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power in terms of the total NN size N and of the input dimension d of the
ReLU NN in W 1,∞([−1, 1]d). The constant b > 0 depends on (ρj)

d
j=1 which

characterizes the coordinate-wise sizes of the Bernstein-ellipses for u. We also
prove exponential convergence in stronger norms for the approximation by
DNNs with more regular, so-called “rectified power unit” (RePU) activations.
Finally, we extend DNN expression rate bounds also to two classes of non-
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with Lipschitz marginals.
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1 Introduction

In recent years, so-called deep artificial neural networks (‘DNNs’ for short)
have seen dramatic development in applications from data science and machine
learning.

Accordingly, after early results in the ’90s on genericity and universality of
DNNs (see [29] for a survey and references), in recent years the refined math-
ematical analysis of their approximation properties viz. “expressive power”
has received increasing attention. A particular class of many-parametric maps
whose DNN approximation needs to be considered in many applications are
real-analytic and holomorphic maps. Accordingly, the question of DNN ex-
pression rate bounds for such maps has received some attention in the approx-
imation theory literature [22,23,10].

It is well-known that multi-variate, holomorphic maps admit exponen-
tial expression rates by multivariate polynomials. In particular, countably-
parametric maps u : [−1, 1]∞ → R can be represented under certain conditions
by so-called generalized polynomial chaos expansions with quantified sparsity
in coefficient sequences. This, in turn, implies N -term truncations with con-
trolled approximation rate bounds in terms of N , with approximation rates
which do not depend on the dimension of the active parameters in the trun-
cated approximation [7,6]. The polynomials which appear in such expansions
can, in turn, be represented by DNNs, either exactly for certain activation
functions, or approximately for example for the so-called rectified linear unit
(“ReLU”) activation with exponentially small representation error [19,38].

The purpose of the present paper is to establish corresponding DNN ex-
pression rate bounds in Lipschitz-norm (i.e.W 1,∞-norm) for high-dimensional,
analytic maps u : [−1, 1]d → R. We focus on ReLU DNNs, but comment in
passing also on versions of our results for other DNN activation functions.
Next, we briefly discuss the relation of previous results to the present work
and also outline the structure of this paper.

1.1 Recent mathematical results on expressive power of DNNs

The survey [29] presented succinct proofs of genericity of shallow NNs in var-
ious function classes, as shown originally e.g. in [17,16,21] and reviewed the
state of mathematical theory of DNNs up to that point. Moreover, exponential
expression rate bounds for analytic functions by neural networks had already
been achieved in the ’90s. We mention in particular [23] where smooth, non-
polynomial activation functions were considered.

More closely related to the present work are the references [10,22]. In [22],
approximation rates for deep NN approximations of multivariate functions
which are analytic have been investigated. Exponential rate bounds in terms
of the total size of the NN have been obtained, for sigmoidal activation func-
tions. In [38], it was observed that the multiplication of two real numbers, and
consequently polynomials, can efficiently be approximated by deep ReLU NNs.
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This was used in [10] to prove bounds on the DNN approximation of certain
functions u : [−1, 1]d → R which admit holomorphic extensions to some open
subset of Cd by deep ReLU NNs. In particular, it was assumed that u admits
a Taylor expansion about the origin of Cd which converges absolutely and
uniformly on [−1, 1]d. It is well-known that not every u which is real-analytic
in [−1, 1]d admits such an expansion. In the present paper, we prove sharper
expression rate bounds for both, the ReLU activation σ1 and RePU activations
σr, for functions which merely are assumed to be real-analytic in [−1, 1]d, in
L∞([−1, 1]d) and in stronger norms, thereby generalizing both [10] and [22].

1.2 Contributions of the present paper

We prove exponential expression rate bounds of DNNs for d-variate, real-
valued functions which depend analytically on their d inputs. Specifically, for
holomorphic mappings u : [−1, 1]d → R, we prove expression error bounds in
L∞([−1, 1]d) and in W k,∞([−1, 1]d), for k ∈ N (the precise range of k depend-
ing on properties of the NN activation σ). We consider both, ReLU activation
σ1 : R → R+ : x 7→ x+ and RePU activations σr : R → R+ : x 7→ (x+)

r for
some integer r ≥ 2. Here, x+ = max{x, 0}. The expression error bounds in
our main result, Theorem 3.6, with ReLU activation σ1 are in W 1,∞([−1, 1]d)
and of the general type O(exp(−bN1/(d+1))) in terms of the NN size N , with
a constant b > 0 depending on the domain of analyticity, but independent of
N (however, with the constant implied in the Landau symbol O(·) depending
exponentially on d, in general). With activation σr for r ≥ 2, Theorem 3.10 has
corresponding expression error bounds in W k,∞([−1, 1]d) for arbitrary fixed
k ∈ N and of the type O(exp(−bN1/d)) in terms of the NN size N . For all
r ∈ N, the parameters of the σr-neural networks approximating u (so-called
“weights” and “biases”) are continuous functions of u in appropriate norms.
All of our proofs are constructive. I.e., they demonstrate how to build sparsely
connected DNNs achieving the claimed convergence rates. We comment in
Rmk. 3.7 and Rmk. 3.11 how these statements imply results for (the simpler
architecture of) fully connected neural networks.

The main results, Theorems 3.6 and 3.10, are expression rate bounds for
holomorphic functions. Similar bounds for Gevrey-regular functions are given
in Section 4.3.4. In Section 4.3.5, we conclude the same bounds also for certain
classes of nonholomorphic, merely Lipschitz-continuous functions, by leverag-
ing the compositional nature of DNN approximation and Theorems 3.6 and
3.10.

1.3 Outline

The structure of the paper is as follows. In Section 2, we present the definition
of the DNN architectures and fix notation and terminology. We also review
in Section 2.2 a “ReLU DNN calculus”, from recent work [28,11], which will
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facilitate the ensuing DNN expression rate analysis. A first set of key results
are ReLU DNN expression rates in W 1,∞([−1, 1]d) for multivariate Legen-
dre polynomials, which are proved in Section 2.3. These novel expression rate
bounds are explicit in the W 1,∞-accuracy and in the polynomial degree. They
are of independent interest and remarkable in that the ReLU DNNs which
emulate the polynomials at exponential rates, as we prove, realize continuous,
piecewise affine functions. They are based on [19,38]. The proofs, being con-
structive, shed a rather precise light on the architecture, in particular depth
and width of the ReLU DNNs, that is sufficient for polynomial emulation. In
Section 2.4, we briefly comment on corresponding results for RePU activations;
as a rule, the same exponential rates are achieved for slightly smaller NNs and
in norms which are stronger than W 1,∞.

Section 3 then contains the main results of this note: exponential ReLU
DNN expression rate bounds for d-variate, holomorphic maps. They are based
on a) polynomial approximation of these maps and on b) ReLU DNN reapprox-
imation of the approximating polynomials. These are presented in Sections 3.1
and 3.2. Again we comment in Section 3.3 on modifications in the results for
RePU activations. Section 4 contains a brief indication of further directions
and open problems.

1.4 Notation

We adopt standard notation consistent with our previous works [41,42]: N =
{1, 2, . . . } and N0 := N ∪ {0}. We write R+ := {x ∈ R : x ≥ 0}. The symbol
C will stand for a generic, positive constant independent of any asymptotic
quantities in an estimate, which may change its value even within the same
equation.

In statements about polynomial expansions we require multiindices ν =
(νj)j=1,...,d ∈ Nd

0 for d ∈ N. The total order of a multiindex ν is denoted by

|ν|1 :=
∑d

j=1 νj . The notation suppν stands for the support of the multiindex,

i.e. suppν = {j ∈ {1, . . . , d} : νj 6= 0}. The size of the support of ν ∈ Nd
0

is | suppν|; it will, subsequently, indicate the number of active coordinates in

the multivariate monomial term yν :=
∏d

j=1 y
νj

j .

A subset Λ ⊆ Nd
0 is called downward closed1, if ν = (νj)

d
j=1 ∈ Λ implies

µ = (µ)dj=1 ∈ Λ for all µ ≤ ν. Here, the ordering “≤” on Nd
0 is defined as

µj ≤ νj , for all j = 1, . . . , d. We write |Λ| to denote the finite cardinality of a
set Λ.

We write BC
ε := {z ∈ C : |z| < ε}. Elements of Cd will be denoted

by boldface characters such as y = (yj)
d
j=1 ∈ [−1, 1]d ⊂ Cd. For ν ∈ Nd

0,

standard notations yν :=
∏d

j=1 y
νj

j and ν! =
∏d

j=1 νj ! will be employed (with

the conventions 0! := 1 and 00 := 1). For n ∈ N0 we let Pn := span{yj : 0 ≤
1 Index sets with the ”downward closed” property are also referred to in the literature

[25] as lower sets.
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j ≤ n} be the space of polynomials of degree at most n, and for a finite index
set Λ ⊂ Nd

0 we denote PΛ := span{yν : ν ∈ Λ}.

2 Deep neural network approximations

2.1 DNN architecture

We consider deep neural networks (DNNs for short) of feed forward type. Such
a NN f can mathematically be described as a repeated composition of affine
transformations with a nonlinear activation function.

More precisely: For an activation function σ : R → R, a fixed number
of hidden layers L ∈ N0, numbers Nℓ ∈ N of computation nodes in layer
ℓ ∈ {1, . . . , L + 1}, f : RN0 → RNL+1 is realized by a feedforward neural
network, if for certain weights wℓ

i,j ∈ R, and biases bℓj ∈ R it holds for all

x = (xi)
N0
i=1

z1j = σ

(
N0∑

i=1

w1
i,jxi + b1j

)
, j ∈ {1, . . . , N1} , (2.1a)

and

zℓ+1
j = σ

(
Nℓ∑

i=1

wℓ+1
i,j zℓi + bℓ+1

j

)
, ℓ ∈ {1, . . . , L− 1}, j ∈ {1, . . . , Nℓ+1},

(2.1b)
and finally

f(x) = (zL+1
j )

NL+1

j=1 =

(
NL∑

i=1

wL+1
i,j zLi + bL+1

j

)NL+1

j=1

. (2.1c)

In this case N0 is the dimension of the input, and NL+1 is the dimension of
the output. Furthermore zℓj denotes the output of unit j in layer ℓ. The weight

wℓ
i,j has the interpretation of connecting the ith unit in layer ℓ − 1 with the

jth unit in layer ℓ. If L = 0, then (2.1c) holds with z0i := xi for i = 1, . . . , N0.
Except when explicitly stated, we will not distinguish between the network

(which is defined through σ, the wℓ
i,j and b

ℓ
j) and the function f : RN0 → RNL+1

it realizes. We note in passing that this relation is typically not one-to-one,
i.e. different NNs may realize the same function as their output. Let us also
emphasize that we allow the weights wℓ

i,j and biases bℓj for ℓ ∈ {1, . . . , L+ 1},
i ∈ {1, . . . , Nℓ−1} and j ∈ {1, . . . , Nℓ} to take any value in R, i.e. we do not
consider quantization as e.g. in [1,28].

As is customary in the theory of NNs, the number of hidden layers L of
a NN is referred to as depth2 and the total number of nonzero weights and

2 In other recent references (e.g. [26]), slightly different terminology for the number L of
layers in the DNN differing from the convention in the present paper by a constant factor,
is used. This difference will be inconsequential for all results that follow.
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biases as the size of the NN. Hence, for a DNN f as in (2.1), we define

size(f) := |{(i, j, ℓ) : wℓ
i,j 6= 0}|+ |{(j, ℓ) : bℓj 6= 0}| and depth(f) := L.

In addition, sizein(f) := |{(i, j) : w1
i,j 6= 0}|+ |{j : b1j 6= 0}| and sizeout(f) :=

|{(i, j) : wL+1
i,j 6= 0}| + |{j : bL+1

j 6= 0}|, which are the number of nonzero
weights and biases in the input layer of f and in the output layer, respectively.

The proofs of our main results Theorem 3.6 and Theorem 3.10 are con-
structive, in the sense that we will explicitly construct NNs with the desired
properties. We construct these NNs by assembling smaller networks, using the
operations of concatenation and parallelization, as well as so-called “identity-
networks” which realize the identity mapping. Below, we recall the definitions.
For these operations, we also provide bounds on the number of nonzero weights
in the input layer and the output layer of the corresponding network, which
can be derived from the definitions in [28].

2.2 DNN calculus

Throughout, as activation function σ we consider either the ReLU activation
function

σ1(x) := max{0, x} x ∈ R

or, as suggested in [22,20,18], for r ∈ N, r ≥ 2, the RePU activation function

σr(x) := max{0, x}r x ∈ R.

If a NN uses σr as activation function, we refer to it as σr-NN. ReLU NNs are
referred to as σ1-NNs. We assume throughout that all activations in a DNN
are of equal type.

Remark 2.1 (Historical note on rectified power units) “Rectified power unit”
(RePU) activation functions are particular cases of so-called sigmoidal func-

tions of order k ∈ N for k ≥ 2, i.e. limx→∞
σ(x)
xk = 1, limx→−∞

σ(x)
xk = 0 and

|σ(x)| ≤ K(1 + |x|)k for x ∈ R. The use of NNs with such activation func-
tions for function approximation dates back to the early 1990’s, cf. e.g. [22,20].
Proofs in [22, Section 3] proceed in three steps. First, a given function f was
approximated by a polynomial, then this polynomial was expressed as a linear
combination of powers of a RePU, and finally it was shown that for r ≥ 2 and
arbitrary A > 0 the RePU σr can be approximated on [−A,A] with arbitrarily
small L∞([−A,A])-error ε by a NN with a continuous, sigmoidal activation
function of order k = r, which has depth 1 and fixed network size indepen-
dent of A and ε ([22, Lemma 3.6]). As remarked directly below [22, Lemma
3.6], this result remains true for the L∞(R)-norm (instead of L∞([−A,A]))
if, additionally, σ is uniformly continuous on R. As also remarked below [22,
Lemma 3.6], a similar statement holds for the approximation of the ReLU σ1
by a NN with sigmoidal activation function of the order k = 1.
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For any r ∈ N, in the proof of [22, Lemma 3.6] it was observed that for
continuous, sigmoidal σ of order k = r, the σ-NN that approximates σr is
uniformly continuous on [−A,A]. From this, it follows that σr-NNs can be
approximated up to arbitrarily small L∞([−A,A])-error by σ-NNs with NN
size independent of A and ε. Again, uniform continuity of σ on R implies the
same result w.r.t. the L∞(R)-norm.

