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Abstract

We construct a family of numerical methods for the Pauli equation of charged
particles in a time-dependent, homogeneous magnetic field. These methods are de-
scribed in a general setting comprising systems of multiple particles and extend
the usual splitting and Fourier grid approach. The issue is that the magnetic field
causes charged particles to rotate. The corresponding rotations of the wave func-
tion are highly incompatible with the Fourier grid approach used for the standard
Schrödinger equation. Motivated by the theory of Lie algebras and their repre-
sentations, our new approach approximates the exact flow map in terms of rotated
potentials and rotated initial data, and thereby avoids this issue. Finally, we provide
numerical examples to examine convergence and preservation of norm and energy.

The Pauli equation as introduced in 1927 describes an electron in an external, homoge-
neous magnetic field [17]. Though formulated almost one century ago, it is still used in
modern applications, e.g. ion traps used to realize qubits in quantum computing: the
Penning trap confines charged particles in a homogeneous magnetic field and is modelled
by the Pauli equation [20].
For the standard Schrödinger equation (i.e. zero magnetic field), splitting methods in
combination with FFT have been used for instance in [1] and are standard by now. The
presence of a magnetic field gives rise to a new term in the Hamiltonian, we call it the
magnetic term. Several attempts have been made to adapt the standard splitting/FFT
approach to the magnetic Schrödinger equation [4],[11],[14].
We provide a novel method to handle the magnetic term via splitting and FFT. The
efficiency of our method is comparable to the standard one for zero magnetic field and also
maintains the advantages of the latter, such as natural norm preservation and exponential
convergence in space. The spectral approach which is the key to exponential convergence
in space requires magnetic fields that depend only on time, but not on space. However,
we allow for general potentials, depending on space and time.
Another spectral method that relies on splitting is presented in [22]. They use general-
ized coherent states, so called Hagedorn wavepackets, instead of the Fourier grid. This
approach improves for small values of the model parameter in [7], while the Fourier grid
approach is suited for large values.
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1 The Mathematical Model

Consider a spinless1 particle of mass m > 0 and charge e ∈ R living in R
d subject to

an electric potential φ(x, t) and a magnetic potential 1-form A(x, t) = Ak(x, t)dx
k, where

x ∈ R
d. We assume the corresponding magnetic field 2-form dA to be independent of x.

Therefore we choose

A(x, t) :=
1

2
Bjk(t)x

jdxk (1.1)

where B(t) = (Bjk(t))16j,k6d is a real, skew-symmetric matrix. The corresponding mag-
netic field 2-form is given by

dA =
∑

16j<k6d

Bjk(t) dx
j ∧ dxk.

We introduce for j, k ∈ {1, . . . , d} the operators [13, Eq (14)], [6, Eq (3.21)]

pk := −i~∂k (components of linear momentum)

Ljk := xjpk − xkpj. (generalized angular momentum)

Our system is then described by the Pauli Hamiltonian

HP (t) :=
1

2m

d
∑

k=1

(

pk − eAk(x, t)
)2

+ eφ(x, t)

=
1

2m

(

~
2(−∆)− e

∑

16j<k6d

Bjk(t)Ljk +
e2

4
‖B(t)x‖2

Rd

)

+ eφ(x, t).

(1.2)

Upon redefining t, x, B and introducing a more general potential V (x, t), we may instead
consider the new Hamiltonian

H(t) := −∆+HB(t) + V (x, t) (1.3)

on2 L2(Rd), where (now ~ = 1)

pk = −i∂k
Ljk = xjpk − xkpj (1.4)

HB(t) := −
∑

16j<k6d

Bjk(t)Ljk

with associated Schrödinger equation

i∂tψ(x, t) = H(t)ψ(x, t), ψ0(x) = ψ(x, 0). (H)

Note that this equation is more general as V (x, t) can also contain an external potential
besides φ(x, t).

Remark 1.1. If we choose in (1.3)

V (x, t) = ‖B(t)x‖2
Rd + φ(x, t),

we recover (up to scaling) the potential terms in the physical Pauli Hamiltonian (1.2).

The paper is organized as follows: Section 2 describes a numerical method for (H), where
each subsection deals with one subproblem. Physical applications and concrete examples
of the abstract setting above are in Section 3.

1Our theory can easily be extended to particles that carry spin. This is explained in Subsection 3.1.
2We write L2(Rd) := L2(Rd;C) for the complex-valued, square-integrable functions.

2



2 The Numerical Method

We split (H) into the three simpler equations:

i∂tψ(x, t) = −∆ψ(x, t) (K)

i∂tψ(x, t) = HB(t)ψ(x, t) (M)

i∂tψ(x, t) = V (x, t)ψ(x, t) (P)

The main steps of our method are:

1. Solve the potential equation (P) using pointwise multiplication by e
−i

∫
t

t0
V (x,s)ds

.

