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DOMAIN UNCERTAINTY QUANTIFICATION IN COMPUTATIONAL
ELECTROMAGNETICS

RUBEN AYLWIN, CARLOS JEREZ-HANCKES, CHRISTOPH SCHWAB, AND JAKOB ZECH

Abstract. We study the numerical approximation of time-harmonic, electromagnetic fields
inside a lossy cavity of uncertain geometry. Key assumptions are a possibly high-dimensional
parametrization of the uncertain geometry along with a suitable transformation to a fixed,
nominal domain. This uncertainty parametrization results in families of countably-parametric,
Maxwell-like cavity problems that are posed in a single domain, with inhomogeneous coeffi-
cients that possess finite, possibly low spatial regularity, but exhibit holomorphic parametric
dependence in the differential operator. Our computational scheme is composed of a sparse-
grid interpolation in the high-dimensional parameter domain and an H(curl)-conforming edge
element discretization of the parametric problem in the nominal domain. As a stepping-stone
in the analysis, we derive a novel Strang-type lemma for Maxwell-like problems in the nominal
domain which is of independent interest. Moreover, we accommodate arbitrary small Sobolev
regularity of the electric field and also cover uncertain isotropic constitutive or material laws.
The shape holomorphy and edge-element consistency error analysis for the nominal problem are
shown to imply convergence rates for Multi-level Monte-Carlo and for Quasi-Monte Carlo inte-
gration in UQ for Computational Electromagnetics. They also imply expression rate estimates
for deep ReLU networks of shape-to-solution maps in this setting. Finally, our computational
experiments confirm the presented theoretical results.

1. Introduction and Summary of Main Results

The efficient numerical simulation of PDEs with uncertain input data and/or uncertain solu-
tions has received considerable attention in recent years, giving rise to the discipline of Uncertainty
Quantification (UQ). In the present work, we consider the general setting of domain UQ in com-
putational electromagnetics, through the case of efficient numerical computation for quantities of
interest (QoIs) arising from electromagnetic (EM) fields in a lossy cavity of uncertain shape with
large amplitude shape variations. This setting is of interest when studying metallic metamaterials
[40, 1], deep gratings for thermovoltaic cells [6, 32], and even for non-destructive testing applica-
tions [39]. Due to stringent performance requirements in all these situations, robust design calls
for efficient numerical tools capable of assessing quantitatively the effects of shape randomness in
the QoIs.

In our previous work [21], we developed a fast numerical scheme to quantify computationally
domain uncertainty in the exterior scattering of time-harmonic electromagnetic (EM) waves at ob-
stacles with uncertain (resp. unknown) shape. The approach in [21] was based on the assumption
of an unknown and random, small amplitude deviation from a known, nominal shape, leading to
the so-called first-order, second-moment (FoSM) technique [34, 20]. The resulting deterministic
second order statistical moment –or two-point correlation function– of the random response map is
defined on the tensor product of the space with itself, i.e. it is deterministic, but high-dimensional.
The curse of dimensionality was overcome in [21] by performing a sparse tensor product Galerkin
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boundary element discretization of the corresponding integral equation formulation of the scat-
tering problem on the boundary of the nominal scatterer. Small amplitude domain perturbations
appear in several applications, so that the numerical approach proposed in [21] is correspondingly
applicable [31]. In several cases, however, large domain uncertainty are encountered and the FoSM
approach is bound to incur large numerical errors. Hence, the FoSM linearization must be replaced
by formulations which do not depend on smallness assumptions of the deviation from the nominal
geometry.

In [22], we investigated large amplitude domain perturbations. We proved that the response
maps of time-harmonic EM fields scattered by either perfectly conducting or dielectric bounded
obstacles depend holomorphically on the shape deformation. This implied, in particular, that para-
metric responses obtained from an affine parametrization of the shape-variation are holomorphic-
parametric with controlled sizes of domains of holomorphy. As was recently proved, this leads
to dimension-independent rates of convergence of so-called stochastic collocation or sparse grid
schemes (cf. [10] and references therein) and corresponding rates of convergence of Smolyak
quadratures (cf. [37, 35]), and Quasi-Monte Carlo (QMC for short) quadratures [12] and inverse
computational uncertainty quantification [11]. Sparsity results analogous to the ones in [22] have
recently been established for other types of forward PDE problems ranging from elastic wave
propagation [26] to general elliptic operators [4, 19].

In the present paper, we prove that the shape holomorphy of the response map for the lossy
EM cavity problem implies dimension-independent convergence rates of several types of high-
dimensional approximation methods. We discuss these methods and state several quadrature and
collocation error bounds for the parametric forward models in Section 5, for independent interest
and for comparison purposes also for Monte Carlo (MC) sampling.

More specifically, we develop the complete numerical analysis of edge finite element (FE) dis-
cretizations for parametric families of solutions of Maxwell equations as arise in domain UQ in
computational EM. We pull back domain realizations to a fixed, nominal domain D̂. Even when
the domain is occupied by homogeneous media, this pullback entails the numerical solution of
a Maxwell-like PDE with non-homogeneous coefficients introduced by the domain-pullback, with
possibly low regularity depending on the smoothness of the domain transformations. This, in turn,
necessitates the analysis of the impact of numerical integration errors on the edge-element conver-
gence in the nominal domain, via a Strang-type lemma argument which is of interest in its own
right. Due to the use of numerical quadrature, the quadrature error analysis in the Strang-type
perturbation argument requires the domain transformations T to belong to C1 piecewise, in order
for point evaluations of the Jacobian to be well defined. However, we point out that all function
spaces C1 and C0 in Section 4.2.2 could be replaced by the larger spaces W 1,∞ and L∞. This
gives slightly more general results (cf. [22]).

The main benefit of pulling back onto the nominal domain consists in obviating the need for
remeshing the computational domain: indeed, the presently proposed numerical scheme will allow
the use of one common FE mesh in D̂ for all domain realizations that arise in various computa-
tional domain UQ algorithms (MC, stochastic collocation, QMC integration, MCMC, etc.). Let
us remark that a corresponding approach in the widely used integral-equation based numerical
methods seems infeasible as domain mappings render homogeneous differential operators inhomo-
geneous thereby complicating writing fundamental solutions in nominal coordinates.

The outline of this article is as follows. In Section 2, we introduce the model problem of
time-harmonic Maxwell equations in a lossy cavity. In Section 3, we introduce an edge element
discretization for the Maxwell-like problem resulting from the pullback from the physical domain
into the (fixed) nominal domain and establish a Strang-type lemma bound for the impact of
quadrature error on the FE error. This result, which seems to be novel and of independent
interest, is crucial in the error analysis of the proposed scheme: being formulated in the nominal
domain, it avoids remeshing multiple instances of the cavity shape in the course of parametric
sampling. Low spatial regularity of the domain maps is admissible in the Strang consistency
analysis.
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Section 4 then states and proves the second principal result of this paper: the holomorphic
dependence of the numerical solution on the cavity shape. Based on the results in Sections 4
and 3, in Section 5 we discuss convergence rates for several sampling methods in the parameter
space, which access the uncertain parametric inputs in a nonintrusive fashion. These are mainly
recapitulated from abstract results in the references [35, 37, 36], but appear to be new in the
present context.

Section 6 contains a set of numerical experiments on a three-dimensional geometry which con-
firm the theoretical results. Concluding remarks are provided in Section 7 along with outlines of
several further directions which directly follow from the present analysis: Bayesian shape inver-
sion, and the analysis and implementation of corresponding multilevel algorithms. Their detailed
development will be presented in forthcoming work.

2. Lossy cavity electromagnetic problem

We briefly set the notation used throughout, introduce domain transformations and state the
mathematical framework for the Maxwell cavity problem.

2.1. Notation. Let d ∈ {1, 2, 3} and O ⊆ Rd denote generically an open, bounded Lipschitz
domain. For m ∈ N0, Cm(O;K) denotes the space of continuous, functions from O to a scalar
field K ∈ {R,C} that are m-times continuously differentiable in O. When K = R, we write
Cm(O). For the space of infinitely continuously differentiable functions in O, we write C∞(O).
By Cm0 (O) we denote the space of compactly supported Cm-functions in O. We write Lp(O)
for the (Banach) space of p-integrable functions on O. Boldface symbols for functional spaces
represent vector-valued counterparts, e.g., L2(O) is the space of vector-valued functions with d
components in L2(O). For the L2-inner product on O we write (·, ·)O. If it will not cause any
confusion, the subscript indicating the underlying domain is omitted.

Dual spaces are defined in standard fashion with duality products denoted by angular brackets
〈·, ·〉O. Moreover, for any real or complex Banach space X, we write X∗ for the space of all
bounded antilinear mappings from X to C. The space of bounded linear mappings between X
and Y is denoted by L(X;Y ).

Generally, an over-line will denote either complex conjugation (when the line is drawn above
a complex valued function) or the closure of a set under a certain norm (when the line is drawn
above a set). When the meaning of an over-line is not clear from context, it will be accompanied
by a comment explaining its interpretation.

For non-negative s ∈ R and p ≥ 1, we shall use standard Sobolev spaces W s,p(O) as defined
in [24, Chapter 3]. In the case of p = 2, we use the standard notation Hs(O), of complex-valued
scalar functions with the customary convention H0(O) ≡ L2(O). Hs(O)-norms will be written as
‖·‖s,O while semi-norms as |·|s,O both with obvious extension to vector quantities.

Finally, we will denote scalars in simple typeface, vector fields with boldface. Euclidean norms
in Rd are denoted by ‖·‖Rd , while induced matrix norms in Rd×d are written as ‖·‖Rd×d . The
spaces of continuous functions mapping to Rd or Rd×d are denoted by C0(O;Rd) and C0(O;Rd×d)
with the norms

‖f‖C0(O;Rd) := sup
x∈O
‖f(x)‖Rd , ‖B‖C0(O;Rd×d) := sup

x∈O
‖B(x)‖Rd×d .

For complex valued functions a similar notation is used.

2.2. Functional spaces. Let now D ⊂ R3 be an open, bounded Lipschitz domain with simply
connected boundary surface ∂D. Its complement is denoted by Dc := R3 \ D. We recall the
standard vectorial spaces to formulate Maxwell problems:

H(curl;D) :=
{
U ∈ L2(D) : curlU ∈ L2(D)

}
,

H(curl curl, D) := {U ∈H(curl, D) | curl curlU ∈ L2(D) } ,
H(div;D) :=

{
U ∈ L2(D) : divU ∈ L2(D)

}
,
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as well as extensions to more regular spaces Hs(curl;D) and Hs(div;D) for s > 0, with norms:

‖U‖Hs(curl;D) := ‖curlU‖s,D + ‖U‖s,D , ‖U‖Hs(div;D) := ‖divU‖s,D + ‖U‖s,D .

As customary, for a Lipschitz surface ∂D one deals with the trace spaces:

H
− 1

2

div (∂D) := {U ∈H− 1
2 (∂D) : U · n = 0, div∂DU ∈ H− 1

2 (∂D)} ,

H
− 1

2

curl(∂D) := {U ∈H− 1
2 (∂D) : U · n = 0, curl∂DU ∈ H− 1

2 (∂D)},
endowed with their respective graph norms. The outward normal vector n points from D to Dc

and div∂D, curl∂D shall refer to surface divergence and scalar surface curl operators, respectively
(cp. Chap. 2.5 in [27] and [2]).

Definition 2.1. For U ∈ C∞(D), we define tangential Dirichlet and Neumann traces by

γDU := n× (U× n)|∂D and γNU := (n× curlU)|∂D ,

respectively. The flipped tangential trace γ×D is γ×DU := (n×U)|∂D. We also define the normal
trace operator by γnU := (U · n)|∂D.

The trace operators γD and γ×D can be extended to linear and continuous operators from
H(curl;D) toH−

1
2

curl(∂D) andH−
1
2

div (∂D), respectively. Likewise, γN : H(curl curl;D)→H
− 1

2

div (∂D)

and γn : H(div;D) → H−
1
2 (∂D) continuously [2, 25]. Moreover, the traces γD, γ×D , γn and γN

admit linear and continuous right inverses. With the trace operators γ×D and γn, we define

H0(curl;D) := {U ∈H(curl;D) : γ×DU = 0 on ∂D} ,
H0(div;D) := {U ∈H(div;D) : γnU = 0 on ∂D} .

By continuity of γ×D , H0(curl;D) is a closed subspace of H(curl;D). Analogously, H0(div;D) is
a closed subspace of H(div;D). Finally, for U and V ∈ H(curl, D), where D is again bounded
and Lipschitz, there holds [2, Eq. (27)]:

(U, curlV)D − (curlU,V)D = −〈γ×DU, γDV〉∂D = 〈γDU, γ
×
DV〉∂D , (2.1)

where 〈·, ·〉∂D denotes the H−
1
2

div (∂D) dual product since (cf. Theorem 2 in [3])(
H
− 1

2

div (∂D)
)∗

= H
− 1

2

curl(∂D) .

2.3. Admissible domain transformations. The domain D̂ ⊆ R3 is henceforth referred to as
the nominal domain. For a given transformation T : D̂ → R3 we call DT := T (D̂) the physical
domain. The set of admissible domain transformations will be denoted by T.