The exact realization of polynomials by σr-networks for r ≥ 2 was observed
in the proof of [22, Theorem 3.3], based on ideas in the proof of [5, Theorem
3.1]. The same result was recently rediscovered in [18, Theorem 3.1], whose
authors were apparently not aware of [5,22].

We now indicate several fundamental operations on NNs which will be used
in the following. These operations have been frequently used in recent works
[28,26,11].

2.2.1 Parallelization

We now recall the parallelization of two networks f and g, which in parallel
emulates f and g. We first describe the parallelization of networks with the
same inputs as in [28, Definition 2.7], the parallelization of networks with
different inputs is similar and introduced directly afterwards.

Let f and g be two NNs with the same depth L ∈ N0 and the same
input dimension n ∈ N. Denote by mf the output dimension of f and by mg

the output dimension of g. Then there exists a neural network (f, g), called
parallelization of f and g, which in parallel emulates f and g, i.e.

(f, g) : Rn → Rmf × Rmg : x 7→ (f(x), g(x)).

It holds that depth((f, g)) = L and that size((f, g)) = size(f) + size(g),
sizein((f, g)) = sizein(f)+sizein(g) and sizeout((f, g)) = sizeout(f)+sizeout(g).

We next recall the parallelization of networks with inputs of possibly dif-
ferent dimension as in [11, Setting 5.2]. To this end, we let f and g be two
NNs with the same depth L ∈ N0 whose input dimensions nf and ng may
be different, and whose output dimensions we will denote by mf and mg,
respectively.

Then there exists a neural network (f, g)d, called full parallelization of
networks with distinct inputs of f and g, which in parallel emulates f and g,
i.e.

(f, g)d : Rnf × Rng → Rmf × Rmg : (x, x̃) 7→ (f(x), g(x̃)).

It holds that depth((f, g)d) = L and that size((f, g)d) = size(f) + size(g),
sizein((f, g)d) = sizein(f)+sizein(g) and sizeout((f, g)d) = sizeout(f)+sizeout(g).

Parallelizations of networks with possibly different inputs can be used con-
secutively to emulate multiple networks in parallel.
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2.2.2 Identity networks

We now recall identity networks ([28, Lemma 2.3]), which emulate the identity
map.

For all n ∈ N and L ∈ N0 there exists a σ1-identity network IdRn of depth
L which emulates the identity map IdRn : Rn → Rn : x 7→ x. It holds that

size(IdRn) ≤ 2n(depth(IdRn) + 1), sizein(IdRn) ≤ 2n, sizeout(IdRn) ≤ 2n.
(2.2)

Analogously, for r ≥ 2 there exist σr-identity networks. To construct them,
we use the concatenation f • g of two NNs f and g as introduced in [28,
Definition 2.2]. As we shall make use of it subsequently in Propositions 2.3
and 2.4, we recall its definition here for convenience of the reader.

Definition 2.2 ([28, Definition 2.2]) Let f, g be such that the output di-
mension of g equals the input dimension of f , which we denote by k. Denote
the weights and biases of f by {uℓi,j}i,j,ℓ and {aℓj}j,ℓ and those of g by {vℓi,j}i,j,ℓ
and {cℓj}j,ℓ. Then, we denote by f • g be the NN with weights and biases

wℓ
i,j =





vℓi,j ℓ ≤ depth(g),∑k
q=1 v

ℓ
i,qu

1
q,j ℓ = depth(g) + 1,

u
ℓ−depth(g)
i,j ℓ > depth(g) + 1,

bℓj =





cℓj ℓ ≤ depth(g),∑k
q=1 c

ℓ
qu

1
q,j + a1j ℓ = depth(g) + 1,

a
ℓ−depth(g)
j ℓ > depth(g) + 1,

for ℓ = 1, . . . , depth(f) + depth(g) + 1.

It is easy to check, that the network f•g emulates the composition x 7→ f(g(x))
and satisfies depth(f • g) = depth(f) + depth(g).

The concatenation of Definition 2.2 will only be used in the proof of Propo-
sitions 2.3 and 2.4 below. Throughout the remainder of this work, we use sparse
concatenations f ◦ g introduced in Section 2.2.3, whose network size can be
estimated by C(size(f) + size(g)) for an absolute constant C. The reason for
introducing ◦ in addition to •, is that the size of f • g cannot be bounded by
C(size(f) + size(g)) for an absolute constant C. This can be seen by consid-
ering the number of nonzero weights in layer ℓ = depth(g) + 1, e.g. for k = 1,
and arbitrary layer sizes Ndepth(g) of g and N1 of f .

Proposition 2.3 For all r ≥ 2, n ∈ N and L ∈ N0 there exists a σr-NN IdRn

of depth L which emulates the identity function IdRn : Rn → Rn : x 7→ x. It
holds that

size(IdRn) ≤ nL(4r2 + 2r), sizein(IdRn) ≤ 4nr, sizeout(IdRn) ≤ n(2r + 1).
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Proof First we consider n = 1 and proceed in two steps: We discuss L = 0, 1
in Step 1 and L > 1 in Step 2.

Step 1. For L = 0, let IdRn be the network with weights w1
i,j = δi,j ,

b1j = 0, i, j = 1, . . . , n. We next consider L = 1. It was shown in [18, Theorem

2.5] that there exist (ak)
r
k=0 ∈ Rr+1 and (bk)

r
k=1 ∈ Rr such that for all x ∈ R

x = a0 +
r∑

k=1

ak(x+ bk)
r = a0 +

r∑

k=1

akσr(x+ bk) +
r∑

k=1

ak(−1)rσr(−x− bk).

This shows the existence of a network IdR1 : R → R of depth 1 realizing the
identity on R. The network employs 2r weights and 2r biases in the first layer,
and 2r weights and one bias (namely a0) in the output layer. Its size is thus
6r + 1.

Step 2. For L > 1, we consider the L-fold concatenation IdR1 • · · · • IdR1

of the identity network IdR1 from Step 1. The resulting network has depth L,
input dimension 1 and output dimension 1. The number of weights and the
number of biases in the first layer both equal 2r, the number of weights in the
output layer equals 2r, and the number of biases 1. In each of the L− 1 other
hidden layers, the number of weights is 4r2, and the number of biases 2r. In
total, the network has size at most 4r+(L−1)(4r2+2r)+2r+1 ≤ L(4r2+2r),
where we used that r ≥ 2.

Identity networks with input size n ∈ N are obtained as the full paralleliza-
tion with distinct inputs of n identity networks with input size 1. ⊓⊔

2.2.3 Sparse concatenation

The sparse concatenation of two σ1-NNs f and g was introduced in [28, Defi-
nition 2.5].

Let f and g be σ1-NNs, such that the number of nodes in the output layer
of g equals the number of nodes in the input layer of f . Denote by n the
number of nodes in the input layer of g, and by m the number of nodes in the
output layer of f . Then, with “•” as in Definition 2.2, the sparse concatenation
of the NNs f and g is defined as the network

f ◦ g := f • IdRk •g, (2.3)

where IdRk is the σ1-identity network of depth 1. The network f ◦ g realizes
the function

f ◦ g : Rn → Rm : x 7→ (f(g(x)),

i.e., by abuse of notation, the symbol “◦” has two meanings here, depending
on whether we interpret f ◦g as a function or as a network. This will not be the
cause of confusion however. It holds depth(f ◦ g) = depth(f) + 1 + depth(g),

size(f ◦ g) ≤ size(f) + sizein(f) + sizeout(g) + size(g) ≤ 2 size(f) + 2 size(g)
(2.4)
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and

sizein(f ◦ g) ≤
{
sizein(g) depth(g) ≥ 1,

2 sizein(g) depth(g) = 0,

sizeout(f ◦ g) ≤
{
sizeout(f) depth(f) ≥ 1,

2 sizeout(f) depth(f) = 0.

For a proof, we refer to [28, Remark 2.6].

A similar result holds for σr-NNs. In this case we define the sparse concate-
nation f ◦ g as in (2.3), but with IdRk now denoting the σr-identity network
of depth 1 from Proposition 2.3.

Proposition 2.4 For r ≥ 2 let f, g be two σr-NNs such that the output di-
mension of g, which we denote by k ∈ N, equals the input dimension of f , and
suppose that sizein(f), sizeout(g) ≥ k. Denote by f ◦ g the σr-network obtained
by the σr-sparse concatenation. Then depth(f ◦ g) = depth(f) + 1 + depth(g)
and

size(f ◦ g) ≤ size(f) + (2r − 1) sizein(f) + (2r + 1)k + (2r − 1) sizeout(g)

+ size(g)

≤ size(f) + 2r sizein(f) + (4r − 1) sizeout(g) + size(g) (2.5)

≤ (2r + 1) size(f) + 4r size(g).

Furthermore,

sizein(f ◦ g) ≤
{
sizein(g) depth(g) ≥ 1,

2r sizein(g) + 2rk ≤ 4r sizein(g) depth(g) = 0,

sizeout(f ◦ g) ≤
{
sizeout(f) depth(f) ≥ 1,

2r sizeout(f) + k ≤ (2r + 1) sizeout(f) depth(f) = 0.

Proof It follows directly from Definition 2.2 and Proposition 2.3 that depth(f ◦
g) = depth(f)+1+depth(g). To bound the size of the network, note that the
weights in layers ℓ = 1, . . . , depth(g) equal those in the first depth(g) layers of
g. Those in layers ℓ = depth(g)+3, . . . , depth(g)+2+depth(f) equal those in
the last depth(f) layers of f . Layer ℓ = depth(g) + 1 has at most 2r sizeout(g)
weights and 2rk biases, whereas layer ℓ = depth(g)+2 has at most 2r sizein(f)
weights and k biases. This shows Equation (2.5) and the bound on sizein(f ◦g)
and sizeout(f ◦ g). ⊓⊔

Identity networks are often used in combination with parallelizations. In
order to parallelize two networks f and g with depth(f) < depth(g), the
network f can be concatenated with an identity network, resulting in a network
whose depth equals depth(g) and which emulates the same function as f .
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2.3 ReLU DNN approximation of polynomials

2.3.1 Basic results

In [19] it was shown that deep networks employing both ReL and BiS (“bi-
nary step”) units are capable of approximating the product of two numbers
with a network whose size and depth increase merely logarithmically in the
accuracy. In other words, certain neural networks achieve uniform exponential
convergence of the operation of multiplication (of two numbers in a bounded
interval) w.r.t. the network size. Independently, a similar result for ReLU net-
works was obtained in [38]. Here, we shall use the latter result in the following
slightly more general form shown in [34]. Contrary to [38], it provides a bound
of the error in the W 1,∞([−1, 1])-norm (instead of the L∞([−1, 1])-norm).

Proposition 2.5 ([34, Proposition 3.1]) For any δ ∈ (0, 1) and M ≥ 1
there exists a σ1-NN ×̃δ,M : [−M,M ]2 → R such that

sup
|a|,|b|≤M

|ab− ×̃δ,M (a, b)| ≤ δ,

ess sup
|a|,|b|≤M

max

{∣∣∣∣b−
∂

∂a
×̃δ,M (a, b)

∣∣∣∣ ,
∣∣∣∣a−

∂

∂b
×̃δ,M (a, b)

∣∣∣∣
}

≤ δ,

where ∂
∂a ×̃δ,M (a, b) and ∂

∂b ×̃δ,M (a, b) denote weak derivatives. There exists a
constant C > 0 independent of δ ∈ (0, 1) and M ≥ 1 such that sizein(×̃δ,M ) ≤
C, sizeout(×̃δ,M ) ≤ C,

depth(×̃δ,M ) ≤ C(1 + log2(M/δ)), size(×̃δ,M ) ≤ C(1 + log2(M/δ)).

Moreover, for every a ∈ [−M,M ], there exists a finite set Na ⊆ [−M,M ] such
that b 7→ ×̃δ,M (a, b) is strongly differentiable at all b ∈ (−M,M)\Na.

It is immediate, that Proposition 2.5 implies the existence of networks
approximating the multiplication of n different numbers. We now show such
a result, generalizing [34, Proposition 3.3] in that we consider the error again
in the W 1,∞-norm (instead of the L∞-norm).

Proposition 2.6 For any δ ∈ (0, 1), n ∈ N and M ≥ 1 there exists a σ1-NN∏̃
δ,M : [−M,M ]n → R such that

sup
(xi)ni=1∈[−M,M ]n

∣∣∣∣∣∣

n∏

j=1

xj −
∏̃

δ,M
(x1, . . . , xn)

∣∣∣∣∣∣
≤ δ, (2.6a)

ess sup
(xi)ni=1∈[−M,M ]n

sup
i=1,...,n

∣∣∣∣∣∣
∂

∂xi

n∏

j=1

xj −
∂

∂xi

∏̃
δ,M

(x1, . . . , xn)

∣∣∣∣∣∣
≤ δ, (2.6b)

where ∂
∂xi

denotes a weak derivative.
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There exists a constant C independent of δ ∈ (0, 1), n ∈ N and M ≥ 1
such that

size(
∏̃

δ,M
) ≤C(1 + n log(nMn/δ)), (2.7a)

depth(
∏̃

δ,M
) ≤C(1 + log(n) log(nMn/δ)). (2.7b)

Proof We proceed analogously to the proof of [34, Proposition 3.3], and con-

struct
∏̃

δ,1 as a binary tree of ×̃·,·-networks from Proposition 2.5 with appro-
priately chosen parameters for the accuracy and the maximum input size.

We define ñ := min{2k : k ∈ N, 2k ≥ n}, and consider the product of ñ
numbers x1, . . . , xñ ∈ [−M,M ]. In case n < ñ, we define xn+1, . . . , xñ := 1,
which can be implemented by a bias in the first layer. Because ñ < 2n, the
bounds on network size and depth in terms of ñ also hold in terms of n,
possibly with a larger constant.

It suffices to show the result for M = 1, since for M > 1, the network
defined through

∏̃
δ,M (x1, . . . , xn) := Mn

∏̃
δ/Mn,1(x1/M, . . . , xn/M) for all

(xi)
n
i=1 ∈ [−M,M ]n achieves the desired bounds as is easily verified. Therefore,

w.l.o.g. M = 1 throughout the rest of this proof.

Equation (2.6a) follows by the argument given in the proof of [34, Propo-
sition 3.3], we recall it here for completeness. By abuse of notation, for every
even k ∈ N let a (k-dependent) mapping R = R1 be defined via

R(y1, . . . , yk) :=
(
×̃δ/ñ2,2(y1, y2), . . . , ×̃δ/ñ2,2(yk−1, yk)

)
∈ Rk/2 . (2.8)

For ℓ ≥ 2 set Rℓ := R ◦ Rℓ−1. That is, for each product network ×̃δ/ñ2,2

as in Proposition 2.5 we choose maximum input size “M = 2” and accuracy

“δ/ñ2”. Hence Rℓ can be interpreted as a mapping from R2ℓ → R. We now

define
∏̃

δ,1 : [−1, 1]n → R via

∏̃
δ,1

(x1, . . . , xn) := Rlog2(ñ)(x1, . . . , xñ)

and next show the error bounds in (2.6) (recall that by definition xn+1 = · · · =
xñ = 1 in case ñ > n).

