us define

Ts := {z ∈ C : dist (z, [−1, 1]) < s− 1} and Tρ :=
⊗

j≥1

Tρj ,

where ρ := {ρj}j≥1 is such that ρj > 1, for j ∈ N. For a (b, ε)-admissible sequence ρ = {ρj}j∈N, let
us consider the following extension of the affine-parametric boundary representation to complex-valued
parametric inputs

rz(t) := r0(t) +
∑

j≥1

zjrj(t), t ∈ I and z = {zj}j∈N
∈ Tρ. (6.5)

Lemma 6.4. Let Assumption 6.1 hold. Then the map y ∈ U 7→ ry ∈ C 2
per(I,R

2) is (b, ε)-holomorphic
with the same b and p ∈ (0, 1) used in Assumption 6.1 and for any ε > 0.

Proof. Observe that

sup
y∈U

‖ry‖C 2
per(I,R

2) ≤ ‖r0‖C 2
per(I,R

2) +
∑

j≥1

‖rj‖C 2
per(I,R

2) .

Hence, item (i) in Definition 6.3 is satisfied with C0 = ‖r0‖C 2
per(I,R

2) + ‖b‖ℓ1(N). Being an affine function

in each variable, we conclude that the extension (6.5) is holomorphic in each variable zj in the set Tρ,
for any (b, ε)-admissible sequence ρ := {ρj}j∈N of numbers strictly larger than 1. Recalling that Ts is
an open neighborhood of Es [12, Lemma 4.4], we have that item (ii) in Definition 6.3 is satisfied as well.
Furthermore, for any (b, ε)-admissible sequence ρ := {ρj}j∈N of numbers strictly larger than 1 and any
z := {zj}j∈N ∈ Tρ there exists a y ∈ U such that |zj − yj | ≤ ρj − 1, for all j ∈ N. Then, for such y ∈ U,
we have

‖rz‖C 2
per(I,C

2) ≤ ‖rz − ry‖C 2
per(I,C

2) + ‖ry‖C 2
per(I,C

2) ,
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which implies

‖rz‖C 2
per(I,C

2) ≤
∞∑

j=1

|zj − yj | ‖rj‖C 2
per(I,R

2) + ‖ry‖C 2
per(I,C

2)

≤
∞∑

j=1

(ρj − 1)bj + sup
y∈U

‖ry‖C 2
per(I,C

2)

≤ ε+ ‖r0‖C 2
per(I,R

2) + ‖b‖ℓ1(N)
and

sup
z∈Eρ

‖rz‖C 2
per(I,C

2) ≤ ε+ ‖r0‖C 2
per(I,R

2) + ‖b‖ℓ1(N) .

Therefore, the estimate (6.4) in Definition 6.3 is satisfied with Cε := ε+ ‖r0‖C 2
per(I,R

2) + ‖b‖ℓ1(N). �

Lemma 6.5. Let Assumption 6.1 hold. Then, the map y ∈ U 7→ ry ∈ C 2
per(I,R

2) is continuous provided
U is endowed with the product topology.

Proof. We take our cue from [15, Lemma 5.7]. According to Assumption 6.1, we have that b ∈ ℓ1(N).

Hence, for all ǫ > 0 there exists a J1 = J1(ǫ) ∈ N such that
∞∑

j=J+1

bj < ǫ. Let yn := {yj,n}j∈N ∈ U

be a sequence converging to y := {yj}j∈N
∈ U pointwise. This implies that for all ǫ > 0, there exists

J2 = J2(ǫ) ∈ N such that max
j∈N

|yj − yj,n| < ǫ, for all n > J2. Then, for all ǫ > 0 we select J := max{J1, J2}
and we obtain

∥∥ry − ryn

∥∥
C 2

per(I,R
2)

≤
J∑

j=1

|yj − yj,n| ‖rj‖C 2
per(I,R

2) + 2
∑

j>J

‖rj‖C 2
per(I,R

2) ≤ ǫ
(
‖b‖ℓ1(N) + 2

)
.