2. Solve the kinetic equation (K) in the (discrete) Fourier space.

3. Reduce the magnetic equation (M) to the linear ODE3

d

dt
y(t) = B(t) y(t), (B)

where y : R → R
d. This is achieved using a Lie algebra isomorphism relating B(t)

and HB(t). We then use Magnus expansion to solve (B).

4. Using that −∆ and HB(t) commute, combine the previous solutions to a solution
of

i∂tψ = (−∆+HB(t))ψ. (K+M)

5. A splitting scheme merges the solutions from Steps 4 and 1 to a solution of (H).

Since Steps 1 and 2 are standard, we discuss only Steps 3, 4 and 5 in detail. Step 5
includes a fundamentally new idea which makes the algorithm applicable for any Fourier
grid in space and time and hence feasible in higher dimensions. For convenience, we use
exclusively uniform grids and standard FFT in our numerical experiments. Finally, we
introduce the following notation: Given a Hamiltonian H̃(t) we denote by ΦH̃(t, t0) the
unitary flow associated with the time-dependent Schrödinger equation

i∂tψ(x, t) = H̃(t)ψ(x, t), ψ0(x) = ψ(x, 0),

i.e. ΦH̃(t, t0) satisfies

d

dt
ΦH̃(t, t0) = −iH̃(t)ΦH̃(t, t0), ΦH̃(t0, t0) = id. (2.1)

2.1 Step 3: Solving Equation (M)

Let SO(d) denote the special orthogonal group of real d×d matrices. Note that [18, Thm
X.69] yields existence of a flow map U(t, t0) ∈ SO(d) solving (B), i.e.

d

dt
U(t, t0) = B(t)U(t, t0), U(t0, t0) = id . (2.2)

To accomplish a link between equations (B) and (M), we consider the group U(L2(Rd))
of unitary operators on L2(Rd) and the unitary representation

ρ : SO(d) −→ U(L2(Rd))

3After multiplication by i on both sides, (B) becomes a Schrödinger equation with Hamiltonian iB(t).
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defined as the map satisfying

(ρ(R)ψ)(x) = ψ(R−1x) (2.3)

for all R ∈ SO(d), ψ ∈ L2(Rd) and all x ∈ R
d.

Lemma 2.1. The flow map U(t, t0) of (B) gives rise to a flow map of (M) by

ΦHB
(t, t0) = ρ(U(t, t0))

for all t, t0 ∈ R.

Proof. Observe that

− iHB(t) =
d
∑

j,k=1

Bjk(t)xj∂k. (2.4)

and fix t, t0 ∈ R. For all j, k ∈ {1, . . . , d} and all x ∈ R
d, we have

xj∂kψ0(U
−1(t, t0)x) = dψ0

∣

∣

U−1(t,t0)x
· xj∂kU−1(t, t0)x = dψ0

∣

∣

U−1(t,t0)x
· U−1(t, t0)xj∂kx.

Hence by (2.4) and linearity

−iHB(t)ψ0(U
−1(t, t0)x) = dψ0

∣

∣

U−1(t,t0)x
· U−1(t, t0)(−iHB(t)x).

Anti-symmetry of B(t) and (2.4) yield similarly for all x ∈ R
d

−iHB(t)x = −B(t)x.

We take the transpose on both sides of (2.2) and use anti-symmetry of B(t) again in order
to get

d

dt
U−1(t, t0) = (−1)U−1(t, t0)B(t).

Fix some initial data ψ0 ∈ L2(R). Using the last three equations, we compute

−iHB(t)ψ0(U
−1(t, t0)x) = dψ0

∣

∣

U−1(t,t0)x
· U−1(t, t0)(−iHB(t)x)

= dψ0

∣

∣

U−1(t,t0)x
· (−1)U−1(t, t0)B(t)x

= dψ0

∣

∣

U−1(t,t0)x
· d

dt
U−1(t, t0)x

=
d

dt
ψ0(U

−1(t, t0)x).

Hence ρ(U(t, t0)) is a flow map for (M).

There is a more general principle behind the last lemma, which involves the theory of Lie
groups, Lie algebras, and their representation theory. The rest of this subsection is rather
technical and briefly explains this principle. But for our purpose, Lemma 2.1 will suffice.
The reader may thus continue with Subsection 2.2 if he is only interested in the numerical
method.

Besides the group structure, SO(d) is a manifold, more precisely a Lie group. Its tangent
space at the identity, endowed with the matrix commutator, is called the Lie algebra

so(d) := {Ω ∈ R
d×d | ΩT = −Ω}
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of SO(d). Moreover, we consider the Lie algebra spanned by (i times) the angular mo-
mentum operators (1.4)

l(L2(Rd)) := spanR{iLjk | 1 6 j < k 6 d},

also endowed with the usual commutator4. The derivative of ρ is the Lie algebra isomor-
phism (compare [6, Eq (2.14)] and [6, Eq (3.28)])

ρ∗ : so(d) −→ l(L2(Rd)), Ω 7−→ −iHΩ.