First, by induction we show that for ℓ ∈ {1, . . . , log2(ñ)} and for all
x1, . . . , x2ℓ ∈ [−1, 1]

∣∣∣∣∣∣

2ℓ∏

j=1

xj −Rℓ(x1, . . . , x2ℓ)

∣∣∣∣∣∣
≤ δ

22ℓ

ñ2
. (2.9)

For ℓ = 1 it holds that R(x1, x2) = ×̃δ/ñ2,2(x1, x2), hence (2.9) follows di-
rectly from the choice for the accuracy of ×̃δ/ñ2,2, which is δ/ñ2. For ℓ ∈
{2, . . . , log2(ñ)}, we assume that Equation (2.9) holds for ℓ − 1. With
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|∏2(ℓ−1)

j=1 xj | ≤ 1 and 22(ℓ−1)

ñ2 δ < 1, it follows that
∣∣Rℓ−1(x1, . . . , x2(ℓ−1))

∣∣ < 2,

hence Rℓ−1(x1, . . . , x2(ℓ−1)) may be used as input of ×̃δ/ñ2,2. We find

∣∣∣∣∣∣

2ℓ∏

j=1

xj −Rℓ(x1, . . . , x2ℓ)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

2ℓ−1∏

j=1

xj −Rℓ−1(x1, . . . , x2ℓ−1)

∣∣∣∣∣∣
·

∣∣∣∣∣∣

2ℓ∏

j=2ℓ−1+1

xj

∣∣∣∣∣∣

+
∣∣Rℓ−1(x1, . . . , x2ℓ−1)

∣∣ ·

∣∣∣∣∣∣

2ℓ∏

j=2ℓ−1+1

xj −Rℓ−1(x2ℓ−1+1, . . . , x2ℓ)

∣∣∣∣∣∣

+
∣∣∣Rℓ−1(x1, . . . , x2ℓ−1)Rℓ−1(x2ℓ−1+1, . . . , x2ℓ)

− ×̃δ/ñ2,2

(
Rℓ−1(x1, . . . , x2ℓ−1), Rℓ−1(x2ℓ−1+1, . . . , x2ℓ)

) ∣∣∣

≤ 22(ℓ−1)

ñ2
δ +

22(ℓ−1)

ñ2
δ

(
1 +

22(ℓ−1)

ñ2
δ

)
+

1

ñ2
δ

≤ 22(ℓ−1) + 2 · 22(ℓ−1) + 1

ñ2
δ ≤ 22ℓ

ñ2
δ,

where we used (1 + δ22(ℓ−1)/ñ2) ≤ 2. This shows (2.9) for ℓ. Inserting ℓ =
log2(ñ) into (2.9) gives (2.6a).

We next show (2.6b). Without loss of generality, we only consider the
derivative with respect to x1, because each ×̃δ/ñ2,2-network is symmetric under
permutations of its arguments. For ℓ ∈ {1, . . . , log2(ñ)} we show by induction

that for almost every (xi)
2ℓ

i=1 ∈ [−1, 1]2
ℓ

∣∣∣∣∣∣
∂

∂x1

2ℓ∏

j=1

xj −
∂

∂x1
Rℓ(x1, . . . , x2ℓ)

∣∣∣∣∣∣
≤ δ

22ℓ

ñ2
. (2.10)

Again, R(x1, x2) = ×̃δ/ñ2,2(x1, x2) and for ℓ = 1 Equation (2.10) follows from
Proposition 2.5 and the choice for the accuracy of ×̃δ/ñ2,2, which is δ/ñ2.

For ℓ > 1, under the assumption that (2.10) holds for ℓ− 1, we find

∣∣∣∣∣∣
∂

∂x1

2ℓ∏

j=1

xj −
∂

∂x1
Rℓ(x1, . . . , x2ℓ)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

2ℓ∏

j=2ℓ−1+1

xj

∣∣∣∣∣∣
·

∣∣∣∣∣∣
∂

∂x1

2ℓ−1∏

j=1

xj −
∂

∂x1
Rℓ−1(x1, . . . , x2ℓ−1)

∣∣∣∣∣∣

+

∣∣∣∣∣∣

2ℓ∏

j=2ℓ−1+1

xj −Rℓ−1(x2ℓ−1+1, . . . , x2ℓ)

∣∣∣∣∣∣
·
∣∣∣∣
∂

∂x1
Rℓ−1(x1, . . . , x2ℓ−1)

∣∣∣∣
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+

∣∣∣∣R
l−1(x2ℓ−1+1, . . . , x2ℓ)

−
(
∂

∂a
×̃δ/ñ2,2

)(
Rl−1(x1, . . . , x2ℓ−1), Rl−1(x2ℓ−1+1, . . . , x2ℓ)

) ∣∣∣∣

·
∣∣∣∣
∂

∂x1
Rℓ−1(x1, . . . , x2ℓ−1)

∣∣∣∣

≤ 22(ℓ−1)

ñ2
δ +

22(ℓ−1)

ñ2
δ

(
1 +

22(ℓ−1)

ñ2
δ

)
+

1

ñ2
δ

(
1 +

22(ℓ−1)

ñ2
δ

)

≤ 22(ℓ−1) + 2 · 22(ℓ−1) + 2

ñ2
δ ≤ 22ℓ

ñ2
δ,

where ∂
∂a ×̃δ/ñ2,2 denotes the (weak) derivative of ×̃δ/ñ2,2 : [−2, 2]×[−2, 2] → R

w.r.t. its first argument as in Proposition 2.5. This shows (2.10) for ℓ > 1, as
desired. Filling in ℓ = log2(ñ) gives (2.6b).

The number of binary tree layers (each denoted by R) is bounded by
O(log2(ñ)). With the bound on the network depth from Proposition 2.5, for
M = 1 the second part of (2.7) follows.

To estimate the network size, we cannot use the estimate size(f ◦ g) ≤
2 size(f)+2 size(g) from Equation (2.4), because the number of concatenations
log2(ñ)−1 depends on n, hence the factors 2 would give an extra n-dependent
factor in the estimate on the network size. Instead, from Equation (2.4) we
use size(f ◦ g) ≤ size(f) + sizein(f) + sizeout(g) + size(g) and the bounds from
Proposition 2.5. We find (2log2(ñ)−ℓ being the number of product networks in
binary tree layer ℓ)

size(
∏̃

δ,1
) ≤

log2(ñ)∑

ℓ=1

2log2(ñ)−ℓ
(
sizein

(
×̃δ/ñ2,2

)
+ size

(
×̃δ/ñ2,2

)

+ sizeout
(
×̃δ/ñ2,2

) )

≤
log2(ñ)∑

ℓ=1

2log2(ñ)−ℓ
(
C + C

(
1 + log

(
2ñ2/δ

) )
+ C

)

≤ (ñ− 1)C
(
1 + log (ñ/δ)

)
≤ C(1 + n log(n/δ)),

which finishes the proof of (2.7) for M = 1. ⊓⊔

The previous two propositions can be used to deduce bounds on the ap-
proximation of univariate polynomials on compact intervals w.r.t. the norm
W 1,∞. One such result was already proven in [26, Proposition 4.2], which we
present in Proposition 2.9 in a slightly modified form, allowing for the simul-
taneous approximation of multiple polynomials reusing the same approximate
monomial basis. This yields a smaller network, and thus gives a slight im-
provement over using the parallelization of networks obtained by applying [26,
Proposition 4.2] to each polynomial separately. To prove the result we first
recall the following lemma:
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Lemma 2.7 ([26, Lemma 4.5]) For all ℓ ∈ N and δ ∈ (0, 1) there exists a

σ1-NN Ψ̃
ℓ

δ with input dimension one and output dimension 2ℓ−1 +1 such that

max
j=2ℓ−1,...,2ℓ

∥∥∥xj − (Ψ̃
ℓ

δ)1+j−2ℓ−1

∥∥∥
W 1,∞([−1,1])

≤ δ,

depth(Ψ̃
ℓ

δ) ≤ C(ℓ3 + ℓ log2(1/δ)), size(Ψ̃
ℓ

δ) ≤ C(ℓ2ℓ + 2ℓ log2(1/δ)), (2.11)

where C is independent of ℓ and δ.

Corollary 2.8 Let n ∈ N and δ ∈ (0, 1). There exists a NN Ψn
δ with in-

put dimension one and output dimension n + 1 such that (Ψn
δ (x))1 = 1 and

(Ψn
δ (x))2 = x for all x ∈ R, and

max
ℓ∈{3,...,n+1}

∥∥xℓ−1 − (Ψn
δ )ℓ
∥∥
W 1,∞([−1,1])

≤ δ, (2.12)

and

size(Ψn
δ ) ≤ C(1 + n log(n) + n log(1/δ)), (2.13a)

depth(Ψn
δ ) ≤ C(1 + log(n)3 + log(n) log(1/δ)), (2.13b)

where C is independent of n and δ.

Proof Define k := ⌈log2(n)⌉ and for ℓ ∈ {1, . . . , k} let φℓ : R → R be an

identity network with depth(φℓ) = maxi∈{1,...,k} depth(Ψ̃
i

δ)− depth(Ψ̃
ℓ

δ) as in
(2.2). Set

Ψ̂
n

δ :=
(
Ψ̃

1

δ ◦ φ1, . . . , Ψ̃
k

δ ◦ φk
)
.

Then by Lemma 2.7, Ψ̂
n

δ (x) is an approximation to

(x1, x2︸ ︷︷ ︸
Ψ̃

1
δ◦φ1

, x2, . . . , x4︸ ︷︷ ︸
Ψ̃

2
δ◦φ2

, x4, . . . , x2
k−1

, x2
k−1

, . . . , x2
k

︸ ︷︷ ︸
Ψ̃

k
δ◦φk

),

where the braces indicate which part of the network approximates these out-
puts. Adding one layer to eliminate the double entries and (in case 2k >
n) the approximations xk with k > n, and adding the first entry which
always equals 1 = x0, we obtain a network Ψn : R → Rn+1 satisfying
(2.12). The depth bound is an immediate consequence of depth(Ψn

δ ) ≤ C +

maxi∈{1,...,k} depth(Ψ̃
i

δ), (2.11) and k ≤ C log(n). To bound the size, first note
that by (2.2) and (2.11) holds size(φℓ) ≤ C(k3 + k log(1/δ)) for a constant
C > 0 independent of n and δ. Thus

size(Ψn
δ ) ≤ C(n+ 1) + C size(Ψ̂

n

δ ) ≤ Cn+ C

k∑

ℓ=1

(size(Ψ̃
ℓ

δ) + size(φℓ))

≤ Cn+ C

k∑

ℓ=1

(
ℓ2ℓ + 2ℓ log(1/δ) + (k3 + k log(1/δ))

)

≤ C(n+ n log(n) + n log(1/δ)),

where we used k ≤ C log(n) and n ≥ 1. This shows (2.13). ⊓⊔
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Proposition 2.9 There exists a constant C > 0 such that the following holds:
For every δ > 0, n ∈ N0, N ∈ N and N polynomials pi =

∑n
j=0 c

i
jy

j ∈ Pn,

i = 1, . . . , N there exists a σ1-NN p̃δ : [−1, 1] → RN such that

max
i=1,...,N

‖pi − (p̃δ)i‖W 1,∞([−1,1]) ≤ δ

and, with C0 := max{maxi=1,...,N

∑n
j=2 |cij |, δ},

size(p̃δ) ≤C(1 + nN + n log(n) + n log(C0/δ)),

depth(p̃δ) ≤C(1 + log(n)3 + log(n) log(C0/δ)).

Proof We apply a linear transformation to the network in Corollary 2.8. Specif-
ically, let Φ : Rn → RN be the network expressing the linear function with ith
component (Φ(x))i =

∑i
j=0 c

i
jxj+1, where x = (xi)

n+1
i=1 . In other words, with

W ∈ RN×(n+1) given by Wiℓ = ciℓ−1, Φ is the depth 0 ReLU NN Φ(x) = Wx

of size at most N(n+ 1). Then by (2.12),

p̃δ := Φ ◦ Ψn
δ/C0

satisfies for each i ∈ {1, . . . , N}

‖pi − (p̃δ)i‖W 1,∞([−1,1]) ≤
n∑

ℓ=0

ciℓ‖xℓ − (Ψn
δ/C0

(x))ℓ+1‖W 1,∞([−1,1])

≤
n∑

ℓ=2

δ

C0
ciℓ ≤ δ.

By (2.13)

size(p̃δ) ≤ C(size(Φ) + size(Ψn
δ/C0

)) ≤ C(1 + nN + n log(n) + n log(C0/δ)),

and finally

depth(p̃δ) ≤ depth(Φ)+1+depth(Ψ̃
n

δ/C0
) ≤ C(1+log(n)3+log(n) log(C0/δ)).

⊓⊔

Remark 2.10 If y0 ∈ R and pi(y) =
∑n

j=0 c
i
j(y − y0)

j , i = 1, . . . , N , then
Proposition 2.9 can still be applied for the approximation of pi(y) for y ∈
[y0 − 1, y0 + 1], since the substitution z = y − y0 corresponds to a shift,
which can be realized exactly in the first layer of a NN, cp. (2.1a). Thus, if
qi(z) :=

∑n
j=0 c

i
jz

j and if ‖qi − (q̃δ)i‖W 1,∞([−1,1]) ≤ δ as in Proposition 2.9,
then y 7→ p̃δ(y) := q̃δ(y− y0) is a NN satisfying the accuracy and size bounds
of Proposition 2.9 w.r.t. the [W 1,∞([y0 − 1, y0 + 1])]N -norm.
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2.3.2 ReLU DNN approximation of univariate Legendre polynomials

For j ∈ N0 we denote by Lj the jth Legendre polynomial, normalized in
L2([−1, 1], λ/2), where λ/2 denotes the uniform probability measure on [−1, 1].

For j ∈ N0 it holds that Lj(x) =
∑j

ℓ=0 c
j
ℓx

ℓ, where, with m(ℓ) := (j − ℓ)/2,

cjℓ =

{
0 j − ℓ ∈ {0, . . . , j} ∩ 2Z+ 1,

(−1)m2−j
(
j
m

)(
j+ℓ
j

)√
2j + 1 j − ℓ ∈ {0, . . . , j} ∩ 2Z,

see e.g. [12, Section 10.10 Equation (16)], (the factor
√
2j + 1 is needed to

obtain the desired normalization). We define cjℓ := 0 for ℓ > j.

