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Abstract

Approximation rate bounds for expressions of real-valued functions on intervals by deep neural networks
(DNNs for short) are established. The approximation results are given for DNNs based on ReLU activation
functions, and the approximation error is measured with respect to Sobolev norms. It is shown that
ReLU DNNs allow for essentially the same approximation rates as nonlinear, variable-order, free-knot (or
so-called “hp-adaptive”) spline approximations and spectral approximations, for a wide range of Sobolev
and Besov spaces. In particular, exponential convergence rates in terms of the DNN size for piecewise
Gevrey functions with point singularities are established. Combined with recent results on ReLU DNN
expression of rational, oscillatory, and high-dimensional functions, this corroborates that ReLU DNNs
match the approximation power of “best in class” schemes for a wide range of approximations.

Keywords: Deep neural networks, finite element methods, function approximation, adaptivity

Subject Classification: 41A25, 41A46, 65N30

1 Introduction

Recent years have seen a dramatic increase in the application of deep neural networks (DNNs for short)
in a wide range of problems. We mention only machine learning, including applications from speech
recognition to image classification [19]. In scientific computing, computational experiments with DNNs for
the numerical solution of partial differential equations (PDEs for short) have been reported to be strikingly
successful, in a wide range of applications (e.g. [3, 4, 11, 12, 16, 25, 36]). The present paper aims at
contributing to a mathematical understanding of these observations. Specifically, we investigate DNN
expression rates of concrete architectures of DNNs for a number of widely used approximation spaces in
numerical analysis. We present DNN architectures emulating fixed- and free-knot spline approximations,
spectral- and hp-approximations. Moreover, we will observe that the so-constructed DNNs yield the same
approximation properties as the best available approximations with comparable numbers of degrees of
freedom.

Early mathematical work on approximation by neural networks (NNs for short) focused on universality
results (e.g. [1, 2, 18, 28] and the references there). In these references, universality was established already
for so-called shallow NNs, thereby implying universality also for DNNs, for many activation functions.
These early universality results parallel, in a sense, density results for polynomial approximations such
as the Stone-Weierstrass theorem. Moreover, this universality of shallow NNs paradoxically led to the
belief that depth in NN architectures would, in practice, be of little benefit. In recent years, dramatic
empirical evidence fuelled by the ubiquitous availability of massive computing power and training data
shattered this folklore [19]. At the same time, and in response, mathematical analysis started to address
the interplay of depth and architecture of DNNs with specific function classes and it was shown that
DNNs afford significant quantitative advantages over their shallow counterparts in terms of expression
rates for a wide range of function spaces.
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Among these are expression rate bounds for analytic functions (e.g. [10, 22]), (piecewise) differentiable
functions (e.g.[26, 41]), high-dimensional approximation (e.g. [12, 34]), oscillatory functions (e.g. [13]),
cartoon functions in image segmentation (e.g. [14, 13]), rational function approximations (e.g. [38]), high
degree polynomials (e.g. [20, 30]), and linear finite elements [17]. The standard approach employed in
all results above is to first demonstrate that DNNs are capable of efficiently emulating other (linear or
nonlinear) approximation architectures such as B-splines (e.g. [21]), wavelets (e.g. [5, 35]), and high
degree polynomials (e.g. [20, 41]). Then, the approximation results of these classical architectures are
transfered to DNN approximation.

Most approximation theoretical results on DNNs assess approximation fidelity with respect to Lp

norms, p ∈ [1,∞]. However, in view of applications in numerical PDE approximation, it appears to be
more natural to measure the accuracy of approximation with respect to Sobolev norms.

In this work, we study DNN approximations of functions f ∈ W s,p([−1, 1]), p ∈ [1,∞], s ≥ 1 with
respect to weaker Sobolev norms. Concretely, in one space dimension, we will present a range of results
for piecewise polynomial functions f . Based on these results, we then show that DNNs can emulate
high-order h–FEM on general partitions of a bounded interval, as well as high-order, spectral and so-called
p– and hp–FEM. Specifically, we conclude that, in terms of the number of degrees of freedom and from an
approximation theoretical point of view, DNNs perform as well as the best available finite element method.
This observation explains, to some extent, the at times dramatic success that deep learning methodologies
display in computational mathematics such as the aforementioned numerical approximations of PDEs.

The outline of this article is as follows: In Section 2, we start this exposition by presenting a
formal definition of a neural network as well as a formal description of some basic operations on neural
networks. In Section 3, we present—as a motivation—a simple connection between ReLU approximations
and continuous, piecewise affine (free-knot) spline approximation. Section 4 provides the emulation of
polynomials by ReLU networks as well as associated error estimates with respect to Sobolev norms. This
construction is then the basis for the emulation of a range of FE spaces in Section 5. We conclude this
article in Section 6.

Notation

Throughout this paper, C denotes a generic constant which may be different at each appearance, even
within an equation. Dependence of C on parameters is indicated explicitly by C(·), e.g. C(η, θ).

When denoting the norm of a function, we will sometimes write the argument of the function explicitly.
For example, we will write

∥∥mxm−1 − f(x)
∥∥2
L2(I)

for m ∈ N, some bounded domain I and f ∈ L2(I).

Here, x ∈ I is the variable of integration.
For continuous, piecewise polynomial functions, we will use the following notation: Let T be a partition

of the interval I := (0, 1) with nodes 0 = x0 < x1 < . . . < xN−1 < xN = 1, elements Ii := (xi−1, xi) and
element sizes hi := xi − xi−1 for i ∈ {1, . . . , N}. Let h := maxi∈{1,...,N} hi. For a polynomial degree
distribution p = (pi)i∈{1,...,N} ⊂ N on T , we define the maximal degree pmax := maxNi=1 pi and the
corresponding approximation space

Sp(I, T ) := {v ∈ H1(I) : v|Ii ∈ Ppi(Ii) for all i ∈ {1, . . . , N}}.

For N, p ∈ N, we define the space of free-knot splines with less than N interior knots on I := (0, 1)
which are continuous, piecewise polynomial functions of degree p by

SNp (I) :=
⋃

{Sp(I, T ) : T partition of I with N elements} ,

where p = (p, . . . , p). These are often referred to as free-knot splines of degree p+ 1.

2 Neural Networks and ReLU Calculus

Following standard practice, we differentiate between a NN as a set of parameters and the so-called
realization of the network. The realization is an associated function resulting from repeatedly applying
affine linear transformations—defined through the parameters—and a so-called activation function,
denoted generically by ̺.
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Definition 2.1. Let d, L ∈ N. A neural network Φ with input dimension d and L layers is a sequence of
matrix-vector tuples

Φ =
(
(A1, b1), (A2, b2), . . . , (AL, bL)

)
,

where N0 := d and N1, . . . , NL ∈ N, and where Aℓ ∈ R
Nℓ×Nℓ−1 and bℓ ∈ R

Nℓ for ℓ = 1, ..., L.
For a NN Φ and an activation function ̺ : R → R, we define the associated realization of the NN Φ as

R(Φ) : Rd → R
NL : x 7→ xL := R(Φ)(x),

where the output xL ∈ R
NL results from

x0 := x,

xℓ := ̺(Aℓ xℓ−1 + bℓ) for ℓ = 1, . . . , L− 1,

xL := AL xL−1 + bL.

(2.1)

Here ̺ is understood to act component-wise on vector-valued inputs, i.e., for y = (y1, . . . , ym) ∈ R
m,

̺(y) := (̺(y1), . . . , ̺(ym)). We call N(Φ) := d+
∑L
j=1Nj the number of neurons of the NN Φ, L(Φ) := L

the number of layers or depth, Mj(Φ) := ‖Aj‖ℓ0 + ‖bj‖ℓ0 the number of weights in the j-th layer, and
M(Φ) :=

∑L
j=1Mj(Φ) the number of weights of Φ, also referred to as its size. The number of weights in

the first layer is also denoted by Mfi(Φ), the number of weights in the last layer by Mla(Φ). We refer to
NL as the dimension of the output layer of Φ.

In this work, the only activation function that we will consider is the so-called rectified linear unit
(ReLU for short) defined by

̺ : R → R : x 7→ max{0, x}. (2.2)

One fundamental ingredient of this work is to establish the approximation of piecewise polynomials by
deep ReLU neural networks. Our results will imply, in view of classical results on approximation by
continuous, piecewise polynomial functions, DNN expression rate bounds for functions in a collection
of classical function spaces, in particular of Sobolev, Besov, and Hölder type. We will accomplish this
construction of approximate piecewise polynomials by first demonstrating how to approximate certain
universal building blocks by realizations of DNNs. Then, we invoke a so-called calculus of ReLU NNs,
as introduced in [26]. This is a formal framework describing how to concatenate, parallelize, or extend
DNNs. Using this framework, we can assemble complex functions from the fundamental building blocks.

Below, we recall three results of [26] which also serve as definitions of the associated procedures. We
start with concatenation of NNs.

Proposition 2.2 (NN concatenation [26]). Let L1, L2 ∈ N, and let Φ1,Φ2 be two NNs of respective
depths L1 and L2 such that N1

0 = N2
L2

=: d, i.e., the input layer of Φ1 has the same dimension as the
output layer of Φ2.

Then, there exists a NN Φ1 ⊙ Φ2, called the sparse concatenation of Φ1 and Φ2, such that Φ1 ⊙ Φ2

has L1 + L2 layers, R(Φ1 ⊙ Φ2) = R(Φ1) ◦ R(Φ2),

Mfi(Φ
1 ⊙ Φ2) ≤

{
2Mfi(Φ

2) if L2 = 1,

Mfi(Φ
2) else,

Mla(Φ
1 ⊙ Φ2) ≤

{
2Mla(Φ

1) if L1 = 1,

Mla(Φ
1) else,

and
M
(
Φ1 ⊙ Φ2) ≤M

(
Φ1)+Mfi

(
Φ1)+Mla

(
Φ2)+M

(
Φ2) ≤ 2M

(
Φ1)+ 2M

(
Φ2) .

The second fundamental operation on NNs is parallelization. This can be achieved with the following
construction.

Proposition 2.3 (NN parallelization [26]). Let L, d ∈ N and let Φ1,Φ2 be two NNs with L layers and
with d-dimensional input each. Then there exists a network P(Φ1,Φ2) with d-dimensional input and L
layers, which we call the parallelization of Φ1 and Φ2, such that

R
(
P
(
Φ1,Φ2)) (x) =

(
R
(
Φ1) (x),R

(
Φ2) (x)

)
, for all x ∈ R

d, (2.3)

M(P(Φ1,Φ2)) =M(Φ1) +M(Φ2), Mfi(P(Φ
1,Φ2)) =Mfi(Φ

1) +Mfi(Φ
2) and Mla(P(Φ

1,Φ2)) =Mla(Φ
1) +

Mla(Φ
2).

3



Proposition 2.3 only enables us to parallelize NNs of equal depth. To make two NNs have the same
depth one can extend the shorter of the two by concatenating with a network that implements the identity.
One possible construction of such a NN is presented next.

Proposition 2.4 (DNN emulation of Id [26]). For every d, L ∈ N there exists a NN ΦId
d,L with L(ΦId

d,L) = L,

M(ΦId
d,L) ≤ 2dL, Mfi(Φ

Id
d,L) ≤ 2 and Mla(Φ

Id
d,L) ≤ 2 such that R(ΦId

d,L) = IdRd .

Finally, we sometimes require a parallelization of NNs that do not share inputs.

Proposition 2.5 (Full parallelization of NNs with distinct inputs [12]). Let L ∈ N and let

Φ1 =
((
A1

1, b
1
1

)
, . . . ,

(
A1
L, b

1
L

))
, Φ2 =

((
A2

1, b
2
1

)
, . . . ,

(
A2
L, b

2
L

))

be two NNs with L layers each and with input dimensions N1
0 = d1 and N2

0 = d2, respectively.
Then there exists a NN, denoted by FP(Φ1,Φ2), with d = d1+d2-dimensional input and L layers, which

we call the full parallelization of Φ1 and Φ2, such that for all x = (x1, x2) ∈ R
d with xi ∈ R

di , i = 1, 2

R
(
FP
(
Φ1,Φ2)) (x1, x2) =

(
R
(
Φ1) (x1),R

(
Φ2) (x2)

)
,

M(FP(Φ1,Φ2)) = M(Φ1) + M(Φ2), Mfi(FP(Φ
1,Φ2)) = Mfi(Φ

1) + Mfi(Φ
2) and Mla(FP(Φ

1,Φ2)) =
Mla(Φ

1) +Mla(Φ
2).

Proof. Set FP
(
Φ1,Φ2

)
:=
((
A3

1, b
3
1

)
, . . . ,

(
A3
L, b

3
L

))
where, for j = 1, . . . , L, we define

A3
j :=

(
A1
j 0
0 A2

j

)
and b3j :=

(
b1j
b2j

)
.