It follows that y ∈ U 7→ ry ∈ C 2
per(I,R

2) is continuous. �

For y ∈ U, recall that Ĉy = Ĉry . The following result establishes the holomorphic dependence of the
Calderón projector on U in the sense of Definition 6.3.

Theorem 6.6. Let Assumption 6.1 hold and let δ > 0 be as in Proposition 5.1. Then, for any ε ∈ (0, δ),
the map

y ∈ U → Ĉy ∈ L (Vper,Vper) . (6.6)

is (b, ε)-holomorphic, with the same b ∈ ℓp(N) and p ∈ (0, 1) as in Assumption 6.1. Moreover, the map
(6.6) is continuous when U is equipped with the product topology.

Proof. Let δ > 0 be as in Proposition 5.1. For any ε ∈ (0, δ), we consider a (b, ε)-admissible sequence
ρ = {ρj}j∈N of numbers strictly larger than one. Observe that z ∈ Tρ ⇒ rz ∈ Tε, where rz is as in (6.5).
Therefore, the chain of compositions

z ∈ Tρ 7→ rz ∈ Tε 7→ Ĉrz ∈ L (Vper,Vper) .

is well-defined. The map y ∈ Tρ 7→ ry ∈ Tε is (b, ε)-holomorphic with the same b and p ∈ (0, 1) as in
Assumption 6.1 and any ε > 0. The map

r ∈ Tε 7→ Ĉr,C ∈ L (Vper,Vper) .

is holomorphic and uniformly bounded, according to Theorem 5.17. Therefore, the composition is (b, ε)-
holomorphic, again with the same b ∈ ℓp(N) and p ∈ (0, 1) as in Assumption 6.1 and any ε ∈ (0, δ).

The map y ∈ U → ry ∈ Tε is continuous for any ε ∈ (0, δ), according to Lemma 6.5. Being

holomorphic, the map r ∈ Tε 7→ Ĉr,C is continuous as well. Therefore, the composition is continuous
itself. �

6.3. Parametric Holomorphy of the Domain-to-Solution Map. We consider the setting from
Section 5.7. For y ∈ U, we define

Ay := Ary ∈ L (X,Y ), By := Bry ∈ L (Z, Y ) and gy := gry ∈ Y.

Moreover, for y ∈ U we set

ϕy := A−1
y

By gy ∈ X.
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Theorem 6.7. Let Assumptions 5.20 and 6.1 hold and let η > 0 be as in Theorem 5.21. Then, for any
ε ∈ (0, η) the map

y ∈ U 7→ ϕy ∈ X (6.7)

is (b, ε)-holomorphic, with the same b ∈ ℓp(N) and p ∈ (0, 1) as in Assumption 6.1. Moreover, the map
(6.7) is continuous when U is equipped with the product topology.

Proof. The proof follows the exact same steps of that of Theorem 6.6. According to Assumptions 5.20
and Theorem 5.21, the map

r ∈ Tη 7→ ϕr,C = A−1
r,C Br,C gr,C ∈ X

is holomorphic and uniformly bounded. As in the proof of Theorem 6.6, it follows that the map y ∈
Tρ 7→ ry ∈ Tε is (b, ε)-holomorphic with the same b and p ∈ (0, 1) as in Assumption 6.1 and any ε > 0.
It follows that the map in (6.7) is also is (b, ε)-holomorphic with the exact same b ∈ ℓp(N) and p ∈ (0, 1)
and p ∈ (0, 1) as in Assumption 6.1 and any ε ∈ (0, η).

Again, the map y ∈ U 7→ ry ∈ Tε is continuous for any ε ∈ (0, η), according to Lemma 6.5. Recalling
that r ∈ Tη 7→ ϕr,C ∈ X is holomorphic, we have that this map is also continuous. One concludes that
(6.7) is continuous as well. �

Remark 13. Since the inversion operation of linear isomorphisms is holomorphic as stated in Proposition
5.22, the (b, ε)-holomorphy property of the Calderón projector obtained in Theorem 6.6 implies that the
parametric counterparts of the domain-to-solution maps from Corollary 5.23 inherit the (b, ε)-holomorphy
property with the same b ∈ ℓp(N) and p ∈ (0, 1), however possibly with a different ε > 0.