Analogous to [26, Equation (4.13)] it holds that
∑j

ℓ=0 |c
j
ℓ | ≤ 4j for all j ∈ N

(we use that
√
2j + 1 ≤ √

πj). Inserting this into Proposition 2.9 with N = n
and pi = Li for i = 1, . . . , N , we find the following result on the approximation
of univariate Legendre polynomials by σ1-NNs (similar to [24, Proposition 2.5]
for the approximation of Chebyšev polynomials).

Proposition 2.11 ([26, Proposition 4.2 and Equation (4.13)]) For ev-
ery n ∈ N and for every δ ∈ (0, 1) there exists a σ1-NN L̃n,δ with input
dimension one and with output dimension n such that for a positive constant
C independent of n and δ there holds

‖Lj − (L̃n,δ)j‖W 1,∞([−1,1]) ≤ δ, j = 1, . . . , n, (2.14)

depth(L̃n,δ) ≤C(1 + log2 n)
(
n+ log2(1/δ)

)
,

size(L̃n,δ) ≤Cn
(
n+ log2(1/δ)

)
.

Remark 2.12 Alternatively, the σ1-NN approximation of Legendre polynomi-
als of degree n could be based on the three term recursion formula for Legendre
polynomials or the Horner scheme for polynomials in general, by concatenat-
ing n product networks from Proposition 2.5 (and affine transformations).
Because, depending on the scaling of the Legendre polynomials, either the
accuracy δ of the product networks or the maximum input size M needs to
grow exponentially with n, both the network depth and the network size of
the resulting NN approximation of univariate Legendre polynomials would
be bounded by Cn(n + log(1/δ)). That network size is of the same order as
in Proposition 2.11, but the network depth has a worse dependence on the
polynomial degree n. For more details, see [24, Proposition 2.5], where this
construction is used to approximate truncated Chebyšev expansions based on
the three term recursion for Chebyšev polynomials, which is very similar to
that for Legendre polynomials.

For future reference, we note that by (2.14) and Equation (2.16) below, for
all n ∈ N, j = 1, . . . , n, δ ∈ (0, 1) and k ∈ {0, 1}

‖(L̃n,δ)j‖Wk,∞([−1,1]) ≤ (2j+1)1/2+2k+δ ≤ (2j+1)1/2+2k+1 ≤ (2j+2)2k+1.
(2.15)
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2.3.3 ReLU DNN approximation of tensor product Legendre polynomials

Let d ∈ N. Denote the uniform probability measure on [−1, 1]d by µd, i.e.
µd := 2−dλ where λ is the Lebesgue measure on [−1, 1]d. Then, for all ν ∈
Nd

0 the tensorized Legendre polynomials Lν(y) :=
∏d

j=1 Lνj
(yj) form a µd-

orthonormal basis of L2([−1, 1]d, µd). We shall require the following bound on
the norm of the tensorized Legendre polynomials which itself is a consequence
of the Markoff inequality, and our normalization of the Legendre polynomials:
for any k ∈ N0

∀ν ∈ Nd
0 : ‖Lν‖Wk,∞([−1,1]d) ≤

d∏

j=1

(1 + 2νj)
1/2+2k. (2.16)

To provide bounds on the size of the networks approximating the tensor prod-
uct Legendre polynomials, for finite subsets Λ ⊂ Nd

0 we will make use of the
quantity

m(Λ) := max
ν∈Λ

|ν|1. (2.17)

Proposition 2.13 For every finite subset Λ ⊂ Nd
0 and every δ ∈ (0, 1) there

exists a σ1-NN fΛ,δ with input dimension d and output dimension |Λ|, such
that the outputs {L̃ν,δ}ν∈Λ of fΛ,δ satisfy

∀ν ∈ Λ : ‖Lν − L̃ν,δ‖W 1,∞([−1,1]d) ≤ δ,

sup
y∈[−1,1]d

|L̃ν,δ((yj)j∈supp ν)| ≤ (2m(Λ) + 2)d,

and for a constant C > 0 that is independent of d, Λ and δ it holds

depth(fΛ,δ) ≤C(1 + d log d)(1 + log2m(Λ))
(
m(Λ) + log2(1/δ)

)
,

size(fΛ,δ) ≤Cd2m(Λ)2 + Cdm(Λ) log2(1/δ)

+ Cd2|Λ|
(
1 + log2m(Λ) + log2(1/δ)

)
.

Proof Let δ ∈ (0, 1) and a finite subset Λ ⊂ Nd
0 be given.

The proof is divided into three steps. In the first step, we define ReLU NN
approximations of tensor product Legendre polynomials {L̃ν,δ}ν∈Λ and fix the
parameters used in the NN approximation. In the second step, we estimate the
error of the approximation, and the L∞([−1, 1]d)-norm of the L̃ν,δ, ν ∈ Λ. In
the third step, we describe the network fΛ,δ and estimate its depth and size.

Step 1. For all ν ∈ Nd
0, we define nν := | suppν| and Mν := 2|ν|1 + 2.

We can now define

L̃ν,δ((yj)j∈supp ν) :=
∏̃

M−3
ν δ/2,Mν

({
(L̃m(Λ),δ′(yj))νj

}
j∈supp ν

)
, (2.18)
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where
∏̃

M−3
ν δ/2,Mν

: [−Mν ,Mν ]
| supp ν| → R is as in Proposition 2.6. For the

network approximating univariate Legendre polynomials L̃m(Λ),δ′ from Propo-

sition 2.11, we set the accuracy parameter as δ′ := 1
2d

−1(2m(Λ)+2)−d−1δ < 1.
Let us point out that by (2.15) for all ν ∈ Nd

0 and all j ∈ suppν

‖(L̃m(Λ),δ′)νj‖L∞([−1,1]) ≤ 2νj + 2 ≤ 2|ν|1 + 2 =Mν ≤ 2m(Λ) + 2,

so that, as required by Proposition 2.6, the absolute values of the arguments
of
∏̃

M−3
ν δ/2,Mν

in (2.18) are all bounded by Mν .

Step 2. For the L∞([−1, 1])-error of L̃ν,δ we find

sup
y∈[−1,1]d

∣∣∣Lν(y)− L̃ν,δ((yj)j∈supp ν)
∣∣∣

≤ sup
y∈[−1,1]d

∣∣∣∣∣∣
Lν(y)−

∏

j∈supp ν

(L̃m(Λ),δ′(yj))νj

∣∣∣∣∣∣

+ sup
y∈[−1,1]d

∣∣∣∣∣
∏

j∈supp ν

(L̃m(Λ),δ′(yj))νj

−
∏̃

M−3
ν δ/2,Mν

({
(L̃m(Λ),δ′(yj))νj

}
j∈supp ν

) ∣∣∣∣∣

≤ sup
y∈[−1,1]d

∑

k∈supp ν

∣∣∣∣∣∣∣

∏

j∈supp ν:
j<k

(L̃m(Λ),δ′(yj))νj

∣∣∣∣∣∣∣
·
∣∣∣Lνk

(yk)− (L̃m(Λ),δ′(yk))νk

∣∣∣

·

∣∣∣∣∣∣∣

∏

j∈supp ν:
j>k

Lνj
(yj)

∣∣∣∣∣∣∣
+

δ

2M3
ν

.

Using Proposition 2.13, (2.15), (2.16) and Mν = 2|ν|1 + 2 ≤ 2m(Λ) + 2, the
last term can be bounded by

| suppν|Mnν−1
ν δ′ +

δ

2
≤ | suppν|

d

Mnν−1
ν

(2m(Λ) + 2)d+1

δ

2
+
δ

2
≤ δ.

It follows that for all ν ∈ Λ

sup
y∈[−1,1]d

∣∣∣L̃ν,δ((yj)j∈supp ν)
∣∣∣ ≤ sup

y∈[−1,1]d
|Lν(y)|

+ sup
y∈[−1,1]d

∣∣∣Lν(y)− L̃ν,δ((yj)j∈supp ν)
∣∣∣

≤
d∏

j=1

(1 + 2νj)
1/2 + δ

≤
d∏

j=1

(1 + 2νj)
1/2 + 1 ≤Md

ν .
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To determine the error of the gradient, without loss of generality we only
consider the derivative with respect to y1. In the case 1 /∈ suppν, we trivially
have ∂

∂y1
(Lν(y) − L̃ν,δ(y)) = 0 for all y ∈ [−1, 1]d. Thus let ν1 6= 0 in the

following. Then, with δ′ = 1
2d

−1(2m(Λ) + 2)−d−1δ

sup
y∈[−1,1]d

∣∣∣∣
∂

∂y1
Lν(y)−

∂

∂y1
L̃ν,δ((yj)j∈supp ν)

∣∣∣∣

≤ sup
y∈[−1,1]d

∣∣∣∣∣∣
∂

∂y1
Lν(y)−

∂

∂y1

∏

j∈supp ν

(L̃m(Λ),δ′(yj))νj

∣∣∣∣∣∣

+ sup
y∈[−1,1]d

∣∣∣∣∣
∂

∂y1

∏

j∈supp ν

(L̃m(Λ),δ′(yj))νj

− ∂

∂y1

∏̃
M−3

ν δ/2,Mν

({
(L̃m(Λ),δ′(yj))νj

}
j∈supp ν

) ∣∣∣∣∣

≤ sup
y∈[−1,1]d

∣∣∣∣
∂

∂y1
Lν1

(y1)−
∂

∂y1
(L̃m(Λ),δ′(y1))ν1

∣∣∣∣ ·

∣∣∣∣∣∣∣

∏

j∈supp ν:
j>1

Lνj
(yj)

∣∣∣∣∣∣∣

+ sup
y∈[−1,1]d

∑

1 6=k∈supp ν

∣∣∣∣
∂

∂y1
(L̃m(Λ),δ′(y1))ν1

∣∣∣∣ ·

∣∣∣∣∣∣∣

∏

1 6=j∈supp ν:
j<k

(L̃m(Λ),δ′(yj))νj

∣∣∣∣∣∣∣

·
∣∣∣Lνk

(yk)− (L̃m(Λ),δ′(yk))νk

∣∣∣ ·

∣∣∣∣∣∣∣

∏

j∈supp ν:
j>k

Lνj
(yj)

∣∣∣∣∣∣∣

+ sup
y∈[−1,1]d

∣∣∣∣∣
∏

1 6=j∈supp ν

(L̃m(Λ),δ′(yj))νj

−
(

∂

∂x1

∏̃
M−3

ν δ/2,Mν

)({
(L̃m(Λ),δ′(yj))νj

}
j∈supp ν

) ∣∣∣∣∣

·
∣∣∣∣
∂

∂y1
(L̃m(Λ),δ′(y1))ν1

∣∣∣∣ ,

where ∂
∂x1

∏̃
M−3

ν δ/2,Mν
denotes the (weak) derivative of

∏̃
M−3

ν δ/2,Mν

: [−Mν ,Mν ]
| supp ν| → R

with respect to its first argument, cf. Proposition 2.6.

Using (2.16) and Proposition 2.11 for the first term, Proposition 2.11, (2.15)
and (2.16) for the second term and Proposition 2.6 and (2.16) for the third
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term, we further bound the NN approximation error by

δ′Mnν−1
ν + (| suppν| − 1)M3

νM
nν−2
ν δ′ +

δ

2M3
ν

M3
ν

≤ | suppν|Mnν+1
ν

1
2d

−1(2m(Λ) + 2)−d−1δ +
δ

2
≤ δ.

Step 3. We now describe the network fΛ,δ, which in parallel emulates

{L̃ν,δ}ν∈Λ. The network is constructed as the concatenation of two subnet-
works, i.e.

fΛ,δ = f
(1)
Λ,δ ◦ f

(2)
Λ,δ.

The subnetwork f
(2)
Λ,δ evaluates, in parallel, approximate univariate Legen-

dre polynomials in the input variables (yj)j≤d. It is defined as

f
(2)
Λ,δ :=

({
L̃m(Λ),δ′

}d

j=1

)
,

where the pair of round brackets denotes a parallelization.

The subnetwork f
(1)
Λ,δ takes the output of f

(2)
Λ,δ as input and computes

fΛ,δ ((yj)j≤d) =f
(1)
Λ,δ

(
f
(2)
Λ,δ ((yj)j≤d)

)

=

({
L̃ν,δ ((yj)j≤d)

}
ν∈Λ

)

=

({
IdR ◦

∏̃
M−3

ν δ/2,Mν

({
(L̃m(Λ),δ′(yj))νj

}
j∈supp ν

)}

ν∈Λ

)
,

where in the last two lines the outer pair of round brackets denotes a paral-
lelization. The depth of the identity networks is such that all components of
the parallelization have equal depth.

We have the following expression for the network depth:

depth(fΛ,δ) = depth
(
f
(1)
Λ,δ

)
+ 1 + depth

(
f
(2)
Λ,δ

)
.

Denoting here and in the remainder of this proof by C > 0 constants indepen-
dent of d, Λ and δ ∈ (0, 1),

depth
(
f
(2)
Λ,δ

)
= depth(L̃m(Λ),δ′)

≤C(1 + log2m(Λ))
(
m(Λ) + log2(1/δ

′)
)

≤C(1 + log2m(Λ))
(
m(Λ) + log2(d) + 1 + (d+ 1) log2(4m(Λ))

+ log2(1/δ)
)

≤Cd(1 + log2m(Λ))
(
m(Λ) + log2(1/δ)

)
,

where we used that 2m(Λ) + 2 ≤ 4m(Λ) when Λ 6= {0}.
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Similarly, due to Mν = 2|ν|1 +2 ≤ 4m(Λ) (if Λ 6= {0}), we can choose the

identity networks in the definition of f
(1)
Λ,δ such that

depth
(
f
(1)
Λ,δ

)
=1 +max

ν∈Λ
depth

(∏̃
M−3

ν δ/2,Mν

)

≤ max
ν∈Λ

C
(
1 + log2(nν) log2(nνM

nν+3
ν 2/δ)

)

≤Cmax
ν∈Λ

(
1 + log2(nν)

(
log2 nν + 1 + (nν + 3) log2(4m(Λ))

+ log2(1/δ)
))

≤C(1 + d log d)
(
1 + log2m(Λ) + log2(1/δ)

)
,

where we used that nν ≤ d. Finally, we find the following bound on the network
depth:

depth(fΛ,δ) ≤C(1 + d log d)(1 + log2m(Λ))
(
m(Λ) + log2(1/δ)

)
.