The four operations: concatenation, extension, parallelization with and without shared inputs; will be
used to assemble more complex networks out of fundamental building blocks.

3 ReLU Network Approximation and Linear Splines

In this section, we analyze the connection between shallow ReLU networks and linear splines. The goal of
this simple analysis is to identify the functional roles of the hidden parameters of a network. Concretely,
we will see that approximation by shallow ReLU networks, where one is only varying the parameters in the
output layer, corresponds to linear spline approximation with fixed nodes. On the other hand, an adaptive
choice of the internal parameters of a network corresponds to free-knot linear spline approximation. This
motivation highlights a first functional role of the hidden parameters. In Section 4 and after, we also
identify further, more high-level roles of hidden parameters for deeper networks such as controlling the
degree of the emulated polynomial approximation.

We begin by describing a network with exact emulation of continuous, piecewise affine-linear functions
on arbitrary partitions of I.

Lemma 3.1. For every partition T of I = (0, 1) with N elements and every v ∈ S1(I, T ) there exists a
NN Φv such that

R(Φv) = v, L (Φv) = 2, M (Φv) ≤ 3N + 1, Mfi (Φ
v) ≤ 2N, and Mla (Φ

v) ≤ N + 1. (3.1)

Proof. We set Φv := ((Av1 , b
v
1), (A

v
2 , b

v
2)) such that

Av1 := [1, . . . , 1]T ∈ R
N×1, bv1 := [−x0,−x1, . . . ,−xN−1]

T ∈ R
N , bv2 := v(x0) ∈ R,

and, for i ∈ {1, . . . , N},

Av2 ∈ R
1×N , (Av2)1,i :=

{
v(xi)−v(xi−1)

xi−xi−1
− v(xi−1)−v(xi−2)

xi−1−xi−2
if i > 1

v(xi)−v(xi−1)

xi−xi−1
if i = 1.

The claimed properties follow directly.
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We remark that the (simple) construction (3.1) contains both, fixed-knot spline approximations, as
well as free-knot spline approximations. The former are obtained by constraining the NN parameters xj
in the hidden layer, the latter by allowing these hidden layer parameters to adapt during training of the
NN. Then, the NN (3.1) is “h-adaptive”, by design.

Lemma 3.1 can be combined with the following result on free-knot spline approximations.

Proposition 3.2 ([24, Theorem 3]). Let s < max{2, 1 + 1/q}, let 0 < q < q′ ≤ ∞ and 0 < s′ <
min{1 + 1/q′, s− 1/q + 1/q′}, and let 0 < t, t′ ≤ ∞. Then for some C := C(q, q′, t, t′, s, s) > 0, for every
N ∈ N and every f ∈ Bsq,t(I) there exists hN ∈ SN1 (I) such that

∥∥∥f − hN
∥∥∥
Bs′

q′,t′
(I)

≤ CN−(s−s′)‖f‖Bs
q,t(I)

.

For comparison, the approximation error for fixed-knot continuous, piecewise linear spline approxima-
tion on uniform partitions is of the order O(N−(s−s′−1/q+1/q′)).

As a consequence of Proposition 3.2 and Lemma 3.1 we conclude the following corollary.

Corollary 3.3. Let s < max{2, 1 + 1/q}, let 0 < q < q′ ≤ ∞ and 0 < s′ < min{1 + 1/q′, s− 1/q+ 1/q′},
and let 0 < t, t′ ≤ ∞. Then for some C := C(q, q′, t, t′, s, s) > 0, for every N ∈ N and every f ∈ Bsq,t(I)
there exists a NN ΦNf such that

∥∥∥f − R
(
ΦNf

)∥∥∥
Bs′

q′,t′
(I)

≤ C
(
M
(
ΦNf

))−(s−s′)

‖f‖Bs
q,t(I)

.

Corollary 3.3 shows that ReLU NNs achieve the same convergence rate in terms of the network size as
the convergence rate in terms of pieces N in Proposition 3.2.

The weights of the networks constructed in Lemma 3.1 have two types of freedom: First, the weights
depend nonlinearly on the nodes {xi}Ni=0 of the partition T . Second, the weights in the output layer
depend linearly on the function values {v(xi)}Ni=0.

Fixing the weights in the first layer corresponds to fixing the partition, i.e. optimizing only the weights
in the output layer corresponds to fixed-knot continuous, piecewise linear spline approximation. Exploiting
the linearity of the output layer, the weights of the output layer can be determined by linear optimization.

4 Emulation of Polynomials by ReLU Networks

In this section, we present an emulation of polynomials of arbitrary degrees by ReLU NNs. Here, we
analyze the approximation error with respect to Sobolev norms. In the sequel, it will prove to be important
to have control of the emulated polynomials on the end points of the reference interval. Therefore, we
present a construction of a polynomial emulation which is exact at the endpoints in Proposition 4.4.

The results below are based on a construction of DNNs emulating the multiplication function with
two-dimensional input which has been derived in [41]. We recall here a version of this result and provide
an estimate of the error with respect to the W 1,∞ norm, from [34], as required in approximation rate
bounds for PDEs.

Proposition 4.1 ([34, 41]). There exist constants CL, C
′
L, CM , C

′
M > 0 such that, for every κ > 0 and

δ ∈ (0, 1/2), there exists a NN ×̃δ,κ with two-dimensional input and such that

sup
|a|,|b|≤κ

∣∣ab− R
(
×̃δ,κ

)
(a, b)

∣∣ ≤ δ and

esssup
|a|,|b|≤κ

max

{∣∣∣∣a−
d

db
R
(
×̃δ,κ

)
(a, b)

∣∣∣∣ ,
∣∣∣∣b−

d

da
R
(
×̃δ,κ

)
(a, b)

∣∣∣∣
}

≤ δ, (4.1)

where d/da and d/db denote weak derivatives. Furthermore, for every κ > 0 and for every δ ∈ (0, 1/2)

M
(
×̃δ,κ

)
≤ CM

(
log2

(
max{κ, 1}

δ

))
+ C′

M and L
(
×̃δ,κ

)
≤ CL

(
log2

(
max{κ, 1}

δ

))
+ C′

L.

Moreover, for all a, b ∈ R,

R
(
×̃δ,κ

)
(a, 0) = R

(
×̃δ,κ

)
(0, b) = 0. (4.2)
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We now prove results on the approximation of polynomials on the reference interval Î := (−1, 1) by
realizations of NNs, using the networks from Proposition 4.1.

Proposition 4.2. For each n ∈ N0 and each polynomial v ∈ Pn([−1, 1]), such that v(x) =
∑n
ℓ=0 ṽℓx

ℓ,
for all x ∈ [−1, 1] with C0 :=

∑n
ℓ=2 |ṽℓ|, there exist NNs {Φvβ}β∈(0,1) with input dimension one and output

dimension one which satisfy

∥∥v − R(Φvβ)
∥∥
W1,∞(Î)

≤β,

R(Φvβ)(0) = v(0),

L(Φvβ) ≤CL(1 + log2(n)) log2(C0/β) +
1
3
CL(log2(n))

3 + C(1 + log2(n))
2,

M(Φvβ) ≤ 2CMn log2(C0/β) + 4CMn log2(n) + 4CL(1 + log2(n)) log2(C0/β) + C(1 + n),

Mfi(Φ
v
β) ≤Cfi + 4,

Mla(Φ
v
β) ≤ 2n+ 2

if C0 > β. If C0 ≤ β the same estimates hold, but with C0 replaced by 2β.

To prove the proposition, we use the following technical lemma. For k ∈ N and a given polynomial
v, this lemma produces a tree-structured network with 2k−1 + 2 outputs. The first 2k−1 + 1 of these
correspond to high-order monomials of degree between 2k−1 and 2k. The last output dimension contains
an approximation to the partial sum of v of degree 2k−1.

This network is constructed by repeatedly applying the product network introduced in Proposition
4.1.

Lemma 4.3. Let n ∈ N and v ∈ Pn(Î) such that v(x) =
∑n
ℓ=0 ṽℓx

ℓ, for all x ∈ [−1, 1]. We define ṽℓ := 0
for ℓ > n. For every k ∈ N there exist NNs {Ψkδ}δ∈(0,1) with input dimension one and output dimension

2k−1 + 2 such that with X̃ℓ
δ := R(Ψkδ )1+ℓ−2k−1 for ℓ ∈ {2k−1, . . . , 2k} and psum2k−1,δ := R(Ψkδ )2k−1+2 it

holds that

R(Ψkδ )(x) =
(
X̃2k−1

δ (x), . . . , X̃2k

δ (x), psum2k−1,δ(x)
)
, x ∈ Î ,

∥∥∥xℓ − X̃ℓ
δ(x)

∥∥∥
W1,∞(Î)

≤ δ, ℓ ∈ {2k−1, . . . , 2k}, (4.3)

X̃ℓ
δ(0) = 0, ℓ ∈ {2k−1, . . . , 2k}, (4.4)

psum2k−1,δ(0) = v(0), (4.5)
∥∥∥∥∥∥

2k−1∑

ℓ=0

ṽℓx
ℓ − psum2k−1,δ(x)

∥∥∥∥∥∥
W1,∞(Î)

≤ δ

2k−1∑

ℓ=2

|ṽℓ|, (4.6)

L(Ψkδ ) ≤CL
(
1
3
k3 + 2k2 + k log2(1/δ)

)
+ (4CL + C′

L + 1)k, (4.7)

C1 := 7CM + C′
M + Cfi + 1

2
Cla + 10,

C2 := 4C′
L + 16CL + 17,

M(Ψkδ ) ≤ 2CMk2
k + CM2k log2(1/δ) + 4kCL log2(1/δ)

+ C12
k + 4

3
CLk

3 + 6CLk
2 + C2k, (4.8)

Mfi(Ψ
k
δ ) ≤Cfi + 4, (4.9)

Mla(Ψ
k
δ ) ≤Cla2

k−1 + 5. (4.10)

Proof. We prove the lemma by induction over k ∈ N.
Induction basis. For arbitrary δ ∈ (0, 1) let L1 := L(×̃δ/2,1), let A := [1, 1]⊤ be a 2× 1-matrix and let

×̃δ/2,1 =: ((A1, b1), . . . , (AL1
, bL1

)) according to Proposition 4.1. Then we define

Ψ1
δ := P(ΦId

1,L1
, ((A1A, b1), . . . , (AL1

, bL1
)), ṽ1Φ

Id
1,L1

+ ṽ0),

where the network ṽ1Φ
Id
1,L1

+ ṽ0 can be constructed from ΦId
1,L1

by adjusting the weights in the last

layer. For all x ∈ Î it holds that X̃1
δ (x) := [R(Ψ1

δ)(x)]1 = x, X̃2
δ (x) := [R(Ψ1

δ)(x)]2 = R(×̃δ/2,1)(x, x) and
psum1,δ(x) := [R(Ψ1

δ)(x)]3 = ṽ1x+ ṽ0, which shows that Equations (4.4)–(4.6) hold for k = 1.
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We now estimate the depth and the size of Ψ1
δ .

L(Ψ1
δ) =L1 ≤ CL log2(2/δ) + C′

L,

M(Ψ1
δ) =M(ΦId

1,L1
) +M(((A1A, b1), . . . , (AL1

, bL1
))) +M(ṽ1Φ

Id
1,L1

+ ṽ0)

≤ 2L1 +
(
CM log2(2/δ) + C′

M

)
+ (2L1 + 1)

≤
(
4CL + CM

)
log2(2/δ) + 4C′

L + C′
M + 1,

Mfi(Ψ
1
δ) =Mfi(Φ

Id
1,L1

) +Mfi(((A1A, b1), . . . , (AL1
, bL1

))) +Mfi(ṽ1Φ
Id
1,L1

+ ṽ0)

≤ 2 + Cfi + 2 = Cfi + 4,

Mla(Ψ
1
δ) =Mla(Φ

Id
1,L1

) +Mla(((A1A, b1), . . . , (AL1
, bL1

))) +Mla(ṽ1Φ
Id
1,L1

+ ṽ0)

≤ 2 + Cla + 3 = Cla + 5.

Finally, it follows from Proposition 4.1 that

∣∣∣x2 − X̃2
δ (x)

∣∣∣
W1,∞(Î)

≤
∥∥2x− [D×̃δ/2,1]1(x, x)− [D×̃δ/2,1]2(x, x)

∥∥
L∞(Î)

≤ δ
2
+ δ

2
= δ,

∥∥∥x2 − X̃2
δ (x)

∥∥∥
W1,∞(Î)

≤ δ,

where the last inequality follows from Poincaré’s inequality and Equation (4.4). This shows that Equation
(4.3) holds for k = 1. This finishes the proof of the induction basis.

Induction hypothesis (IH). For some δ ∈ (0, 1) and some k ∈ N define θ := 2−k−3δ and assume that
there exists a network Ψkθ for which Equations (4.3)–(4.10) hold with θ instead of δ.

