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Abstract

Under certain circumstances delicate maneuvers in the robotics field, such as autonomous landing of

unmanned aerial vehicles or calibration of robot arms, let state-of-the-art pose estimation concepts face

their limits. In GPS denied environments most current state estimation approaches are based on visual-

inertial odometry, which suffer from random drift, motion blur and low overlap between consecutive

images. A wire-less electromagnetic field-based sensor system is proposed which enables tracking of

moving objects e.g. drones. The gathered up to 6-degrees of freedom information is complementary to

existing sensing principles e.g. GPS or vision-based systems. Additionally, it can be used for stand-

alone navigation or non-invasive localization of medical devices inside the human body. The sensor

system is comprised of an exciter and a sensor. The exciter can be mounted on a moving robot and

generates an electromagnetic field. The field is measured by the sensor and subsequently, the pose

of the exciter with respect to the sensors’ pose is estimated. Conductive objects in the vicinity of

the sensor alter the measured magnetic field due to induced eddy currents. In general, unmanned aerial

vehicles or wheeled robots mainly consist of conductive materials, which causes a significant estimation

error. A low-complexity method to suppress the influence of those objects is introduced. The approach is

verified using a Finite Element based solution of the full Maxwell’s equations. Due to the computational

savings, the methodology can be used in real-time pose estimation schemes, which is showcased using

an Extended Kalman Filter.
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I. INTRODUCTION

Along with the growing number of autonomous mobile platforms, the demand of accurate

localization approaches for navigational tasks increases. Recent research focuses on indoor

navigation, a global positioning system (GPS)-denied environment, using visual and inertial

sensors for pose estimation [1]. However, their accuracy decreases when approaching objects.

Reasons are, e.g. motion blur and low overlap between consecutive images. Alternatively, ultra

wide band (UWB) modules have been used for indoor localization enabling high accuracy [2] and

the capability of data transmission at the same time. However, a direct line of sight is necessary

between transmitter and receiver to maintain accuracy [3], [4]. This issue is addressed by placing

redundant UWB modules, which increases the chance to cover the targeted object. Alternatively,

electromagnetic field based sensors can be used to estimate the pose of the mobile platform [5],

[6]. Recently magnetic field based sensors were proposed as non-invasive localization method for

miniature medical device in human bodies [7]. Electromagnetic field based approaches do not rely

on direct line-of-sight and do not drift over time. The drawback is the limited range, but usually

the accuracy increases with decreasing distance. Thus, they are beneficial for the robotics field

[8], [9] especially when using them complementary to existing systems such as visual-inertial

odometry (VIO). This paper introduces a robust electromagnetic field based localization concept.

It is comprised of an electromagnetic field emitter and a magnetic field sensor. The emitter can

be positioned on any moving platform, e.g. robot arm end effector or a unmanned aerial vehicle

(UAV). The sensor is supposed to have a fixed pose and its measurement data is used to estimate

the relative pose of the field source. It is well known, that conductive materials in the vicinity

of the field alter the field distribution. This is caused by induced eddy currents which create an

additional electromagnetic field which interacts with the original field. The introduced concept

is able to suppress the influence of known conductive materials such as the moving platform

itself. This significantly increases the robustness of the approach especially for highly conductive

materials, e.g. metals. Note, that iterative solving of the Maxwell’s equations is avoided. In

contrast, it is based on an explicit field formulation [10]. The accuracy of the formulation is

verified by comparing it to a classical Finite Element Method (FEM) based solution. Due to its

low computational complexity the concept is especially useful for real-time applications. This

is ultimately showcased by using an Extended Kalman Filter (EKF) based tracking approach.
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Fig. 1. A schematic view of the proposed system. The electromagnetic field emitter is mounted on the mobile platform, i.e.

UAV, whereas the sensor is attached to the ground. The relative position and orientation of and emitter are of interest.

II. SYSTEM MODEL

The proposed concept consists of a freely movable alternating magnetic field source (emitter)

e.g. attached to a UAV, and a magnetic field sensor arrangement with a fixed position and attitude,

e.g. on the ground. Ideally, the emitter consists of three point dipole sources with orthogonal

magnetic dipole moments. A manufacturable system could be a stack of small orthogonally

placed coils, which can be approximated by a dipole model. The approximation is valid in

certain limits described in [11]. Alternatively, each coil can be modelled as a stack of magnetic

point sources rather than just multiplying the magnetic dipole moment with the number of turns.