For the network size, we find that

size(fΛ,δ) ≤ 2 size
(
f
(1)
Λ,δ

)
+ 2 size

(
f
(2)
Λ,δ

)
.

With Proposition 2.11 we estimate the size of f
(2)
Λ,δ as

size
(
f
(2)
Λ,δ

)
= d size

(
L̃m(Λ),δ′

)

≤Cdm(Λ)(m(Λ) + log2(1/δ
′))

≤Cdm(Λ)
(
m(Λ) + log2(d) + 1 + (d+ 1) log2(4m(Λ)) + log2(1/δ)

)

≤Cd2m(Λ)2 + Cdm(Λ) log2(1/δ).

The depth of each of the identity networks in the definition of f
(1)
Λ,δ is bounded

by depth(f
(1)
Λ,δ) ≤ C(1 + d log d)

(
1 + log2m(Λ) + log2(1/δ)

)
. It follows that

size
(
f
(1)
Λ,δ

)
=
∑

ν∈Λ

size

(
IdR ◦

∏̃
M−3

ν δ/2,Mν

)

≤
∑

ν∈Λ

2 size (IdR) + 2 size

(∏̃
M−3

ν δ/2,Mν

)

≤ 4|Λ|
(
depth

(
f
(1)
Λ,δ

)
+ 1
)
+ C

∑

ν∈Λ

(
1 + nν log2(nνM

nν+3
ν 2/δ)

)

≤C(1 + d log d)|Λ|
(
1 + log2m(Λ) + log2(1/δ)

)
+ C(1 + d log d)|Λ|

+ Cd
∑

ν∈Λ

(
1 + (nν + 3) log2(4m(Λ)) + log2(1/δ)

)

≤Cd2|Λ|
(
1 + log2m(Λ) + log2(1/δ)

)
.
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Hence, we arrive at

size(fΛ,δ) ≤ 2 size
(
f
(1)
Λ,δ

)
+ 2 size

(
f
(2)
Λ,δ

)

≤Cd2m(Λ)2 + Cdm(Λ) log2(1/δ) + Cd2|Λ|
(
1 + log2m(Λ)

+ log2(1/δ)
)
.

⊓⊔

2.4 RePU DNN emulation of polynomials

The approximation of polynomials by neural networks can be significantly sim-
plified if instead of the ReLU activation σ1 we consider as activation function
the so-called rectified power unit (“RePU” for short): recall that for r ∈ N,
r ≥ 2, the RePU activation is defined by σr(x) = max{0, x}r, x ∈ R. In con-
trast to σ1-NNs, as shown in [18], for every r ∈ N, r ≥ 2 there exist RePU
networks of depth 1 realizing the multiplication of two real numbers without
error. This yields the following result proven in [18, Theorem 4.1] for r = 2.
With [18, Theorem 2.5] this extends to all r ≥ 2. To render the presentation
self-contained, an alternative proof is provided in Appendix A, based on ideas
in [26]. Unlike in [18], it is shown that the constant C is independent of d.
This is relevant in particular when considering RePU emulations of truncated
polynomial chaos expansions of countably parametric maps u : [−1, 1]N → R,
shortly discussed in Section 4.3.3. Polynomial approximations of such maps
depend on a finite number d(ε) ∈ N of parameters only, but with d(ε) → ∞
as ε ↓ 0.

Proposition 2.14 Fix d ∈ N and r ∈ N, r ≥ 2. Then there exists a constant
C > 0 independent of d but depending on r such that for any finite downward
closed Λ ⊆ Nd

0 and any p ∈ PΛ there is a σr-network p̃ : R
d → R which realizes

p exactly and such that size(p̃) ≤ C|Λ| and depth(p̃) ≤ C log2(|Λ|).

Remark 2.15 Let ψ : R → R be an arbitrary C2 function that is not linear,
i.e. it does not hold ψ′′(x) = 0 for all x ∈ R. In [31, Theorem 3.4] it is
shown that ψ-networks can approximate the multiplication of two numbers
a, b in a fixed bounded interval up to arbitrary accuracy with a fixed number
of units. We also refer to [34, Section 3.3] where we explain this observation
from [31] in more detail. From this, one can obtain a version of Proposition
2.14 for arbitrary C2 activation functions. To state it, we fix d ∈ N. Then
there exists C > 0 (independent of d) such that for every δ > 0, for every
downward closed Λ ⊆ Nd

0 and every p ∈ PΛ, there exists a ψ-neural network
q : [−M,M ]d → R such that supx∈[−M,M ]d |p(x) − q(x)| ≤ δ, size(q) ≤ C|Λ|
and depth(q) ≤ C log2(|Λ|). As discussed in Remark 2.1, the same also holds,
e.g., for NNs with continuous, sigmoidal activation σ of order k ≥ 2.

Recently, there has been some interest in the approximation of ReLU NNs
by rational functions and NNs with rational activation functions and vice
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versa, e.g. in [36,3]. In the latter, σ = p/q is used as activation for polyno-
mials p, q of prescribed degree, but within each computational node trainable
coefficients of p and q. For all prescribed deg(p) ≥ 2 and deg(q) ∈ N0, each
node in such a network can emulate the multiplication of two numbers exactly
([3, Proposition 10] and its proof), hence Proposition 2.14 also holds for such
NNs (the proof in Appendix A applies, using that also the identity map can
be emulated by networks with such activations).

As a result, Theorem 3.10 also holds for all activation functions discussed
in this remark.

3 Exponential expression rate bounds

We now proceed to the statement and proof of the main result of the present
note, namely the exponential rate bounds for the DNN expression of d-variate
holomorphic maps. First, in Section 3.1 we recall (classical) polynomial approx-
imation results for analytic functions, similar to those in [37]. Subsequently,
these are used to deduce DNN approximation results for ReLU and RePU
networks.

3.1 Polynomial approximation

Fix d ∈ N. For ρ > 1 define the open Bernstein ellipse

Eρ :=

{
z + z−1

2
: z ∈ C, 1 ≤ |z| < ρ

}
⊂ C,

and for the poly-radius ρ = (ρj)
d
j=1 ∈ (1,∞)d define the poly-ellipse

Eρ :=
d×

j=1

Eρj ⊆ Cd. (3.1)

Let u : [−1, 1]d → R admit a complex holomorphic extension to the polyellipse
Eρ. Such a function can be approximated on [−1, 1]d by multivariate Legendre
expansions, with the error decaying uniformly like exp(−βN1/d) for some β >
0 and in terms of the dimension N of the approximation space. This statement
is made precise in Theorem 3.5 below.

Remark 3.1 Suppose that u : [−1, 1]d → R is (real) analytic. Then it allows a
complex holomorphic extension to some open set O ⊆ Cd containing [−1, 1]d.
Since for ρ > 1 close to 1, the maximal distance of a point in Eρ to the interval
[−1, 1] becomes arbitrarily small, there always exists ρ > 1 such that u allows
a holomorphic extension to×d

j=1 Eρ.

For the proof of the theorem we shall use the following result mentioned
in [39, Equation (1.5)].
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Lemma 3.2 Let (aj)
d
j=1 ∈ (0,∞)d. Then, with a :=

∑d
j=1 1/aj

∣∣∣∣∣∣



ν ∈ Nd

0 :

d∑

j=1

νj
aj

≤ 1





∣∣∣∣∣∣
≤ 1

d!
(1 + a)d

d∏

j=1

aj . (3.2)

The lemma is proved by computing (as an upper bound of the left-hand side in

(3.2)) the volume of the set {(xj)dj=1 ∈ Rd
+ :

∑d
j=1

(xj−1)
aj

≤ 1}, which equals

the right-hand side in (3.2). The significance of this result is, that it provides
an upper bound for the size of multiindex sets of the type

Λε := {ν ∈ Nd
0 : ρ−ν ≥ ε}, ε ∈ (0, 1). (3.3)

To see this, note that due to log(ρ−ν) = −∑d
j=1 νj log(ρj), for any ε ∈ (0, 1)

we have

Λε =



ν ∈ Nd

0 :

d∑

j=1

νj log(ρj) ≤ log(1/ε)



 .

Applying Lemma 3.2 with aj = log(1/ε)/ log(ρj) we thus get (see also [2,
Lemma 4.4]):

Lemma 3.3 It holds

|Λε| ≤
1

d!


log(1/ε) +

d∑

j=1

log(ρj)




d
d∏

j=1

1

log(ρj)
. (3.4)

Remark 3.4 Note that

{
ν ∈ Nd

0 : 0 ≤ νj ≤
− log(ε)

d log(ρj)
∀j
}

⊆ Λε ⊆
{
ν ∈ Nd

0 : 0 ≤ νj ≤
− log(ε)

log(ρj)
∀j
}
.

(3.5)

This implies the existence of a constant C (depending on ρ but independent
of d) such that for all ε ∈ (0, 1) with ρmin := minj=1,...,d ρj and ρmax :=
maxj=1,...,d ρj (cp. (2.17))

m(Λε) = max{|ν|1 : ρ−ν ≥ ε} = max{n ∈ N0 : ρ−n
min ≥ ε}

= max

{
n ∈ N0 : n ≤ − log(ε)

log(ρmin)

}
≤ d

log(ρmax)

log(ρmin)




d∏

j=1

− log(ε)

d log(ρj)




1/d

≤ Cd|Λε|1/d. (3.6)

We are now in position to prove the following theorem, variations of which
can be considered as classical.
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Theorem 3.5 Let d ∈ N and ρ = (ρj)
d
j=1 ∈ (1,∞)d. Let u : Eρ → C be

holomorphic. Then, for all k ∈ N0 and for any β > 0 such that

β <


d!

d∏

j=1

log(ρj)




1/d

(3.7)

there exists C > 0 (depending on d, ρ, k, β and u) such that with

lν :=

∫

[−1,1]d
u(y)Lν(y)dµd(y), ν ∈ Nd

0 (3.8)

and Λε in (3.3) it holds for all ε ∈ (0, 1)
∥∥∥∥∥u−

∑

ν∈Λε

lνLν

∥∥∥∥∥
Wk,∞([−1,1]d)

≤ C e−β|Λε|
1/d

.

Proof Due to the holomorphy of u on Eρ, for a constant C > 0 depending on
d and ρ, lν ∈ R satisfies the bound

|lν | ≤ C‖u‖L∞(Eρ)ρ
−ν

d∏

j=1

(1 + 2νj)
1/2, ν ∈ Nd

0. (3.9)

For d = 1 a proof can be found in [9, Chapter 12]. For general d ∈ N the
bound follows by application of the one dimensional result in each variable.
For more details we refer for instance to [6, Equations (2.14) and (2.16)] or
[40, Corollary B.2.7].

Since (Lν)ν∈Nd
0
forms an orthonormal basis of (the Hilbert space) L2([−1, 1]d,

µd) we have

u(y) =
∑

ν∈Nd
0

lνLν(y) (3.10)

converging in L2([−1, 1]d, µd). Furthermore, with (3.9) and (2.16), for k ∈ N0

and every ν ∈ Nd
0

|lν |‖Lν‖Wk,∞([−1,1]d) ≤ C‖u‖L∞(Eρ)ρ
−ν

d∏

j=1

(1 + 2νj)
1+2k.

Using [42, Lemma 3.10] (which is a variation of [7, Lemma 7.1])

∑

ν∈Nd
0

|lν |‖Lν‖Wk,∞([−1,1]d) <∞,

and thus (3.10) also converges in W k,∞([−1, 1]d).
Next, for j ∈ {1, . . . , d} let ej := (δij)

d
i=1 and introduce

Aε := {ν ∈ Nd
0 : ρ−ν < ε, ∃ j ∈ suppν s.t. ρ−(ν−ej) ≥ ε}.
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Note that for ε ∈ (0, 1)

{ν ∈ Nd
0 : ρ−ν < ε} = {µ+ η : µ ∈ Aε, η ∈ Nd

0}. (3.11)

Furthermore, since for every ν ∈ Aε there exists j ∈ suppν ⊆ {1, . . . , d} such
that ρ−(ν−ej) ≥ ε and therefore ν − ej ∈ Λε, we find with (3.4) that there
exists a constant C depending on d and ρ but independent of ε ∈ (0, 1) such
that for all ε ∈ (0, 1)

|Aε| ≤ d|Λε| ≤ C(1 + log(1/ε))d. (3.12)

Furthermore, for such ν ∈ Aε and j ∈ suppν ⊆ {1, . . . , d} with ρmin :=
mini∈{1,...,d} ρi we get

ρ
−|ν|1+1
min = ρ

−|ν−ej |1
min ≥ ρ−(ν−ej) ≥ ε

and therefore

|ν|1 − 1 ≤ log(1/ε)

log(ρmin)
. (3.13)

Using (3.11), there is C > 0 depending on d, ρ, k but independent of ε ∈ (0, 1),
with

∥∥∥∥∥u−
∑

ν∈Λε

lνLν

∥∥∥∥∥
Wk,∞([−1,1]d)

≤
∑

{ν∈Nd
0 :ρ−ν<ε}

|lν |‖Lν‖Wk,∞([−1,1]d)

≤
∑

{ν,µ : ν∈Aε, µ∈Nd
0}

C‖u‖L∞(Eρ)ρ
−(ν+µ)

d∏

j=1

(1 + 2(νj + µj))
1+2k

≤ C‖u‖L∞(Eρ)

∑

{ν,µ : ν∈Aε, µ∈Nd
0}

ρ−νρ−µ

d∏

j=1

((1 + 2νj)(1 + 2µj))
1+2k

≤ C‖u‖L∞(Eρ)ε


∑

ν∈Aε

d∏

j=1

(1 + 2νj)
1+2k




∑

µ∈Nd
0

ρ−µ

d∏

j=1

(1 + 2µj)
1+2k


 .

The sum in the second brackets is finite independent of ε by [42, Lemma 3.10].
The sum in the first brackets can be bounded using (3.12) and (3.13) to obtain
a constant C > 0 depending on u, d, ρ and k such that for all ε ∈ (0, 1)

∥∥∥∥∥u−
∑

ν∈Λε

lνLν

∥∥∥∥∥
Wk,∞([−1,1]d)

≤Cε|Aε| max
ν∈Aε

d∏

j=1

(1 + 2νj)
1+2k

≤Cε(1 + log(1/ε))2d+2dk.

To finish the proof, note that our above calculation shows that for any
τ ∈ (0, 1) there exists Cτ > 0 depending on u, d, ρ and k such that

∥∥∥∥∥u−
∑

ν∈Λε

lνLν

∥∥∥∥∥
Wk,∞([−1,1]d)

≤ Cτε
τ
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for all ε ∈ (0, 1). Moreover, (3.4) implies

d∑

j=1

log(ρj)−


|Λε|d!

d∏

j=1

log(ρj)




1/d

≥ log(ε).