Induction step. We show that Equations (4.3)–(4.10) hold with δ as in (IH) and with k + 1 instead of
k.

We note that, for all ℓ ∈ {2k−1, . . . , 2k},
∥∥∥X̃ℓ

θ

∥∥∥
L∞(Î)

≤
∥∥∥xℓ
∥∥∥
L∞(Î)

+
∥∥∥xℓ − X̃ℓ

θ(x)
∥∥∥
W1,∞(Î)

≤ 1 + θ < 2. (4.11)

Hence, we may use X̃ℓ
θ(x) as input of ×̃θ,2. For Φ1,k and Φ2,k

δ introduced below, we define

Ψk+1
δ := Φ2,k

δ ⊙ Φ1,k ⊙Ψkθ . (4.12)

Here, Φ1,k is a NN of depth one which implements the linear map

R
2k−1+2 → R

2k+1+2 :
(
z1, . . . , z2k−1+2) 7→ (z2k−1+1, z1, z2, z2, z2, z2, z3, z3, z3, z3, z4, z4, z4,

. . . , z2k−1 , z2k−1+1, z2k−1+1, z2k−1+1, z2k−1+2 +
2k∑

ℓ=2k−1+1

ṽℓzℓ+1−2k−1

)
.

The network ((A1,k, b1,k)) := Φ1,k satisfies b1,k = 0 and

(A1,k)m,i =





1 if m = 1, i = 2k−1 + 1,

1 if m ∈ {2, . . . , 2k+1 + 1}, i = ⌈m+2
4

⌉,
ṽi−1+2k−1 if m = 2k+1 + 2, i ∈ {2, . . . , 2k−1 + 1},
1 if m = 2k+1 + 2, i = 2k−1 + 2,

0 else.

Moreover,

L(Φ1,k) = 1, Mfi(Φ
1,k) =Mla(Φ

1,k) =M(Φ1,k) ≤ (1 + 2k+1 + 2k−1 + 1) = 5
2
2k + 2.

With Lθ := L(×̃θ,2) we define the network Φ2,k
δ as

Φ2,k
δ := FP(ΦId

1,Lθ
, ×̃θ,2, . . . , ×̃θ,2,ΦId

1,Lθ
),
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which contains 2k ×̃θ,2-networks. It holds that

L(Φ2,k
δ ) =L(×̃θ,2) ≤ CL

(
log2(2/θ)

)
+ C′

L

=CL
(
k + 4 + log2(1/δ)

)
+ C′

L,

M(Φ2,k
δ ) ≤ 2M(ΦId

1,Lθ
) + 2kM(×̃θ,2)

≤ 4L(×̃θ,2) + 2kM(×̃θ,2)
≤ (4CL + CM2k) log2(2/θ) + 4C′

L + C′
M2k

≤ (4CL + CM2k)(k + 4 + log2(1/δ)) + 4C′
L + C′

M2k,

Mfi(Φ
2,k
δ ) = 2Mfi(Φ

Id
1,Lθ

) + 2kMfi(×̃θ,2)
≤Cfi2

k + 4,

Mla(Φ
2,k
δ ) = 2Mla(Φ

Id
1,Lθ

) + 2kMla(×̃θ,2)
=Cla2

k + 4.

The realization of Ψk+1
δ , defined in Equation (4.12), is given by

[R(Ψk+1
δ )(x)]1 = X̃2k

θ (x), for x ∈ Î , (4.13)

[R(Ψk+1
δ )(x)]ℓ+1−2k = R(×̃θ,2)

(
X̃

⌈ℓ/2⌉
θ (x), X̃

⌊ℓ/2⌋
θ (x)

)
, for x ∈ Î , ℓ ∈ {2k + 1, . . . , 2k+1}, (4.14)

[R(Ψk+1
δ )(x)]2k+2 = psum2k−1,θ(x) +

2k∑

ℓ=2k−1+1

ṽℓX̃
ℓ
θ(x), for x ∈ Î . (4.15)

We define, for x ∈ Î and ℓ ∈ {2k + 1, . . . , 2k+1}

X̃ℓ
δ(x) := [R(Ψk+1

δ )(x)]ℓ+1−2k and psum2k,δ(x) := [R(Ψk+1
δ )(x)]2k+2.

Equations (4.4)–(4.5) for k + 1 follow from the induction hypothesis and Equation (4.2).
We will now give bounds on the depth and the size of Ψk+1

δ .

L(Ψk+1
δ ) =L(Φ2,k

δ ) + L(Φ1,k) + L(Ψkθ)

≤
(
CL
(
k + 4 + log2(1/δ)

)
+ C′

L

)
+ 1

+
(
CL
(
1
3
k3 + 2k2 + k log2(2

k+3/δ)
)
+ (4CL + C′

L + 1)k
)

≤CL
(
1
3
(k + 1)3 + 2(k + 1)2 + (k + 1) log2(1/δ)

)
+ (4CL + C′

L + 1)(k + 1),

M(Ψk+1
δ ) ≤M(Φ2,k

δ ) +Mfi(Φ
2,k
δ ) +Mla(Φ

1,k ⊙Ψkθ) +M(Φ1,k ⊙Ψkθ)

≤M(Φ2,k
δ ) +Mfi(Φ

2,k
δ ) + 2Mla(Φ

1,k) +M(Φ1,k) +Mfi(Φ
1,k) +Mla(Ψ

k
θ) +M(Ψkθ)

≤
(
(4CL + CM2k)(k + 4 + log2(1/δ)) + 4C′

L + C′
M2k

)
+ (Cfi2

k + 4)

+ 2( 5
2
2k + 2) + ( 5

2
2k + 2) + ( 5

2
2k + 2) + (Cla2

k−1 + 5)

+
(
2CMk2

k + CM2k log2(2
k+3/δ) + 4kCL log2(2

k+3/δ) + C12
k + 4

3
k3CL + 6k2CL + C2k

)

≤ 2CM (k + 1)2k+1 + CM2k+1 log2(1/δ) + 4(k + 1)CL log2(1/δ)

+ C12
k+1 + 4

3
CL(k + 1)3 + 6(k + 1)2CL + C2(k + 1),

C1 := 7CM + C′
M + Cfi + 1

2
Cla + 10,

C2 := 4C′
L + 16CL + 17,

Mfi(Ψ
k+1
δ ) =Mfi(Ψ

k
θ) ≤ Cfi + 4,

Mla(Ψ
k+1
δ ) =Mla(Φ

2,k
δ ) = Cla2

k + 4.
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This finishes the proof of Equations (4.7)–(4.10) for k + 1. We now estimate the NN expression error.
Because θ < δ, it follows from the induction hypothesis that

∥∥∥∥∥∥

2k∑

ℓ=0

ṽℓx
ℓ − psum2k,δ(x)

∥∥∥∥∥∥
W1,∞(Î)

≤

∥∥∥∥∥∥

2k−1∑

ℓ=0

ṽℓx
ℓ − psum2k−1,θ(x)

∥∥∥∥∥∥
W1,∞(Î)

+
2k∑

ℓ=2k−1+1

|ṽℓ|
∥∥∥xℓ − X̃ℓ

θ(x)
∥∥∥
W1,∞(Î)

≤ δ

2k∑

ℓ=2

|ṽℓ|.

It follows from the induction hypothesis and Equation (4.13) that Equation (4.3) holds for ℓ = 2(k+1)−1.
For ℓ ∈ {2k + 1, . . . , 2k+1}, with ℓ0 := ⌈ℓ/2⌉, we use that, analogous to Equation (4.11), it holds that for
m ∈ {ℓ0, ℓ− ℓ0}

∥∥∥X̃m
θ

∥∥∥
L∞(Î)

≤ 1 + θ < 2,

∥∥∥ d
dx
X̃m
θ (x)

∥∥∥
L∞(Î)

≤
∥∥mxm−1

∥∥
L∞(Î)

+
∥∥∥xm − X̃m

θ (x)
∥∥∥
W1,∞(Î)

≤ m+ θ < m+ 1.

We find
∣∣∣xℓ − X̃ℓ

δ(x)
∣∣∣
W1,∞(Î)

≤
∥∥∥ℓ0xℓ−1 − [DR(×̃θ,2)]1

(
X̃ℓ0
θ (x), X̃ℓ−ℓ0

θ (x)
)

d
dx
X̃ℓ0
θ (x)

∥∥∥
L∞(Î)

+
∥∥∥(ℓ− ℓ0)x

ℓ−1 − [DR(×̃θ,2)]2
(
X̃ℓ0
θ (x), X̃ℓ−ℓ0

θ (x)
)

d
dx
X̃ℓ−ℓ0
θ (x)

∥∥∥
L∞(Î)

≤
∥∥∥ℓ0xℓ0−1(xℓ−ℓ0 − X̃ℓ−ℓ0

θ (x)
)∥∥∥
L∞(Î)

+
∥∥∥X̃ℓ−ℓ0

θ (x)
(
ℓ0x

ℓ0−1 − d
dx
X̃ℓ0
θ (x)

)∥∥∥
L∞(Î)

+
∥∥∥
(
X̃ℓ−ℓ0
θ (x)− [DR(×̃θ,2)]1

(
X̃ℓ0
θ (x), X̃ℓ−ℓ0

θ (x)
))

d
dx
X̃ℓ0
θ (x)

∥∥∥
L∞(Î)

+
∥∥∥(ℓ− ℓ0)x

ℓ−ℓ0−1(xℓ0 − X̃ℓ0
θ (x)

)∥∥∥
L∞(Î)

+
∥∥∥X̃ℓ0

θ (x)
(
(ℓ− ℓ0)x

ℓ−ℓ0−1 − d
dx
X̃ℓ−ℓ0
θ (x)

)∥∥∥
L∞(Î)

+
∥∥∥
(
X̃ℓ0
θ (x)− [DR(×̃θ,2)]2

(
X̃ℓ0
θ (x), X̃ℓ−ℓ0

θ (x)
))

d
dx
X̃ℓ−ℓ0
θ (x)

∥∥∥
L∞(Î)

(4.11),(IH)

≤ ℓ0θ + 2θ + (ℓ0 + 1)θ + (ℓ− ℓ0)θ + 2θ + (ℓ− ℓ0 + 1)θ

≤ (2ℓ+ 6)θ ≤ δ,

where [DR(×̃δ,2)] is the Jacobian and where we have used that 3 ≤ ℓ ≤ 2k+1, which implies that 2ℓ+ 6 ≤
4ℓ ≤ 2k+3. Because X̃ℓ

δ(0) = 0 = 0ℓ it follows with Poincaré’s inequality that
∥∥∥xℓ − X̃ℓ

δ(x)
∥∥∥
W1,∞(Î)

≤ δ.

For k satisfying the induction hypothesis and arbitrary δ ∈ (0, 1), we have constructed Ψk+1
δ and

have shown that Equations (4.3)–(4.10) hold for k + 1 instead of k and with δ as in (IH). This finishes
the induction step. The lemma now follows by induction, as the induction basis shows the induction
hypothesis for k = 1.

Proof of Proposition 4.2. Below, we consider the case C0 > β. The proof of the case C0 ≤ β is analogous.
The distinction is needed to ensure that we do not invoke Lemma 4.3 with δ ≥ 1.

In case n ∈ {0, 1}, for all β ∈ (0, 1) we define Φvβ := ((A, b)), where A = ṽ1 ∈ R
1×1 and b = ṽ0 ∈ R

1.
It holds that

∥∥v − R(Φvβ)
∥∥
W1,∞(Î)

= 0, R(Φvβ)(0) = ṽ0 = v(0), L(Φvβ) = 1 and M(Φvβ) = Mfi(Φ
v
β) =

Mla(Φ
v
β) ≤ 2.

In case n ≥ 2 we define k := ⌈log2(n)⌉ and δ := β/C0 and use Lemma 4.3. We define

Φvβ := Φ3,n ⊙Ψkδ ,
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where Φ3,n is a NN which implements the linear map

R
2k−1+2 → R : (z1, . . . , z2k−1+2) 7→ z2k−1+2 +

2k∑

ℓ=2k−1+1

ṽℓzℓ+1−2k−1 .

It satisfies L(Φ3,n) = 1 and M(Φ3,n) =Mfi(Φ
3,n) =Mla(Φ

3,n) ≤ 2k−1 + 1.
The realization of Φvβ is

R(Φvβ)(x) = psum2k−1,δ(x) +

2k∑

ℓ=2k−1+1

ṽℓX̃
ℓ
δ(x), x ∈ Î .

From Equations (4.4) and (4.5) we conclude that R(Φvβ)(0) = ṽ0 = v(0).