7. Concluding Remarks

We consider the Calderón projector for the Laplace equation in two dimensions and prove its holomor-
phically dependence on a collection of C 2–smooth Jordan curves in R

2. The presently obtained result
allows us to establish that the solution of well-posed BIE both of the first or second kind arising from
the boundary reduction of the Laplace equation (equipped with suitable boundary conditions) depends
holomorphically on the shape of the boundary, provided that the corresponding right-hand side possesses
this property as well. Moreover, shape holomorphy of the Calderón projector for the Laplace equation
entails the holomorphic dependence of the discrete solution to a well-posed BIE obtained, for instance,
by means of Galerkin or collocation discretization methods upon the boundary shape.

We remark that the framework constructed in Section 4, used in the present work only for the Calderón
projector for the Laplace equation, can also be employed to establish shape holomorphy of the BIOs
arising in the Helmholtz, Stokes and linear elasticity problems.

After considering a suitable affine-parametric boundary representation, shape holomorphy of the BIOs
implies parametric holomorphy of the corresponding parametric versions of these operators and of the
solution of well-posed BIEs set on a C 2–smooth, regular Jordan curve. This property provides the
mathematical justification for the construction of sparse surrogates of the polynomial type for the ap-
proximation of the resulting parametric BIEs and their numerical approximations by means of either
Galerkin or collocation techniques, with convergence rates that do not suffer from the so-called curse of
dimensionality of the parameter space. Moreover, as discussed in Section 6, the theoretical foundations of
several algorithms used in forward and in inverse UQ and their capability to afford dimension-independent
convergence rates rely on the notion of parametric holomorphy presented in Definition 6.3. Although we
have considered an affine-parametric representation of the boundary, we remark that the results obtained
in Section 6 remain valid inasmuch as the parametric boundary representation y ∈ U 7→ ry ∈ C 2

per(I,R
2)

is (b, ε)-holomorphic (in the sense of Definition 6.3) with b ∈ ℓp(N) and for some p ∈ (0, 1). An analysis of
the implications of our findings in computational UQ using BIEs and BIOs, with the appropiate Galerkin
discretization of the BIEs and for the forward and inverse problems, will be elaborated elsewhere.

References

[1] K. Atkinson and W. Han, Theoretical Numerical Analysis: A Functional Analysis Framework., vol. 39, Springer-

Verlag, New York, 3rd ed., 2009.
[2] R. Aylwin, C. Jerez-Hanckes, C. Schwab, and J. Zech, Domain uncertainty quantification in computational

electromagnetics, Tech. Rep. 2019-04, Seminar for Applied Mathematics, ETH Zürich, Switzerland, 2019.
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Appendix A. Proof of Lemma 4.11

Let ϕ̂ ∈ C 0
per(I) and let Bt ⊂ R be an open interval containing the point t ∈ I. Assume that the length

of Bt is strictly smaller than 1
2 . For r ∈ T, we split the integral in (4.2) as follows

(Pr ϕ̂) (t) =

∫

s∈I\Bt

f(t− s) pr(t, s)ϕ̂(s)ds+

∫

s∈I∩Bt

f(t− s) pr(t, s)ϕ̂(s)ds, t ∈ I.