Hence for all ε ∈ (0, 1)
∥∥∥∥∥u−

∑

ν∈Λε

lνLν

∥∥∥∥∥
Wk,∞([−1,1]d)

≤Cτε
τ ≤ Cτ exp


τ




d∑

j=1

log(ρj)−


|Λε|d!

d∏

j=1

log(ρj)




1/d






=C exp
(
−β|Λε|1/d

)
,

where C := Cτ exp(τ
∑d

j=1 log(ρj)), β := τ(d!
∏d

j=1 log(ρj))
1/d and where

τ ∈ (0, 1) can be arbitrarily close to 1. ⊓⊔

For later use, we note that the right-hand side of (3.7) can be estimated
by Stirling’s inequality, with ρmin = mindj=1 ρj and ρmax = maxdj=1 ρj :

(d/e) log(ρmin) ≤


d!

d∏

j=1

log(ρj)




1/d

≤ (d/e)(e2d)1/(2d) log(ρmax). (3.14)

3.2 ReLU DNN approximation

We now come to the main result, concerning the approximation of holomorphic
functions on bounded intervals by ReLU networks.

Theorem 3.6 Fix d ∈ N and let ρ = (ρj)
d
j=1 ∈ (1,∞)d. Assume that u :

[−1, 1]d → R admits a holomorphic extension to Eρ.
Then, there exist constants β′ = β′(ρ, d) > 0 and C = C(u,ρ, d) > 0, and

for every N ∈ N there exists a σ1-NN ũN : [−1, 1]d → R satisfying

size(ũN ) ≤ N , depth(ũN ) ≤ CN 1
d+1 log2(N ) (3.15)

and the error bound

‖u(·)− ũN (·)‖W 1,∞([−1,1]d) ≤ C exp
(
−β′N 1

d+1

)
. (3.16)

Proof Throughout this proof, let β > 0 be fixed such that (3.7) holds. We
proceed in three steps: In Step 1, we introduce a NN approximation of u,
whose error, network depth and size we estimate in Step 2. Based on these
estimates, we show Equations (3.15) – (3.16) in Step 3.
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Step 1. Let d ∈ N. In this step, for any ε ∈ (0, 1) we introduce a network
ûε approximating u (with increasing accuracy as ε→ 0).

Fix ε ∈ (0, 1) arbitrary, let Λε ⊆ Nd
0 be as in (3.3) and set uε :=

∑
ν∈Λε

lνLν

with the Legendre coefficients lν of u as in (3.8).

Let Affineu be a NN of depth 0, with input dimension |Λε|, output di-
mension 1 and size at most |Λε| which implements the affine transformation
R|Λε| → R : (zν)ν∈Λ 7→ ∑

ν∈Λε
lνzν . Furthermore, let fΛε,δ be the network

from Proposition 2.13, emulating approximations to all multivariate Legendre
polynomials (Lν)ν∈Λε . We define a NN

ûε := Affineu ◦fΛε,δ.

Then

ûε(y) =
∑

ν∈Λε

lνL̃ν,δ(y), y ∈ [−1, 1]d,

where (with β > 0 as in (3.7)) the accuracy δ > 0 of the σ1-NN approximations
of the tensor product Legendre polynomials is chosen as

δ := exp
(
−β|Λε|1/d

)
.

Step 2. For the NN ûε we obtain the error estimate

‖uε − ûε‖W 1,∞([−1,1]d) ≤
∑

ν∈Λε

|lν | ‖Lν − L̃ν,δ‖W 1,∞([−1,1]d) ≤
∑

ν∈Λε

|lν | δ

=
∑

ν∈Λε

|lν | exp
(
−β|Λε|1/d

)
.

With Theorem 3.5 this yields the existence of a constant C > 0 (depending
on d, ρ, β and u) such that

‖u− ûε‖W 1,∞([−1,1]d) ≤ C exp
(
−β|Λε|1/d

)
. (3.17)

We now bound the depth and the size of ûε. Using Proposition 2.13 and
(3.6), we obtain

depth(ûε) ≤ depth(Affineu) + 1 + depth
(
fΛε,δ

)

≤C(1 + d log d)(1 + log2m(Λε))
(
m(Λε) + log2(1/δ)

)

≤C(1 + d log d)(1 + log2(d) + log2 |Λε|)
(
Cd|Λε|1/d + β|Λε|1/d

)

≤C(1 + β)(1 + d2(log d)2)(1 + |Λε|1/d log2 |Λε|) (3.18)
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for C > 0 depending on ρ. To bound the NN size, Proposition 2.13 and (3.6)
give

size(ûε) ≤ 2 size(Affineu) + 2 size(fΛε,δ)

≤ 2|Λε|+ 2Cd2m(Λ)2 + 2Cdm(Λ) log2(1/δ)

+ 2Cd2|Λε|
(
1 + log2m(Λε) + log2(1/δ)

)

≤ 2|Λε|+ Cd4(|Λε|1/d)2 + Cd2|Λε|1/dβ|Λε|1/d

+ Cd2|Λε|
(
1 + log(d) + log2 |Λε|+ β|Λε|1/d

)

≤C(1 + β)d4|Λε|2/d + C(1 + β)(1 + d2 log d)|Λε|1+1/d

≤C2(1 + β)d4|Λε|1+1/d (3.19)

for a constant C2 > 0 which depends on ρ, but is independent of d, β, u and
of ε ∈ (0, 1).

Step 3. Finally, we define ũN . Fix β > 0 satisfying (3.7) and N ∈ N such
that N > N0 := C2(1 + β)d4, with the constant C2 as in (3.19). Set

N̂ :=

( N
N0

)d/(d+1)

∈ R. (3.20)

Next, let ε ∈ (0, 1) be such that

N̂ =

d∏

j=1

(
log(1/ε)

log(ρj)
+ 1

)
, (3.21)

which is possible since N̂ > 1 due to the assumption N > N0 = C2(1 + β)d4.
Define ũN := ûε.

First let us estimate the size of ũN . By (3.5)

N̂ ≥
d∏

j=1

(⌊
log(1/ε)

log(ρj)

⌋
+ 1

)
=

∣∣∣∣
{
ν ∈ Nd

0 : 0 ≤ νj ≤
log(1/ε)

log(ρj)
∀j
}∣∣∣∣ ≥ |Λε|.

Hence (3.19) and the definition of N̂ imply

size(ũN ) = size(ûε) ≤ C2(1 + β)d4|Λε|1+1/d ≤ C2(1 + β)d4N̂ 1+1/d ≤ N .

Similarly one obtains the bound on the depth of ũN by using (3.18). This
shows (3.15).

Next we estimate the error ‖u− ũN ‖W 1,∞([−1,1]d). By (3.5)

N̂ ≤
d∏

j=1

(
d

⌊
log(1/ε)

d log(ρj)

⌋
+ d+ 1

)

=

d∏

j=1

(⌊
log(1/ε)

d log(ρj)

⌋
+ 1

) d∏

j=1


d+ 1⌊

log(1/ε)
d log(ρj)

⌋
+ 1


 ≤ |Λε|(d+ 1)d.
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Thus (3.17) gives

‖u− ũN ‖W 1,∞([−1,1]d) ≤ C exp
(
−β|Λε|1/d

)
≤ C exp

(
−β(d+ 1)−1N̂ 1/d

)
.

By (3.20) this is (3.16) for any N > N0 and with

β′ = β(d+ 1)−1(C2(1 + β)d4)−1/(d+1)

for C2 as in (3.19) (independent of d, β and u). With ũN := 0 (i.e. a trivial NN
giving the constant value 0) for all (finitely many) N ≤ N0, we conclude that
(3.16) holds for all N ∈ N (by increasing C > 0 in (3.16) if necessary). ⊓⊔

Remark 3.7 (Fully connected networks) In the proof of Theorem 3.6 we ex-
plicitly constructed a sparsely connected DNN to approximate u. In practice,
it might be tedious to implement this type of architecture. Instead one can set
up a fully connected network, containing our sparse architecture. We shortly
discuss the implications of Theorem 3.6 in this case.

The width w ∈ N of a neural network φ (i.e. the maximum number of nodes
in one of its layers) is trivially bounded by size(φ). For a fully connected
network of width w, the weight matrix connecting two layers may have w2

nonzero weights. Denote now by ûN a fully connected σ1-NN of width w = N
and depth depth(ûN ) ≤ CN 1/(d+1) log2(N ) (with C as in (3.15)) realizing
the function ũN from Theorem 3.6. The existence of ûN is an immediate
consequence of the depth and size bounds given in Theorem 3.6. Then by
(3.15), denoting its total number of weights, also counting vanishing weights,
by #weights(ûN ),

#weights(ûN ) ≤CN 2+ 1
d+1 log2(N ) = CN 2d+3

d+1 log2(N ),

depth(ûN ) ≤CN 1
d+1 log2(N )

and by (3.16)

‖u− ûN ‖W 1,∞([−1,1]d) ≤ C exp
(
−β′N 1

d+1

)
.

This yields the error bound

‖u− ûN ‖W 1,∞([−1,1]d) ≤C exp
(
−β′N 1

d+1

)

≤ exp

(
−β̂ (#weights(ûN ))

1
2d+3

log(#weights(ûN ))

)
,

for fully connected networks, and where β̂ > 0 is some constant independent
of N . Hence, the exponent in the error estimate has (up to logarithmic terms)
decreased from 1

d+1 for the sparsely connected network in Theorem 3.6 to 1
2d+3

for the fully connected network.
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Remark 3.8 Note that in Step 2 of the proof, the network ûε depends on u only
via the Legendre coefficients {lν}ν∈Λε , appearing only as weights in the output
layer. In particular, the weights and biases of ûε continuously depend on u with
respect to the L2([−1, 1]d, µd)-norm, because the Legendre coefficients do so.
Finally, the L2([−1, 1]d, µd)-norm is bounded by the L∞([−1, 1]d)-norm.

Remark 3.9 The same result does not follow if we approximate the basis of
multivariate polynomials by applying Proposition 2.6 to approximate the prod-
uct of m(Λε) linear factors. With δ := exp(−β|Λε|1/d), each basis polynomial
would have a network size of the order O(m(Λε) log(1/δ)) = O(m(Λε)

2) =
O(|Λε|2/d), hence the total network size would be of the order O(|Λε|1+2/d),
corresponding to C exp(−β′N 1/(d+2)) in the right-hand side of (3.16).

3.3 RePU DNN approximation

For RePU approximations, with activation σr(x) for integer r ≥ 2, we may
combine Proposition 2.14 (which is almost identical to [18, Theorem 4.1]) and
Theorem 3.5 to infer the following result. Note that the decay of the provided
upper bound of the error in (3.23) in terms of the network size N is slightly
faster than the one we obtained for ReLU approximations in (3.16).

Theorem 3.10 Fix d ∈ N, k ∈ N0 and r ∈ N, r ≥ 2. Let ρ = (ρj)
d
j=1 ∈

(1,∞)d. Assume that u : [−1, 1]d → R admits a holomorphic extension to Eρ.
Then, there exists C > 0 and a constant C1 > 0 which only depends on

r such that with β as in (3.7), for every N ∈ N, there exists a σr-NN ũN :
[−1, 1]d → R satisfying

size(ũN ) ≤ C1N , depth(ũN ) ≤ C1 log2(N ) (3.22)

and, with β′ := β/(d+ 1),

‖u(y)− ũN (y)‖Wk,∞([−1,1]d) ≤ C exp
(
−β′N 1

d

)
. (3.23)

Here, we can consider the W k,∞([−1, 1]d)-norm of (u − ũN ) for k ∈ N inde-
pendent of r, because u is holomorphic on [−1, 1]d, and ũN is a polynomial by
construction. Also, we note with (3.14) that β′ = log(ρmin)/(2e) is attainable
for all d ∈ N.

Proof For ε ∈ (0, 1) let Λε be as in (3.3). This set is finite and downward
closed. Hence, by Proposition 2.14 there exists a σr-NN ûε such that ûε(y) =∑

ν∈Λε
lνLν(y) for all y ∈ [−1, 1]d. According to this proposition, the NN

ûε satisfies size(ûε) ≤ C1|Λε| and depth(ûε) ≤ C1 log |Λε|. This is (3.22) for
N := |Λε|. By Theorem 3.5, it holds (3.23) for such N , with β′ = β.

For general N > 1, it follows as in Step 3 of the proof of Theorem 3.6
(with N taking the role of N̂ in (3.21)) that there exists ε ∈ (0, 1) such that
(d + 1)−dN ≤ |Λε| ≤ N . This implies that (3.23) holds for any N ∈ N with
β′ := β/(d+ 1) and a constant C depending on d. ⊓⊔
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Remark 3.11 (Fully connected networks) A similar statement as in Rmk. 3.7
also holds for σr-NNs with r ≥ 2. By the same arguments, we obtain an error
bound of the type

‖u(y)− ûN (y)‖Wk,∞([−1,1]d) ≤ C exp

(
−β̂ #weights(ûN )

1
2d

log(#weights(ûN ))

)

for a fully connected σr-NN ûN , whose total number of weights, also counting
vanishing weights, we denote by #weights(ûN ). Here k ∈ N is arbitrary but

fixed, and β̂ > 0 is a constant independent of N .

Remark 3.12 It follows from the proof of Proposition 2.14 that the weights of
ũN depend continuously on the Legendre coefficients of u, which themselves
depend continuously on u w.r.t. the L2([−1, 1]d, µd)-norm, which is bounded
by the L∞([−1, 1]d)-norm.

Remark 3.13 A similar result as in Theorem 3.10 was obtained in [22, Theorem
3.3]. It assumed a different class of activation functions, termed “sigmoidal
functions of order k ≥ 2” (see Remark 2.1). The L∞([−1, 1]d) error bound
provided in [22, Theorem 3.3] is, in our notation, of the type exp(−bN 1/d) for
a suitable constant b > 0 and a DNN of size N log(N ). This is slightly worse
than Theorem 3.10. Also note that in [22] the number of neurons is used as
measure for the NN size, which may be smaller but not larger than the number
of nonzero weights if all neurons have at least one nonzero weight.

4 Conclusion

We review in Section 4.1 the main results obtained in the previous sections. In
Section 4.2, we relate these results to results which appeared in the literature.
In Section 4.3, we discuss several novel implications of the main results, which
could be of interest in various applications. We point out that although the
present analysis is developed in detail for DNNs with ReLU activation, as
explained in Remarks 2.1 and 2.15, all DNN expression error bounds proved up
to this point, and also in the ensuing remarks remain valid (possibly even with
slightly better estimates for the DNN sizes) for smoother activation functions,
such as sigmoidal, tanh, or softmax activations.