Using 2k ≤ 2n, we can bound the depth and the size of Φvβ as follows:

L
(
Φvβ
)
=L

(
Φ3,n)+ L

(
Ψkδ

)

≤ 1 +
(
CL
(

1
3
k3 + k log2

(
C0

β

))
+ Ck2

)

≤CL(1 + log2(n)) log2

(
C0

β

)
+ 1

3
CL log32(n) + C log22(n),

M
(
Φvβ
)
≤M

(
Φ3,n)+Mfi

(
Φ3,n)+Mla

(
Ψkδ

)
+M

(
Ψkδ

)

≤
(
2k−1 + 1

)
+
(
2k−1 + 1

)
+
(
2k−1Cla + 5

)

+

(
2CMk2

k + CM2k log2

(
C0

β

)
+ 4kCL log2

(
C0

β

)
+ C2k

)

≤ 2CMn log2

(
C0

β

)
+ 4CMn log2(n) + 4CL(1 + log2(n)) log2

(
C0

β

)
+ Cn,

Mfi

(
Φvβ
)
=Mfi

(
Ψkδ

)
= Cfi + 4,

Mla

(
Φvβ
)
=2Mla

(
Φ3,n) ≤ 2n+ 2.

Finally, we estimate the error.

∥∥v − R
(
Φvβ
)∥∥
W1,∞(Î)

≤

∥∥∥∥∥∥

2k−1∑

ℓ=0

ṽℓx
ℓ − psum2k−1,δ(x)

∥∥∥∥∥∥
W1,∞(Î)

+

2k∑

ℓ=2k−1+1

|ṽℓ|
∥∥∥xℓ − X̃ℓ

δ(x)
∥∥∥
W1,∞(Î)

≤ δ

2k−1∑

ℓ=2

|ṽℓ|+
2k∑

ℓ=2k−1+1

|ṽℓ|δ ≤ β.

This finishes the proof of the proposition.

Later, we will consider approximations of piecewise polynomial functions by realizations of NNs. For
the results in Section 5, it is important that we can approximate polynomials on an interval with exactness
in the endpoints. After subtracting an affine function, it suffices to approximate polynomials which vanish
at the endpoints by NNs the realizations of which vanish at the endpoints. This is the aim of the following
proposition.

In Section 5, we will mainly restrict our attention to estimates of the error in the H1-norm. Therefore,
the error estimates in the following proposition are L2-based.

Proposition 4.4. For all q ∈ N≥2 and all w ∈ (Pq ∩ H1
0 )(Î) there exist NNs (Φw,0ε )ε∈(0,1) with input
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dimension one and output dimension one which satisfy R(Φw,0ε )|
R\Î = 0 and for all 1 ≤ q′ ≤ ∞

∥∥w − R(Φw,0ε )
∥∥
W1,q′ (Î)

≤ 2
2
q′

−1
ε |w|H1(Î) ,

L
(
Φw,0ε

)
≤CL(1 + log2(q)) (2q + log2 (1/ε)) + CL log2 (1/ε) + C log32(q),

M
(
Φw,0ε

)
≤ 2CM

(
2q2 + q log2 (1/ε)

)
+ (6CL (1 + log2(q)) + 2CM ) log2 (1/ε)

+ Cq log2(q),

Mfi

(
Φw,0ε

)
≤Cfi + 12,

Mla(Φ
w,0
ε ) =Cla.

In particular, for q′ = 2 it holds that
∥∥w − R(Φw,0ε )

∥∥
H1(Î)

≤ ε |w|H1(Î).

Proof. The main observation in the proof is the fact that the polynomial w is divisible by ψ, known as
quadratic bubble function and defined by ψ(x) := (1 + x)(1 − x) = 1 − x2 for x ∈ Î and ψ(x) = 0 for
x ∈ R\Î. In addition, we use that ψ can be approximated with W 1,∞(Î)-error at most η > 0 by a NN Φψη
which satisfies R(Φψε )|R\Î = 0 and we approximate Q := w/ψ ∈ Pq−2(Î) using Proposition 4.2. We use
the product network from Proposition 4.1 to multiply the approximation of ψ with the approximation
of Q. In order to apply Proposition 4.2 for the approximation of Q, we need to bound the sum of the
absolute values of the Taylor coefficients of Q. In the first step of the proof we will derive such a bound.
In the second step we construct networks which satisfy the desired properties.

Step 1. We first estimate the sum of the absolute values of the Taylor coefficients of the L2(Î)-
normalized Legendre polynomials {Lj}j∈N0

. For j ∈ N0, it holds that Lj(x) =
∑j
ℓ=0 c

j
ℓx
ℓ for x ∈ R,

where, for ℓ ∈ N and m := (j − ℓ)/2,

cjℓ :=





0 for j − ℓ ∈ {0, . . . , j} ∩ 2Z+ 1,

(−1)m2−j
(
j
m

)(
j+ℓ
j

)√
j + 1

2
for j − ℓ ∈ {0, . . . , j} ∩ 2Z,

0 for ℓ > j.

The sum of these coefficients can be estimated using the following inequalities (cf. [29]):

∀n ∈ N :
√
2πnn+

1
2 e−ne

1
12n+1 < n! <

√
2πnn+

1
2 e−ne

1
12n . (4.16)

In addition, we will use that for all j ∈ N and all m ∈ {0, . . . , ⌊j/2⌋}
(
2j − 2m

j

)
≤
(
2j − 2m

j

)
2m−1∏

i=0

2j − i

j − i
=

(
2j

j

)
.

It follows, from (4.16) that, for all j ∈ N,

(
2j

j

)
≤

√
2π(2j)2j+

1
2 e−2je

1
24j

√
2πjj+

1
2 e−je

1
12j+1

√
2πjj+

1
2 e−je

1
12j+1

≤ 4j√
πj

e
1

24j

e
2

12j+1

<
4j√
πj

and as a result that

j∑

ℓ=0

|cjℓ | =
∑

m∈{0,...,⌊j/2⌋}

|cjj−2m|

≤ 2−j
(

j∑

m=0

(
j

m

))
⌊j/2⌋
max
m=0

(
2j − 2m

j

)√
j +

1

2

≤
√
j +

1

2

(
2j

j

)
≤

4j
√
j + 1

2√
πj

≤ 4j . (4.17)

11



We now consider a general polynomial v ∈ Pn of degree n ∈ N0. We denote the Legendre expansion of
v by v =

∑n
j=0 vjLj . We find the following expression for the Taylor expansion of v at x = 0:

v(x) =

n∑

j=0

vjLj(x) =

n∑

j=0

vj

j∑

ℓ=0

cjℓx
ℓ =

n∑

ℓ=0

(
n∑

j=0

vjc
j
ℓ

)
xℓ =:

n∑

ℓ=0

ṽℓx
ℓ, x ∈ Î .

It follows that

n∑

ℓ=0

|ṽℓ| =
n∑

ℓ=0

∣∣∣∣∣

n∑

j=0

vjc
j
ℓ

∣∣∣∣∣ ≤
(

n
max
j=0

|vj |
) n∑

ℓ=0

n∑

j=0

|cjℓ | =
(

n
max
j=0

|vj |
) n∑

j=0

(
n∑

ℓ=0

|cjℓ |
)

(∗)

≤ ‖v‖L2(Î)

n∑

j=0

4j ≤ 1
3
4n+1 ‖v‖L2(Î) . (4.18)

At (*) we used Equation (4.17) and

n
max
j=0

|vj | ≤
∥∥(vj)nj=0

∥∥
ℓ2

= ‖v‖L2(Î) . (4.19)

We now consider w ∈ (Pq ∩H1
0 )(Î) of degree q ≥ 2 and write w = ψQ, where Q ∈ Pq−2(Î). We recall

Hardy’s inequality: for all functions g ∈ H1((0, 1)) satisfying g(0) = 0, it holds that
∥∥∥ g(x)x

∥∥∥
L2((0,1))

≤
2 ‖g′‖L2((0,1)). It follows that

‖Q‖2L2(Î) =

∥∥∥∥
w(x)

1− x2

∥∥∥∥
2

L2(Î)

=

∥∥∥∥
w(x)

1− x2

∥∥∥∥
2

L2((−1,0))

+

∥∥∥∥
w(x)

1− x2

∥∥∥∥
2

L2((0,1))

≤
∥∥∥∥
w(x)

1 + x

∥∥∥∥
2

L2((−1,0))

+

∥∥∥∥
w(x)

1− x

∥∥∥∥
2

L2((0,1))

=

∥∥∥∥
w(y − 1)

y

∥∥∥∥
2

L2((0,1))

+

∥∥∥∥
w(1− z)

z

∥∥∥∥
2

L2((0,1))

≤ 22
∥∥w′(y − 1)

∥∥2
L2((0,1))

+ 22
∥∥w′(1− z)

∥∥2
L2((0,1))

= 22
∥∥w′

∥∥2
L2((−1,0))

+ 22
∥∥w′

∥∥2
L2((0,1))

=22 |w|2H1(Î) . (4.20)

Writing Q(x) =
∑q−2
ℓ=0 Q̃ℓx

ℓ for x ∈ Î, it follows from Equation (4.18) with v = Q, ṽℓ = Q̃ℓ and n = q − 2
that

q−2∑

ℓ=0

|Q̃ℓ| ≤ 1
6
4q |w|H1(Î) . (4.21)

We now estimate the W 1,∞(Î)-norm of Q. Writing Q =
∑q−2
j=0 QjLj it follows from Equation (4.19)

for v = Q and vj = Qj and from Equation (4.20) that for all j ∈ {0, . . . , q − 2}

|Qj | ≤ 2 |w|H1(Î) .

Using that for all j ∈ N0 : ‖Lj‖L∞(Î) =
√
j + 1/2 ≤ √

j + 1 ≤ 1 + j/2, we find

‖Q‖L∞(Î) ≤
q−2∑

j=0

|Qj | ‖Lj‖L∞(Î)

≤ 2 |w|H1(Î)

q−2∑

j=0

(1 + j
2
)

≤ 2 |w|H1(Î)

(
q − 1 +

(q − 1)(q − 2)

4

)

= 1
2

(
q2 + q − 2

)
|w|H1(Î) ≤ (q2 − 1) |w|H1(Î) .

By Markov’s inequality (e.g. [9, Chapter 4, Theorem 1.4]), we get

|Q|W1,∞(Î) ≤ (q − 2)2 ‖Q‖L∞(Î) ≤ (q − 2)2
(
q2 − 1

)
|w|H1(Î)
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and hence, since q ≥ 2, ‖Q‖W1,∞(Î) ≤ (q4 − 1) |w|H1(Î).

Step 2. Let ε ∈ (0, 1). We first assume that |w|H1(Î) = 1 and define β := ε/36 and η := ε(12q4)−1.

We write w = ψQ and approximate ψ by a NN whose realization is supported in Î. To approximate
Q we use ΦQβ from Proposition 4.2, with C0 ≤ 1

6
4q according to Equation (4.21). We will use that

∥∥∥R
(
ΦQβ

)∥∥∥
W1,∞(Î)

≤ ‖Q‖W1,∞(Î) + β ≤ (q4 − 1) |w|H1(Î) + β ≤ q4.

With the 2× 1-matrix A := [1,−1]⊤ and the vector b := (1, 1)⊤ we define Φψη := ×̃ η
2
,1 ⊙ ((A, b)), which

has realization R(Φψη )(x) = R
(
×̃ η

2
,1

) (
̺(1 + x), ̺(1− x)

)
for x ∈ R. By Equation (4.2), it follows that

R(Φψη )|R\Î = 0. It holds that L(Φψη ) = CL log2(2/η) + C′
L + 1,

M(Φψη ) ≤M
(
×̃ η

2
,1

)
+Mfi

(
×̃ η

2
,1

)
+Mla(((A, b))) +M(((A, b)))

≤
(
CM log2

(
2

η

)
+ C′

M

)
+ Cfi + 4 + 4,

Mfi(Φ
ψ
η ) ≤ 2Mfi(((A, b))) = 8, and Mla(Φ

ψ
η ) = Cla. The error can be estimated as follows:

∣∣∣ψ − R(Φψη )
∣∣∣
W1,∞(Î)

=
∥∥∥ d

dx
ψ(x)− d

dx

(
R
(
×̃ η

2
,1

)
(1 + x, 1− x)

)∥∥∥
L∞(Î)

≤
∥∥∥
(
(1− x)−

[
DR

(
×̃ η

2
,1

)]

1
(1 + x, 1− x)

)
d
dx

(1 + x)
∥∥∥
L∞(Î)

+
∥∥∥
(
(1 + x)−

[
DR

(
×̃ η

2
,1

)]

2
(1 + x, 1− x)

)
d
dx

(1− x)
∥∥∥
L∞(Î)

≤ η
2
+ η

2
= η.

Because R(Φψη )(±1) = 0 = ψ(±1), it follows from Poincaré’s inequality that
∥∥ψ − R(Φψη )

∥∥
L∞(Î)

≤ η. As

a result,

∥∥∥R
(
Φψη

)∥∥∥
W1,∞(Î)

≤ ‖ψ‖W1,∞(Î) +
∥∥∥ψ − R

(
Φψη

)∥∥∥
W1,∞(Î)

≤ 2 + η ≤ 3.