Assumption 2.2. The nominal domain D̂ ⊆ R3 is a bounded, polyhedral Lipschitz domain and
T ⊆ C1(D̂) is a compact set. For every T ∈ T, DT := T (D̂) is a bounded Lipschitz domain and
T : D̂ → DT is bijective and bi-Lipschitz. Moreover, there is ϑ ∈ (0, 1) such that for every T ∈ T,
it holds

ϑ < inf
x̂∈D̂

det(dT (x̂)), sup
x̂∈D̂

det(dT (x̂)), ‖T‖C1(D̂;R3), ‖T
−1‖C1(DT ;R3) < ϑ−1. (2.2)

For a given function U over DT we introduce the pullback

ΦT (U) := dT>(U ◦ T ) (2.3)

wherein dT : D̂ → R3×3 denotes the Jacobian of T . We will repeatedly use the following result.

Lemma 2.3 (Lemma 2.2 in [22]). Let D̂, DT , T be as in Assumption 2.2. Then, the map ΦT in
(2.3) admits a bounded extension from H(curl;DT )→H(curl; D̂) such that this extension is an
isomorphism. The same result holds in H0(curl; ·). Furthermore, in L2(D̂) there holds

curl(ΦT (U)) = (det(dT ))dT−1((curlU) ◦ T ) . (2.4)
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2.4. Maxwell Equations. We consider the EM cavity problem for a time-harmonic depen-
dence eıωt with circular frequency ω > 0 and ı2 = −1. Losses are represented by the domain
conductivity σ(x) while dielectric permittivity and magnetic permeability are denoted by ε(x)
and µ(x), respectively. To keep notation succinct, we introduce the space-dependent quantity
Λ(x) := ω2ε(x)− ıωσ(x).

Assumption 2.4 (Material properties). There exists an open bounded set DH ⊆ R3 – the hold-all
domain– such that, for every T ∈ T as in Assumption 2.2, the closure DT ⊆ R3 of DT is contained
in DH . Moreover, µ ∈ C0(DH ;C), Λ ∈ C0(DH ;C) and there exists θ ∈ [0, 2π) such that (cf. [17])

inf
x∈DH

Re
(
eıθ(µ(x))−1

)
=: µb > 0, inf

x∈DH

Re(−eıθΛ(x)) =: Λb > 0. (2.5)

Finally, we assume that the source current density J ∈ C0(DH ;C3).

In this setting, we write E and H for the complex-valued electric and magnetic fields, respec-
tively. Letting (DT )T∈T be the family of Lipschitz domains in Assumption 2.2, for every T ∈ T
Maxwell equations in the domain DT read

curlET + ıωµHT = 0

(ıωε+ σ)ET − curlHT = −ıωJ.

This can be reduced to
curlµ−1 curlET − ΛET = −ıωJ. (2.6)

If µ is constant, one obtains
curl curlET − κ2ET = −ıωµJ,

where we have defined the complex wavenumber (or propagation constant) κ2 := µΛ, or equiva-
lently, κ2 = ω2µε−ıωµσ. After imposing homogenous perfect electrical conductor (PEC) boundary
conditions

γ×DE = 0

on the surface ∂DT , we arrive at our problem of interest:

Problem 2.5 (Lossy cavity problem). Under Assumptions 2.2 and 2.4, for every T ∈ T we seek
ET ∈H0(curl;DT ) such that (2.6) holds.

Remark 2.6. If σ = 0 and J = 0, we obtain an eigenvalue problem. We do not elaborate on this
case, but note in passing that most of the ensuing results and techniques apply also to this case.

2.5. Variational formulation and well-posedness. Let in the following (DT )T∈T be the family
of Lipschitz domains in Assumption 2.2.

2.5.1. Physical domain DT . To present the T -dependent weak formulation of Problem 2.5, we
introduce the sesquilinear form aT (·, ·) : H0(curl;DT ) ×H0(curl;DT ) → C and the antilinear
form fT (·) : H0(curl;DT )→ C via

aT (U,V) :=

∫
DT

µ−1 curlU · curlV − ΛU ·V dx, fT (V) := −ıω
∫
DT

J ·V dx.

Integrating by parts in (2.6), we obtain the following family of variational problems depending
on T ∈ T.

Problem 2.7 (Physical domain variational problem). Under Assumptions 2.2 and 2.4, for every
T ∈ T we seek ET ∈H0(curl;DT ) such that

aT (ET ,V) = fT (V) ∀ V ∈H0(curl;DT ). (2.7)

Theorem 2.8. Under Assumption 2.2, for all transformations T ∈ T the perturbed sesquilinear
form aT (·, ·) is H0(curl;DT )−elliptic and Problem 2.7 is well posed.
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Proof. We argue along the lines of Theorem 3.2 in [17]. For arbitrary E ∈H0(curl;DT ), write

|aT (E,E)| ≥ Re
{
eıθ aT (E,E)

}
= Re

{
eıθ
∫
DT

(
µ−1 curlE · curlE− ΛE ·E

)
dx

}
≥ min{µb,Λb} ‖E‖2H(curl;DT ) .

I.e., aT (·, ·) is elliptic uniformly with respect to T ∈ T. By the continuity of the sesquilinear and
antilinear forms in (2.7), the Lax-Milgram theorem implies well-posedness. �

2.5.2. Nominal domain D̂. As in [22], we rewrite (2.7) as a variational problem on the nominal
domain D̂. Denote by ΦT : H0(curl;DT )→H0(curl; D̂) the isomorphism (2.3) from Lemma 2.3.
Since ΦT is an isomorphism, for every T ∈ T, ET ∈H0(curl;DT ) solves (2.7) iff ÊT = ΦT (ET ) ∈
H0(curl; D̂) solves

aT (Φ−1
T (ÊT ),Φ−1

T (V̂)) = fT (Φ−1
T (V̂)) ∀ V̂ ∈H0(curl; D̂).

In case either of those problems has a unique solution, the same holds for the other. This leads
us to introduce the sesquilinear form âT (·, ·) : H0(curl; D̂)×H0(curl; D̂)→ C and the antilinear
form f̂T (·) : H0(curl; D̂)→ C defined by

âT (Û, V̂) := aT (Φ−1
T (Û),Φ−1

T (V̂)) and f̂T (V̂) := fT (Φ−1
T (V̂)).

We can now state the nominal variational problem:

Problem 2.9 (Nominal variational problem). Under Assumptions 2.2 and 2.4, for every T ∈ T

we seek ÊT ∈H0(curl; D̂) such that

âT (ÊT , V̂) = f̂T (V̂) ∀ V̂ ∈H0(curl; D̂). (2.8)

In our present setting, where J ∈ C0(DH ;C3) ↪→ L2(DH ;C3), the sesquilinear form aT (·, ·) and
the antilinear form fT (·) can be represented as integrals over the physical domain DT . Transform-
ing those integrals to D̂, one obtains concrete expressions for âT (·, ·) and f̂T (·). Similar as in [22],
with

µT := µ ◦ T, ΛT := Λ ◦ T, JT := J ◦ T, (2.9)

we find

âT (Û, V̂) =

∫
D̂

det(dT )−1µT
−1dT curl Û · dT curl V̂ − ΛT det(dT )dT−>Û · dT−>V̂ dx̂ (2.10)

and

f̂T (V̂) = −ıω
∫
D̂

det(dT )JT · dT−>V̂ dx̂. (2.11)

where we have used that det dT (x̂) ≥ 0 for all x̂ ∈ D̂ by (2.2). We point out that JT = J ◦ T ∈
L2(D̂) since J ∈ L2(DH), DH ⊇ T (D̂), and T : D̂ → DT is bi-Lipschitz, see for instance [23,
Lemma 5.7.2] for a proof.

Proposition 2.10. Let Assumptions 2.2 and 2.4 be satisfied. Then, there exists α > 0 and
θ ∈ [0, 2π) in (2.5), such that, for all T ∈ T, it holds

Re
(
eıθ âT (Û, Û)

)
≥ α‖Û‖2

H0(curl;D̂)
∀ Û ∈H0(curl; D̂). (2.12)

Furthermore, there exists a constant C > 0 such that, for every T ∈ T and for every Û ∈
H0(curl; D̂) and V̂ ∈H0(curl; D̂), it holds

| âT (Û, V̂)| ≤ C‖Û‖H0(curl;D̂)‖V̂‖H0(curl;D̂).

Thus, Problem 2.9 is well posed for every T ∈ T.
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Proof. Fix T ∈ T. To see (2.12), note that for every ζ ∈ C3 and every x̂ ∈ D̂ by (2.2), it holds

ζ>dT>(x̂)dT (x̂)ζ = ‖dT (x̂)ζ‖2C3 ≥ ‖dT−1(x̂)‖−2
C3×3‖ζ‖2C3 ≥ ϑ2‖ζ‖2C3 ,

where we used ‖dT−1(x̂)‖C3×3‖dT (x̂)ζ‖C3 ≥ ‖ζ‖C3 and that det(dT (x̂))−1 ≥ ϑ for all x ∈ D̂ by
(2.2). Thus, by (2.5) and (2.10), for every Û ∈H0(curl; D̂), one has

Re(eıθ âT (Û, Û)) ≥ µbϑ3‖ curl Û‖2
L2(D̂;C3)

+ Λbϑ
3‖Û‖2

L2(D̂;C3)
,

which shows (2.12) with α := ϑ3 min{µb,Λb}. Similarly, one shows the existence of the uniform
continuity constant C. The complex Lax-Milgram theorem implies that there exists a unique
solution of (2.8) that depends continuously on f̂T (·) ∈H0(curl; D̂)∗. �

3. Discrete Approximation and Strang Lemma

In the last section, we showed that, for any admissible domain transformation T ∈ T, the
pullback to the nominal domain D̂ problem (Problem 2.9) is well posed. In the ensuing uncertainty
quantification, we shall obtain a sparse approximation of the shape-to-solution map T 7→ ÊT .
Naturally, the corresponding field ÊT must be approximated numerically. To this end, and in
order to generate computational meshes only once, we discretize the pullback variational problem
(2.8) using edge elements following Monk [25], and verify the well-posedness of the discrete problem
building on the work by A. Ern and J.-L. Guermond [15, 17, 16]. As the sesquilinear form âT (·, ·)
defined in (2.10) has in general non-constant and non-smooth coefficients –depending on the spatial
regularity of the admissible transformation T ∈ T–, numerical integration will play a crucial role
in the development of viable algorithms. Specifically, a quadrature strategy needs to be devised
with certified consistency order with respect to the choice of edge-element discretization of (2.8),
valid uniformly with respect to T ∈ T. This is the purpose of the present section, which is of
interest in its own right containing a quadrature error analysis for edge element discretizations of
time-harmonic Maxwell equations (cf. Theorem 3.17). For ease of exposition, some of the more
technical proofs in this section will be provided in Appendix A.

3.1. Finite elements. Let us consider a shape-regular sequence of affine meshes {τh}h>0, con-
structed from disjoint, matching tetrahedrons that cover D̂ exactly. We will assume that the
tetrahedrons from the mesh, i.e. K ∈ τh, are constructed from a single reference tetrahedron K̆
through affine, bijective transformations TK : K̆ → K. For each element K ∈ τh, hK denotes its
diameter and we define h := maxK∈τh hK . We stress the difference between mappings TK and T :
the first one maps the reference tetrahedron K̆ to elements on a discretization τh of D̂, whereas
the second relates physical and nominal domains, DT and D̂, respectively.

Assumption 3.1 (Assumptions on {τh}h>0). The sequence of affine, shape regular meshes {τh}h>0

cover D̂ exactly, and the τh are uniformly quasi-uniform in the sense of [14, Definition 1.140].

For q = 1, 3 and k ∈ N, let Pk(Ω;Rq) be the space of functions over a measurable domain Ω with
polynomials of degree at most k in their q components. We also introduce P̃k(Ω;Rq) as the space
of elements of Pk(Ω;Rq) of degree exactly k in their q components. The spaces Pk(Ω;Cq) and
P̃k(Ω;Cq) are defined analogously. As in [25], we consider finite elements in the sense of Ciarlet
as triples (K,PK ,ΣK), with K ∈ τh, PK a space of functions over K, and ΣK a set of linear
functionals acting on PK . We will use the elements (K,P gK ,Σ

g
K), (K,P c

K ,Σ
c
K), and (K,P d

K ,Σ
d
K) as

defined in [25, Chapter 5], and corresponding to grad-, curl-, div-conforming elements, respectively.
Specifically, P gK := Pk(K;C), P bK := Pk−1(K;C) and curl and div-conforming reference elements
are

P c
K := Pk−1(K;C3)⊕ {p ∈ P̃k(K,C3) : x · p = 0},

P d
K := Pk−1(K;C3)⊕ {xp : p ∈ P̃k−1(K,C)}.
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For the sake of brevity, we shall not give explicit formulas for the elements of ΣgK , ΣcK , or
ΣdK , which shall be referred to as degrees of freedom. We do, however, indicate their respective
domains, i.e. the sets of functions where they are well defined (cf. [25, Chapter 5]):

V g(K) :=

{
v : v ∈ Hs(K) and ∇v ∈Hs− 1

2 (K) for some s >
3

2

}
,

V c(K) :=

{
W : W ∈Hs−1(K) and curlW ∈ Lp(K) for some s >

3

2
, p > 2

}
, (3.1)

V d(K) :=

{
W : W ∈ Hs−1(K) for some s >

3

2

}
.