4.1 Main Results

We have established for analytic maps u : [−1, 1]d → R exponential expres-
sion rate bounds in W k,∞([−1, 1]d) in terms of the DNN size for the ReLU
activation (for k = 0, 1) and for the RePU activations σr, r ≥ 2 (for k ∈ N0).
The present analysis improves earlier results in that the NN sizes are slightly
reduced and we obtain exponential convergence of ReLU and RePU DNNs
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for general d-variate analytic functions, without assuming the Taylor expan-
sion of u around 0 ∈ Rd to converge on [−1, 1]d. We also point out that
by a simple scaling argument our main results in Theorem 3.6 and Theo-
rem 3.10 imply corresponding expression rate results for analytic functions
defined on an arbitrary cartesian product of finite intervals ×d

j=1[aj , bj ], where
−∞ < aj < bj <∞ for all j ∈ {1, . . . , d}.

4.2 Related Results

We already commented on [10] where ReLU NN expression rates for mul-
tivariate, holomorphic functions u were obtained. Assumptions in [10, The-
orem 2.6] included absolute convergence of Taylor expansions of u about
the origin with convergence radius sufficiently large to contain the unit cube
[−1, 1]d, implying existence of a complex holomorphic extension to (BC

1 )
d.

Under those assumptions L∞([−(1− δ), (1− δ)]d)-error bounds were obtained
for any δ ∈ (0, 1). With a linear coordinate transformation, error bounds on
[−1, 1]d follow under the assumption that the Taylor expansion converges ab-
solutely on [−(1 − δ)−1, (1 − δ)−1]d. The presently proposed argument being
based on (classical) Bernstein ellipses is admissible for functions u which are
real analytic merely in [−1, 1]d (cp. Remark 3.1). Our proofs are constructive,
with constructions being based on ReLU NN emulations of Legendre poly-
nomials, drawing on [26]. In [35], alternative constructions of so-called RePU
NNs are proposed which are based on NN emulation of univariate Chebyšev
polynomials. It is argued in [35] (and verified in numerical experiments) that
the numerical size of NN weights scales more favorably than the weights in
the presently proposed emulations. “Chebyšev” versions of the present proofs
could also be facilitated, resulting in the same scalings of NN sizes and depths,
however, as are obtained here.

4.3 Applications and generalizations

4.3.1 Solution manifolds of PDEs

One possible application of our results concerns the approximation of (quan-
tities of interest of) solution manifolds of parametric PDEs depending on a
d-dimensional parameter y ∈ [−1, 1]d. Such a situation arises in particular in
Uncertainty Quantification (UQ). There, a mathematical model is described
by a PDE depending on the parameters y, which in turn can for instance
determine boundary conditions, forcing terms or diffusion coefficients. It is
known for a wide range of linear and nonlinear PDE models (see e.g. [6]), that
parametric PDE solutions depend analytically on the parameters. In addition,
for these models usually one has precise knowledge on the domain of holo-
morphic extension of the objective function u, i.e. knowledge of the constants
(ρj)

d
j=1 in Theorem 3.5. These constants determine the sets of multiindices
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Λε in (3.3). As our proofs are constructive and based on the sets Λε, such
information can be leveraged to a priori guide the identification of suitable
network architectures.

4.3.2 ReLU DNN expression of Data-to-QoI maps for Bayesian PDE
Inversion

The exponential σ1-DNN expression rate bound, Theorem 3.6, implies expo-
nential expressivity of data-to-quantity of interest maps in Bayesian PDE in-
version, as is shown in [15]. Here, the assumption of centered, additive Gaussian
observation noise in the data model underlying the Bayesian inverse theory
implies holomorphy of the data to prediction map in the Bayesian theory as
we show [15]. This, combined with the present results in Theorems 3.6 and
3.10 implies exponential expressivity of σr DNNs for this map, for all r ≥ 1.

4.3.3 Infinite-dimensional (d = ∞) case

The expression rate analysis becomes more involved, if the objective function
u depends on an infinite dimensional parameter (i.e., a parameter sequence)
y ∈ [−1, 1]N. Such functions occur in UQ for instance if the uncertainty is
described by a Karhunen-Loeve expansion. Under certain circumstances, u
can be expressed by a so-called generalized polynomial chaos (gpc) expansion.
Reapproximating truncated gpc expansions by NNs leads to expression rate
results for the approximation of infinite dimensional functions, as we showed
in [34]. One drawback of [34] is however, that the proofs crucially relied on
the assumption that u is holomorphic on certain polydiscs containing [−1, 1]N.
This criterion is not always met in practice [6]. To overcome this restriction,
we will generalize the expression rate results of [34] in a forthcoming paper, by
basing the analysis on the present results for the approximation of d-variate
functions which are merely assumed to be analytic in some (possibly small)
neighborhood of [−1, 1]d.

4.3.4 Gevrey functions

DNN approximations of tensor product Legendre polynomials constructed in
Section 2 can be used more generally than for the approximation of holomor-
phic functions by truncated Legendre expansions. We consider as an example,
for d ∈ N, the approximation of non-holomorphic, Gevrey-regular functions
(see, e.g., [30] and the references there for definitions and properties of such
functions). Gevrey-regular functions appear as natural solution classes for cer-
tain PDEs (e.g. [14] and [4, Chapter 8]). Here, for some δ ≥ 1 we consider
maps u : [−1, 1]d → R that satisfy, for constants C,A > 0 depending on u, the
bound

∀ν ∈ Nd
0 :

∥∥∥∥
∂|ν|1u

∂ν1
x1 · · · ∂νd

xd

∥∥∥∥
L∞([−1,1]d)

≤ CA|ν|1(ν!)δ. (4.1)
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We write u ∈ Gδ([−1, 1]d, C,A) for u satisfying (4.1). Evidently, Gδ([−1, 1]d,
C,A) ⊂ C∞([−1, 1]d). These maps are analytic when δ = 1, but possibly
non-analytic when δ > 1.

Proposition 4.1 For dimension d ∈ N, and for constants C,A > 0, for u ∈
Gδ([−1, 1]d, C,A) exist C ′(d, δ, u) > 0 and β′(d, δ, u) > 0, and for every N ∈ N

there exists a ReLU DNN ũN such that

size(ũN ) ≤ N , depth(ũN ) ≤ C ′Nmin
{

1
2 ,

1
d+1/δ

}

log(N ),

‖u− ũN ‖W 1,∞([−1,1]d) ≤ C ′ exp

(
−β′Nmin

{

1
2δ ,

1
dδ+1

}
)
.

In the proof, which is provided in Appendix B, we furthermore show that
there exist constants C ′, β′ > 0 such that for every p ∈ N and every u ∈
Gδ([−1, 1]d, C,A) holds

inf
vp∈⊗d

j=1Pp([−1,1])
‖u− vp‖W 1,∞([−1,1]d) ≤ C ′ exp(−β′N1/(δd)) . (4.2)

Here, N = dim(⊗d
j=1Pp([−1, 1])) = (p+1)d denotes the dimension of the space

of all d-variate polynomials of degree at most p in each variable.

4.3.5 ReLU expression of non-smooth maps by composition

The results were based on the quantified holomorphy of the map u : [−1, 1]d →
C. While this could be perceived as a strong requirement (and, consequently,
limitation) of the present results, by composition the present deep ReLU NN
emulation rate bounds cover considerably more general situations. The key
observation is that deep ReLU NNs are closed under concatenation (or under
composition of realizations) as we explained in Section 2.2.3.

Let us give a specific example from high-dimensional integration, where
the task is to evaluate the integral

∫

[−1,1]d
u(y)π(y)dy . (4.3)

Here, u : [−1, 1]d → R is a function which is holomorphic in a polyellipse Eρ as
in (3.1) and π denotes an a-priori given probability density on the coordinates
y1, ..., yd w.r.t. the measure µd (i.e. π : [−1, 1]d → [0,∞) is measurable and
satisfies

∫
[−1,1]d

π(x)dµd(x) = 1). Assuming that the coordinates are indepen-

dent, the density π factors, i.e. π =
⊗d

j=1 πj with certain marginal probability
densities πj which we assume to be absolutely continuous w.r. to the Lebesgue

measure, i.e.
∫ 1

−1
πj(ξ)dξ = 2. In the case that the marginals πj > 0 are sim-

ple functions for example on finite partitions Tj of [−1, 1] (as e.g. if πj is a
histogram for the law of yj estimated from empirical data), the changes of
coordinates in (4.3)

Tj(yj) := −1 +

∫ yj

−1

πj(ξj)dξj : [−1, 1] → [−1, 1], j = 1, ..., d
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are bijective. Furthermore, in this case each component map Tj : [−1, 1] →
[−1, 1] is bijective, continuous and piecewise affine, and can therefore be exactly
represented by a σ1-NN of depth 1 and width proportional to #(Tj).

Denote by T = (T1, ..., Td)
⊤ the d-variate diagonal transformation, and let

T−1 : [−1, 1]d → [−1, 1]d denote its inverse (which is also continuous, piecewise
linear). Denoting by dT−1(x) the Jacobian matrix of T−1 at x ∈ [−1, 1]d we
may then rewrite (4.3) as

∫

[−1,1]d
u(y)π(y)dy =

∫

[−1,1]d
u(T−1(x))π(T−1(x)) det dT−1(x)dx

=

∫

[−1,1]d
g(x)dx, (4.4)

where g = u ◦ T−1 is not continuously differentiable. Here we have used
that dT−1(T (y)) = (dT (y))−1 and det(dT (y)) = π(y), i.e. det dT−1(x) =
π(T−1(x))−1.

Now, the function g̃N := ũN ◦ T−1 with the σ1-NN ũN constructed in
Theorem 3.6 is a σ1-NN which still affords the error bound (3.16): Denote for
n ∈ N and f ∈W 1,∞([−1, 1]d,Rn)

|f |W 1,∞([−1,1]d,Rn) := sup
x 6=y∈[−1,1]d

‖f(x)− f(y)‖
‖x− y‖ ,

where ‖ · ‖ is the Euclidean norm on Rn resp. on Rd. As usual, for n = 1 we
write |f |W 1,∞([−1,1]d) := |f |W 1,∞([−1,1]d,R) instead. With these conventions, it
holds

‖g(·)− g̃N (·)‖W 1,∞([−1,1]d)

= ‖u ◦ T−1(·)− ũN ◦ T−1(·)‖W 1,∞([−1,1]d)

= ‖u ◦ T−1(·)− ũN ◦ T−1(·)‖L∞([−1,1]d)

+ |u ◦ T−1(·)− ũN ◦ T−1(·)|W 1,∞([−1,1]d)

≤‖u(·)− ũN (·)‖L∞([−1,1]d)

+ |u(·)− ũN (·)|W 1,∞([−1,1]d)|T−1|W 1,∞([−1,1]d,Rd)

≤C exp
(
−β′N 1

d+1

)
(4.5)

for a constant C which now additionally depends on |T−1(·)|W 1,∞([−1,1]d,Rd).
The approximation of the integral (4.3) can thus be reduced to the problem
of approximating the integral of the surrogate g̃N , which can be efficiently
represented by a σ1-NN. In the case that u is merely assumed Gevrey-regular
as in Sec. 4.3.4, a similar calculation leads to a bound of the type (4.5), but

with exp(−β′N 1
d+1 ) replaced by exp

(
− β′Nmin

{

1
2δ ,

1
dδ+1

})
.

More generally, if π : [−1, 1]d → (0,∞) is for example a continuous den-
sity function (not necessarily a product of its marginals) there exists a bijec-
tive transport T : [−1, 1]d → [−1, 1]d such that analogous to (4.4) it holds
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∫
[−1,1]d

u(y)π(y)dy =
∫
[−1,1]d

u(T−1(x))dx (contrary to the situation above,

this transformation T is not diagonal in general). One explicit representation
of such a transport is provided by the Knothe-Rosenblatt transport, see, e.g.
[32, Section 2.3]. It has the property that T inherits the smoothness of π,
cp. [32, Remark 2.19]. In case T−1 can be realized without error by a σ1 (or
σr) network, we find again an estimate of the type (3.16). If T−1 does not
allow an explicit representation by a NN however, we may still approximate
T−1 by a NN S̃N to obtain a NN g̃N := ũN ◦ S̃N approximating g = u ◦ T−1.
This will introduce an additional error in (4.5) due to the approximation of
T−1.

A Proof of Proposition 2.14

Proof The proof consists of 2 steps. In Step 1, we define subnetworks, similar to those in
[26, Lemma 4.5], to emulate all monomials xν for ν ∈ Λ of order 2k−1 ≤ |ν|1 ≤ 2k. In Step
2, we use them to construct p̃.

Step 1. Throughout this proof, we denote the NN input by x ∈ Rd. For k ∈ N0 we
define the index sets Λk := {ν ∈ Λ : |ν|1 = k} and ∆k := {ν ∈ Λ : 2k−1 < |ν|1 ≤ 2k}. In
this first step of the proof, we define subnetworks to emulate xν for ν ∈ Λ2k−1 ∪∆k.

We will use that there exists a σr-NN ×̃r of depth 1, with input dimension 2 and output
dimension 1, which exactly emulates the product operator R2 → R : (x, y) 7→ xy. For r = 2
this was shown in [18, Lemma 2.1], for r > 2 it follows from [18, Theorem 2.5] and the
polarization identity xy = 1

4
(x+y)2− 1

4
(x−y)2, which was used in the proof of [18, Lemma

2.1]. We note that the size of ×̃r depends on r.
Next, for all k ∈ N such that ∆k 6= ∅ we define the σr-NN Ψk as

Ψk :=

(

{IdR}
|Λ

2k−1 |

j=1 , {×̃r}|∆k|
j=1

)

,

where the identity networks have depth 1. With the convention that Λ1/2 := ∅, we define
Ψk such that applied to the inputs {xν : ν ∈ Λ2k−2 ∪∆k−1} the identity networks compute
the input values xν : ν ∈ Λ2k−1 ⊂ ∆k−1 and the product networks compute xν : ν ∈ ∆k.
This is possible, because Λ is downward closed: for all ν ∈ ∆k and all µ ≤ ν such that
2k−2 ≤ |µ|1 ≤ 2k−1, we assumed that xµ is part of the input of Ψk (ν ∈ Λ implies µ ∈ Λ,
hence µ ∈ Λ2k−2 ∪∆k−1). In particular, there exists µ ∈ ∆k−1 such that |µ|1 = ⌈|ν|1/2⌉.
This implies that |ν − µ|1 = ⌊|ν|1/2⌋ and thus ν − µ ∈ Λ2k−2 ∪∆k−1. As a result, xν can
be computed as xν = ×̃r(x

µ,xν−µ).
Next, we estimate the NN depth and size of Ψk. It holds that depth(Ψk) = 1,

size(Ψk) ≤ |Λ2k−1 | size(IdR) + |∆k| size(×̃r) ≤ C(r)(|Λ2k−1 |+ |∆k|)
≤C(r)(|∆k−1|+ |∆k|),

sizein(Ψk) ≤C(r)(|∆k−1|+ |∆k|),
sizeout(Ψk) ≤C(r)(|∆k−1|+ |∆k|).