We define

K := max{2, ‖Q‖L∞(Î) + β} ≤ max{2, (q2 − 1) |w|H1(Î) + β} ≤ max{2, q2} ≤ q2.

The last inequality holds because q ≥ 2. The definition of K is such that
∥∥R(Φψη )

∥∥
L∞(Î)

,
∥∥∥R(ΦQβ )

∥∥∥
L∞(Î)

≤

K. With L∗ := L(ΦQβ )− L(Φψη ) ≤ L(ΦQβ ), we define

Φw,0ε :=





×̃η,K ⊙ P
(
ΦQβ ,Φ

Id
1,L∗

⊙ Φψη

)
, for L∗ > 0,

×̃η,K ⊙ P
(
ΦQβ ,Φ

ψ
η

)
, for L∗ = 0,

×̃η,K ⊙ P
(
ΦId

1,−L∗
⊙ ΦQβ ,Φ

ψ
η

)
, for L∗ < 0.

By Equation (4.2) and the fact that R(Φψη )|R\Î = 0, it follows that R(Φw,0ε )|
R\Î = 0.

For the estimate on the network depth and the network size, we only need to consider the case L(ΦQβ ) >

L(Φψη ), for the following reason. We have two upper bounds: L(Φψη ) ≤ 4CL log2(q) + CL log2(1/ε) + C

and L(ΦQβ ) ≤ CLq(1 + log2(q)) + CL log2(q) log2(1/ε) + C(1 + log32(q)). In addition, by Propositions 2.2

and 2.4, it follows that we can increase the depth of the network ΦQβ such that ΦQβ still satisfies the
properties of Proposition 4.2, possibly with a larger universal constant in the estimate on the network size,
and such that L(ΦQβ ) ≥ C(log2(q))

3 for some C > 0. It then follows that L(ΦQβ ) > L(Φψη ) for sufficiently
large q ≥ 2. This implies that bounds on the size and the depth derived under the assumption that
L(ΦQβ ) > L(Φψη ) also hold in case L(ΦQβ ) ≤ L(Φψη ). The latter inequality only holds for finitely many q,
and these cases can be covered by increasing the universal constants.
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Assuming that L(ΦQβ ) > L(Φψη ), it follows that

L
(
Φw,0ε

)
=L

(
×̃η,K

)
+ L

(
ΦQβ

)

≤
(
CL log2

(
K
η

)
+ C′

L

)
+
(
CL(1 + log2(q))

(
2q + log2

(
1
β

))
+ C log32(q)

)

≤CL
(
6 log2(q) + log2

(
12
ε

))
+ CL (1 + log2(q))

(
2q + log2

(
36
ε

))
+ C log32(q)

≤CL (1 + log2(q))
(
2q + log2

(
1
ε

))
+ CL log2

(
1
ε

)
+ C log32(q).

Moreover,

M
(
Φw,0ε

)
≤M

(
×̃η,K

)
+Mfi

(
×̃η,K

)
+Mla

(
ΦQβ

)
+Mla

(
ΦId

1,L∗
⊙ Φψη

)
+M

(
ΦQβ

)
+M

(
ΦId

1,L∗
⊙ Φψη

)

≤M
(
×̃η,K

)
+Mfi

(
×̃η,K

)
+Mla

(
ΦQβ

)
+ 2Mla

(
ΦId

1,L∗

)

+M
(
ΦQβ

)
+M

(
ΦId

1,L∗

)
+Mfi

(
ΦId

1,L∗

)
+Mla

(
Φψη

)
+M

(
Φψη

)

≤
(
CM log2

(
K
η

)
+ C′

M

)
+ Cfi + (2q − 2) + 4

+
(
2CMq

(
2q + log2

(
1
β

))
+ 4CMq log2(q) + 4CL(1 + log2(q))

(
2q + log2

(
1
β

))
+ Cq

)

+ 2
(
CL(1 + log2(q))

(
2q + log2

(
1
β

))
+ C log32(q)

)
+ 2 + Cla

+
(
CM log2

(
2
η

)
+ C′

M + Cfi + 8
)

≤CM
(
6 log2(q) + log2

(
12
ε

))
+ 2CM

(
2q2 + q log2

(
36
ε

))
+ 6CL(1 + log2(q)) log2

(
36
ε

)

+ CM
(
4 log2(q) + log2

(
24
ε

))
+ Cq log2(q)

≤ 2CM
(
2q2 + q log2

(
1
ε

))
+ (6CL(1 + log2(q)) + 2CM ) log2

(
1
ε

)
+ Cq log2(q),

Mfi

(
Φw,0ε

)
=Mfi

(
ΦQβ

)
+Mfi

(
Φψη

)
= (Cfi + 4) + 8 = Cfi + 12,

Mla

(
Φw,0ε

)
=Mla

(
×̃η,K

)
= Cla.

The approximation error can be estimated by

2
∣∣w − R

(
Φw,0ε

)∣∣
W1,∞(Î)

=2
∥∥∥ d

dx
(Q(x)ψ(x))− d

dx

(
R
(
×̃η,K

) (
R(ΦQβ )(x),R(Φψη )(x)

))∥∥∥
L∞(Î)

≤ 2
∥∥∥
(
ψ(x)− R

(
Φψη

)
(x)
)

d
dx
Q(x)

∥∥∥
L∞(Î)

+ 2
∥∥∥R
(
Φψη

)
(x) d

dx

(
Q(x)− R

(
ΦQβ

)
(x)
)∥∥∥

L∞(Î)

+ 2
∥∥∥
(
R
(
Φψη

)
(x)−

[
DR

(
×̃η,K

)]
1

(
R
(
ΦQβ

)
(x),R

(
Φψη

)
(x)
))

d
dx

R
(
ΦQβ

)
(x)
∥∥∥
L∞(Î)

+ 2
∥∥∥Q(x) d

dx

(
ψ(x)− R

(
Φψη

)
(x)
)∥∥∥

L∞(Î)

+ 2
∥∥∥
(
Q(x)− R

(
ΦQβ

)
(x)
)

d
dx

R
(
Φψη

)
(x)
∥∥∥
L∞(Î)

+ 2
∥∥∥
(
R
(
ΦQβ

)
(x)−

[
DR

(
×̃η,K

)]
2

(
R
(
ΦQβ

)
(x),R

(
Φψη

)
(x)
))

d
dx

R
(
Φψη

)
(x)
∥∥∥
L∞(Î)

≤ 2η |Q|W1,∞(Î) + 2
∥∥∥R
(
Φψη

)∥∥∥
L∞(Î)

β + 2η
∣∣∣R
(
ΦQβ

)∣∣∣
W1,∞(Î)

+ 2 ‖Q‖L∞(Î) η + 2β
∣∣∣R
(
Φψη

)∣∣∣
W1,∞(Î)

+ 2η
∣∣∣R
(
Φψη

)∣∣∣
W1,∞(Î)

≤ ε
6
+ ε

6
+ ε

6
+ ε

6
q−2 + ε

6
+ ε

2
q−4

(∗)

≤ ε.

At (*) we used that q ≥ 2. It follows from Poincaré’s inequality and Φw,0ε (±1) = 0 = w(±1) that ε/2
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also bounds the L∞(Î)-error. Finally, we get from Hölder’s inequality for all 1 ≤ q′ <∞
∥∥w − R

(
Φw,0ε

)∥∥q′
W1,q′ (Î)

=
∥∥w − R

(
Φw,0ε

)∥∥q′
Lq′ (Î)

+
∣∣w − R

(
Φw,0ε

)∣∣q′
W1,q′ (Î)

≤ 2|Î| ·
∥∥w − R

(
Φw,0ε

)∥∥q′
W1,∞(Î)

≤ 4
(
ε
2

)q′
= 22−q

′

εq
′

.

This finishes the proof in case |w|H1(Î) = 1.

If |w|H1(Î) = 0, then w ∈ H1
0 (Î) implies that w ≡ 0, which can be implemented exactly by a NN of

depth 1 and size 0. If |w|H1(Î) > 0 we can use the linearity of the output layer of NNs: we can approximate
w/ |w|H1(Î) as before, and multiply the weights in the output layer by |w|H1(Î), which gives the desired
result. This finishes the proof of the proposition.

Remark 4.5. We note that by Hölder’s inequality for all 2 ≤ q′ ≤ ∞

|w|H1(Î) ≤ 2
1
2
−

1
q′ |w|W1,q′ (Î) .

Because w′ is a polynomial of degree q − 1, it follows that for all 1 ≤ q′ ≤ 2

|w|H1(Î) ≤
(
(q′ + 1)(q − 1)2

) 1
q′

−
1
2 |w|W1,q′ (Î) ≤ 2(q − 1) |w|W1,q′ (Î) .

5 Finite Element Spaces

Based on the efficient approximation of polynomials of the previous section we can now present an
emulation of higher-order spline approximations, approximations by Chebyshev polynomials, and hp-FEM
approximations which correspond to so-called free-knot, variable-degree spline approximations ([31] and
the references there).

5.1 Approximation of Piecewise Polynomials

We start by demonstrating how to emulate piecewise polynomial functions in general.

Proposition 5.1. For all p = (pi)i∈{1,...,N} ⊂ N, all partitions T of I = (0, 1) with N elements and all
v ∈ Sp(I, T ), for 0 < ε < 1 there exist NNs {Φv,T ,pε }ε∈(0,1) such that for all 1 ≤ q′ ≤ ∞
∥∥∥v − R

(
Φv,T ,pε

)∥∥∥
W1,q′ (I)

≤ ε |v|W1,q′ (I) ,

L
(
Φv,T ,pε

)
≤CL(1 + log2(pmax)) (2pmax + log2 (1/ε)) + CL log2 (1/ε) + C

(
1 + log32(pmax)

)
,

M
(
Φv,T ,pε

)
≤ 4CM

N∑

i=1

p2i + 2CM log2 (1/ε)

N∑

i=1

pi + log2 (1/ε)C

(
1 +

N∑

i=1

log2(pi)

)

+ C

(
1 +

N∑

i=1

pi log2(pi)

)

+ 2N
(
CL(1 + log2(pmax)) (2pmax + log2 (1/ε)) + C

(
1 + log32(pmax)

))
,

Mfi

(
Φv,T ,pε

)
≤ 6N,

Mla

(
Φv,T ,pε

)
≤ 2N + 2.

In addition, it holds that R
(
Φv,T ,pε

)
(xj) = v(xj) for all j ∈ {0, . . . , N}, where {xj}Nj=0 are the nodes of

T .
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Proof. We write v as the sum of its continuous, piecewise linear interpolant v̄ ∈ S1(I, T ) and a function
v − v̄ ∈ Sp(I, T ) which satisfies (v − v̄)(xj) = 0 for j ∈ {0, . . . , N}. The network Φv̄, constructed in
Lemma 3.1, satisfies

R
(
Φv̄
)
= v̄, L

(
Φv̄
)
= 2, M

(
Φv̄
)
≤ 3N + 1, Mfi

(
Φv̄
)
≤ 2N and Mla

(
Φv̄
)
≤ N + 1. (5.1)

For all i ∈ {1, . . . , N}, we denote by Pi : R → R : x 7→ 2
hi
(x− xi−1+xi

2
) the affine transformation which

satisfies Pi(Ii) = Î, Pi(xi−1) = −1 and Pi(xi) = 1.
Let

γi(q
′) := ε

2
2
1−

2
q′

{
2

1
q′

−
1
2 if 2 ≤ q′ ≤ ∞,

(2pi)
−1 if 1 ≤ q′ < 2.

It follows that 1
γi(q′)

≤ 2
ε
for 2 ≤ q′ ≤ ∞ and 1

γi(q′)
≤ 8pi

1
ε
=: 1

εi
for 1 ≤ q′ ≤ 2, hence 1

γi(q′)
≤ 1

εi
for

1 ≤ q′ ≤ ∞.
For wi := (v − v̄)|Ii ∈ (Ppi ∩H1

0 )(Ii), it holds that ŵi := wi ◦ P−1
i ∈ (Ppi ∩H1

0 )(Î), hence Proposition
4.4 shows the existence of a NN Φŵi,0

εi such that R(Φŵi,0
εi )|

R\Î = 0 and

L
(
Φŵi,0
εi

)
≤CL(1 + log2(pi))

(
2pi + log2

(
1
εi

))
+ CL log2

(
1
εi

)
+ C

(
1 + log32(pi)

)
,

≤CL(1 + log2(pi))
(
2pi + log2

(
1
ε

))
+ CL log2

(
1
ε

)
+ C

(
1 + log32(pi)

)
,

M
(
Φŵi,0
εi

)
≤ 2CM

(
2p2i + pi log2

(
1
εi

))
+ (6CL(1 + log2(pi)) + 2CM ) log2

(
1
εi

)

+ C (1 + pi log2(pi)) ,

≤ 2CM
(
2p2i + pi log2

(
1
ε

))
+ (6CL(1 + log2(pi)) + 2CM ) log2

(
1
ε

)

+ C (1 + pi log2(pi)) ,

Mfi

(
Φŵi,0
εi

)
≤Cfi + 12,

Mla

(
Φŵi,0
εi

)
=Cla.