Such a coil structure may efficiently be driven using rectangular waveforms and employing

parallel resonant circuitries. The complementary magnetic field sensor could also consist of

three orthogonally placed pick-up coils to serve for all three spatial axis.

The first analysis neglects the emitter carrying platform and the surrounding space is assumed

to be air. The magnetic field strength at the sensor position xr is then given by [12]
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The quantities r = xr − xs , m and µ0 denote the relative position with respect to the

emitter, the magnetic moment of the emitter and the permeability of free space, respectively. An

understandable visualization of the geometrical dependencies is shown in Fig. 1. If the attitude

of the mobile platform changes, r remains the same whereas m would be altered. Therefore, the

magnetic dipole moment can be utilized to model the attitude of the emitter and more generic

the attitude of the mobile platform. Reformulating the magnetic dipole moment yields

m = Rm′ , (2)

where m′ is the magnetic dipole moment in initial situation and R ∈ IR3×3 is a rotational matrix

with xs being the center of rotation. R is defined by the rotation angles θ ∈ IR3 and the rotation

sequence

R = RzRyRx, (3)

where Rz, Ry and Rx are given by
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(4)

Suppose, the magnitude of the magnetic moment is known, then the magnetic field strength

at any observation point is described by 6-degrees of freedom (DOF), i.e. the space vector

pointing from the emitter to the point of observation and the attitude of the emitter. For some

applications partial information about the pose already exists which can be used to reduce the

model complexity.

Independent of the field model, different kind of magnetic sensors can be used to measure the

local magnetic field. A common way to measure alternating magnetic fields are pick-up coils [13],

[14]. Faraday’s Law links the local magnetic field strength to the induced electromagnetic force.

For a homogeneous magnetic field in the cross section of a air-cored solenoid the electromagnetic

force is approximately given by [15]

V = −µ0NA ·
δH

δt
, (5)
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where N is the number of windings and A represents the area of the cross section of the coil.

For a non-homogeneous magnetic field, e.g. dipole field, this can still be a good approximation

depending on the location of the point of observation. The taken measurements are the basis

for the pose estimation. Due to the model order a single observation is not sufficient to get an

accurate estimate. Therefore, a number of either sensors or emitters is required.

III. TRACKING OF A MOBILE TARGET

This sections presents an approach to estimate both the location and the orientation of the

target. A widely used approach to track system states is the Kalman Filter (KF). It produces an

optimal estimator for linear systems with Gaussian noise. The EKF is the generalization of the

KF to non-linear dynamical systems. Note, that the EKF does not produce an optimal estimator

anymore. Although, it remains robust with respect to noise and is computationally cheap which

makes it suitable for real-time applications.

A. System State Observation

A general external driving acceleration that has the form of white noise is assumed to affect

the position of the target. The velocity (V(τ))τ∈R+ of the target is given in terms of a three-

dimensional Brownian motion, also known as Wiener-process, (Wv(τ))τ∈R+ and its position

(Z(τ))τ∈R+ is given by the integral over the Brownian motion. The increments of Wv, e.g.

Wv(t) − Wv(s) with 0 ≤ s < t are statistically independent and distributed as N (0, t − s).

The stochastic differential equation linking the random acceleration and the velocity term can

be solved as shown in [16].

V(τ) = V0 + σvWv(τ), Z(τ) = Z0 +

∫ τ

0

V(s)ds (6)

Note, that V0 = V(0) and Z0 = Z(0) are constant vectors and denote the initial velocity and

position of the object, respectively. The angular acceleration of the target is subject to independent

white noise, so that the angular velocity (Ω(τ))τ∈R+ is given by means of a three-dimensional

Brownian motion (Wω(τ))τ∈R+ .

Ω(τ) = Ω0 + σωWω(τ), Θ(τ) = Θ0 +

∫ τ

0

Ω(s)ds (7)

Here, Ω0 = Ω(0) and Θ0 = Θ(0) are constant vectors and denote the initial angular velocity and

orientation of the target, respectively. The target can be observed at discrete times t∆τ, t ∈ N,
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with time step ∆τ . Further, we denote the system states at time step t∆τ as vt, zt, ωt and θt.