Observe that, for ϕ̂ ∈ C 0
per(I), we have

∣∣∣∣∣∣

∫

s∈I∩Bt

f(t− s) pr(t, s)ϕ̂(s)ds,

∣∣∣∣∣∣
≤ C(f, υ) ‖pr ϕ̂‖C 0

per(I×I)

∫

s∈I∩Bt

|sin(π(t− s))|−υ ds, t ∈ I. (A.1)

Since s ∈ I ∩Bt and t ∈ I, it follows that |t− s| < 1
2 . Moreover, for (t, s) ∈ I× I such that |t− s| < 1

2 , it
holds |sin(π(t− s))| = sin(π |t− s|) ≥ |t− s|. Using this estimate together with (A.1) and recalling that
υ ∈ (0, 1), we obtain

∫

s∈I∩Bt

|sin(π(t− s))|−υ ds ≤
∫

s∈I∩Bt

|t− s|−υ ds =
t−inf{I∩Bt}∫

t−sup{I∩Bt}

|η|−υ dη

=

t−inf{I∩Bt}∫

0

η−υdη +

sup{I∩Bt}−t∫

0

η−υdη

=
(t− inf{I ∩ Bt})1−υ + (sup{I ∩ Bt} − t)1−υ

1− υ
.

Hence, for each fixed t ∈ I and denoting |Bt| the length of Bt, we have that
∫

s∈I∩Bt

f(t− s) pr(t, s)ϕ̂(s)ds→ 0, as |Bt| → 0.

Therefore, the integral in (4.2) exists in the Lebesgue sense.
Let χ : [0,∞) → R be a continuous function satisfying the following properties: χ(t) = 0 for t ∈ [0, 12 ],

χ(t) = 1 for t ≥ 1 and χ(t) ∈ [0, 1] for t ∈ [0,∞). Let us define

p(n)r (t, s) := χ
(
n sin2(π(t− s))

)
pr(t, s), n ∈ N and (t, s) ∈ I× I.

Moreover, we set

(
P(n)
r ϕ̂

)
(t) :=

1∫

0

f(t− s) p(n)r (t, s)ϕ̂(s)ds, t ∈ I.

Observe that f(t− s)p
(n)
r (t, s) ∈ C 0

per(I× I) and that
(
P
(n)
r ϕ̂

)
∈ C 0

per(I), for ϕ̂ ∈ C 0
per(I) and r ∈ T. For

t ∈ I and ϕ̂ ∈ C 0
per(I× I), we have
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∣
∣
∣(Pr ϕ̂) (t)−

(

P
(n)
r ϕ̂

)

(t)
∣
∣
∣ ≤ C(f, υ) ‖pr ϕ̂‖C0

per(I×I)

1∫

0

|sin(π(t− s))|−υ |1− χ (n |sin(π(t− s))|)| ds (A.2)

Let us consider the change of variables u = sin(π(t− s)). For t ∈ I, we have for n ∈ N, n ≥ 2

1∫

0

|sin(π(t− s))|−υ |1− χ (n |sin(π(t− s))|)| ≤ 1

π

1
n∫

− 1
n

|u|−υ√
1− u2

du =
2

π

1
n∫

0

u−υ√
1− u2

du.

Furthermore, recalling that υ ∈ (0, 1), we find for n ∈ N, n ≥ 2,
1
n∫

0

u−υ√
1− u2

du ≤ n√
n2 − 1

1
n∫

0

u−υdu =
n√

n2 − 1

u1−υ

1− υ

∣∣∣∣
1
n

0

=
1

1− υ

nυ√
n2 − 1

.

Recalling (A.2), we obtain
∣∣∣(Pr ϕ̂) (t)−

(
P(n)
r ϕ̂

)
(t)
∣∣∣ ≤ C(f, υ) ‖pr ϕ̂‖C 0

per(I×I)

nυ√
n2 − 1

, n ∈ N, n ≥ 2, t ∈ I.

Hence, for a fixed ϕ̂ ∈ C 0
per(I) we have

∥∥∥(Pr ϕ̂)−
(
P(n)
r ϕ̂

)∥∥∥
C 0

per(I)
→ 0 as n→ ∞.

Since the uniform limit of continuous functions is continuous, we conclude that Pr ϕ̂ ∈ C 0
per(I), for all

r ∈ T provided that ϕ̂ ∈ C 0
per(I).