The affine transformation Pi can be implemented exactly by a NN ΦPi of depth 1 satisfying M(ΦPi) =
Mfi(Φ

Pi) =Mla(Φ
Pi) = 2. Now, the concatenation Φŵi,0

εi ⊙ΦPi approximates wi. It holds by Proposition
4.4 that R(Φŵi,0

εi ⊙ ΦPi)|R\Ii = 0 and that

∥∥∥wi − R
(
Φŵi,0
εi ⊙ ΦPi

)∥∥∥
W1,q′ (Ii)

=
(
hi

2

) 1
q′

−1 ∥∥∥ŵi − R
(
Φŵi,0
εi

)∥∥∥
W1,q′ (Î)

≤
(
hi

2

) 1
q′

−1

2
2
q′

−1
γi(q

′) |ŵi|H1(Î)

≤
(
hi

2

) 1
q′

−1

2
2
q′

−1
γi(q

′)
(∣∣(v|Ii) ◦ P−1

i

∣∣
H1(Î)

+
∣∣(v̄|Ii) ◦ P−1

i

∣∣
H1(Î)

)

(∗)

≤
(
hi

2

) 1
q′

−1

2
2
q′

−1
γi(q

′)2
∣∣(v|Ii) ◦ P−1

i

∣∣
H1(Î)

(∗∗)

≤
(
hi

2

) 1
q′

−1

ε
∣∣(v|Ii) ◦ P−1

i

∣∣
W1,q′ (Î)

= ε |(v|Ii)|W1,q′ (Ii)
.

At (*) we used that
∣∣(v̄|Ii) ◦ P−1

i

∣∣
H1(Î)

≤
∣∣(v|Ii) ◦ P−1

i

∣∣
H1(Î)

, which follows e.g. from the fact that

v̄′|Ii ◦ P−1
i is a truncation of the Legendre expansion of v′|Ii ◦ P−1

i . At (**) we used a result similar to
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Remark 4.5, for q = pi and for (v|Ii) ◦ P−1
i ∈ Ppi(Î) instead of w. In addition, it follows that

L
(
Φŵi,0
εi ⊙ ΦPi

)
≤ 1 + CL(1 + log2(pi))

(
2pi + log2

(
1
ε

))
+ CL log2

(
1
ε

)
+ C

(
1 + log32(pi)

)
,

M
(
Φŵi,0
εi ⊙ ΦPi

)
≤M

(
Φŵi,0
εi

)
+Mfi

(
Φŵi,0
εi

)
+Mla

(
ΦPi

)
+M

(
ΦPi

)

≤
(
2CM

(
2p2i + pi log2

(
1
ε

))
+ (6CL(1 + log2(pi)) + 2CM ) log2

(
1
ε

)

+ C (1 + pi log2(pi))
)
+ (Cfi + 12) + 2 + 2

≤ 2CM
(
2p2i + pi log2

(
1
ε

))
+ (6CL(1 + log2(pi)) + 2CM ) log2

(
1
ε

)

+ C (1 + pi log2(pi)) ,

Mfi

(
Φŵi,0
εi ⊙ ΦPi

)
≤ 2Mfi

(
ΦPi

)
= 4,

Mla

(
Φŵi,0
εi ⊙ ΦPi

)
=Mla

(
Φŵi,0
εi

)
= Cla.

Let {ℓj}j∈{1,...,N+1} ⊂ N be such that

ℓ1 + L
(
Φv̄
)
= ℓ2 + L

(
Φŵ1,0
ε1 ⊙ ΦP1

)
= . . . = ℓN+1 + L

(
ΦŵN ,0
εN ⊙ ΦPN

)

=1 +max
{
L
(
Φv̄
)
,
N

max
i=1

L
(
Φŵi,0
εi ⊙ ΦPi

)}

≤ 3 +
N

max
i=1

L
(
Φŵi,0
εi ⊙ ΦPi

)
,

where the inequality follows from L(Φv̄) = 2. In addition, we have

N+1
max
j=1

ℓj ≤ 3 +
N

max
i=1

L
(
Φŵi,0
εi ⊙ ΦPi

)

≤CL(1 + log2(pmax))
(
2pmax + log2

(
1
ε

))
+ CL log2

(
1
ε

)
+ C

(
1 + log32(pmax)

)
.

We define ΦSum
N+1 := (([1, . . . , 1], 0)), where [1, . . . , 1] is an 1× (N + 1)-matrix. It holds that L(ΦSum

N+1) = 1
and M(ΦSum

N+1) =Mfi(Φ
Sum
N+1) =Mla(Φ

Sum
N+1) = N + 1. We now define Φv,T ,pε by

Φv,T ,pε := ΦSum
N+1 ⊙ P(ΦId

1,ℓ1 ⊙ Φv̄,ΦId
1,ℓ2 ⊙ Φŵ1,0

ε1 ⊙ ΦP1 , . . . ,ΦId
1,ℓN+1

⊙ ΦŵN ,0
εN ⊙ ΦPN ).

Because the realisation of Φv̄ equals v̄, it holds that R(Φv,T ,pε )|Ii = v̄|Ii + R(Φŵi,0
εi ⊙ ΦPi) for all

i ∈ {1, . . . , N}. The depth and the size of Φv,T ,pε can be estimated as follows:

L
(
Φv,T ,pε

)
≤L

(
ΦSum
N+1

)
+ ℓ1 + L

(
Φv̄
)
≤ 1 +

N+1
max
j=1

ℓj + 1

≤CL(1 + log2(pmax))
(
2pmax + log2

(
1
ε

))
+ CL log2

(
1
ε

)
+ C

(
1 + log32(pmax)

)
,

M
(
Φv,T ,pε

)
≤M

(
ΦSum
N+1

)
+Mfi

(
ΦSum
N+1

)
+Mla

(
ΦId

1,ℓ1 ⊙ Φv̄
)
+

N∑

i=1

Mla

(
ΦId

1,ℓi+1
⊙ Φŵi,0

εi ⊙ ΦPi

)

+M
(
ΦId

1,ℓ1 ⊙ Φv̄
)
+

N∑

i=1

M
(
ΦId

1,ℓi+1
⊙ Φŵi,0

εi ⊙ ΦPi

)

≤M
(
ΦSum
N+1

)
+Mfi

(
ΦSum
N+1

)
+

N∑

i=0

2Mla

(
ΦId

1,ℓi+1

)
+M

(
ΦId

1,ℓ1

)
+Mfi

(
ΦId

1,ℓ1

)
+Mla

(
Φv̄
)

+M
(
Φv̄
)
+

N∑

i=1

(
M
(
ΦId

1,ℓi+1

)
+Mfi

(
ΦId

1,ℓi+1

)
+Mla

(
Φŵi,0
εi

)
+M

(
Φŵi,0
εi

)

+Mfi

(
Φŵi,0
εi

)
+Mla

(
ΦPi

)
+M

(
ΦPi

))

≤ (N + 1) + (N + 1) + 4(N + 1) + 2
N+1
max
j=1

+2 + 2N + (3N + 1) + 2N
N+1
max
j=1

ℓj + 2N + ClaN
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+

N∑

i=1

(
2CM

(
2p2i + pi log2

(
1
ε

))
+ (6CL(1 + log2(pi)) + 2CM ) log2

(
1
ε

)

+ C (1 + pi log2(pi))
)
+ (Cfi + 12)N + 2N + 2N

≤ 4CM

N∑

i=1

p2i + 2CM log2
(
1
ε

) N∑

i=1

pi + log2
(
1
ε

)
C

(
1 +

N∑

i=1

log2(pi)

)
+ C

(
1 +

N∑

i=1

pi log2(pi)

)

+ 2(N + 1)
(
CL(1 + log2(pmax))

(
2pmax + log2

(
1
ε

))
+ C

(
1 + log32(pmax)

))
,

Mfi

(
Φv,T ,pε

)
≤Mfi

(
Φv̄
)
+

N∑

i=1

2Mfi

(
ΦPi

)
≤ 2N + 4N = 6N,

Mla

(
Φv,T ,pε

)
≤ 2Mla

(
ΦSum
N+1

)
= 2N + 2.

To estimate the error we use that R(Φŵi,0
εi ⊙ ΦPi)|Ij = 0 for j 6= i:

∥∥∥v − R
(
Φv,T ,pε

)∥∥∥
q′

W1,q′ (I)
=

∥∥∥∥∥

N∑

i=1

wi −
N∑

i=1

R
(
Φŵi,0
εi ⊙ ΦPi

)∥∥∥∥∥

q′

W1,q′ (I)

=
N∑

i=1

∥∥∥wi − R
(
Φŵi,0
εi ⊙ ΦPi

)∥∥∥
q′

W1,q′ (Ii)

≤
N∑

i=1

εq
′

|(v|Ii)|q
′

W1,q′ (Ii)
= εq

′

|v|q
′

W1,q′ (I)
,

where wi is extended to I such that wi|I\Ii = 0. Finally, because R
(
Φŵi,0
εi ⊙ ΦPi

)
(xj) = 0 for all

i ∈ {1, . . . , N} and all j ∈ {0, . . . , N}, it follows that R
(
Φv,T ,pε

)
(xj) = R

(
Φv̄
)
(xj) = v(xj) for all

j ∈ {0, . . . , N}. This finishes the proof.

5.2 Free-knot Spline Approximation

The following classical result due to Petruchev [27] and Oswald [24] describes the rates of best approxima-
tion of Besov-regular functions by free-knot splines of fixed degree. This setting and the corresponding
approximation rate bounds correspond to the so-called “h-adaptive FEM”.

Theorem 5.2 ([24, Theorems 3 and 6]). Let q, q′, t, t′, s, s′ ∈ (0,∞], p ∈ N, and

q < q′, s < p+ 1/q, s′ < s− 1/q + 1/q′.

Then, there exists a C3 := C(q, q′, t, t′, s, s′, p) > 0 and, for every N ∈ N and every f in Bsq,t(I), there
exists hN ∈ SNp (I) such that

∥∥∥f − hN
∥∥∥
Bs′

q′,t′
(I)

≤ C3N
−(s−s′)‖f‖Bs

q,t(I)
. (5.2)

Moreover,
∥∥∥hN

∥∥∥
Bs

q,t(I)
≤ C3‖f‖Bs

q,t(I)
. (5.3)

Equation (5.2) follows from [24, Theorem 3], where p, p′, q, q′ in their notation correspond with q, q′, t, t′

in our notation, where k − 1 corresponds with p, where λ′ corresponds with p+ 1/q′ ([24, Proposition 1]),
where δ corresponds with max{0, 1/q − 1} ([24, Section 1]), where N equals 1 and where n corresponds
with N . The assumptions in [24, Theorems 3] are that 0 < q < q′ ≤ ∞, that 0 < t, t′ ≤ ∞, that
0 < s ≤ (p+1)+max{0, 1/q− 1} (equality only if t = ∞) and that 0 < s′ < min{p+1/q′, s− 1/q+1/q′}.

Under those assumptions Equation (5.3) follows from [24, Theorem 6], where λ corresponds with
p+ 1/q ([24, Proposition 1]) and under the additional assumption that s < p+ 1/q.

Remark 5.3 ([24]). In fact, hN is of defect one (or, of minimal defect), i.e. hN ∈ Cp−1(I).
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As a consequence of Theorem 5.2, we obtain the following result describing the approximation of
Besov-regular functions by ReLU NNs.