These definitions extend obviously to the reference element K̆. Note also that the Sobolev regu-
larity s > 3

2 implies that elements of these spaces can be assumed to be continuous on K. Discrete
spaces on the mesh τh are then constructed from the spaces defined on each element,

P g(τh) :=
{
vh ∈ H1(D̂) : vh|K ∈ P gK

}
,

P c(τh) :=
{
Vh ∈H

(
curl; D̂

)
: Vh|K ∈ P c

K , ∀ K ∈ τh
}
,

P d(τh) :=
{
Vh ∈H(div; D̂) : Vh|K ∈ P d

K , ∀ K ∈ τh
}
,

P b(τh) :=
{
vh ∈ L2(D̂) : vh|K ∈ P bK , ∀ K ∈ τh

}
.

Homogeneous essential boundary conditions are accounted for by considering subspaces of the
above discrete spaces that satisfy said conditions:

P g0 (τh) := P g(τh) ∩H1
0 (D̂),

P c
0 (τh) := P c(τh) ∩H0(curl; D̂),

P d
0 (τh) := P d(τh) ∩H0(div; D̂).

The discrete spaces may be equivalently defined via the following pullbacks over functions defined
on an element K ∈ τh, that shall also prove useful for the coming error analysis:

ψgK(v) := v ◦ TK ,

ψcK(V) := J>K(V ◦ TK),

ψdK(V) := det(JK)J−1
K (V ◦ TK),

ψbK(v) := det(JK)(v ◦ TK),

(3.2)

where JK is the Jacobian matrix of TK , while v and V belong to the space signaled by the
superscript. These mappings commute with the corresponding differential operators, i.e.

∇ψgK(v) = ψcK(∇v), curlψcK(V) = ψdK(curlV), divψdK(V) = ψbK(divV),

hold for functions on any K ∈ τh with well defined gradient, curl or divergence, respectively [25,
Chapter 3.9]. Furthermore, they leave the corresponding finite element spaces unchanged so that,
for all K ∈ τh,

ψjK : P jK → P j
K̆

and (ψjK)−1 : P j
K̆
→ P jK ∀ j ∈ {g, c, d, b}.

Under Assumption 3.1, there are uniform constants c] and c[ such that (cf. [14, Lemma 1.100])

|det(JK)| = |K|
∣∣∣K̆∣∣∣−1

, ‖JK‖R3×3 ≤ c]h,
∥∥J−1
K

∥∥
R3×3 ≤ c[h−1. (3.3)

The linear mappings defined in (3.2) may be summarized as

ψjK(v) = AjK(v ◦ TK) ∀ j ∈ {g, b}, ψjK(V) = AjK(V ◦ TK) ∀ j ∈ {c, d}, (3.4)
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where AgK = 1, AcK = J>K , AdK = det(JK)J−1
K and AbK = det(JK). Then, the mappings ψK satisfy

the following properties for all l ∈ N, p ∈ [1,∞]:∣∣∣ψjK∣∣∣L(W l,p(K);W l,p(K̆))
≤ c|AjK | ‖JK‖

l
R3×3 |det(JK)|−

1
p ∀ j ∈ {g, b},∣∣∣ψjK∣∣∣L(W l,p(K);W l,p(K̆))

≤ c
∥∥∥AjK∥∥∥R3×3

‖JK‖lR3×3 |det(JK)|−
1
p ∀ j ∈ {c, d},

(3.5)

and ∣∣∣(ψjK)−1
∣∣∣
L(W l,p(K̆);W l,p(K))

≤ c|AjK |
−1
∥∥J−1
K

∥∥l
R3×3 |det(JK)|

1
p ∀ j ∈ {g, b},∣∣∣(ψjK)−1

∣∣∣
L(W l,p(K̆);W l,p(K))

≤ c
∥∥∥(AjK)−1

∥∥∥
R3×3

∥∥J−1
K

∥∥l
R3×3 |det(JK)|

1
p ∀ j ∈ {c, d},

(3.6)

for all K ∈ τh, and c > 0 independent of K and h (cf. [14, Lemma 1.101]). We shall also require
the following inverse inequality. In both, (3.5) and (3.6), the expression 1

p is understood as zero
when p =∞.

Lemma 3.2 (Lemma 1.138 in [14]). Let K ∈ τh, p ∈ [1,∞] and m, l ∈ N0 such that m ≤ l. Then
under Assumption 3.1, for ϕ in either P gK or P bK and ϕ in either P c

K or P d
K ,

‖ϕ‖W l,p(K) ≤ ch
m−l ‖ϕ‖Wm,p(K) ,

‖ϕ‖W l,p(K) ≤ ch
m−l ‖ϕ‖Wm,p(K) ,

for a positive constant c independent of K and h.

3.2. Interpolation Operators. For exposition purposes, we briefly recall the construction of
canonical local and global interpolation operators on finite elements. However, as these require
minimal regularity conditions, we resort to the local quasi-interpolation operators developed in
[16] for arbitrary low regularity.

For any of the finite elements (K,PK ,ΣK) described in Section 3.1, the canonical interpolation
operator is defined as

IK(v) :=

N∑
n=1

σn(v)ϕn,

with N ∈ N, ΣK = {σn}Nn=1, and PK = span{ϕn}Nn=1, where the basis {ϕn}Nn=1 has the Kronecker
property

σn(ϕm) = δmn. (3.7)

We denote by IgK , IcK , and IdK the interpolators for the finite elements associated with each super-
script, which are well defined over V g(K), V c(K), and V d(K), respectively. We also introduce
IbK as the L2-projection onto P bK . These local interpolators commute with the linear maps in
(3.2), i.e.

ψjK ◦ I
j
K = Ij

K̆
◦ ψjK ∀ j ∈ {g, c, d, b}, ∀ K ∈ τh. (3.8)

Global interpolation operators are built from the local interpolators defined above as described
in [25, Chapter 5]. For the ensuing proof of Theorem 3.17, we require local quasi-interpolation
operators that are defined for functions with low regularity. We introduce one such operator,
developed by Ern and Guermond [16]. Its construction, for any finite element in the reference
tetrahedron (K̆, P̆ , Σ̆) (cf. Section 3.1) with P̆ ⊂ Pk(K̆;R) for k ∈ N, follows by considering the
elements of Σ̆ as functionals over P̆ equipped with the L2-norm. Then, by the Riesz representation
theorem, for each σ ∈ Σ̆ there exists ρ ∈ P̆ so that

σ(v) =

∫
K̆

ρv dx ∀ v ∈ P̆ .
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Since ρ ∈ P̆ ⊂ L∞(K̆), σ may be extended to act on v ∈ L1(K̆) as

σ#(v) :=

∫
K̆

ρv dx.

If Σ̆ = {σn}Nn=1 for N ∈ N and P̆ = span{ϕn}Nn=1, where the basis {ϕn}Nn=1 is such that (3.7)
holds, the quasi-interpolation operator on K̆ is defined as (cf. [16, Eqn. (3.2)])

I#

K̆
(v) :=

N∑
n=1

σ#
n (v)ϕn ∀ v ∈ L1(K̆). (3.9)

Remark 3.3. Note that the quasi-interpolation operator in (3.9) requires only that the interpo-
lated function be in L1(K̆). This will hold for all finite elements, including the grad-, curl- and
div-conforming finite elements, whereas the canonical interpolation operator would require the
interpolated functions to belong to the spaces in (3.1), i.e. to possess some minimum regularity.

The composition of I#

K̆
with pullbacks ψK : W l,p(K) → W l,p(K̆) – such as those in (3.2) –

allows for the construction of quasi-interpolation operators I#
K on any K ∈ τh. The same process,

with analogous results, holds for P̆ ⊂ Pk(K;R3) and complex valued finite element spaces. Lemma
3.4 provides properties of these operators that will be used in the proof of Theorem 3.17. We refer
to [16, Section 3] for more details on the construction of the quasi-interpolation operators and
their properties.

Lemma 3.4 (Proposition 3.1 and Remark 5.2 in [16]). Let p ∈ [1,∞], K ∈ τh, and {(K,PK ,ΣK)}K∈τh
be any of the finite elements described in Section 3.1. There exist local quasi-interpolation operators
{I#
K : K ∈ τh}, as defined in [16, Section 3], such that for every K ∈ τh

(i)
∥∥∥I#

K(v)
∥∥∥
Lp(K)

≤ c ‖v‖Lp(K) for every v ∈ Lp(K) and c > 0,

(ii) I#
K(v) = v for all v ∈ PK , and

(iii) if p < ∞ and k ≥ 1 is the largest integer such that Pk−1(K,C) ⊂ PK , r ∈ [0, k] and
m ∈ N with m ≤ r, then there exists c > 0 independent of K and h so that∣∣∣v − I#

K(v)
∣∣∣
Wm,p(K)

≤ chr−m |v|W r,p(K) ∀ v ∈W r,p(K). (3.10)

An analogous result holds when the elements of PK are vector-valued. Furthermore, if I#,g
K , I#,c

K

and I#,d
K are the quasi-interpolation operators associated with the grad-, curl- and div-conforming

finite elements, then (3.8) holds replacing I with I#.

From here on, we fix k ∈ N as the polynomial degree for the finite elements introduced previ-
ously, so that

Pk−1(K;C3) ⊂ P c
K , P

d
K ⊂ Pk(K;C3), P gK = Pk(K;C), P bK = Pk−1(K;C). (3.11)

Using the error estimate in (3.10) and the result in Lemma 3.2, we are able to prove the following
result regarding the stability of the quasi-interpolation operator.

Lemma 3.5. Let K ∈ τh, and I#
K denote either I#,c

K or I#,d
K . Then, for all m ∈ N with m ≤ k,

and p ∈ [1,∞] there exists a constant C > 0 independent of K and h such that∥∥∥I#
K(V)

∥∥∥
Wm,p(K)

≤ C ‖V‖Wm,p(K) ∀ V ∈Wm,p(K), (3.12)∥∥∥I#
K(V)

∥∥∥
Wm,p(K)

≤ Ch−1 ‖V‖Wm−1,p(K) ∀ V ∈Wm−1,p(K). (3.13)

Furthermore, for r ∈ R such that m− 1 < r < m, there exists C > 0 independent of K and h, but
dependent on r such that∥∥∥I#

K(V)
∥∥∥
m,K
≤ Chr−m ‖V‖r,K ∀ V ∈Hr(K). (3.14)
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Proof. Equation (3.12) is consequence of the error estimate in (3.10) and the triangle inequality.
The result (3.13) follows from applying Lemma 3.2 and (3.12), in that order. Finally, (3.14)
follows from both (3.12) and (3.13) by real interpolation between Sobolev spaces (cf. [33, Lemma
22.3]). �

3.3. Discrete problem. We are now ready to discretize Problem 2.9.

Problem 3.6 (Discrete variational problem). Find ÊT,h ∈ P c
0(τh) such that,

âT (ÊT,h, V̂h) = f̂T (V̂h) ∀ V̂h ∈ P c
0(τh), (3.15)

wherein the sesquilinear and antilinear form are those given in (2.10) and (2.11).

The conformity of the discrete space P c
0 (τh) in H0(curl; D̂) ensures the existence and unique-

ness of solutions for the variational problem above. Furthermore, we get the following convergence
result. Recall k ∈ N as the polynomial degree for the finite element spaces defined in Section 3.

Theorem 3.7 (Theorem 3.3 in [17]). Let ÊT , and ÊT,h be the solutions of Problems 2.9, and 3.6,
respectively. Then, if ÊT ∈Hr(curl; D̂) for some r ∈ (0, k], there holds for all T ∈ T∥∥∥ÊT − ÊT,h

∥∥∥
H(curl;D̂)

≤ CTh
r

(∣∣∣ÊT ∣∣∣
Hr(D̂)

+
∣∣∣curl ÊT ∣∣∣

Hr(D̂)

)
,

for a positive constant CT, that may be chosen independently of T ∈ T, but depends on the set T.

Remark 3.8. Note that we do not require any minimum smoothness for solutions of Problem 2.9
to get a convergence rate, whereas classical results (cf. [25, Thm 5.41]) require some minimum reg-
ularity assumptions in order to ensure well-posedness of the classical interpolation operators. This
is avoided by introducing quasi-interpolation operators I# [16], and a quasi-optimal commuting
projection [15].

3.4. Numerical integration. We now consider the numerical computation of the integrals for
the linear system arising in (3.15).

3.4.1. Quadrature on mesh elements. Let K̆ be the reference tetrahedron and let {b̆l}Ll=1 ⊆ K̆,
and {w̆l}Ll=1 ⊆ R\{0} be sets of reference quadrature nodes and weights for some fixed L ∈ N. We
define a quadrature rule Q : C0(K̆;C)→ C by

Q(f) :=

L∑
l=1

w̆lf(b̆l). (3.16)

For an element K ∈ τh and the corresponding affine element map TK : K̆ → K, this yields a
quadrature rule QK : C0(K;C)→ C via

QK(f) :=

L∑
l=1

wl,Kf(bl,K) where wl,K := |det(JK)| w̆l, bl,K := TK(b̆l). (3.17)

To establish coercivity, we will make use of the following assumption also used in [9].

Assumption 3.9. It holds w̆l > 0 for all l = 1, . . . , L in (3.16), and at least one of the following
conditions: either {b̆l}Ll=1 is Pk(K̆;C)-unisolvent, or Q(p) =

∫
K̆
p(x) dx for all p ∈ P2k(K̆;C),

i.e. the quadrature is exact on P2k(K̆;C).

Remark 3.10. Assumption 3.9 implies that
L∑
l=1

w̆l|p(b̆l)|2 > 0 ∀ 0 6= p ∈ Pk(K̆;C).