They can be represented using the recursive relations

vt = vt−1 +αt, αt = σv(Wv(t∆τ)−Wv((t− 1)∆τ))

zt = zt−1 + vt−1∆τ + βt, βt = σv

∫ t∆τ

(t−1)∆τ

(Wv(s)−Wv((t− 1)∆τ))ds (8)

ωt = ωt−1 + γt, γt = σω(Wω(t∆τ)−Wω((t− 1)∆τ))

θt = θt−1 + vt−1∆τ + δt, δt = σω

∫ t∆τ

(t−1)∆τ

(Wω(s)−Wω((t− 1)∆τ))ds

The increments of the Brownian motions are independent of each other and are summarized in

Ut =




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







αt
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δt


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







. (9)

The instances of Ut are independent and identically distributed with the multivariate normal

distribution with zero mean and covariance matrix Σ given by

Σ = ∆τ
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

, (10)

where I represents the three-dimensional identity matrix. The covariance matrix can be computed

using Ito’s lemma to account for the stochastic integrals [17]. The state vector

Xt =















vt

zt

ωt

θt















(11)

is linearly propagating satisfying

Xt = FXt−1 +Ut, F =















I 0 0 0

∆τI I 0 0

0 0 I 0

0 0 ∆τI I















. (12)

The magnetic field observation made at time t using (1) is denoted as Vt. The magnetic field

observation is also subject to additive noise Wt. Note, that the system state zt corresponds to the
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position of the magnetic field source xs and the system state θt corresponds to the orientation of

the magnetic dipole moment defined in (2) to (4). The velocity vectors vt and ωt do not contribute

to (1). To highlight the dependence upon zt,θt the non-linear function h is introduced which

corresponds to (1). Then together with (12) the system state and observation equations are given

by

Xt = FXt−1 +Ut, (13)

Vt = h(zt,θt) +Wt. (14)

B. Extended Kalman Filter

This section summarizes the well-known EKF approach [18], [19]. Consider a non-linear

dynamical system with state propagation function f ′
t depending on the system states X ′

t−1

and process noise W ′
t ∼ N (0, Qt′) and the observation equation h′

t depending on X ′
t and

measurement noise V ′
t ∼ N (0, R′

t).

X ′
t = f ′

t(X
′
t−1,W

′
t ) (15)

Y ′
t = h′

t(X
′
t, V

′
t ) (16)

The functions f ′
t , h

′
t are non-linear and differentiable. In general nothing can be said about the

conditional distribution X ′
t|Y

′
1:t due to the non-linearity. The EKF calculates an approximation of

the conditional expectation by an appropriate linearization of the state transition and observation

model. Due to the approximation, the resulting algorithm is not optimal in the least-squares

sense. Let F ′
X and F ′

W be the partial derivatives of f ′ with respect to system state and process

noise respectively. Further let H ′
X and H ′

V be the partial derivatives of h′ with respect to system

state and measurement noise respectively. The EKF algorithm is summarized below.

• Initialization:

x̂′
0|0 = E[X ′

0], P ′
0|0 = cov(X ′

0) (17)

• Prediction:

x̂′
t|t−1 = f ′(x̂′

t−1|t−1, 0), (18)

Y ′
e,t = Y ′

t − h′(x̂′
t|t−1, 0), (19)

P ′
t|t−1 = F ′

XP
′
t−1|t−1F

′T
X + F ′

WQ′
tF

′T
W (20)
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• Update:

S ′
t = H ′

XP
′
t|t−1H

′T
X +H ′

VR
′
tH

′t
V , (21)

K ′
t = P ′

t|t−1H
′T
X S ′−1

t , (22)

x̂′
t|t = x̂′

t|t−1 +K ′
tY

′
e,t, (23)

P ′
t|t = (I −K ′

tH
′
X)P

′
t−1|t−1 (24)