Theorem 5.4. Let 0 < q < q′ ≤ ∞, q′ ≥ 1, 0 < t ≤ ∞. Let p ∈ N, 0 < s′ ≤ 1 < s < p + 1/q,
1−1/q′ < s−1/q and s′ < 1 if p = 1 and q′ = ∞. Then, there exists a constant C4 := C(q, q′, t, s, s′, p) > 0
and, for every N ∈ N and every f ∈ Bsq,t(I), there exists a NN ΦNf such that

∥∥∥f − R
(
ΦNf

)∥∥∥
Ws′,q′ (I)

≤ C4N
−(s−s′)‖f‖Bs

q,t(I)
(5.4)

and

L
(
ΦNf

)
≤CL(1 + log2(p))

(
2p+ (s− s′) log2(N)

)
+ CL(s− s′) log2(N) + C

(
1 + log32(p)

)
, (5.5)

M
(
ΦNf

)
≤ 4CMNp

2 + 2CM (s− s′)N log2(N)p+ C(s− s′) log2(N) (1 +N log2(p))

+ C (1 +Np log2(p))

+ 2N
(
CL(1 + log2(p))

(
2p+ (s− s′) log2(N)

)
+ C

(
1 + log32(p)

))
, (5.6)

Mfi

(
ΦNf

)
≤ 6N, (5.7)

Mla

(
ΦNf

)
≤ 2N + 2. (5.8)

Proof. Let p ∈ N, s, s′, q, q′, t > 0, and f ∈ Bsq,t(I) be as in the statement of the theorem.
The assumptions on p, s, s′, q, q′, and t allow us to apply Theorem 5.2 with t′ := min{q′, 2}. Hence

there exists C(q, q′, t, s, s′, p) > 0 and hN ∈ SNp (I) such that
∥∥∥f − hN

∥∥∥
Bs′

q′,min{q′,2}
(I)

≤ C(q, q′, t, s, s′, p)N−(s−s′)‖f‖Bs
q,t(I)

(5.9)

and ∥∥∥hN
∥∥∥
Bs

q,t(I)
≤ C(q, q′, t, s, s′, p)‖f‖Bs

q,t(I)
. (5.10)

By [24, Equation 6] or [39, Equation (1.3.3/3)], Bs
′

q′,min{q′,2}(I) is continuously embedded in W s′,q′(I).
Hence

‖u‖Ws′,q′ (I) ≤ C(s′, q′)‖u‖
Bs′

q′,min{q′,2}
(I)

for all u ∈ Bs
′

q′,min{q′,2}(I). (5.11)

Applying Equation (5.11) to Equation (5.9) yields that
∥∥∥f − hN

∥∥∥
Ws′,q′ (I)

≤ C(q, q′, t, s, s′, p)N−(s−s′)‖f‖Bs
q,t(I)

. (5.12)

We invoke Proposition 5.1 with ε = N−(s−s′), v = hN and polynomial degree distribution p = (pi)
N
i=1,

where pi = p. This yields a network ΦNf such that
∥∥∥hN − R

(
ΦNf

)∥∥∥
Ws′,q′ (I)

≤ C(s′, q′)
∥∥∥hN − R

(
ΦNf

)∥∥∥
W1,q′ (I)

≤ C(s′, q′)N−(s−s′)
∥∥∥hN

∥∥∥
W1,q′

(5.13)

and Equations (5.5)–(5.8) hold. Invoking [24, Equation 6] or [39, Equation (1.3.3/3)] again, we obtain
that∥∥∥hN

∥∥∥
W1,q′ (I)

≤ C(q′)
∥∥∥hN

∥∥∥
B1

q′,min{q′,2}
(I)

≤ C(q, q′, s, t)
∥∥∥hN

∥∥∥
Bs

q,t(I)
≤ C(q, q′, t, s, s′, p)‖f‖Bs

q,t(I)
,

(5.14)

where the second estimate holds by [40, Section 3.3.1, Equation (7)] since s− 1/q > 1− 1/q′ and the last
estimate follows from Equation (5.10).

We have by the triangle inequality and by invoking Equations (5.12), (5.13), and (5.14) that
∥∥∥f − R

(
ΦNf

)∥∥∥
Ws′,q′ (I)

≤
∥∥∥f − hN

∥∥∥
Ws′,q′ (I)

+
∥∥∥hN − R

(
ΦNf

)∥∥∥
Ws′,q′ (I)

≤C(q, q′, t, s, s′, p)N−(s−s′)‖f‖Bs
q,t(I)

.

This yields Equation (5.4) and completes the proof.
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Remark 5.5. Note that, if s′ = 1, then we could also obtain the estimate of Equation (5.14) by applying
the inverse triangle inequality to Equation (5.9). Hence, for s′ = 1, Equation (5.3) is not required for the
proof of Theorem 5.4. As is clear from the discussion after Theorem 5.2 the statement of that theorem holds
without Equation (5.3) when replacing the assumption s < p+1/q by the weaker s ≤ p+1+max{0, 1/q−1}.
Hence, in the case s′ = 1, Theorem 5.4 can be improved.

Theorem 5.2 excludes the case s′ = 0, which is treated separately in [24, Theorem 5]. Using that result,
it is not hard to see that Theorem 5.4 can be extended to situations where s′ = 0.

5.3 Spectral Methods

We now study ReLU NN emulations of spectral element approximations. We first show that on a given
partition T of I = (0, 1) spectral FEM for r ∈ N0 and u ∈ Hr+1(I) can be emulated by ReLU NNs. We
will demonstrate that the H1-error decreases algebraically with the network size. Concretely, this decay
happens at least with rate r/2. This is half the convergence rate of spectral FEM in terms of degrees of
freedom, which in Theorem 5.8 equals Np+ 1. This reduction in the convergence rate is caused by the
fact that the size of the networks constructed in Proposition 4.4 depends quadratically on the polynomial
degree, whereas the the number of degrees of freedom depends linearly on the polynomial degree.

Theorem 5.6 ([33, Theorem 3.17]). Let T be a partition of I = (0, 1) with N elements, let r ∈ N0,
u ∈ Hr+1(I) and p ∈ N. Then for p := (p, . . . , p) there exists a v ∈ Sp(I, T ) such that for all s ∈ N0

satisfying s ≤ min{r, p}

‖u− v‖H1(I) ≤C5(r)
(
h
p

)s
|u|Hs+1(I) .

Remark 5.7. Inspection of the proof of Theorem 5.6 reveals that v′|Ii is a truncation of the Legendre
expansion of u′|Ii for all i ∈ {1, . . . , N}, which implies that |v|H1(I) ≤ |u|H1(I).

Theorem 5.8. Let I = (0, 1), r ∈ N0, u ∈ Hr+1(I) and p ∈ N. For all partitions T of I with N elements
there exists a NN Φu,T ,p such that for all s ∈ N0 satisfying s ≤ min{r, p}
∥∥∥u− R(Φu,T ,p)

∥∥∥
H1(I)

≤
(
1 + C5(r)

) (
h
p

)s
‖u‖Hs+1(I) ,

L(Φu,T ,p) ≤ 2CLp log2(p) + CLr(2 + log2(p)) log2
(
p
h

)
+ C(1 + log2(p))

3,

M(Φu,T ,p) ≤N [4CMp
2 + 2CMrp log2

(
p
h

)
+ r log2

(
p
h

)
C(1 + log2(p) + C(1 + p log2(p))],

Mfi(Φ
u,T ,p) ≤ 6N,

Mla(Φ
u,T ,p) ≤ 2N + 2.

Proof. For v as in Theorem 5.6 and for p = (p, . . . , p) we apply Proposition 5.1 and define Φu,T ,p := Φv,T ,pε

with ε =
(
h
p

)r
. Using Remark 5.7, it follows that

∥∥∥u− R(Φu,T ,p)
∥∥∥
H1(I)

≤ ‖u− v‖H1(I) +
∥∥∥v − R(Φv,T ,pε )

∥∥∥
H1(I)

≤C5(r)
(
h
p

)s
|u|Hs+1(I) +

(
h
p

)r
|v|H1(I)

≤
(
1 + C5(r)

) (
h
p

)s
‖u‖Hs+1(I) ,

L(Φu,T ,p) ≤CL(1 + log2(p))
(
2p+ r log2

(
p
h

) )
+ CLr log2

(
p
h

)
+ C(1 + log2(p))

3

≤ 2CLp(1 + log2(p)) + CLr(2 + log2(p)) log2
(
p
h

)
+ C(1 + log32(p)),

M(Φu,T ,p) ≤ 4CMNp
2 + 2CMr log2

(
p
h

)
Np+ r log2

(
p
h

)
NC(1 + log2(p))

+NC(1 + p log2(p)) + 2N
(
CL(1 + log2(p))

(
2p+ r log2

(
p
h

) )
+ C(1 + log32(p))

)

≤N
(
4CMp

2 + 2CMrp log2
(
p
h

)
+ r log2

(
p
h

)
C(1 + log2(p)) + C(1 + p log2(p))

)
,

Mfi(Φ
u,T ,p) =Mfi(Φ

v,T ,p
ε ) ≤ 6N,

Mla(Φ
u,T ,p) =Mla(Φ

v,T ,p
ε ) ≤ 2N + 2.

This finishes the proof.
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We now study exponential expressive power bounds for deep ReLU NN emulation of spectral approx-
imations of functions which are analytic on Î = (−1, 1) and admit a holomorphic continuation to the
Bernstein ellipse Er ⊂ C for some r > 1. We recall that for r > 1 the Bernstein ellipse Er ⊂ C is defined as

Er := { z+z−1

2
∈ C : 1 ≤ |z| ≤ r}. For neural networks with certain smooth activation functions, this has

been investigated in [22]. A similar result is given in [10], but under considerably stronger assumptions on
the regularity of the function, namely that its Taylor series converges absolutely on [−1, 1], which implies
that it admits a holomorphic continuation to the complex unit disk.

For a function u which is analytic on Er we define M(ln r) := maxz∈Er |u(z)|. Moreover, for p ∈ N let
the Gauss-Lobatto Chebyshev nodes be defined as xi = − cos(iπ/p) for i ∈ {0, . . . , p}.
Theorem 5.9 ([37, Corollary 4.5]). Let u : [−1, 1] → R be an analytic function which admits an analytic
continuation to the Bernstein ellipse Er0 ⊂ C for some r0 > 1. Define η0 := ln(r0).

Then for every p ∈ N the polynomial v ∈ Pp([−1, 1]) interpolating u in the Gauss-Lobatto Chebyshev
nodes {xi}i∈{0,...,p} satisfies for every k ∈ N0 and every 0 < η < η0

|u− v|2Hk(Î) ≤
∫ 1

−1

|Dku(x)−Dkv(x)|2
(1− x2)1/2

dx ≤ C6(k)
M(η)

sinh(η)
p2ke−ηp,

where C6(k) is independent of η and p. In particular, it holds that v(±1) = u(±1).

Using this polynomial approximation result, we readily obtain DNN expression rate bounds.

Theorem 5.10. Let u : [−1, 1] → R be an analytic function which admits an analytic continuation to the
Bernstein ellipse Er0 ⊂ C for some r0 > 1. Define η0 := ln(r0).

Then there exist NNs {Φu,p,0}p∈N such that R(Φu,p,0)(±1) = u(±1) for all p ∈ N and such that

∥∥u− R(Φu,p,0)
∥∥
H1(Î)

≤
(
C

(
M(η)

sinh(η)

)1/2

+ |u|H1(Î)

)
pe−ηp/2,

L(Φu,p,0) ≤ (2 + η/2)CLp(1 + log2(p)) + C(η)p,

M(Φu,p,0) ≤ (4 + η)CMp
2 + C(η)p log2(p),

Mfi(Φ
u,p,0) ≤ 4,

Mla(Φ
u,p,0) ≤ 4.

Proof. Let p ∈ N. Let v be as given by Theorem 5.9. Let I := (0, 1) and let P : R → R : x 7→ 2x−1 denote
the affine transformation which satisfies P (I) = Î, P (0) = −1 and P (1) = 1. The affine transformation

P−1 can be implemented exactly by a NN ΦP
−1

of depth 1 satisfying M
(
ΦP

−1
)

= Mfi

(
ΦP

−1
)

=

Mla

(
ΦP

−1
)
= 2.

Note that v ◦ P ∈ Pp(I). With ε := e−ηp/2 and with Φ
v◦P,{I},p
ε as constructed in Theorem 5.1 (with

N = 1), we define Φu,p,0 := Φ
v◦P,{I},p
ε ⊙ ΦP

−1

. It follows that

∥∥v − R
(
Φu,p,0

)∥∥2
H1(Î)

≤ 2
∥∥∥v ◦ P − R

(
Φv◦P,{I},pε

)∥∥∥
2

H1(I)

≤ 2ε2 |v ◦ P |2H1(I)

= ε2 |v|2H1(Î) .

By construction, it holds that R(Φu,p,0)(±1) = v(±1) = u(±1).
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It follows from Proposition 5.1 that for all 0 < η < η0
∥∥u− R(Φu,p,0)

∥∥
H1(Î)

≤ ‖u− v‖H1(Î) +
∥∥v − R(Φu,p,0)

∥∥
H1(Î)

≤ ‖u− v‖H1(Î) + ε |v|H1(Î)

≤ 2 ‖u− v‖H1(Î) + ε |u|H1(Î)

≤C

(
M(η)

sinh(η)

)1/2

pe−ηp/2 + |u|H1(Î) e
−ηp/2

≤
(
C

(
M(η)

sinh(η)

)1/2

+ |u|H1(Î)

)
pe−ηp/2,

L(Φu,p,0) =L
(
Φv◦P,{I},pε

)
+ L

(
ΦP

−1
)

≤
(
CL(1 + log2(p))

(
2p+ ηp/2

)
+ CLηp/2 + C(1 + log2(p))

3)+ 1

≤CL(2 + η/2)p(1 + log2(p)) + C(η)p,

M(Φu,p,0) ≤M
(
Φv◦P,{I},pε

)
+Mfi

(
Φv◦P,{I},pε

)
+Mla

(
ΦP

−1
)
+M

(
ΦP

−1
)

≤
(
4CMp

2 + 2CM (ηp/2)p+ (ηp/2)C(1 + log2(p)) + C(1 + p log2(p))

+ 2
(
CL(1 + log2(p)) (2p+ ηp/2) + C

(
1 + log32(p)

)) )
+ 6 + 2 + 2

≤CM (4 + η)p2 + C(η)p log2(p),

Mfi(Φ
u,p,0) ≤ 2Mfi

(
ΦP

−1
)
≤ 4,

Mla(Φ
u,p,0) ≤Mla

(
Φv◦P,{I},pε

)
≤ 4.