Hence
(∑L

l=1 w̆l|p(b̆l)|2
)1/2

defines a norm on Pk(K̆;C) in this case.
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3.4.2. Fully discrete problem. With QK as in (3.17) we introduce a fully discrete variant of the
sesquilinear form âT (·, ·) and the antilinear functional f̂T (·) in (2.10) and (2.11) as follows. For a
mesh τh on D̂ let

ãT,h(Ûh, V̂h) :=∑
K∈τh

QK

(
det(dT )−1µ−1

T dT curl Ûh · dT curl V̂h − det(dT )ΛT dT
−>Ûh · dT−>V̂h

)
(3.18)

and
f̃T,h(V̂h) := −ıω

∑
K∈τh

QK

(
det(dT )JT · dT−>V̂

)
.

Here, all occurring functions, including derivatives of the transformation T , are assumed to be
continuous on each K ∈ τh so that point evaluations are well-defined. This leads to the following
variant of Problem 3.6.

Problem 3.11 (Fully discrete problem). Find ẼT,h ∈ P c
0(τh) such that,

ãT,h(ẼT,h, V̂h) = f̃T,h(V̂h) ∀ V̂h ∈ P c
0(τh). (3.19)

3.4.3. Ellipticity of the discrete sesquilinear form. As is customary in finite element quadrature
error analysis (see, e.g., [9]), we show that, under certain conditions for the quadrature scheme,
the perturbed form ãT,h(·, ·) is P c

0 (τh)-elliptic. The following lemma, which constitutes part of
the proof, is formulated as a separate result as it will be required again subsequently. Its proof is
given in Appendix A.

Lemma 3.12. Let K̆ ⊆ R3 be the reference tetrahedron. Recall k ∈ N as the polynomial degree
for the finite element spaces, so that (3.11) holds. Let Q : C0(K̆;C)→ C be a quadrature rule as
in (3.16).

(i) There exists C1 > 0 such that for every affine bijective element map TK : K̆ → K, for
every B ∈ C0(K;C3×3) and for all U, V ∈ Pk(K;C3) it holds (see (3.17) for QK)

|QK(BU ·V)| ≤ C1‖B‖C0(K;C3×3)‖U‖L2(K)‖V‖L2(K).

(ii) Additionally, let Assumption 3.9 be satisfied. Then, there exists C2 > 0 independent of h
and K ∈ τh, such that for every B ∈ C0(K;C3×3) such that

inf
x∈K

inf
‖ζ‖C3=1

Re(ζ>B(x)>ζ) =: γ(B) > 0, (3.20)

and for all U ∈ Pk(K;C3) it holds

Re(QK(BU ·U)) ≥ C2γ(B)‖U‖2L2(K).

We are now in position to verify the coercivity of the perturbed discrete sesquilinear form
ãT,h(·, ·) in (3.18). In the following theorem, θ ∈ [0, 2π) is as in (2.5), in particular, independent
of h.

Theorem 3.13. Let k ∈ N be as in (3.11), and let Q : C0(K̆;C)→ C be a quadrature rule as in
(3.16) such that Assumption 3.9 holds. Suppose that T ⊆ C1(D̂;R3) satisfies Assumption 2.2 and
the data satisfies Assumption 2.4. Then, there exists α̃ > 0 independent of h, such that, for all
T ∈ T and all meshes τh on D̂, it holds

∀ Ûh ∈ P c
0 (τh) : Re

{
eıθ ãT,h(Ûh, Ûh)

}
≥ α̃‖Ûh‖2H0(curl;D̂)

. (3.21)

Proof. Set

M1(T ) := det(dT )−1µT dT
>dT and M2(T ) := −det(dT )−1ΛT dT

−1dT−>.

By (3.18)

ãT,h(Ûh, Ûh) =
∑
K∈τh

QK(M1(T ) curl Ûh · curl Ûh) +
∑
K∈τh

QK(M2(T )Ûh · Ûh). (3.22)
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By (2.2) and (2.5)

inf
x̂∈D̂

inf
‖ζ‖C3=1

Re(eıθζ>M1(T )>ζ) ≥ inf
x̂∈D̂

inf
‖ζ‖C3=1

det dT (x̂)−1 Re(eıθµT (x̂))‖dT (x̂)ζ‖2C3

≥ inf
x̂∈D̂

inf
‖ζ‖C3=1

ϑµb‖dT (x̂)−1‖−2
C3 ‖ζ‖2C3

≥ ϑ3µb‖ζ‖2C3 ,

where we used ‖dT−1(x̂)‖C3×3‖dT (x̂)ζ‖C3 ≥ ‖ζ‖C3 . Similarly

inf
x̂∈D̂

inf
‖ζ‖C3=1

Re(eıθζ>M2(T )>ζ) ≥ ϑ3Λb‖ζ‖2C3 .

Applying Lemma 3.12 (ii) to (3.22), we obtain (3.21) with α̃ = C2ϑ
3 min{µb,Λb}. �

3.4.4. Strang Lemma. The preceding theorem enables us to establish a suitable form of the first
Strang Lemma.

Lemma 3.14 (Theorem 4.1.1 in [9]). Let A1 and A2 be defined, for Û ∈H
(
curl; D̂

)
, as

A1(Û) := inf
Ûh∈P c

0 (τh)


∥∥∥Û− Ûh

∥∥∥
H(curl;D̂)

+ sup
Ŵh∈P c

0 (τh)

Ŵh 6=0

∣∣∣âT (Ûh,Ŵh)− ãT,h(Ûh,Ŵh)
∣∣∣∥∥∥Ŵh

∥∥∥
H(curl;D̂)

 ,

A2 := sup
Ŵh∈P c

0 (τh)

Ŵh 6=0

∣∣∣̂fT (Ŵh)− f̃T,h(Ŵh)
∣∣∣∥∥∥Ŵh

∥∥∥
H(curl;D̂)

.

Then, under Assumptions 2.2, 2.4 and 3.9, there exists a constant C > 0 independent of the space
P c

0 (τh) such that, for every T ∈ T∥∥∥ÊT − ẼT,h

∥∥∥
H(curl;D̂)

≤ C(A1(ÊT ) + A2),

where ÊT is the unique solution to Problem 2.9, and ẼT,h is the unique solution to Problem 3.11.

Consequently, for given Ûh, Ŵh ∈ P c
0 (τh), we need to bound the consistency errors:∣∣∣âT (Ûh,Ŵh)− ãT,h(Ûh,Ŵh)

∣∣∣ , (3.23)∣∣∣̂fT (Ŵh)− f̃T,h(Ŵh)
∣∣∣ . (3.24)

This allows, through an application of the first Strang Lemma, to prove the same order of con-
vergence shown in Theorem 3.7 for the solution of Problem 3.11. We continue by proving a local
estimate for the terms in (3.23). We require the following auxiliary Lemma, proved in Appendix
A.

Lemma 3.15. Let m ∈ N, and B(x̂) = (Bi,j(x̂))3
i,j=1 ∈ C3×3 be such that Bi,j ∈Wm,∞(D̂), with

i, j ∈ {1, 2, 3}. If the quadrature scheme, QK̆(·), constructed from the nodes {b̆l}Ll=1 and weights
{w̆l}Ll=1 is exact on Pk+m−1(K̆;C), then the local quadrature error,

EK(BÛh,Ŵh) :=

∫
K

(
BÛh

)
· Ŵh dx−

L∑
l=1

wK,l

(
B(bK,l)Ûh(bK,l)

)
· Ŵh(bK,l),

is such that, for all Ûh and Ŵh in either P c
0 (τh) or P d

0 (τh), and for all K ∈ τh, the following
bound holds ∣∣∣EK(BÛh,Ŵh)

∣∣∣ ≤ CCBh
m
∥∥∥Ûh

∥∥∥
m,K

∥∥∥Ŵh

∥∥∥
0,K

,

for a positive constant C independent of h, K, and B and with CB :=
∑3
i,j=1 ‖Bi,j‖Wm,∞(K).
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We can derive a similar estimate for the perturbed right-hand side (3.24). It follows from a
slight modification of [9, Theorem 4.1.5], upon noticing that for Ŵh ∈ P c

0 (τh) the integrand in
f̂T (Ŵh) may be written as

det(dT )JT · dT−>Ŵh = det(dT )dT−1JT · Ŵh .

Lemma 3.16. Let m ∈ N. If the quadrature scheme constructed from the nodes {b̆l}Ll=1 and
weights {w̆l}Ll=1 is exact on Pk+m−1(K̆;C), and for some p > 2 such that m− 3

p > 0, it holds

det(dT )dT−1JT ∈Wm,p(D̂), (3.25)

then ∣∣∣̂fT (Ŵh)− f̃T,h(Ŵh)
∣∣∣ ≤ hm ∣∣∣D̂∣∣∣ 12− 1

p
∥∥∥Ŵh

∥∥∥
L2(D̂)

∥∥det(dT )dT−1JT
∥∥
Wm,p(D̂)

,

for all Ŵh ∈ P c
0 (τh).

As in [9, Thm 4.1.6], the previous results yield a convergence rate of O(hr) for the numerical
solution computed with quadrature schemes satisfying the conditions imposed by the various
results above, whenever the solution of Problem 2.9 belongs to Hr(curl; D̂) for r > 0. In the
following, we shall denote dre as the unique integer such that dre − 1 < r ≤ dre.

Theorem 3.17. Let r, p ∈ R and m ∈ N be such that 0 < r ≤ k, dre ≤ m, and p > max
(
2, 3

m

)
.

Also assume that
3∑

i,j,n=1

∥∥∥det(dT )ΛT (dT−>j,n dT
−>
j,i )

∥∥∥
W dre,∞(D̂)

<∞,
3∑

i,j,n=1

∥∥∥∥ dT j,ndT j,idet(dT )µT

∥∥∥∥
W dre,∞(D̂)

<∞ (3.26)

and (3.25) hold. Then, if ÊT and ẼT,h are the unique solutions of Problems 2.9 and 3.11, and
the quadrature scheme used for the computation of ãT,h(·, ·) and f̃T,h(·) is such that Assumption
3.9 holds, and the quadrature is exact on Pk+m−1(K̆;C), there exists a positive constant CT –
independent of h, but depending on T ∈ T – such that∥∥∥ÊT − ẼT,h

∥∥∥
H(curl;D̂)

≤ CThr
∥∥∥ÊT∥∥∥

Hr(curl,D̂)

as h tends to 0, whenever ÊT ∈Hr(curl, D̂).

Proof. Let ÊT,h ∈ P c
0 (τh) be the unique solution of Problem 3.6. By direct application of Lemma

3.15, since k+ dre− 1 ≤ k+m− 1, and therefore the quadrature used here satisfies the conditions
in Lemma 3.15, we can write∣∣∣âT (ÊT,h,Ŵh)− ãT,h(ÊT,h,Ŵh)

∣∣∣ ≤ CC1h
dre

(∑
K∈τh

∥∥∥curl ÊT,h∥∥∥
dre,K

∥∥∥curl Ŵh

∥∥∥
0,K

)
+CC2h

dre
∑
K∈τh

∥∥∥ÊT,h∥∥∥
dre,K

∥∥∥Ŵh

∥∥∥
0,K

,

for a positive constant C independent of T and h, and where C1 and C2 depend on the terms in
(3.26). We shall find an estimate for

∥∥∥ÊT,h∥∥∥
dre,K

,∥∥∥ÊT,h∥∥∥
dre,K

≤
∥∥∥ÊT,h − I#,c

K (ÊT )
∥∥∥
dre,K

+
∥∥∥I#,c

K (ÊT )
∥∥∥
dre,K

≤ ch−dre
∥∥∥ÊT,h − I#,c

K (ÊT )
∥∥∥

0,K
+ chr−dre

∥∥∥ÊT∥∥∥
r,K

≤ ch−dre
∥∥∥ÊT,h − ÊT

∥∥∥
0,K

+ chr−dre
∥∥∥ÊT∥∥∥

r,K
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where we have used the inverse inequality from Lemma 3.2, the invariance of P c(K) under
I#,c
K , and (3.14), so c > 0 does not depend on h nor K. We can obtain a similar bound for∥∥∥curl ÊT,h∥∥∥

dre,K
by the exact same proceeding, replacing I#,c with I#,d,∥∥∥curl ÊT,h∥∥∥

dre,K
≤ ch−dre

∥∥∥curl(ÊT,h − ÊT

)∥∥∥
0,K

+ chr−dre
∥∥∥curl ÊT∥∥∥

r,K
,

where all constants are independent of K and h. Then,∣∣∣âT (ÊT,h,Ŵh)− ãT,h(ÊT,h,Ŵh)
∣∣∣ ≤ CT

(
hr
∥∥∥ÊT

∥∥∥
Hr(curl;D̂)

+
∥∥∥ÊT,h − ÊT

∥∥∥
H(curl;D̂)

)∥∥∥Ŵ∥∥∥
H(curl;D̂)

,

≤ CTh
r
∥∥∥ÊT

∥∥∥
Hr(curl;D̂)

∥∥∥Ŵ∥∥∥
H(curl;D̂)

,

where we have applied Theorem 3.17 to bound the approximation error. The conditions on the
quadrature rule ensure, by direct application of Lemma 3.16,∣∣∣̂fT (Ŵh)− f̃T,h(Ŵh)

∣∣∣ ≤ hm ∣∣∣D̂∣∣∣ 12− 1
p
∥∥∥Ŵh

∥∥∥
L2(D̂)

(∑
K∈τh

∥∥det(dT )dT−1JT
∥∥p
Wm,p(K)

)1/p

≤ hr
∣∣∣D̂∣∣∣ 12− 1

p
∥∥∥Ŵh

∥∥∥
L2(D̂)

∥∥det(dT )dT−1JT
∥∥
Wm,p(D̂)

for all Ŵh ∈ P c
0 (τh) and h ∈ (0, 1). The first Strang Lemma (Lemma 3.14) combined with the

error bound in Theorem 3.7 yield the claimed error estimate. �

4. Shape Holomorphy

In this section we show that the solution to the pullback Maxwell problem depends holomor-
phically on the domain transformation T . In order to do so, we require smoothness of the data as
stated in the following assumption which will replace Assumption 2.4 in the current section.