C. Tracking Experiments

In this section the performance of the EKF based tracking is investigated. As mentioned

a number of unique measurements is required due to the model complexity. Therefore, three

emitters and one sensor is used. The sensor is measuring the three-dimensional field at a

known spatial point. The emitters are static to each other. However, in a global coordinate

frame the vector between the emitters is not static due to the rotation of the object. Without

the presence of rotation the distance between first emitter s1 and second emitter s2 is given

by p12 = [0.05, 0.05, 0.05]T . The distance between first and third emitter s3 is given by

p13 = [−0.02, 0.03, 0.02]T . The position of s1 is used as target position xs following the

trajectory simulated according to (8). A period of 20 s using ∆τ = 0.1 s with parameters

σv = 0.01,σθ = 0.1 and initial state X0 = [v0, z0, ω0, θ0] is simulated.

v0 = [0.01, 0, −0.005]T , z0 = [0.2, −0.2, 0.3]T , ω0 = [0, 0, 0]T , θ0 = [0.02, −0.05,
π

4
]T

The measurement data Vt is generated first calculating the magnetic field using (1) and then

adding white noise. The receiver xr is located in the origin. Note, that the emitters are used

in a time-multiplexed fashion, thus only one emitter is transmitting at any instant in time.

Additionally, the magnetic dipole moment of each emitter is 1Am2 and they point towards

orthogonal directions. The initial guess of X0 for the EKF is X̂0 = [v̂0, ẑ0, ω̂0, θ̂0] given by

v̂0 = [0, 0, 0]T , ẑ0 = [0.05, − 0.1, 0.4]T , ω̂0 = [0, 0, 0]T , θ̂0 = [0, 0, 1]T .

Note that (13) is linear, therefore, in order to apply the EKF only (14) needs to be linearised.

This can be done by calculating the partial derivatives of h with respect to Xt. The tracking

performance of the EKF in terms of position x̂s is shown in Fig. 2 and in terms of orientation θ̂

is reported in Fig. 3. It can be seen, that true system state can be found, despite the poor initial

guess. The tracking accuracy decays with increasing distance to the receiver. This is explained
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by the decreasing signal to noise ratio of the measured magnetic field. The orientation is resolved

to −π ≤ θ < π which justifies the orientation jumps.
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True Trajectory
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Fig. 2. A magnetic field source is moving along a

random trajectory, indicated with black markers, driven

by Brownian motion. The EKF estimates the trajectory

shown as magenta waveform. The algorithm is able to

identify the true states, despite its poor initial guess.

−1
−0.5

0
0.5

−4
−2

0
2

4
−4

−2

0

2

4

[rad]

True Trajectory
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Fig. 3. While moving along the trajectory the orientation

of the magnetic field source is changing by means of a

three-dimensional Brownian motion. The true orientation

is indicated with black markers whereas the estimated

orientation is shown as magenta waveform. Note, that the

x-value, y-value and z-value represent the rotation around

x, y and z-axis respectively.

IV. EDDY CURRENT MODEL

The previous chapter showed, that a stack of moving magnetic field source can be tracked

using an EKF. However, conductive objects in the vicinity of the sensor are not considered

and may distort the pose estimation, because the magnetic field is altered and is not accurately

modelled by (1) anymore. Often the carrier of the emitter, e.g. UAV or wheeled robot is made

of conductive materials. This chapter introduces a methodology to suppress the influence of

those known conductive objects. Suppose that there is an electromagnetic inclusion in R
3 of the

form B, where B is a bounded, smooth domain. Let the constant quantities µ⋆ and σ⋆ denote the
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permeability and the conductivity of the inclusion. The piecewise constant magnetic permeability

and electric conductivity is given by

µa =







µ⋆ in B

µ0 in Bc = R
3 \B

σa =







σ⋆ in B

σ0 in Bc.
(25)

Let (Ea,Ha) denote the eddy current fields in presence of the electromagnetic inclusion B

and a source current J0 located outside the inclusion. It is supposed that J0 is divergence free

∇ · J0 = 0 in R
3. The fields (Ea,Ha) are the solutions of the following eddy current equations


















∇× Ea = iωµaHa in R
3

∇×Ha = σaEa + J0 in R
3

Ea(x) = O(|x|−1), Ha(x) = O(|x|−1) as |x| → ∞.

(26)

Commonly, FEMs based simulation environments are used to solve (26) for Ha. Those

approaches come with high computational cost and are often not applicable in low-power real-

time devices. In the applied mathematics community the change in magnetic field H̃a = Ha−H0

due to the presence of the object B is explicitly expressed given by (27). The proof can be found

in [10].