Appendix B. Proof of Proposition 5.1

Lemma B.1. For all r ∈ C 1
per(I,C

2) we have that for all (t, s) ∈ I× I it holds

‖r(t)− r(s)‖ ≤ |r|
C 1

per(I,C
2) |sin(π(t− s))| .

Proof. Let t, s ∈ I and we assume w.l.o.g. that t > s. If t−s ∈
[
0, 12

]
, we have that sin(π(t−s)) ≥ π(t−s)

2 .

Then, for r ∈ C 1
per(I,C

2) it holds

‖r(t)− r(s)‖ ≤ |r|
C 1

per(I,C
2) |t− s| ≤ 2

π
|r|

C 1
per(I,C

2) sin(π(t− s))

≤ |r|
C 1

per(I,C
2) sin(π(t− s)).

On the other hand, if t− s ∈
[
1
2 , 1
]
, 1− (t− s) ∈

[
0, 12

]
. Hence, using the 1-periodicity of r ∈ C 1

per(I,C
2),

we get

‖r(t)− r(s)‖ = ‖r(s)− r(t− 1)‖ ≤ |r|
C 1

per(I,C
2) sin(π(t− s)).

It follows that ‖r(t)− r(s)‖ ≤ |r|
C 1

per(I,C
2) |sin(π(t− s))| holds for all (t, s) ∈ I× I. �

Proof of Proposition 5.1. Let T be a set of admissible boundary representations of a collection {Γr}r∈T

of Jordan curves satisfying Assumption 3.7. Given r̃ ∈ T ⊂ C 2
per(I,R

2), we consider the open ball in

C 2
per(I,C

2) centered in r̃ and of size δ (r̃) > 0 (with a dependence on r̃ to be specified later) i.e.

B(r̃, δ(r̃))
{
r ∈ C

2
per(I,C

2) : d(r, r̃) < δ (r̃)
}
,

where d(·, ·) has been defined in (4.1). Let r ∈ B(r̃, δ(r̃)). For (t, s) ∈ I× I, we have

(r(t)− r(s)) · (r(t)− r(s)) =(r̃(t)− r̃(s)) · (r̃(t)− r̃(s))

+ 2 (r̃(t)− r̃(s)) · ((r − r̃)(t)− (r − r̃)(s))

+ ((r − r̃)(t)− (r − r̃)(s)) · (r − r̃)(t)− (r − r̃)(s).

On the one hand, using Lemma B.1, we obtain

|(r̃(t)− r̃(s)) · ((r − r̃)(t)− (r − r̃)(s))| ≤ ‖r̃(t)− r̃(s)‖ ‖(r − r̃)(t)− (r − r̃)(s)‖
≤ |r − r̃|

C 1
per(I,C

2) |r̃|C 1
per(I,R

2) sin
2(π(t− s)).

On the other hand, again using Lemma B.1, we get

|((r − r̃)(t)− (r − r̃)(s)) · ((r − r̃)(t)− (r − r̃)(s))| ≤ |r − r̃|2
C 1

per(I,C
2) sin

2(π(t− s)).
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Thus, we obtain

(r(t)− r(s)) · (r(t)− r(s)) = ‖r̃(t)− r̃(s)‖2 + E(r, r̃), (B.1)

where |E(r, r̃)| ≤ U(r, r̃) sin2(π(t− s)) and

U(r, r̃) := 2 |r − r̃|
C 1

per(I,C
2) |r̃|C 1

per(I,R
2) + |r − r̃|2

C 1
per(I,C

2) .

Observe that

U(r, r̃) ≤ 2δ(r̃) |r̃|
C 1

per(I,R
2) + (δ(r̃))2. (B.2)

Using (B.1), we obtain the following lower bound

ℜ
{
(r(t)− r(s)) · r(t)− r(s)

sin2(π(t− s))

}
≥
∥∥∥∥
r̃(t)− r̃(s)

sin(π(t− s))

∥∥∥∥
2

− U(r, r̃).