Assumption 4.1 (Material properties). There exists an open set DH ⊆ C3 (the hold-all domain)
such that for every T ∈ T as in Assumption 2.2 it holds that the closure DT ⊆ R3 of DT is
contained in DH . Moreover, µ : DH → C, Λ : DH → C and J : DH → C3 in (2.6) are holomorphic
functions and there exists θ ∈ [0, 2π) such that (2.5) holds.

4.1. Operator inversion. We recall a few standard facts from functional analysis. Let X be a
Banach space over C, and let X∗ be the space of all bounded antilinear mappings from X to C.
Moreover L(X;X∗) denotes the space of all continuous bounded linear mappings from X to X∗,
and additionally in the following Liso(X;X∗) stands for the space of bijective and bounded (and
therefore boundedly invertible) mappings in L(X;X∗). As is well-known, if A ∈ Liso(X;X∗) and
B ∈ L(X;X∗) satisfies ‖A−1(A−B)‖L(X;X) < 1, then also B ∈ Liso(X;X∗). Writing

B−1 = (A(I −A−1(A−B)))−1 = (I −A−1(A−B))−1A−1

and using the Neumann series expansion of (I −A−1(A−B))−1 we get

B−1 =
∑
n∈N0

(A−1(A−B))nA−1 ∈ L(X∗;X). (4.1)

Equation (4.1) is formally a power series expansion of B 7→ B−1 locally around A between the
Banach spaces L(X;X∗) and L(X∗;X). Due to ‖(A−1(A−B))n‖L(X;X) ≤ ‖A−1(A−B)‖nL(X;X),
the series converges for all B ∈ L(X;X∗) with ‖A − B‖L(X;X∗) < ‖A−1‖−1

L(X∗;X) or ‖A−1(A −
B)‖L(X;X) < 1. It is well-known that functions allowing a representation as a power series as
in (4.1) are Fréchet differentiable, see for instance [5, Sect. 11.12]. We thus have the following
proposition.

Proposition 4.2. Let X be a Banach space. Then the inversion map

inv : Liso(X;X∗)→ Liso(X∗;X) : B 7→ B−1
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is Fréchet differentiable. Moreover, if A ∈ Liso(X;X∗), then

{B ∈ L(X;X∗) : ‖A−B‖L(X;X∗) < ‖A−1‖−1
L(X∗;X)} ⊆ Liso(X;X∗)

and for all B in this set it holds (4.1) as well as

‖B−1‖L(X∗;X) ≤
‖A−1‖L(X∗;X)

1− ‖A−1‖L(X∗;X)‖A−B‖L(X;X∗)
. (4.2)

4.2. Holomorphic parameter dependence. In Section 4.2.1 we show that the weak solution of
the pullback lossy cavity problem, Problem 2.9, is (complex) Fréchet differentiable as a function of
the domain transformation T ∈ C1(D̂;C3). The same is verified for the discrete Galerkin solutions
of Problem 3.11.

4.2.1. Continuous case. Introduce the linear operator

A : C1(D̂;C3×3)× C1(D̂;C3×3)→ L(H0(curl; D̂);H0(curl; D̂)∗),

which maps data in the form of the PDE coefficients B1 ∈ C0(D̂;C3×3) and B2 ∈ C0(D̂;C3×3) to
the differential operator A(B1,B2) ∈ L(H0(curl; D̂);H0(curl; D̂)∗) defined through

〈A(B1,B2)Û, V̂〉 :=

∫
D̂

B1 curl Û · curl V̂ dx̂ +

∫
D̂

B2Û · V̂ dx̂. (4.3)

Let T ∈ C1(D̂;R3). Observe that with

M1(T ) = µ−1
T det(dT )−1dT>dT ∈ C0(D̂;R3×3),

M2(T ) = −ΛT det(dT )dT−1dT−> ∈ C0(D̂;R3×3),
(4.4)

it holds for all Û, V̂ ∈H0(curl; D̂) that (cp. (2.10))

aT (Û, V̂) = 〈A(M1(T ),M2(T ))Û, V̂〉D̂, (4.5)

and with FT ∈H0(curl; D̂)∗ defined by

FT (V̂) := −ıω
∫
D̂

dT−1JT · V̂ dx̂,

We write Problem 2.9 as operator equation:

A(M1(T ),M2(T ))ÊT = FT . (4.6)

To show Fréchet differentiability of the weak solution ÊT ∈ H0(curl; D̂) of Problem 2.9 with
respect to T , we start by verifying that the right-hand side FT ∈H0(curl; D̂)∗ and the coefficients
M1(T ) ∈ C0(D̂;R3×3) and M2(T ) ∈ C0(D̂;R3×3) are Fréchet differentiable as functions of T . To
this end, first note the following: with DH ⊆ C3 as in Assumption 4.1, suppose that f : DH → C
is a holomorphic function with uniformly bounded second derivatives and let T : D̂ → DH be such
that the compact closure of T (D̂) is contained in DH . Denote by

∇2f =

(
∂2f

∂xi
∂xj

)3

i,j=1

: DH → C3×3

the Hessian of f . Then, in a neighbourhood of T , T 7→ f ◦ T ∈ C0(D̂) is Fréchet differentiable as

‖f ◦ (T +H)− f ◦ T −∇(f ◦ T ) ·H‖C0(D̂;C) ≤ ‖∇
2f‖C0(DH ;C3×3)‖H‖2C0(D̂;C3)

(4.7)

so that

lim
‖H‖

C0(D̂;C3)
→0

‖f ◦ (T +H)− f ◦ T −∇(f ◦ T ) ·H‖C0(D̂;C)

‖H‖C0(D̂;C3)

= 0. (4.8)

We thus have the following lemma (cf. [22, Lemma 4.1] for a similar result). For its proof, we
recall that the composition of Fréchet differentiable maps between Banach spaces is again Fréchet
differentiable [38, Proposition 4.10].
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Lemma 4.3. Define

S :=

{
T ∈ C1(D̂;C3) : inf

x̂∈D̂
|det(dT (x̂))| > 0, T (D̂) ⊆ DH

}
, (4.9)

where T (D̂) is understood as the closure of T (D̂) in C3. Then S ⊆ C1(D̂;C3×3) is open and

M1 : S → C0(D̂;C3×3) and M2 : S → C0(D̂;C3×3)

defined in (4.4) are Fréchet differentiable.

Proof. We only show the statement for M1, since similar arguments apply to M2. The maps
T 7→ dT and T 7→ dT> are bounded and linear, and thus Fréchet differentiable, as mappings from
C1(D̂;C3) to C0(D̂;C3×3). By (4.8), the map T 7→ µT = µ ◦T is Fréchet differentiable from {T ∈
C0(D̂;C3) : T (D̂) ⊆ DH} → C0(D̂;C3), and, consequently, also from {T ∈ C1(D̂;C3) : T (D̂) ⊆
DH} → C0(D̂;C3)). Letting f : {M ∈ C3×3 : det(M) 6= 0} → C in (4.8) be the rational –thus
holomorphic– function f(M) = det(M)−1, we find that also the composition T 7→ dT 7→ det(dT )−1

is Fréchet differentiable from S to C0(D̂;C). Finally, the product
∏n
j=1 Fj ∈ C0(D̂;C) of functions

Fj ∈ C0(D̂;C) is a bounded multilinear map, and therefore jointly differentiable as a function of
(Fj)

n
j=1 ∈ C0(D̂;C)n. This shows that T 7→ M1(T ) = µ−1

T det(dT )−1dT>dT ∈ C0(D̂;C3×3) is
Fréchet differentiable for all T ∈ S. �

In the same fashion we obtain holomorphic dependence of the right-hand side on the transfor-
mation (also see the proof of Lemma 4.7 ahead).

Lemma 4.4. With S as in (4.9), S 3 T 7→ FT ∈H0(curl; D̂)∗ is Fréchet differentiable.

In line with our results in [22, Theorem 4.1 and Theorem 4.2] where we considered a perfect
conductor and a dielectric scatterer, we obtain the following theorem stating shape holomorphy
for the lossy cavity problem.

Theorem 4.5. Let T ⊆ C1(D̂;R3) satisfy Assumption 2.2, and let the data satisfy Assumption
4.1. There exists an open set OT ⊆ C1(D̂;C3) containing T, and a Fréchet differentiable function
E : OT → H0(curl; D̂) such that, for every T ∈ T, the unique solution ÊT ∈ H0(curl; D̂) of
Problem 2.9 is given by ÊT = E(T ).

Proof. Throughout this proof let X := H0(curl; D̂) and let S ⊆ C1(D̂;C3) be as in (4.9). The
solution operator E mapping a transformation T to the solution ÊT of (4.6) can formally be
written as

E(T ) = A(M1(T ),M2(T ))−1FT

and thus as a composition of the functions:

Φ1 :=

{
S → X∗

T 7→ FT ,
Φ2 :=

{
S → C0(D̂;C3×3)× C0(D̂;C3×3)

T 7→ (M1(T ),M2(T )),

and

Φ3 :=

{
C0(D̂;C3×3)× C0(D̂;C3×3)→ L(X;X∗)

(B1,B2) 7→ A(B1,B2),

together with the inversion of these operators.
By Lemma 4.3 and Lemma 4.4, Φ1 and Φ2 are Fréchet differentiable. Fréchet differentiability of

Φ3 is an immediate consequence of the fact that A(B1,B2) ∈ L(X;X∗) in (4.3) depends linearly
and boundedly on (B1,B2) ∈ C0(D̂;C3×3)× C0(D̂;C3×3): we have

‖A(B1,B2)‖L(X;X∗) = sup
‖Û‖X=1

sup
‖V̂‖X=1

|〈A(B1,B2)Û, V̂〉D̂|

= sup
‖Û‖X=1

sup
‖V̂‖X=1

∣∣∣∣∫
D̂

B1 curl Û · curl V̂ dx̂ +

∫
D̂

B2Û · V̂ dx̂

∣∣∣∣
≤ ‖B1‖C0(D̂;C3×3) + ‖B2‖C0(D̂;C3×3). (4.10)
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Next, let us show that A(M1(T ),M2(T )) ∈ Liso(X;X∗) for all T in some open subset OT of
C1(D̂;C3) containing T. As stated in Proposition 2.10, for every T ∈ T the perturbed sesquilinear
form aT (·, ·) : X×X → C is coercive with constant α > 0, and also continuous. The complex Lax-
Milgram lemma implies that for every F ∈ X∗ there exists a unique solution E ∈ X of aT (E,V) =
〈F,V〉D̂ for all V ∈ X. Moreover, we have the apriori estimate ‖E‖X ≤ α−1‖F‖X∗ . Due to (4.5)
this is equivalent to A(M1(T ),M2(T )) ∈ Liso(X;X∗) and ‖A(M1(T ),M2(T ))−1‖L(X∗;X) ≤ 1

α .
Using (4.10) and Proposition 4.2 we conclude that, for every T ∈ T and all H1, H2 ∈ C0(D̂;C3×3)
with

‖M1(T )−H1‖C0(D̂;C3×3) + ‖M2(T )−H2‖C0(D̂;C3×3) < α,

then A(M1(T ) +H1,M2(T ) +H2) ∈ Liso(X;X∗). Using the continuity of M1 and M2 and com-
pactness of T, we can find an open set OT ⊆ C1(D̂;C3) containing T such that A(M1(T ),M2(T )) ∈
Liso(X;X∗) for all T ∈ OT. Decreasing OT if necessary, it holds OT ⊆ S and thus

OT 3 T 7→ A(M1(T ),M2(T ))−1 ∈ L(X∗;X) and OT 3 T 7→ FT ∈ X∗

are both Fréchet differentiable by Proposition 4.2 and Lemma 4.4.
Finally, the map L(X∗;X) × X∗ 3 (B,F ) 7→ BF ∈ X is bilinear, and therefore Fréchet

differentiable as a function of (B,F ). We conclude that

E =

{
OT →H0(curl; D̂)

T 7→ A(M1(T ),M2(T ))−1FT

is Fréchet differentiable. �

Remark 4.6. For B1, B2 ∈ C0(D̂;C3×3) let A(B1,B2) ∈ L(H0(curl; D̂);H0(curl; D̂)∗) be as in
(4.3). The proof of Theorem 4.5 then shows that for F ∈ H0(curl; D̂)∗ the map (B1,B2) 7→
A(B1,B2)−1F ∈ H0(curl; D̂) is locally complex Fréchet differentiable with respect to B1, B2 ∈
C0(D̂;C3×3). Therefore, our analysis also covers general uncertainty in the coefficients B1, B2 of
the Maxwell-type differential operator A(B1,B2). The currently discussed case of a parametric
domain is a specific application of uncertainty in those coefficients.