H̃a(xr) =

∫

B

∇xr
G(xr,y)×∇y × H̃a(y)dy + (1−

µ⋆

µ0

)

∫

B

(Ha(y) · ∇y)∇xr
G(xr,y)dy (27)

Here, xr denotes the point of observation, where xr ∈ Bc. The scalar function G(xr,y) represents

the fundamental solution of the Laplace equation given by

G(xr,y) =
1

4π|xr − y|
. (28)

In the following sections it is shown that this formula is especially useful for objects which are

static with respect to the emitter. In such a situation the curl of H̃a(y) as well as the field Ha(y)

are constant.

A. Numerical Experiments and Verification

This section investigates the accuracy of the formula given in (27) by comparing it with the

classical FEM based approach. Therefore, a cube made of copper is centred at [0 0 0.15]T . Its

electrical conductivity and edge length is given by σ⋆ = 59.9× 106 S
m

and 0.05m, respectively.

The used magnetic permeability is µ⋆ = µ0 = 4π × 10−7 H
m

. The first emitter is located at
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[0 0 0.2]T . The distances to second and third emitter are reused from the previous section, given

by p12 and p13. The corresponding dipole moments are

m0 =




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



0

0

0.01











m1 =











0

0.01

0











m2 =











0.01

0

0











Am2.

The point of observation xr is located at [0.05 0.05 0.2]T . As a reference, a commercial FEM

based software-kit is used [20]. The simulation runs once in presence and once in absence of

the copper cube and calculates the magnetic field at xr. The magnetic field difference represents

the reference result H̃r. It is worth noting, that boundary conditions regarding the simulation

environment border are avoided by extending the mesh until the field drops below the numerical

boundary.

The explicit formula (27) is used to obtain a comparative result. Therefore, the curl of the

magnetic field in the conductive object is pre-computed using the presented FEM environment.

Since the object is statically linked to the field emitter, the field curl at the object is independent

of the global position and orientation. The curl of the magnetic field in absence of the magnetic

field can be calculated analytically.

TABLE I

A COMPARISON OF THE FEM BASED SOLUTION WITH THE EXPLICIT FORMULA. THE USED OBJECT PARAMETERS ARE

σ⋆ = 59.9× 10
6 S

m
AND µ⋆ = µ0 = 4π × 10

−7 H

m
.

x-component y-component z-component

Emitter 1
FEM solution H̃r 230.310mT 217.780mT −123.660mT

Explicit solution H̃a 227.340mT 223.630mT −119.120mT

Emitter 2
FEM solution H̃r 17.742mT 4.450mT −4.174mT

Explicit solution H̃a 17.821mT 4.260mT −3.628mT

Emitter 3
FEM solution H̃r −19.831mT −10.634mT −25.090mT

Explicit solution H̃a −19.287mT −9.726mT −26.752mT

As shown in Tab. I the classical FEM based approach and (27) obtain similar results. The

minor discrepancies are mostly explained by numerical inaccuracies. It is worth noting, that the

magnetic field components at the observation point changed by approximately 50% due to the

presence of the copper cube. The imaginary part of the field is negligible small for diamagnetic

materials. To show the validity of the explicit formula, a second scenario is presented with
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σ⋆ = 0.1× 106 S
m

and µ⋆ = 100·µ0. The geometric configuration is reused and the corresponding

results are reported in Tab. II. It is shown, that (27) generates the same result then the classical

FEM based approach for both imaginary and real part of the magnetic field.

TABLE II

A COMPARISON OF THE FEM BASED SOLUTION WITH THE EXPLICIT FORMULA. THE USED OBJECT PARAMETERS ARE

σ⋆ = 0.1× 10
6 S

m
AND µ⋆ = 100 · µ0 = 4π × 10

−5 H

m
.

x-component y-component z-component

Emitter 1
FEM solution H̃r (−248.620 + 91.751i)mT (−245.780 + 88.301i)mT (379.540− 71.226i)mT

Explicit solution H̃a (−247.620 + 90.374i)mT (−247.240 + 88.652i)mT (373.891− 69.934i)mT

Emitter 2
FEM solution H̃r (13.957 + 8.412i)mT (−228.560 + 2.317i)mT (−1.376− 2.981i)mT