Recalling Proposition 3.9, we obtain

ℜ
{
(r(t)− r(s)) · r(t)− r(s)

sin2(π(t− s))

}
≥ (α(T))2 − U(r, r̃),

where α(T) > 0 is as in Proposition 3.9 and (t, s) ∈ I × I are such that t − s /∈ Z. We proceed to find
δmax(r̃) > 0 (depending on the boundary representation r̃ ∈ T) such that (α(T))2 − U(r, r̃) > 0, for all
δ ∈ (0, δmax(r̃)). Using (B.2), we obtain

δmax(r̃) = − |r̃|
C 1

per(I,R
2) +

√
|r̃|2

C 1
per(I,R

2) + (α(T))2. (B.3)

By selecting δ(r̃) ∈ (0, δmax(r̃)), we get the following bound

ℜ
{
(r(t)− r(s)) · (r(t)− r(s))

sin2(π(t− s)

}
≥ (α(T))2 − U(r, r̃)

≥ (α(T))2 − 2δ(r̃) |r̃|
C 1

per(I,R
2) − δ(r̃)2

︸ ︷︷ ︸
=:α̃(r̃,δ(r̃)

> 0,
(B.4)

for (t, s) ∈ I × I such that t − s /∈ Z and for all r ∈ B(r̃, δ(r̃)). Observe that as s approaches t + Z, we
obtain

ℜ
{
(r′ · r′)(t)

π2

}
≥ α̃(r̃, δ(r̃),T), (B.5)

for all r ∈ B(r̃, δ(r̃)). The bounds (B.4) and (B.5) are uniform over r ∈ B(r̃, δ(r̃)), therefore

inf
r∈B(r̃,δ(r̃))

inf
(t,s)∈I×I
t 6=s

ℜ
{
(r(t)− r(s)) · (r(t)− r(s))

sin2(π(t− s))

}
≥ α̃(r̃, δ(r̃)), (B.6)

and

inf
r∈B(r̃,δ(r̃))

inf
t∈I

ℜ
{
(r · r)(t)
π2

}
≥ α̃(r̃, δ(r̃)), (B.7)

where δ(r̃) ∈ (0, δmax(r̃)). As in the proof of Theorem 5.21 (Part B) and recalling that according to
Assumption 3.7 the set T is a compact subset of C 2

per(I,R
2), there exist J ∈ N and a set {r̃1, . . . , r̃J} ⊂ T

such that

T ⊂
J⋃

i=1

B

(
r̃i,

δ (r̃i)

2

)
, (B.8)

where δ (r̃i) ∈ (0, δmax(r̃i)) and δmax(r̃i) is as in (B.3), but with r̃i instead of r̃, for i = 1, . . . , J . Let us
set

δ(T) =
1

2
inf
r∈T

(
− |r|

C 1
per(I,R

2) +
√
|r|2

C 1
per(I,R

2) + (α(T))2
)
.

We claim that δ(T) is strictly positive. Observe that the map

r ∈ T 7→ − |r|
C 1

per(I,R
2) +

√
|r|2

C 1
per(I,R

2) + (α(T))2 ∈ R
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is continuous and strictly positive over T ⊂ C 2
per(I,R

2). According to Assumption 3.7, T is a compact

subset of C 2
per(I,R

2). Consequently, this map attains a strictly positive minimum, thereby providing the
strict positiveness of δ(T). With J ∈ N as in (B.8), the following inclusions hold true

T ⊂ Tδ ⊂
J⋃

i=1

B (r̃i, δ (r̃i)) . (B.9)

Together with (B.6) and (B.7), (B.9) leads us to

inf
r∈Tδ

inf
(t,s)∈I×I

ℜ{mr,C(t, s)} ≥ inf
i=1,...,J

inf
r∈B(r̃i,δ(r̃i))

inf
(t,s)∈I×I

ℜ{mr,C(t, s)}

≥ inf
i=1,...,J

α̃(r̃i, δ(r̃i))

︸ ︷︷ ︸
=:α̃(T,δ)

> 0.

We conclude that (5.4) holds with the strictly positive constant α̃(T, δ). �
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