4.2.2. Discrete case. Unlike in [22], we now show Fréchet differentiability of the discrete Galerkin
solution with respect to the transformation. For a mesh τh of D̂ and K ∈ τh, let in the following
Q : C0(K̆;C) → C and QK : C0(K;C) → C be fixed quadrature rules as in (3.16), (3.17).
Moreover, the subspace P c

0 (τh) ⊆H0(curl; D̂) is considered as a Banach space equipped with the
norm of H0(curl; D̂). Recall that k ∈ N denotes the polynomial degree of P c

0 (τh) so that (3.11)
holds.

Define Ah : C0(D̂;C3×3)× C0(D̂;C3×3)→ L(P c
0 (τh);P c

0 (τh)∗) via

〈Ah(B1,B2)Ûh, V̂h〉D̂ =
∑
K∈τh

QK

(
B1 curl Ûh · curl V̂h +B2Ûh · V̂h

)
. (4.11)

Then, withM1(T ),M2(T ) as in (4.4) and ãT,h(·, ·) as in (3.18), for all Ûh, V̂h ∈ P c
0 (τh) (cp. (3.18))

ãT,h(Û, V̂) = 〈Ah(M1(T ),M2(T ))Û, V̂〉D̂.
Recall that we denote by the constant ω > 0 the circular frequency. With FT,h ∈ P c

0 (τh)∗ defined
as (cp. (2.9))

FT,h(V̂h) := −ıω
∑
K∈τh

QK

(
JT · dT−>V̂h

)
,

Problem 3.11 then reads
Ah(M1(T ),M2(T ))ẼT,h = FT,h. (4.12)

Lemma 4.7. Let S ⊆ C1(D̂;C3) be as in (4.9), and let Assumption 2.2 and Assumption 4.1 be
satisfied. Then there exists a constant C > 0 such that for any mesh τh on D̂ the map S 3 T 7→
FT,h ∈ P c

0 (τh)∗ is Fréchet differentiable and ‖FT,h‖P c
0 (τh)∗ ≤ C‖ − ıωdT−1JT ‖C0(D̂;C3) for all

T ∈ S.
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Proof. Throughout this proof fix an (arbitrary) mesh τh on D̂ and denote Xh := P c
0 (τh). With

Φ1 :=

{
S → C0(D̂;C3)

T 7→ −ıωdT−1JT
and Φ2 :=

{
C0(D̂;C3)→ X∗h

f 7→
(
Xh 3 V̂h 7→

∑
K∈τh QK(f · V̂h)

)
we can write FT,h = Φ2 ◦ Φ1(T ) ∈ X∗h for all T ∈ S.

By Lemma 4.4 Φ1 is Fréchet differentiable. To show Fréchet differentiability of Φ2 we show
that it is a bounded and linear map. Linearity is clear. To see its boundedness, we compute

sup
‖f‖

C0(D̂;C3)
=1

‖Φ2(f)‖X∗h = sup
‖f‖

C0(D̂;C3)
=1

sup
‖Vh‖X∗

h
=1

∣∣〈Φ2(f),Vh〉D̂
∣∣

≤ sup
‖f‖

C0(D̂;C3)
=1

sup
‖Vh‖X∗

h
=1

∑
K∈τh

∣∣QK(f ·Vh)
∣∣ . (4.13)

Now, for every Vh ∈ Xh and every K ∈ τh (cp. (3.17))∣∣QK(f ·Vh)
∣∣ ≤ ( L∑

l=1

|w̆l|

)
|det(JK)| ‖f‖C0(K;C3)‖Vh‖L∞(K). (4.14)

Due to the finite dimension of Pk(K̆;C3) there exists C̃ such that ‖g‖L∞(K̆) ≤ C̃‖g‖L1(K̆) for all
g ∈ Pk(K̆;C3). Thus

|det(JK)| ‖Vh‖L∞(K) = |det(JK)| ‖Vh ◦ TK‖L∞(K̆)

≤ C̃ |det(JK)| ‖Vh ◦ TK‖L1(K̆)

= C̃‖Vh‖L1(K). (4.15)

In all, (4.13), (4.14) and (4.15) imply

‖Φ2‖L(C0(D̂;C3);X∗h) = sup
‖f‖

C0(D̂)
=1

‖Φ2(f)‖X∗h

≤ C̃

(
L∑
l=1

|w̆l|

)
sup

‖Vh‖Xh
=1

‖Vh‖L1(D̂)

≤ C̃

(
L∑
l=1

|w̆l|

)∣∣∣D̂∣∣∣ 12 sup
‖Vh‖Xh

=1

‖Vh‖L2(D̂)

≤ C̃

(
L∑
l=1

|w̆l|

)∣∣∣D̂∣∣∣ 12 .
This shows that Φ2 is Fréchet differentiable (because it is linear and bounded), and therefore also
S 3 T 7→ FT,h = Φ2 ◦ Φ1(T ) ∈ X∗h is Fréchet differentiable. Finally,

‖FT,h‖X∗h = ‖Φ2 ◦ Φ1(T )‖X∗h ≤ ‖Φ2‖L(C0(D̂;C3);X∗h)‖ − ıωdT
−1JT ‖C0(D̂;C3),

where ‖Φ2‖L(C0(D̂;C3);X∗h) ≤ C̃
(∑L

l=1 |w̆l|
) ∣∣∣D̂∣∣∣ 12 is bounded by a constant independent of the

mesh τh. �

The next theorem is a discrete version of Theorem 4.5.

Theorem 4.8. Let T ⊆ C1(D̂;R3) satisfy Assumption 2.2, let the quadrature rule Q : C0(K̆;C)→
C satisfy Assumption 3.9, and let the data satisfy Assumption 4.1. There exists an open set
OT ⊆ C1(D̂;C3) containing T and a constant C > 0 such that the following holds: If τh is a mesh
on D̂, then there exists a Fréchet differentiable function Eh : OT → P c

0 (τh) ⊆ H0(curl; D̂) such
that

sup
T∈OT

‖Eh(T )‖H0(curl;D̂) ≤ C. (4.16)

For every T ∈ T, the unique solution ẼT,h ∈ P c
0 (τh) of Problem 3.11 is given by ẼT,h = Eh(T ).
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Proof. We proceed similar as in the proof of Theorem 4.5. Fix a mesh τh on D̂. Throughout this
proof S is as in (4.9) and we denote Xh := P c

0 (τh) ⊆H0(curl; D̂).
The discrete solution operator Eh, which maps a domain transformation T to the FE-solution

ẼT,h of Problem 3.11, can formally be written as

Eh(T ) = Ah(M1(T ),M2(T ))−1FT,h .

It is a composition of the functions

Φ1 :=

{
S → X∗h
T 7→ FT,h,

Φ2 :=

{
S → C0(D̂;C3×3)× C0(D̂;C3×3)

T 7→ (M1(T ),M2(T )),

and

Φ3 :=

{
C0(D̂;C3×3)× C0(D̂;C3×3)→ L(Xh;X∗h)

(B1,B2) 7→ Ah(B1,B2),

together with the inversion of operators.
By Lemma 4.3 and Lemma 4.7, Φ1 and Φ2 are Fréchet differentiable. Fréchet differentiability

of Φ3 follows by the fact that Ah(B1,B2) ∈ L(Xh;X∗h) in (4.11) is a bounded linear function of
(B1,B2) ∈ C0(D̂;C3)× C0(D̂;C3): using Lemma 3.12 (i) and Hölder’s inequality we infer

‖Ah(B1,B2)‖L(Xh;X∗h) ≤ sup
‖Ûh‖Xh

=1

sup
‖V̂h‖Xh

=1

∑
K∈τh

|QK(B1 curl Ûh · curl V̂h + B2Ûh · V̂h)|

≤ C1(‖B1‖C0(D̂;C3×3) + ‖B2‖C0(D̂;C3×3)) (4.17)

with a constant C1 that does not depend on the mesh τh. This shows that Ah : C0(D̂;C3) ×
C0(D̂;C3)→ L(Xh;X∗h) is bounded and linear.

We claim that there exists an open set OT ⊆ C1(D̂;C3) containing T and a constant CT > 0,
both independent of the mesh τh, such that Ah(M1(T ),M2(T ))−1 ∈ Liso(X∗;X) and

‖Ah(M1(T ),M2(T ))−1‖L(X∗h;Xh) ≤ CT

for all T ∈ OT. As stated in Theorem 3.13, there exists α̃ > 0 such that for every T ∈ T the
perturbed sesquilinear form ãT,h(·, ·) : Xh × Xh → C is coercive with coercivity constant α̃ > 0
independent of τh. Therefore, for all T ∈ T, it holds

‖Ah(M1(T ),M2(T ))−1‖L(X∗h;Xh) ≤
1

α̃
.

Fix a domain transformation T ∈ T. Then for every H1, H2 ∈ C0(D̂;C3×3) with

‖H1‖C0(D̂;C3×3) + ‖H2‖C0(D̂;C3×3) <
α̃

2C1

there holds, by (4.17),

‖Ah(M1(T ) + H1,M2(T ) + H2)−Ah(M1(T ),M2(T ))‖L(Xh;X∗h) <
α̃

2
.

Due to ‖Ah(M1(T ),M2(T ))−1‖L(Xh;X∗h) ≤ 1
α̃ , (4.2) implies that for

ON :=
⋃
T∈T

{(M1(T ),M2(T )) + (H1,H2) : ‖H1‖C0(D̂;C3×3) + ‖H2‖C0(D̂;C3×3) <
α̃

2C1
}

it holds {A(B1,B2) : (B1,B2) ∈ ON} ⊆ Liso(Xh;X∗h) and

sup
(B1,B2)∈ON

‖A(B1,B2)−1‖L(X∗h;Xh) ≤
α̃−1

1− 1
α̃
α̃
2

=
2

α̃
.

Continuity of T 7→M1(T ) and T 7→M2(T ) implies that there exists an open set OT ⊆ C1(D̂;C3)
containing the compact set T such that (M1(T ),M2(T )) ∈ ON for all T ∈ OT.

In all, we conclude that, for any mesh τh, both

OT 3 T 7→ Ah(M1(T ),M2(T ))−1 ∈ L(X∗h;Xh) and OT 3 T 7→ FT,h ∈ X∗h
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are Fréchet differentiable as well as

sup
T∈OT

‖Ah(M1(T ),M2(T ))−1‖L(X∗h;Xh) ≤
2

α̃
. (4.18)

Finally, as in the proof of Theorem 4.5, the fact that L(X∗;X) ×X∗ 3 (B,F ) 7→ BF ∈ X is
bilinear and bounded, and therefore Fréchet differentiable as a function of (B,F ), implies that

Eh =

{
OT → Xh

T 7→ Ah(M1(T ),M2(T ))−1FT,h

is Fréchet differentiable.
Decreasing the open superset OT ⊆ C1(D̂;C3) of the compact set T if necessary we can assume

sup
T∈OT

‖ − ıωdT−1JT ‖C0(D̂;C3) <∞.

Lemma 4.7 and (4.18) then give the uniform bound (4.16). �

5. High dimensional approximation

We specialize the preceding, abstract considerations for concrete, countably-parametric families
of domain transformations. This kind of uncertainty parametrization will reduce the computational
UQ for CEM in shape space to high-dimensional parametric quadrature and interpolation problems.
We discuss several numerical techniques that have emerged in recent years that are able to deliver
dimension-independent convergence rates.

5.1. Domain Parametrization. We prepare the computational domain uncertainty quantifica-
tion with uncertainty parametrization. Specifically, we adopt a family T of countably-parametric
domain transformations satisfying Assumption 2.2.

Let (Tj)j∈N0
⊆ C1(D̂;R3) and p ∈ (0, 1) be such that

(‖Tj‖C1(D̂;R3))j∈N0
∈ `p(N0). (5.1)

Set U := [−1, 1]N. Define
T (y) := T0 +

∑
j∈N

yjTj ∀ y ∈ U.

Due to (5.1) we have (‖Tj‖C1(D̂;R3))j∈N0 ∈ `1(N0) and thus T (y) ∈ C1(D̂;R3) is well-defined for
all y ∈ U . The set of admissible domain maps

T := {T (y) : y ∈ U} ⊆ C1(D̂;R3) (5.2)

is compact. This follows by the compactness of the set U (equipped with the product topology as a
consequence of Tychonoff’s theorem) and the fact that U 3 y 7→ T (y) ∈ C1(D̂;R3) is continuous,
which can be verified by using that (‖Tj‖C1(D̂;R3))j∈N0

∈ `1(N0). Throughout what follows, we

assume (Tj)j∈N and D̂ ⊆ R3 to be such that Assumption 2.2 is satisfied.
Then, according to Theorem 4.5, the pullback solution ÊT (y) ∈ H0(curl; D̂) of Problem 2.7

allows the representation:

ÊT (y) = E

T0 +
∑
j∈N

yjTj

 ∀ y ∈ U, (5.3)

where E : OT → H0(curl; D̂) is Fréchet differentiable on an open superset OT ⊆ C1(D̂;C3) of
T. Similarly, for a mesh τh on D̂, Theorem 4.5 gives for the discrete solution ẼT (y),h ∈ P c

0 (τh) of
Problem 3.11 that

ẼT (y),h = Eh

T0 +
∑
j∈N

yjTj

 ∀ y ∈ U, (5.4)

where Eh : OT → P c
0 (τh) is Fréchet differentiable. Functions as in (5.3) or (5.4) allow fast

approximation by polynomial methods, as they possess holomorphic extensions in each yj . As
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we shall see in the following, the decay of ‖Tj‖C1(D̂;R3) determines the (parameter-dimension
independent) algebraic convergence rate of higher-order numerical methods.