Explicit solution H̃a (13.712 + 8.236i)mT (−232.007 + 2.268i)mT (−1.643− 2.874i)mT

Emitter 3
FEM solution H̃r (−86.642− 10.840i)mT (57.967− 6.754i)mT (−398.010− 11.367i)mT

Explicit solution H̃a (−86.256− 10.581i)mT (59.167− 6.668i)mT (−395.791− 11.422i)mT

B. Adapted EKF Model

This section describes how the EKF based tracking approach is adapted with respect to the

presented eddy current scenario. The formula given in (27) consists mainly of 2 parts, where the

second part corrects for the effects of ferro-magnetic objects. As a starting point the first part

is analysed and given by
∫

B

∇xr
G(xr,y)×∇y × H̃a(y)dy. By introducing a second coordinate

frame the integral can be simplified. The first coordinate frame is from now on called global

frame and the second coordinate frame is called local frame. The local frame has its origin

at the position of the first emitter. The local coordinate frame can freely move and change its

orientation with respect to the global frame frame which is assumed to be fixed. Consequently,

the target of the tracking algorithm is the origin of the local frame expressed in the global frame.

For simplicity, the volume integral over the conductive object is defined in the local coordinate

frame where its limits are constant due to the static link between the target and the object.

Further, the object B is separated into a number n of smaller objects Bi with i = 1...n, where

Bi ⊂ B and Bi∩Bj = ∅ with j = 1...n and i 6= j. The volume integral can then be rewritten as
∫

B

∇xr
G(xr,y)×∇y × H̃a(y)dy =

n
∑

i=1

(

∫

Bi

∇xr
G(xr,yi)×∇yi

× H̃a(yi)dyi). (29)

The EKF based tracking approach becomes applicable when yi is fixed to the geometric center

of Bi called yi. This introduces an quantization error when calulating (27). However, as n tends
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Fig. 4. The conductive object in the vicinity of the sensor is divided into smaller objects. The top surface, showing increased

object resolution, points towards the magnetic field sources.

to grow towards infinity and Bi shrinks towards zero the error would vanish. As a consequence

of the quantization, ∇xr
G(xr,yi) becomes independent of the integration which results in

n
∑

i=1

(

∫

Bi

∇xr
G(xr,yi)∇yi

× H̃a(yi)dyi) ≈
n

∑

i=1

(∇xr
G(xr,yi)×

∫

Bi

∇yi
× H̃a(yi)dyi). (30)

The integral over ∇yi
×H̃a(yi) is constant and can be pre-computed, which results in H̃Ci

. A

proper discretization for this approximation has to be found for any individual object geometry

and constellation with respect to the emitters. The used discretization for the copper cube is

schematically shown in Fig. 4. The parts of the cube which are closer to the emitter are more

significant. Therefore, the surface with higher object resolution points towards the emitter. A

higher object resolution would increase accuracy of (30) and is therefore favourable. However,

this comes with additional computational cost.

The described procedure is also applied to the second part of the formula. Contrary, the integral

over the magnetic field instead of the curl of the magnetic field is required to be pre-computed.

In total, for large n and small Bi a good approximation of (27) is given by

H̃a(xr) ≈
n

∑

i=1

(∇xr
G(xr,yi)× H̃Ci

) + (1−
µ⋆

µ0

)
n

∑

i=1

(Hi · ∇y
i
)∇xr

G(xr,yi). (31)

Here, Hi denotes the volume integral over the magnetic field in Bi in presence of the object.

In the global frame the quantity yi can be expressed as yi = r+Rzi with zi being the known

distance (in local frame) between the emitter and the geometric center of Bi. Note, that the
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known point of observation xr is defined in the global coordinate system, which result in 6

remaining DOF, i.e. xs and θ.

Fig. 5. The geometric dependencies are schematically shown. Here, xr represents the point of observation defined in global

coordinate system, xs represents the magnetic field source and origin of the local coordinate frame. Further, zi given in local

frame denotes the vector between geometric center of object part Bi and magnetic field source. The limits of object B are

known in local frame. The transition between local and global coordinate frame is defined by translation r and rotation R.