This finishes the proof.

Theorem 5.10 shows that for any 0 < η < η0, any θ > 0 and some c1(η, θ) > 0

∥∥u− R(Φu,p,0)
∥∥
H1(Î)

≤C(η, θ, |u|H1(Î)) exp
(
− c1L(Φ

u,p,0)1/(1+θ)
)

and that for any 0 < η < η0, any θ > 0 and some c2(η, θ) > 0

∥∥u− R(Φu,p,0)
∥∥
H1(Î)

≤C(η, θ, |u|H1(Î)) exp
(
− c2M(Φu,p,0)1/(2+θ)

)
.

5.4 DNN Emulation of Piecewise Gevrey Functions

We now study expression rates for ReLU NN emulations of hp-approximations of functions on I = (0, 1)
which are singular at x = 0 and which belong to a Gevrey class. We refer to [6] and the references there
for such spaces.

For any β ∈ R>0 we define ψβ : I → R : x 7→ xβ . For any k, ℓ ∈ N0 we define a seminorm and a norm:

|u|
H

k,ℓ
β

(I)
:=
∥∥∥ψβ+k−ℓDku

∥∥∥
L2(I)

,

‖u‖2
H

k,ℓ
β

(I)
:=





∑k
k′=0 |u|

2

H
k′,0
β

(I)
, if ℓ = 0,

∑k
k′=ℓ |u|

2

H
k′,ℓ
β

(I)
+ ‖u‖2Hℓ−1(I) , if ℓ ∈ N.

All functions for which this norm is finite form the space Hk,ℓ
β (I). In addition, for any δ ≥ 1 the Gevrey

class Gℓ,δβ (I) is defined as the class of functions u ∈ ⋂k≥ℓH
k,ℓ
β (I) for which there exist C∗(u), d(u) > 0

such that

∀k ≥ ℓ : |u|
H

k,ℓ
β

(I)
≤ C∗d

k−ℓ((k − ℓ)!)δ. (5.15)
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For N ∈ N0 and σ ∈ (0, 1) the mesh Tσ,N , which is geometrically graded towards x = 0, is defined
as follows: let x0 := 0 and xi := σN−i for i ∈ {1, . . . , N}. Let Tσ,N be the partition of I into intervals
{Iσ,i}Ni=1, where Iσ,i := (xi−1, xi).

The following theorem is a generalization of [33, Theorem 3.36] which, in turn, generalizes earlier
results in [7, 31, 15] in the analytic case. The present analysis covers in particular the original results for
the piecewise analytic case δ = 1, i.e. functions in Gℓ,1β (I) for ℓ ≥ 2, which are analytic on the interval
(0, 1) and may have an algebraic singularity at the left endpoint x = 0. The proof for general δ ≥ 1 is
very similar to the proof for δ = 1. For convenience of the reader, it is provided in the appendix.

Theorem 5.11 (Generalization of [33, Theorem 3.36]). Let σ, β ∈ (0, 1), λ := σ−1 − 1, δ ≥ 1, u ∈ G2,δ
β (I)

and N ∈ N be given. For µ0 := µ0(σ, δ, d) := max
{
1, dλ

2

(
e
σ

)1−δ}
and for any µ > µ0 let p = (pi)

N
i=1 ⊂ N

be defined as p1 := 1 and pi := ⌊µiδ⌋ for i ∈ {2, . . . , N}.
Then there exists a continuous, piecewise polynomial function v ∈ Sp(I, Tσ,N ) such that v(xi) = u(xi)

for i ∈ {1, . . . , N} and such that for a constant C7(σ, β, δ, µ, C∗, d) > 0 (where C∗(u) and d(u) are as in
Equation (5.15)) it holds that

‖u− v‖H1(I) ≤C7 exp
(
− (1− β) log(1/σ)N

)
=: C7 exp(−cN).

As N → ∞, M = dim(Sp(I, Tσ,N )) = O(N1+δ).

We present the proof of this assertion in Appendix A.

Remark 5.12. Note that v(0) need not equal u(0). Besides that, it follows from the construction of v in
the proof of Theorem 5.11 that |v|H1(I\I1,σ) ≤ |u|H1(I\I1,σ).

Theorem 5.13. For all δ ≥ 1, all β, σ ∈ (0, 1), all µ > µ0(σ, δ, d) and all u ∈ G2,δ
β (I) there exist NNs

{Φu,σ,N}N∈N such that
∥∥∥u− R(Φu,σ,N )

∥∥∥
H1(I)

≤C8 exp
(
− (1− β) log(1/σ)N

)
= C8 exp(−cN),

where C8 := C8(σ, β, δ, µ, C∗(u), d(u), |u|H1(I)) > 0, and such that

L(Φu,σ,N ) ≤CLδ
(
2µNδ log2(N) + cN log2(N)

)
+ C(σ, β, δ, µ)Nδ,

M(Φu,σ,N ) ≤ 2CM
(
2µ2N2δ+1 + cµNδ+2)+ C(σ, β, δ, µ)

(
1 +Nδ+1 log2(N)

)
,

Mfi(Φ
u,σ,N ) ≤ 6N,

Mla(Φ
u,σ,N ) ≤ 2N + 2.

Proof. Let v ∈ Sp(I, Tσ,N ) be as in Theorem 5.11, with p ⊂ N defined by p1 = 1 and pi = ⌊µiδ⌋ for

i ∈ {2, . . . , N}. Let ε := exp(−cN). We define Φu,σ,N := Φ
v,Tσ,N ,p
ε , where Φ

v,Tσ,N ,p
ε is as constructed in

Proposition 5.1.
Using that

∥∥v − R(Φu,σ,N )
∥∥
H1(I1,σ)

= 0 because p1 = 1 and using Remark 5.12 it follows that

∥∥∥u− R(Φu,σ,N )
∥∥∥
H1(I)

≤ ‖u− v‖H1(I) +
∥∥∥v − R(Φ

v,Tσ,M ,p
ε )

∥∥∥
H1(I)

≤C7 exp(−cN) + exp(−cN) |v|H1(I\Iσ,1)

≤
(
C7 + |u|H1(I)

)
exp(−cN),

L(Φu,σ,N ) ≤CL(1 + log2(µN
δ))
(
2µNδ + cN

)
+ CLcN + C(1 + log32(µN

δ))

≤CLδ
(
2µNδ log2(N) + cN log2(N)

)
+ C(σ, β, δ, µ)Nδ,

M(Φu,σ,N ) ≤ 4CM

N∑

i=1

(µiδ)2 + 2CMcN

N∑

i=1

(µiδ) + cNC

(
1 +

N∑

i=1

log2(µi
δ)

)

+ C

(
1 +

N∑

i=1

µiδ log2(µi
δ)

)

+ 2N
(
CL(1 + log2(µN

δ))
(
2µNδ + cN

)
+ C(1 + log32(µN

δ))
)
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≤ 2CM
(
2µ2N2δ+1 + cµNδ+2)+ C(σ, β, δ, µ)

(
1 +Nδ+1 log2(N)

)
,

Mfi(Φ
u,σ,N ) ≤ 6N,

Mla(Φ
u,σ,N ) ≤ 2N + 2.

This finishes the proof.

Theorem 5.13 shows that for any θ > 0 and for c3(β, σ, θ, δ, µ), C9(σ, β, δ, µ, d, |u|H1(I) , θ) > 0

∥∥∥u− R(Φu,σ,N )
∥∥∥
H1(I)

≤ C9 exp
(
− c3L(Φ

u,σ,N )1/(δ+θ)
)
,

and that for c4(β, σ, δ, µ), C10(σ, β, δ, µ, d, |u|H1(I)) > 0

∥∥∥u− R(Φu,σ,N )
∥∥∥
H1(I)

≤ C10 exp
(
− c4M(Φu,σ,N )1/(2δ+1)).

Remark 5.14. In Theorem 5.11, we proved exponential expression rate bounds for deep ReLU NNs in
the Sobolev spaces H1(I) for classes of Gevrey δ-regular functions in I = (0, 1) which exhibit one algebraic
singularity at the endpoint x = 0 of I. It is straightforward to generalize this result to functions with a
finite number of algebraic singularities at singular support sets S = {x1, ..., xJ} ⊂ Ī. Multivariate versions
of Theorem 5.11 also hold [23].

6 Conclusion

We established expression rate bound estimates for the expression by deep neural networks of univariate
functions which belong to several types of function spaces. In particular, Sobolev and Besov spaces, and
spaces of piecewise analytic and Gevrey-regular functions. We proved that ReLU DNNs can achieve
in each of these function classes approximation rate bounds which are either identical to or closely
match the best available approximation rates from classical approximation by piecewise polynomial spline
functions. Notably, DNNs match the rates achieved by both, free-knot (“h-adaptive”) and order-adaptive
(“hp”-adaptive) approximations. They offer a partial explanation for the recent success of numerical
solution strategies in using DNNs for the numerical approximation of PDEs.

The present results were established in the univariate case for ease of presentation and to keep
mathematical technicalities at bay. We hasten to add, however, that corresponding results are valid also
in several space dimensions. As the mathematical apparatus characterizing the analytic function classes
is somewhat more involved (see, e.g., [32] and the references there), we will present these in [23].
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A Proof of Theorem 5.11

We note that [33, Lemma 3.41], which is formulated for any β ∈ (0, 1) and any u ∈ G2,1
β (I) =: B2

β(I), also

holds for any δ ≥ 1, any β ∈ (0, 1) and any u ∈ G2,δ
β (I).

Lemma A.1 ([33, Lemma 3.41]). Let I = (0, 1), δ ≥ 1, β ∈ (0, 1) and u ∈ G2,δ
β (I). Let σ ∈ (0, 1),

λ := σ−1 − 1 and let p = (pi)
N
i=1 ⊂ N be such that p1 = 1 and such that pi ≥ 2 for i ∈ {2, . . . , N}.

Then there exists a v ∈ Sp(I, Tσ,N ) such that

‖u− v‖2H1(I) ≤ C

[
x
2(1−β)
1 |u|2

H
2,2
β

(I)
+

N∑

i=2

x
2(1−β)
i−1

(pi − si)!

(pi + si)!
(λ
2
)2si |u|2

H
si+1,2

β
(I)

]
,

where si ∈ {2, . . . , pi} for all i ∈ {2, . . . , N}.
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Lemma A.2 ([8, Lemma 4.3.4]). Let N ∈ N, α > 0 and µ0 := max{1, αe1−δ}. For any µ > µ0 let
p = (pi)

N
i=1 ⊂ N be defined by pi := ⌊µiδ⌋ for all i ∈ {1, . . . , N}.

Then it holds that

N∑

i=1

α2i (pi − i)!

(pi + i+ 1)!
((i+ 1)!)2δ ≤ C(α, µ, δ).

In particular, C(α, µ, δ) is independent of N .

Proof of Theorem 5.11. We use Lemma A.1 with xi = σN−i and si = i + 1 for all i ∈ {1, . . . , N}.
Because u ∈ G2,δ

β (I), it holds that |u|
H

i+2,2
β

(I)
≤ Cdi(i!)δ for all i ∈ {0, . . . , N − 2}. With α := dλ

2σ1−β ,

µ0 = max
{
1, dλ

2

(
e
σ

)1−δ}
, and C∗ as in Equation (5.15), it follows that

‖u− v‖2H1(I) ≤C

[
σ2(1−β)(N−1)C2

∗ +

N∑

i=2

σ2(1−β)(N+1−i) (pi − i− 1)!

(pi + i+ 1)!
(λ
2
)2i+2C2

∗d
2i(i!)2δ

]

≤CC2
∗σ

2(1−β)N

[
σ−2(1−β) + (σ1−β λ

2
)2

N∑

i=2

(
dλ

2σ1−β

)2i
(pi − i− 1)!

(pi + i+ 1)!
(i!)2δ

]

≤CC2
∗σ

2(1−β)N
[
σ−2(1−β) + (σ1−β λ

2
)2C(α, µ, δ)

]

≤C2
7σ

2(1−β)N ,

where C7(σ, β, δ, µ, C∗, d) > 0.
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