Throughout, we denote by µ =
⊗

j∈N
λ

2
the infinite product measure, where λ

2 stands for 1
2 times

the Lebesgue measure on [−1, 1]. This implies that µ is a probability measure on U = [−1, 1]N.
Our goal in the following is to either approximate the parametric response map{

U →H0(curl; D̂)

y 7→ ÊT (y)

or to compute expected responses over the ensemble of all shapes, i.e. to numerically approximate
the Bochner integral ∫

U

ÊT (y) dµ(y) ∈H0(curl; D̂). (5.5)

We remark that two- and higher order statistical correlations of the parametric response map will
give rise to similar integrals whose numerical approximation can, likewise, be afforded with the
techniques discussed subsequently, based on the present results.

The integral (5.5) is a well-defined Bochner integral: by [37, Lemma 3.2], since ÊT (y) allows
the representation (5.3), ÊT (y) depends continuously on y ∈ U (again we consider the product
topology on U). As such U 3 y 7→ ÊT (y) ∈H0(curl; D̂) is measurable w.r.t. the Borel σ-algebras
on U and H0(curl; D̂). The compactness of U (which holds by Tychonoff’s theorem) implies
supy∈U ‖ÊT (y)‖H0(curl;D̂) < ∞. Continuity also implies {ÊT (y) : y ∈ U} ⊆ H0(curl; D̂) to be

compact (and thus separable), which can be used to infer strong measurability of ÊT (·) : U →
H0(curl; D̂). For more details we also refer to [36, Appendix A].

5.2. Monte Carlo quadrature. Let again U = [−1, 1]N and u : U → R. A simple method
to approximate the high-dimensional integral

∫
U
u(y) dµ(y) which does not suffer from the curse

of dimensionality, is Monte-Carlo (MC) integration. Given a sequence (Yi)
N
i=1 of i.i.d. random

variables Yi : Ω→ U distributed according to the uniform measure µ on U , the random variable

QN (u) :=
1

N

N∑
j=1

u(Yj) : Ω→ R

approximates in mean square and at rate 1
2 the mathematical expectation, i.e.

∀ N ∈ N : E
(
QN (u)−

∫
U

u(z) dµ(z)

)2

≤ Var(u)

N

provided u ∈ L2(U, µ;R). Here

Var(u) =

∫
U

(
u(y)−

(∫
U

u(z) dµ(z)

))2

dµ(y). (5.6)

A bound of this type remains valid also for strongly µ-measurable maps u : U → H where H
denotes a separable Hilbert space (e.g. [34]). In particular, and as mentioned above, for the
uniform measure µ on the set U of parameter sequences, the holomorphy of the map U 3 y 7→
ÊT (y) ∈ H0(curl; D̂) (which we showed in Theorem 4.5) implies strong measurability. This, in
turn, implies Var(‖ÊT (·)‖H0(curl;D̂)) <∞, thereby justifying the use of MC sampling to estimate
the expectation of the solution. The MC approach in UQ for CEM was recently also analyzed in
[18].

5.3. Smolyak approximation. Smolyak approximation –also called sparse grid approximation–
refers to a family of approximation methods that allow parsimonious approximate representation
of many-variate functions. For functions which exhibit sufficient sparsity, Smolyak approximation
produces sparse polynomial approximations with convergence rates that are free from the curse of
dimensionality. We present two variants of Smolyak algorithms, one for interpolation and another
for quadrature, which are sufficiently general, comprising for example, the so-called hyperbolic
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cross and total degree approximations. We now describe these techniques based on [10] and the
references there.

Let us introduce the countable set F of multi-indices:

F := {ν = (νj)j∈N ∈ NN
0 : |ν| <∞} .

For ν ∈ F we denote by supp(ν) := {j ∈ N : νj 6= 0} the support of ν. We call Λ ⊂ F downward
closed if for all 0 6= ν ∈ Λ, there holds ν − ej ∈ Λ for every j ∈ supp(ν).

5.3.1. Sparse Grid Interpolation. The Smolyak algorithm provides a method to approximate func-
tions by sparse grid interpolants. We briefly recall the construction. Let X denote a Ba-
nach space. Denote by (χj)j∈N a sequence of distinct interpolation points in [−1, 1], and let
In : C0([−1, 1];X) → C0([−1, 1];X) be the univariate Lagrange polynomial interpolation opera-
tor

(Inf)(y) =

n∑
j=0

f(χj)
∏
i 6=j

(y − χi)/(χj − χi).

We assume that {χj}j≥0 is such that there exists τ > 0 with

∀ n ∈ N : sup
‖f‖L∞([−1,1])≤1

‖Inf‖L∞([−1,1]) ≤ (1 + n)τ . (5.7)

Sequences {χj}j≥0 which satisfy (5.7) are known (cf. [8]). Additionally, let I−1 : C0([−1, 1];R)→
C0([−1, 1];R) be the operator mapping a function f to the constant function, i.e., I−1f ≡ 0.
For a finite downward closed set Λ ⊆ F and a Banach space X, the Smolyak interpolant IΛ :
C0(U ;X)→ C0(U ;X) is defined as

IΛu :=
∑
ν∈Λ

⊗
j∈N

(Iνj − Iνj−1)

u,

where
⊗

j∈N(Iνj − Iνj−1) denotes the tensorized operator (cf. [7] for more details).
For functions of the type

u(y) = E

T0 +
∑
j∈N

yjTj

 y ∈ U, (5.8)

where E is Fréchet differentiable as a mapping between two complex Banach spaces, the Smolyak
interpolant is able to approximate u at the algebraic rate 1

p −1 in terms of the number of required
function evaluations of u. Here, p ∈ (0, 1) refers to the summability exponent of the sequence
(Tj)j∈N0 as in (5.1). A version of this statement can already be found in [10]. By (5.3) and (5.4),
both the pullback solution ÊT (y) ∈ H0(curl; D̂) of Problem 2.7 as well as the discrete Galerkin
solution ẼT (y),h ∈ P c

0 (τh) of Problem 3.11 allow the representation (5.8), which leads to the
following theorem. For a proof in the present setting, see [36, Chapter 3].

Theorem 5.1. Let (5.7) be satisfied. Let p ∈ (0, 1) and assume that (Tj)j∈N0
⊆ C1(D̂;R3) satisfies

(‖Tj‖C1(D̂;R3))j∈N0
∈ `p(N0). Let T ⊆ C1(D̂;R3) be as in (5.2), and suppose that Assumption 2.2

and Assumption 4.1 are satisfied.
Then there exists a constant C > 0 and a sequence (ΛN )N∈N ⊆ F of finite downward closed

index sets such that |ΛN | → ∞ and

(i) for the solution ÊT (y) ∈H0(curl; D̂) of Problem 2.7 it holds for all N ∈ N

sup
y∈U

∥∥∥ÊT (y) − (IΛnÊT (·))(y)
∥∥∥
H0(curl;D̂)

≤ C|ΛN |−
1
p +1,

(ii) if τh is a mesh on D̂, then for the solution ẼT (y),h ∈ P c
0 (τh) of Problem 3.11 it holds for

all N ∈ N

sup
y∈U

∥∥∥ẼT (y),h − (IΛn
ẼT (·),h)(y)

∥∥∥
H0(curl;D̂)

≤ C|ΛN |−
1
p +1.
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We point out that in the above theorem |ΛN | coincides with the number of required function
evaluations to compute the interpolant.

5.3.2. Sparse Grid Quadrature. Similar to Smolyak interpolation, Smolyak quadrature provides an
efficient method to approximate high-dimensional integrals over U with respect to the probability
measure µ on U . For a finite, downward closed set Λ ⊆ F with unisolvent interpolation operator
IΛ as defined in Section 5.3.1, the corresponding Smolyak quadrature is QΛu :=

∫
U
IΛu(y) dµ(y).

With the univariate interpolation points (χj)j∈N ⊆ [−1, 1] from Section 5.3.1, this can be rewritten
as QΛu =

∑
ν∈Λ u((χνj )j∈N)ωΛ,ν for certain quadrature weights ωΛ,ν ∈ R, which can be computed

a priori, given Λ. In particular, |Λ| coincides with the number of function evaluations required
to compute QΛu. Compared to the interpolation result in Theorem 5.1, quadrature rules for
functions as in (5.8) allow for improved convergence rates. A simplified version of the following
statement can be found in [37]. For a proof of the result under the present assumptions, we refer
again to [36, Chapter 3].

Theorem 5.2. Additional to (5.7) assume that χ0 = 0. Let p ∈ (0, 1) and assume that in (5.8),
the sequence (Tj)j∈N0

⊆ C1(D̂;R3) satisfies (‖Tj‖C1(D̂;R3))j∈N0
∈ `p(N0). Let T ⊆ C1(D̂;R3) be

as in (5.2), and let Assumption 2.2 and Assumption 4.1 hold.
Then there exists a constant C > 0 and a sequence (ΛN )N∈N ⊆ F of finite downward closed

index sets such that |ΛN | → ∞ and

(i) for the solution ÊT (y) ∈H0(curl; D̂) of Problem 2.7 it holds for all N ∈ N∥∥∥∥∫
U

ÊT (y) dµ(y)−QΛn
ÊT (·)

∥∥∥∥
H0(curl;D̂)

≤ C|ΛN |−
2
p +1,

(ii) if τh is a mesh on D̂, then for the solution ẼT (y),h ∈ P c
0 (τh) of Problem 3.11 it holds for

all N ∈ N ∥∥∥∥∫
U

ẼT (y),h dµ(y)−QΛn
ẼT (·),h

∥∥∥∥
H0(curl;D̂)

≤ C|ΛN |−
2
p +1.

5.4. Quasi-Monte Carlo Integration. An alternative to Smolyak quadrature QΛ in Section
5.3.2 is called High-Order QMC (HoQMC) Quadrature. It is likewise capable of delivering
dimension-independent convergence rates subject to an appropriate notion of sparsity of the para-
metric integrand functions. For integrand functions of the type (5.8), under condition (5.1), the
parameter-to-solution maps U 3 y → ÊT (y), ẼT (y),h satisfy the so-called (b, ε)-holomorphy con-
dition, with a positive sequence b ∈ `p(N) – with p ∈ (0, 1) as in condition (5.1)– and which is
independent of h [37, Lemma 3.3]. This, in turn, implies the dimension-independent convergence
rate 1/p > 1 of HoQMC numerical integration methods according to [13, Proposition 4.1]. Similar
results hold for computational Bayesian shape estimation; we refer to [12] and references therein.

6. Numerical Results

Based on GMSH and GETDP, we now provide numerical experiments validating our theoretical
results.

6.1. Model problem. Let D̂ := [−1, 1]3 and let r > 1, Θ ∈ (0, 1). We introduce a family of
domain transformations T (y) : D̂ → R3 for y ∈ [−1, 1]50 via

T (y) = T0 +

50∑
j=1

yjTj ∈ C1(D̂;R3),

where for x = (x1, x2, x3)> ∈ R3

T0(x) = x, Tj(x) := Θj−(r+1)

 0
0

sin(πjx1)

 ∀ j ∈ N. (6.1)
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While Θ > 0 is a scaling parameter, r > 1 determines the algebraic decay of the sequence
(Tj)j∈N ⊆ C1(D̂;R3), namely

(‖Tj‖C1(D̂;R3))j∈N ∈ `
p(N) ∀ p > 1

r
. (6.2)

Thus (5.1) is satisfied for any p > 1/r. Contrary to Section 5, we consider here the simpler
situation of a finite dimensional parameter y ∈ [−1, 1]50, rather than an infinite dimensional
parameter y ∈ U = [−1, 1]N. The reason is, that QMC quadrature requires the truncation of the
parameter domain to finite dimension and in order to make a fair comparison between MC, QMC
and Smolyak quadrature in the following, we keep the same setting for all three methods.

As explained in Section 2.5, for every y ∈ [−1, 1]50 the transformation T (y) yields a pullback
Maxwell problem with y dependent variable coefficients on the nominal domain D̂. For all com-
putations, the FEM space P c

0 (τh) ⊆H(curl; D̂) is fixed, i.e. we fix a regular tetrahedral mesh τh
with 111718 elements on D̂, and consider on τh first-order curl-conforming Nédélec elements. The
corresponding weak solution of Problem 3.11 for the data µ, ε, σ, ω := 1 and

J(x) :=

x3 + ıx2

ıx3

x1

 ,

with the transformation T (y) = T is denoted as earlier by ẼT (y),h ∈ P c
0 (τh) ⊆ H0(curl; D̂). As

a so-called quantity of interest we consider the linear functional G ∈H0(curl; D̂)
′
defined by

G(E) :=

∫
[2/3,1]×[−1,1]2

(E1 + E2 + E3)
2

dx ∀ E = (Ej)
3
j=1 ∈H0(curl; D̂).

The goal becomes to approximate the complex valued map y 7→ G(ẼT (y),h) ∈ C for y ∈ U , or its
integral ∫

[−1,1]50
G(ẼT (y),h) dµ50(y) ∈ C,

where µ50 stands for the product probability measure
⊗50

j=1 λ/2 on [−1, 1]50, where λ is the
Lebesgue measure on [−1, 1].