The geometric dependencies are schematically visualized in Fig. 5. Although, Fig. 5 shows a

2-D setup the same relations hold for the 3-D case. The magnetic field at xr is ultimately given

by

H(xr) = H0(r,m) + H̃a(xr). (32)

The non-linear function h from (14) clearly corresponds now to (32). To apply the EKF, it needs

to be linearised with respect to the system states Xt.

C. Tracking Experiments

This section compares the EKF based tracking performance of the model extended for close

conductive objectes (32) with the model given by (1). Note, that a conductive cube, shown

in Fig. 4 is located close to the magnetic field sources. Most of the used parameters of this

experiments are reused from Section III-C. However, the starting point of the trajectory X0 is

in this experiment given by

v0 = [0.001, 0.001, 0.001]T , z0 = [0, 0, 0.2]T , ω0 = [0, 0, 0]T , θ0 = [0, 0, 0]T .
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To get a meaningful comparison the initial guess of the EKF is equal to the initial position

X̂0 = X0. The edge length of the conductive cube B is 5 cm and its center is located at

[0, 0, 0.15]T . The geometry is separated into n = 79 smaller cubes Bi, shown in Fig. 4. The

integrals over the curl of the magnetic field resulting in H̃Ci
and the integrals over the magnetic

field resulting in Hi are pre-computed. For zero conductivity and permeability the model H0

and H have the same result. First, a comparison is made were the conductivity of the cube

is changed to σ⋆ = 1000 S
m

, which is approximately the conductivity of various carbon based

materials.

0
0.2

0.4
0.6

0.8

−0.5

0
0.5

0.2

0.3

[m]

True Trajectory

Extended Model H

Base Model H0

Fig. 6. The EKF based position tracking is shown with

two different underlying models. The black markers indi-

cate the true position, the magenta waveform represents

the underlying model (1), whereas the blue waveform

shows the tracking based on the extended model (32). Due

to the low conductivity of the object (σ⋆ = 1000
S

m
), the

accuracy of both models is almost equal.

−2
0

2

0

2

−2

0

2

[rad]

True Trajectory

Extended Model H

Base Model H0

Fig. 7. The EKF based orientation tracking is shown with

two different underlying models. The waveform colors and

underlying models are defined as in Fig. 6. Due to the low

conductivity of the object (σ⋆ = 1000
S

m
), the accuracy

of both models is almost equal.

The estimated trajectory and orientation using both models as well as the true trajectory and

true orientation is reported in Fig. 6 and Fig. 7, respectively. It is observable, that for the used

conductivity the performance of both models is acceptable. The trajectory and the orientation

of the target is well tracked. However, the mean squared error of the adapted model is slightly

lower.
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To visualize the advantages of the H model the conductivity of B is increased to the level of

copper σ⋆ = 59.9× 106 S
m

. The evolution of the position and orientation estimates using both

models are reported in Fig. 8 and Fig. 9, respectively. The EKF tracking accuracy based on the

H0 model decreased dramatically, while for the adapted model H the tracking remains accurate.

Here, the benefit in terms of accuracy of the comparatively complex model extension is clearly

visible. The extended model is able to accurately track the trajectories until the receiver signal

strength becomes too weak and measurement noise starts to dominate. The base model which

neglects the highly conductive cube performs insufficient even in the areas where the receiver

signal strength is still reasonable.

−0.5
0

0.5
1

1.5

−0.2

0

0.2

0.2

0.4

0.6

0.8

[m]

True Trajectory

Extended Model H

Base Model H0

Fig. 8. The EKF based position tracking is shown with

two different underlying models. The black markers indi-

cate the true position, the magenta waveform represents

the underlying model (1) which holds for surrounding air,

whereas the blue waveform shows the superior tracking

performance based on the extended model (32) for close-

by conductive objects. The conductivity of the cube is

σ⋆ = 59.9× 10
6 S

m
.

−4
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0
2

4

−4
−2

0
2
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−4

−2

0

2

4

[rad]

True Trajectory

Extended Model H

Base Model H0

Fig. 9. The EKF based orientation tracking is shown with

two different underlying models. The waveform colors and

underlying models are defined as in Fig. 8. Due to the

high conductivity of the object (σ⋆ = 59.9× 10
6 S

m
m),

the extended model performs superior.
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A third experiment with parameters σ⋆ = 0.1× 106 S
m

and µ⋆ = 100 · µ0 is carried out. In

Fig. 10 and Fig. 11 it is shown that the tracking performance is maintained for ferro-magnetic

objects. A comparison with the traditional model (1) is neglected because it diverges immediately.