Step 2. In this step we construct p̃. Let m := m(Λ) as defined in Equation (2.17) and
k := min{k ∈ N : 2k ≥ m}. In addition, we will write p(x) =:

∑

ν∈Λ tνxν .
We define p̃ as

p̃ := Affine ◦ (Ψk, psumk) ◦
(

Ψk−1, psumk−1

)

◦ · · · ◦ (Ψ1, psum1) ,

where for j = 1, . . . , k

psumj

(

{xν}ν∈Λ
2j−2

, {xν}ν∈∆j−1
, psumj−1

)

:= IdR



psumj−1 +
∑

ν∈∆j−1

tνx
ν



 ,
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where the σr-identity network has depth 1. In addition, denote by ν(i), i = 1, . . . , |∆k|
an enumeration of ∆k whose order corresponds to the output of Ψk. Then, Affine is a NN
of depth 0, input dimension |Λ2k−1 | + |∆k| + 1, output dimension 1, computing the affine
transformation

Affine(w1, . . . , w|Λ
2k−1 |,x

ν(1)
, . . . ,xν(|∆k|)

,w|Λ
2k−1 |+|∆k|+1)

:= t0 + w|Λ
2k−1 |+|∆k|+1 +

|∆k|
∑

j=1

xν(j)
t
ν(j) ,

where the constant t0 is a NN bias. Thus, Affine ignores the first |Λ2k−1 | inputs, takes an
affine combination of the then following |∆k| inputs, and adds the last input. As a result,
p̃(x) = p(x) for all x ∈ Rd.

To bound the network depth and size, we note that for j = 1, . . . , k

sizein(psumj) ≤C(r)(1 + |∆j−1|),
sizeout(psumj) ≤C(r),

size(psumj) ≤C(r)(1 + |∆j−1|),
size(Affine) = sizein(Affine) = sizeout(Affine) ≤ 2 + |∆k|.

We obtain the following bounds on the depth and size of p̃: In case |Λ| = 1, the constant
polynomial p can be emulated exactly by a σr-NN p̃ of depth 0 and size 1. In case |Λ| ≥ 2,
it holds by Proposition 2.4:

depth(p̃) ≤ depth(Affine) +

k
∑

j=1

(1 + depth(Ψj)) = 2k ≤ 2 + 2 log2(m) ≤ C log2(|Λ|),

size(p̃) ≤C(r)
(

size(Affine) + sizein(Affine) +
k

∑

j=1

(

sizeout(Ψj) + sizeout(psumj)

+ size(Ψj) + size(psumj) + sizein(Ψj) + sizein(psumj)
))

≤C(r)
(

(2 + |∆k|) + (2 + |∆k|) +
k

∑

j=1

(

C(r)(|∆j−1|+ |∆j |) + C(r)

+ C(r)(|∆j−1|+ |∆j |) + C(r)(1 + |∆j−1|) + C(r)(|∆j−1|+ |∆j |)

+ C(r)(1 + |∆j−1|)
))

≤C(r)



1 +
k

∑

j=0

|∆j |



 ≤ C(r)|Λ|,

sizein(p̃) ≤ sizein(Ψ1) + sizein(psum1) ≤ C(r)(|∆0|+ |∆1|) ≤ C(r)|Λ|,
sizeout(p̃) ≤C(r) sizeout(Affine) ≤ C(r)|∆k| ≤ C(r)|Λ|,

where C,C(r) are independent of d. ⊓⊔

B Proof of Proposition 4.1

Proof As in the holomorphic case, to approximate functions u ∈ Gδ([−1, 1]d, C,A), we
first build a tensor product polynomial approximation by H2-projection to the space Qp of
polynomials in d variables with coordinatewise degree at most p ∈ N. Evidently, dim(Qp) =
(p+ 1)d.
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For d = 1, we denote by I3 : H2([−1, 1], µ1) → P3 the Hermite interpolation operator
defined by I3u(±1) = u(±1) and (I3u)′(±1) = u′(±1) for all u ∈ H2([−1, 1], µ1). For p ∈ N,
p ≥ 3, denote by πp−2,0 : L2([−1, 1], µ1) → Pp−2 the L2([−1, 1], µ1)-orthogonal projection

to Pp−2. For all v ∈ L2([−1, 1], µ1) it holds that v =
∑∞

j=0 ljLj 7→ ∑p−2
j=0 ljLj =: πp−2,0v,

where analogous to (3.8) it holds lj =
∫

[−1,1] vLjdµ1. Bounds on Legendre coefficients

required in DNN emulation expression rate bounds from Section 2.3.3 are implied by stability
of πp−2,0 in L2([−1, 1], µ1):

‖πp−2,0v‖2L2([−1,1],µ1)
=

p−2
∑

j=0

|lj |2 ≤
∞
∑

j=0

|lj |2 = ‖v‖2
L2([−1,1],µ1)

.

Based on this projector, we define the H2([−1, 1], µ1)-projector πp,2 : H2([−1, 1], µ1) → Pp

by πp,2u(x) = I3u(x) +
∫ x
−1

∫ y1
−1 πp−2,0((u − I3u)′′)(y2)dy2dy1 for all u ∈ H2([−1, 1], µ1),

as in [8, Section A.1], where it is shown that πp,2u satisfies πp,2u(±1) = u(±1) and
(πp,2u)′(±1) = u′(±1).

For general d ∈ N, for all p ∈ N, p ≥ 3 we consider the tensor product projector

Πd
p,2 := π

(1)
p,2 ⊗ · · · ⊗ π

(d)
p,2, where π

(i)
p,2 denotes the coordinate-wise projection with respect

to xj , j = 1, . . . , d. We recall stability and error bounds in terms of the H2
mix([−1, 1]d, µd)-

norm, which is defined as

‖u‖2
H2

mix([−1,1]d,µd)
=

∑

ν:|ν|∞≤2

∥

∥

∥

∥

∥

∂|ν|1u

∂ν1
x1 · · · ∂νd

xd

∥

∥

∥

∥

∥

2

L2([−1,1]d,µd)

.

By the continuous embedding H2
mix([−1, 1]d, µd) →֒ W 1,∞([−1, 1]d), the bounds below im-

ply error bounds w.r.t. the W 1,∞([−1, 1]d)-norm. By [33, Propositions 5.2 and 5.3], the
former of which is [8, Theorem A.1 and Proposition A.1], for all u ∈ Gδ([−1, 1]d, C,A) it
holds for all p ∈ N, p ≥ 3 and for all s ∈ {2, . . . , p− 1}

∥

∥

∥Πd
p,2u

∥

∥

∥

H2
mix([−1,1]d,µd)

≤C(d) ‖u‖H2
mix([−1,1]d,µd)

,

∥

∥

∥u−Πd
p,2u

∥

∥

∥

H2
mix([−1,1]d,µd)

≤C(d)
d

∑

j=1

∥

∥

∥u− π
(j)
p,2u

∥

∥

∥

H2
mix([−1,1]d,µd)

≤C(d)
d

∑

j=1

√

(p− 1− s)!

(p− 1 + s)!

∑

νj=s+2,

νi∈{0,1,2}∀i 6=j

∥

∥

∥

∥

∥

∂|ν|1u

∂ν1
x1 · · · ∂νd

xd

∥

∥

∥

∥

∥

L2([−1,1]d,µd)

≤C(d)
d

∑

j=1

√

(p− 1− s)!

(p− 1 + s)!

∑

νj=s+2,

νi∈{0,1,2}∀i 6=j

∥

∥

∥

∥

∥

∂|ν|1u

∂ν1
x1 · · · ∂νd

xd

∥

∥

∥

∥

∥

L∞([−1,1]d)

≤C(d, u)max{A, 1}s+2d

√

(p− 1− s)!

(p− 1 + s)!
((s+ 2)!2d−1)δ . (B.1)

We fix α = (4max{A, 1})−1/δ ∈ (0, 1) and similar to [13, Proposition 4, below Equation
(40)] substitute s = max{2,

⌊

αp1/δ
⌋

}. For sufficiently large p ∈ N it holds that 2 ≤ αp1/δ

and thus s ≤ αp1/δ ≤ s + 1. The estimates that follow are derived under this assumption,
but hold for all p ≥ 3 after possibly increasing multiplicative constants. With Stirling’s
inequality,

√
2π

√
n(n/e)n ≤ n! ≤ e

√
n(n/e)n for n ∈ N, we estimate the square of the
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right-hand side of (B.1):

max{A, 1}2(s+2d) (p− 1− s)!

(p− 1 + s)!
((s+ 2)!2d−1)2δ

≤ max{A, 1}2(s+2d) e
2s+1(p− 1− s)p−1−s+1/2

√
2π(p− 1 + s)p−1+s+1/2

(s+ 2)4δsδ(2s+1)e2δ(1−s)22δ(d−1)

≤C(d, δ, A)max{A, 1}2se2(1−δ)s( p−1−s
p−1+s

)p−1−s+1/2p−2ss2δssδ(s+ 2)4δ,

where we used ((s+2)!)2δ ≤ (s+2)4δ(s!)2δ . Now, since 1− δ ≤ 0 and p− 1− s+ 1
2
≥ 0 for

s < p,

e2(1−δ)s( p−1−s
p−1+s

)p−1−s+1/2p−2s ≤ Cp−2s ≤ (α/s)2δs

due to s ≤ αp1/δ . Using that there exists C > 0 depending on δ such that sδ(s+2)4δ ≤ C22s

for all s ≥ 2, we arrive at

max{A, 1}2(s+2d) (p− 1− s)!

(p− 1 + s)!
((s+ 2)!2d−1)2δ

≤C(d, δ, A)max{A, 1}2s(α/s)2δss2δssδ(s+ 2)4δ

≤C(d, δ, A)max{A, 1}2sα2δssδ(s+ 2)4δ

≤C(d, δ, A)222−2(s+1)

≤C(d, δ, A) exp(−2 log(2)αp1/δ).

Substituting into (B.1) shows that

∥

∥

∥u−Πd
p,2u

∥

∥

∥

H2
mix([−1,1]d,µd)

≤ C(d, δ, u) exp(− log(2)αp1/δ).

Now, Πd
p,2u can be approximated by ReLU DNNs from Proposition 2.13. We set Λp :=

{ν : |ν|∞ ≤ p}, and express Πd
p,2u in the basis of tensor product Legendre polynomials.

The size of the Legendre coefficients (cν)ν∈Λp of Πd
p,2u can be estimated crudely by |cν |2 ≤

∑

ν∈Λp
|cν |2 =

∥

∥

∥Πd
p,2u

∥

∥

∥

2

L2([−1,1]d,µd)
≤ C(d) ‖u‖2

H2
mix([−1,1]d,µd)

= C(d, u)2 for all ν ∈ Λp,

and their sum by
∑

ν∈Λp
|cν | ≤ C(d, u)(p+ 1)d.

As in Step 1 in the proof of Theorem 3.6, we reapproximate the polynomial Πd
p,2u by

ûp := Affineu ◦fΛp,ǫ
, for fΛp,ǫ

from Proposition 2.13 and Affineu : R|Λp| → R : (zν)ν∈Λp 7→
∑

ν∈Λp
cνzν . We take ǫ = (p+1)−d exp(− log(2)αp1/δ) as the accuracy parameter of fΛp,ǫ

,

so that we obtain

∥

∥

∥Πd
p,2u− ûp

∥

∥

∥

W1,∞([−1,1]d)
≤

∑

ν∈Λp

|cν | ‖Lν − L̃ν,ǫ‖W1,∞([−1,1]d) ≤
∑

ν∈Λp

|cν | ǫ

=
∑

ν∈Λp

|cν | (p+ 1)−d exp
(

− log(2)αp1/δ
)

≤C(d, u) exp
(

− log(2)αp1/δ
)

.

Together with the estimate of the polynomial interpolation error, it holds that

‖u− ûp‖W1,∞([−1,1]d) ≤ C(d, δ, u) exp
(

− log(2)αp1/δ
)

.
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We finally estimate the NN depth and size, using that |Λp| = (p+1)d and m(Λp) = dp:

depth(ûp) ≤ depth(Affineu) + 1 + depth(fΛp,ǫ
)

≤C(1 + d log d)(1 + log2 m(Λp))(m(Λp) + log2(1/ǫ))

≤C(1 + d log d)(1 + log(dp))(dp+ d log2(p+ 1) + log(2)αp1/δ)

≤C(1 + d2 log2 d)(1 + p log p),

size(ûp) ≤ 2 size(Affineu) + 2 size(fΛp,ǫ
)

≤ 2(p+ 1)d + Cd2m(Λ)2 + Cdm(Λ) log2(1/ǫ)

+ Cd2|Λ|
(

1 + log2 m(Λ) + log2(1/ǫ)
)

≤C(p+ 1)d + Cd2(dp)2 + Cd(dp)(d log2(p+ 1) + log(2)αp1/δ)

+ Cd2(p+ 1)d
(

1 + log2(dp) + d log2(p+ 1) + log(2)αp1/δ
)

≤C1(α)d
4((p+ 1)2 + (p+ 1)d+1/δ)

for some C1(α) > 0. For all N ∈ N satisfying N ≥ C1(α)d4(42 + 4d+1/δ), we choose
p := max{p ∈ N : C1(α)d4((p+ 1)2 + (p+ 1)d+1/δ) ≤ N}, so that p ≥ 3 and

C1(α)d
4((p+ 1)2 + (p+ 1)d+1/δ) ≤N < C1(α)d

4((p+ 2)2 + (p+ 2)d+1/δ)

≤C(d, δ, A)d4pmax{2,d+1/δ},

and define ũN := ûp, which shows the proposition for such N . For the finitely many N ∈ N

satisfying N < C1(α)d4(42 + 4d+1/δ), we define ũN := 0, for which the proposition holds
after increasing the constants, if necessary. This completes the proof of Proposition 4.1. ⊓⊔
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