6.2. Interpolation. Figure 1 shows the convergence of the interpolation error

sup
y∈[−1,1]50

|G(ẼT (y),h)− (IΛG(ẼT (·),h))(y)| (6.3)

for Θ ∈ {0.25, 0.05} and r ∈ {2, 3} in (6.1). Here IΛ denotes the Smolyak interpolant introduced
in Section 5.3.1. As interpolation points (χj)j∈N in Section 5.3.1 we use an Re-Leja sequence
as constructed in [8]. Apropriate index sets Λ are determined apriori (see [37, 35, 36]), which
allows parallel evaluation of the function y 7→ G(ẼT (y),h) at all required interpolation points. The
supremum in (6.3) is numerically estimated, by taking the maximum at 200 random points in
[−1, 1]50 × {0}N ⊆ U .

Due to Theorem 5.1 (ii) and (6.2) we expect the convergence rate r− 1 (up to arbitrarily small
δ > 0) in terms of the number of required evaluations of G(ẼT (·),h). While Θ > 0 is merely
a scaling parameter that should not influence the asymptotic decay of the error, in practice we
observe that smaller Θ amounts to faster decay of the error. This is in accordance with our previous
findings that revealed significant preasymptotic ranges of slower convergence in case Θ > 0 is too
large, we refer to [37, Section 5.2] for more details.

6.3. Quadrature. We now consider the quadrature error∣∣∣∣∣
∫

[−1,1]50
G(ẼT (y),h) dµ50(y)−Quad(G(ẼT (·),h))

∣∣∣∣∣ (6.4)

in terms of the required functions evaluations of the integrand G(ẼT (·),h) for r ∈ {2, 3} and
Θ ∈ {0.25, 0.05}. Here Quad stands for either MC, QMC or Smolyak quadrature. In case of
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Figure 1. Interpolation error in (6.3). The proven asymptotic convergence rate
is r − 1 (up to arbitrarily small δ > 0).

Smolyak quadrature we use as quadrature points (χj)j∈N in Section 5.3.2 the same Re-Leja se-
quence provided in [8], as for interpolation.

Figure 2 displays the convergence of the error. To numerically evaluate the error, as a reference
value for

∫
[−1,1]50

G(ẼT (y),h) dµ50(y), in all cases we took the value obtained by the Smolyak quad-
rature with approximately 2000 quadrature points. By Theorem 5.2 (ii), the proven asymptotic
convergence rate for Smolyak quadrature is 2r − 1. For MC quadrature, the proven rate is 1/2
and for QMC the proven rate is r (again up to arbitrarily small δ > 0), see Sections 5.2 and 5.4.
We note that similar as in the case of interpolation, for Smolyak and QMC quadrature the proven
rates are not necessarily observed in our numerical experiments. In particular, the convergence
rate in the plotted range depends on Θ and improves slightly as Θ decreases. We point out again
that this in accordance with our previous findings, and refer once more to [37, Section 5.2], where
the preasymptotic convergence of the Smolyak quadrature in case of “large” Θ is investigated in
more detail.

7. Concluding Remarks

The present shape-holomorphy results imply sparsity of generalized polynomial chaos (gpc)
coefficient sequences in the gpc expansions of uncertain responses. This sparsity, in turn, implies
dimension-independent rates of convergence for Smolyak type interpolation or stochastic colloca-
tion of the input-to-response maps. The shape-holomorphy results proved in the present paper
for the forward UQ will also imply corresponding dimension-independent rates for several other
computational UQ methods: as shown in [30], dimension-independent rates of ReLU-based deep
learning approximations, and, as shown in [28], also of compressed sensing based approximations
of the domain-to-solution map [30] are implied by forward UQ. They also imply corresponding
convergence rates for sparse, deterministic (Smolyak and Quasi-Monte Carlo) quadrature schemes
for Bayesian shape inversion for CEM, as explained in [29, 12]. These developments are currently
in progress, and will be reported elsewhere.
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Figure 2. Quadrature error in (6.4). The proven asymptotic convergence rates
are 1/2 for MC, r for QMC and 2r− 1 for Smolyak quadrature (up to arbitrarily
small δ > 0).
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Appendix A. Proofs of Lemmas in Section 3

A.1. Proof of Lemma 3.12. We start with (i). By definition of QK in (3.17)

|QK(BU ·V)| ≤ ‖B‖C0(K;C3×3) |det(JK)|
L∑
l=1

(
|w̆l|‖U(TK(b̆l))‖C3‖V(TK(b̆l))‖C3

)
≤ ‖B‖C0(K;C3×3) |det(JK)|

(
L∑
l=1

|w̆l|

)
‖U ◦ TK‖C0(K̆;C3)‖V ◦ TK‖C0(K̆;C3).

Due to the equivalence of all norms in finite dimensional spaces, there exists 0 < C̃ <∞ such that
for all p ∈ Pk(K̆;C3)

‖p‖C0(K̆) ≤ C̃‖p‖L2(K).

Since TK : K̆ → K is affine it holds U ◦ TK , V ◦ TK ∈ Pk(K̆;C3) and we obtain

|QK(BU ·V)| ≤ C̃2‖B‖C0(K;C3×3)

(
L∑
l=1

|w̆l|

)
|det(JK)| ‖U ◦ TK‖L2(K̆)‖V ◦ TK‖L2(K̆)

= C̃2‖B‖C0(K;C3×3)

(
L∑
l=1

|w̆l|

)
‖U‖L2(K)‖V‖L2(K)

which shows (i) with C1 = C̃2
∑L
l=1 |w̆l|.
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Next let us show (ii). By Rmk. 3.10, (
∑L
l=1 w̆l|p(b̆l)|2)1/2 is a norm on Pk(K̆;C). Thus there

exists c̃ > 0, independent of h, such that

c̃‖p‖L2(K̆) ≤

(
L∑
l=1

w̆l‖p(b̆l)‖2C3

)1/2

∀ p ∈ Pk(K̆;C3).

Now, by (3.20), one can derive

Re(QK(BU ·U)) ≥ γ(B) |det(JK)|
L∑
l=1

w̆l‖U(TK(b̆l))‖2C3

≥ γ(B)c̃2 |det(JK)| ‖U ◦ TK‖2L2(K̆)

= γ(B)c̃2‖U‖2L2(K),

which shows (ii) with C2 = c̃2.

A.2. Proof of Lemma 3.15. For the proof of Lemma 3.15, we shall require the Bramble-Hilbert
Lemma (cf. [9, Theorem 4.1.3]).

Lemma A.1 (Bramble-Hilbert). Let Ω be an open subset of R3 with a Lipschitz-continuous bound-
ary. For some integer k ≥ 0 and p ∈ [1,∞], let f be a continuous linear form on W k+1,p(Ω) with
the property that

f(q) = 0, ∀ q ∈ Pk(Ω;C).

Then, there exists a constant CΩ, depending on the domain, such that

∀ v ∈W k+1,p(Ω), |f(v)| ≤ CΩ ‖f‖∗Wk+1,p(Ω) |v|Wk+1,p(Ω) ,

where ‖·‖∗Wk+1,p(Ω) is the norm in the dual space of W k+1,p(Ω).

We now state a version of Lemma A.1 for vector-valued functions.

Lemma A.2. Let Ω be an open subset of R3 with a Lipschitz-continuous boundary. For some
integer k ≥ 0 and p ∈ [1,∞], let f be a continuous linear form on W k+1,p(Ω) with the property
that

f(q) = 0, ∀ q ∈ Pk(Ω;C3).

Then, there exists a constant CΩ, depending on the domain such that

∀ V ∈W k+1,p(Ω), |f(V)| ≤ CΩ ‖f‖∗W k+1,p(Ω) |V|W k+1,p(Ω) ,

where ‖·‖∗W k+1,p(Ω) is the norm in the dual space of W k+1,p(Ω).

Proof. Since f is a linear form, it can be written as

f(V) = f

V1

0
0

+ f

 0
V2

0

+ f

 0
0
V3

 = f1(V1) + f2(V2) + f3(V3).

By hypothesis, each fj , j ∈ {1, 2, 3}, is a bounded linear form on W k+1,p(Ω) satisfying fj(q) = 0,
for all q ∈ Pk(Ω;C). By Lemma A.1, there exist positive constants CΩ,j such that

|fj(Vj)| ≤ CΩ,j ‖fj‖∗Wk+1,p(Ω) |Vj |Wk+1,p(Ω) , ∀ Vj ∈W k+1,p(Ω).

Hence,

|f(V)| ≤ |f1(V1)|+ |f2(V2)|+ |f3(V3)| ≤
3∑
j=1

CΩ,j ‖fj‖∗Wk+1,p(Ω) |Vj |Wk+1,p(Ω)

≤ CΩ ‖f‖∗W k+1,p(Ω) |V|W k+1,p(Ω) ,

as stated. �

We are now ready to prove Lemma 3.15.
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Proof of Lemma 3.15. We give only the proof for Ûh and Ŵh ∈ P c
0 (τh). The case Ûh and

Ŵh ∈ P d
0 (τh) follows analogously.

Consider φ ∈Wm,∞(K̆) and Ŵh ∈ P̆ c, assuming that
∣∣∣φ(b̆l)

∣∣∣ ≤ ‖φ‖L∞(K̆) for all quadrature

points {b̆l}Ll=1. Then, for some positive constant CE , depending only on K̆ and the quadrature
scheme on K̆,∣∣∣EK̆(φ,Ŵh)

∣∣∣ ≤ CE ∥∥∥φ · Ŵh

∥∥∥
L∞(K̆)

≤ CE ‖φ‖L∞(K̆)

∥∥∥Ŵh

∥∥∥
L∞(K̆)

≤ CE ‖φ‖Wm,∞(K̆)

∥∥∥Ŵh

∥∥∥
0,K̆

,

where the last inequality follows from the norm equivalence over the finite dimensional space P̆ c,
and the definition of ‖·‖Wm,∞(K̆). Fixing Ŵh ∈ P̆ c, the form EK̆(·,Ŵh) is linear and bounded on
Wm,∞(K̆), and vanishes on Pm−1(K̆;C3). By Lemma A.2, there exists a constant CK̆ such that,∣∣∣EK̆(φ,Ŵh)

∣∣∣ ≤ CK̆ |φ|Wm,∞(K̆)

∥∥∥Ŵh

∥∥∥
0,K̆

.

Let K ∈ τh be an arbitrary mesh element. Then, for Ûh and Ŵh in P c
0 (τh),∣∣∣EK(BÛh,Ŵh)

∣∣∣ = |det (JK)|
∣∣∣EK̆ ((BÛh) ◦ TK ,Ŵh ◦ TK

)∣∣∣ ,
≤ CK̆ |det (JK)|

∣∣∣(BÛh) ◦ TK
∣∣∣
Wm,∞(K̆)

∥∥∥Ŵh ◦ TK
∥∥∥

0,K̆
. (A.1)

We begin by bounding
∣∣∣(BÛh) ◦ TK

∣∣∣
Wm,∞(K̆)

, using the symbol ., to avoid specifying constants

independent of h, K, and B. There holds

∣∣∣(BÛh) ◦ TK
∣∣∣
Wm,∞(K̆)

.
3∑
i=1

∣∣∣∣∣∣
3∑
j=1

(Bi,j ◦ TK)((Ûh)j ◦ TK)

∣∣∣∣∣∣
Wm,∞(K̆)

.
3∑

i,j=1

∣∣∣(Bi,j ◦ TK)((Ûh)j ◦ TK)
∣∣∣
Wm,∞(K̆)

.
3∑

i,j=1

m∑
n=0

|(Bi,j ◦ TK)|Wm−n,∞(K̆)

∣∣∣((Ûh)j ◦ TK)
∣∣∣
Wn,∞(K̆)

.
3∑

i,j=1

m∑
n=0

|(Bi,j ◦ TK)|Wm−n,∞(K̆)

∣∣∣(Ûh ◦ TK)
∣∣∣
Wn,∞(K̆)

.
m∑
n=0

∥∥J−>K ∥∥
3×3

∣∣∣ψcK(Ûh)
∣∣∣
Wn,∞(K̆)

3∑
i,j=1

|ψgK(Bi,j)|Wm−n,∞(K̆) (A.2)

.
m∑
n=0

∥∥J−>K ∥∥
3×3

∣∣∣ψcK(Ûh)
∣∣∣
n,K̆

3∑
i,j=1

|ψgK(Bi,j)|Wm−n,∞(K̆) (A.3)

.
m∑
n=0

‖JK‖m3×3 |det (JK)|−
1
2

∣∣∣Ûh

∣∣∣
n,K

3∑
i,j=1

|(Bi,j)|Wm−n,∞(K) (A.4)

. ‖JK‖m3×3 |det (JK)|−
1
2

∥∥∥Ûh

∥∥∥
m,K

3∑
i,j=1

‖(Bi,j)‖Wm,∞(K) , (A.5)

where (A.2) follows from the representation (3.4) for ψcK , (A.3) employs the equivalence of norms
in spaces of finite dimension, and (A.4) is a consequence of (3.5). In a similar manner,∥∥∥Ŵh ◦ TK

∥∥∥
0,K̆
. |det (JK)|−

1
2

∥∥∥Ŵh

∥∥∥
0,K

. (A.6)
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Combining (A.1), (A.5), and (A.6), together with (3.3), yields∣∣∣EK(BÛh,Ŵh)
∣∣∣ . |det (JK)|

∣∣∣(BÛh) ◦ TK
∣∣∣
Wm,∞(K̆)

∥∥∥Ŵh ◦ TK
∥∥∥

0,K̆

. CB ‖JK‖m3×3

∥∥∥Ûh

∥∥∥
m,K

∥∥∥Ŵh

∥∥∥
0,K
. hmCB

∥∥∥Ûh

∥∥∥
m,K

∥∥∥Ŵh

∥∥∥
0,K

,

from where the stated result follows. �
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