Additionally, note that the introduced phase shift, also shown in Tab. II, may be difficult to

measure with common sensors. However, it can easily be estimated when emitter and receiver

are synchronized.

−1
−0.5

0
0.5

0

0.5

−0.2

0

0.2

[m]

True Trajectory

Extended Model H

Fig. 10. The black markers indicate the true position

and the blue waveform represents the EKF based position

tracking for the extended model (32) which holds for

close-by conductive and ferro-magnetic materials. The

conductivity and permeability of the cube is σ⋆ =

0.1× 10
6 S

m
and µ⋆ = 100 · µ0, respectively.
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2

−2
0

2

−2

0

2

[rad]

True Trajectory

Extended Model H

Fig. 11. The black markers indicate the true orienta-

tion and the blue waveform represents the EKF based

orientation tracking for the extended model (32) which

holds for close-by conductive and ferro-magnetic mate-

rials. The conductivity and permeability of the cube is

σ⋆ = 0.1× 10
6 S

m
and µ⋆ = 100 · µ0, respectively.
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In the last experiment a trajectory, which is not randomly generated is used. Instead of using

the Brownian motion model from (8) a helical line with constant vertical velocity is used.

Additionally, the angular velocity is constant, but its x and y components vary periodically.

Note, that the attitude of the target is always aligned to the flight direction. The system model

remains the same and is designed for random trajectories. The flight path simulates non-random

real-world movement, e.g. a UAV in the vicinity of the sensor. The initial states X0 are given

by

v0 = [0, 0.12, 0.02]T , z0 = [0.6, 0, 0]T , ω0 = [0, 0, 0.02]T , θ0 = [0.1662, 0, 0.02]T .

The initial guess of the EKF is X̂0 = X0. The conductive cube is made of copper with

59.9× 106 S
m

and µ⋆ = µ0. It’s location and size is reused from the previous experiments. The

simulated flight lasts 80 seconds and its trajectory is given by

z(t) =











0.6 cos(0.2t)

0.6 sin(0.2t)

0.01t











, θ(t) =











0.1662

0

0.02t











. (33)

The evolution of the position and orientation estimates are shown in Fig. 12 and Fig. 13,

respectively. The estimator accurately tracks the non-random helical trajectory until the received

signal strength becomes too weak caused by the increasing distance to the transmitter. This

shows, that the approach is valid for tracking moving targets such as wheeled robots or UAVs.

Especially, landing scenarios under harsh conditions of UAVs can be greatly supported. The

electromagnetic tracking approach is unaffected by many detrimental influences such as rain,

fog or bad illumination.

V. CONCLUSION

In this paper, a 6-DOF pose estimation principle based on electromagnetic fields is presented.

It is especially useful for autonomous systems operating under harsh conditions such as denied

line of sight, bad light conditions, rain, fog or when navigating close to objects. The system

consists of two parts, a transmitter and a receiver with known pose. The pose of the transmitter,

which is e.g. mounted on a mobile platform is estimated. The systems accuracy increases with

decreasing distance, which makes it especially beneficial for landing scenarios of UAVs. This

work additionally introduces a methodology to account for conductive and ferro-magnetic objects
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Fig. 12. The black markers indicate the true trajectory

and the blue waveform represents the EKF estimates with

underlying model (32). The conductivity of the close-by

copper cube is σ⋆ = 59.9× 10
6 S

m
. The used trajectory

is not randomly chosen, despite the model formulation

which expects random motion.
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Fig. 13. The black markers indicate the true trajectory

and the blue waveform represents the EKF estimates with

underlying model (32). The conductivity of the close-by

copper cube is σ⋆ = 59.9× 10
6 S

m
. The used trajectory

is not randomly chosen, despite the model formulation

which expects random motion.

in the vicinity of the sensor which alter the electromagnetic field due to eddy currents. An explicit

formula is introduced, which allows for EKF based real-time tracking. The explicit expression

is compared to a FEM based solution of the full Maxwell equations and accuracy is verified.

Lastly, the superior tracking performance of the EKF based on the extended model is reported.
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