Note that B(t) ∈ so(d) for all t ∈ R. We see that ρ maps the flow of (B) to the flow
of (M) because ρ∗ maps B(t) to −iHB(t) (i.e. relates the right-hand-sides of the two
equations). This relation is summarized in the following commuting diagram

so(d)
ρ∗−−−→ l(L2(Rd))

exp





y





y

exp

SO(d) −−−→
ρ

U(L2(Rd))

where exp denotes the exponential map from a tangent space into its manifold.

2.2 Step 3: Solving Equation (B) by Magnus Expansion

We approximate the exact flow U(t, t0) ∈ SO(d) of (B) by a Magnus expansion (see [15]
or [10, Ch IV.7] for details), i.e.

U(t, t0) ≈ Un(t, t0) := eΩ
[n](t,t0), Ω[n](t, t0) :=

n
∑

m=1

Ωm(t, t0), (2.5)

for some Ωm(t, t0) ∈ so(d) and the first two terms of the truncated series are

Ω1(t, t0) =

t
∫

t0

B(s1)ds1, Ω2(t, t0) =
1

2

t
∫

t0

s1
∫

t0

[

B(s1), B(s2)
]

ds2ds1.

The Magnus expansion yields a unitary approximation of ΦHB
(t, t0) = ρ(U(t, t0)) as stated

in the next lemma.

Lemma 2.2. For all t, t0 ∈ R and all n ∈ N, we have

(i) Un(t, t0) ∈ SO(d) and

(ii) ρ(Un(t, t0)) is a unitary map on L2(Rd).

Proof. Part (i) holds since the matrix exponential on a Lie algebra maps to its Lie group.
Moreover, (i) implies (ii) by means of the substitution y := U−1

n (t, t0)x in the integral of
the inner product on L2(Rd).

4The notation l(L2(Rd)) is not standard.
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Example 2.1. In all subsequent simulations, we use the following fourth order commu-
tator free Magnus integrator from Example 1 in [3]. Define the nodes and weights

c :=

(

1
2
−

√
3
6

1
2
+

√
3
6

)

, α :=

(

1
4
−

√
3
6

1
4
+

√
3
6

)

.

For a sufficiently small time step h > 0 we define the orthogonal matrix

Ũ(h, t0) := exp(α1hB1 + α2hB2) · exp(α2hB1 + α1hB2), Bi := B(t0 + cih).

For the uniform time grid tj := t0 + jh, where j ∈ {0, . . . , J} and t := tJ , we have

U(t, t0) =
J
∏

j=0

Ũ(tj, tj−1) +O(h5).

As pointed out in [3], the forth order convergence is due to [1, Eq (12)].

2.3 Step 4: Solving Equation (K+M)

The following lemma shows that we can switch the flows and hence the internal steps in
our algorithm in a convenient way. It also justifies the treatment of −∆ and HB together
in one step.

Lemma 2.3. Fix any t, t0 ∈ R. Then

(i) for all R ∈ SO(d) the operators ρ(R) and Φ−∆(t, t0) commute and

(ii) we have Φ−∆+HB
(t, t0) = ΦHB

(t, t0) Φ−∆(t, t0) = Φ−∆(t, t0) ΦHB
(t, t0).

Proof. Fix any R ∈ SO(d). Note that ρ(R) commutes with the Fourier transform F and
that Rd → C, k 7→ e−i(t−t0)k2 is rotation invariant. Hence

ρ(R)e−i(t−t0)(−∆) = ρ(R)F−1e−i(t−t0)k2F
= F−1e−i(t−t0)k2Fρ(R)
= e−i(t−t0)(−∆)ρ(R).

This proves (i), which in turn proves the second equality in (ii) by Lemma 2.1. It remains
to show that the first equality also holds:

d

dt

(

ΦHB
(t, t0)Φ−∆(t, t0)

)

= Φ̇HB
(t, t0)Φ−∆(t, t0) + ΦHB

(t, t0)Φ̇−∆(t, t0)

(2.1)
= −iHB(t)ΦHB

(t, t0)Φ−∆(t, t0)− iΦHB
(t, t0)(−∆)Φ−∆(t, t0)

= −i
(

−∆+HB(t)
)

ΦHB
(t, t0)Φ−∆(t, t0),

where we used rotation invariance of the Laplacian to swap −∆ and ΦHB
(t, t0). It follows

that ΦHB
(t, t0)Φ−∆(t, t0) solves (2.1) for H̃ = −∆+HB, which concludes the proof.
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2.4 Step 5: Solving Equation (H) by Splitting

Let U(t, t0) denote the flow map of (B) and ρ the left-regular representation defined in
(2.3). We construct an approximation of the solution of the time-dependent Schrödinger
Equation (H) associated with the full Hamiltonian

H(t) = −∆+HB(t) + V (x, t) (1.3)

by a splitting with coefficients5 (ai, bi)i∈{1,...,n}. We start with a few notations. Fix times
t0 < t and introduce for i ∈ {0, . . . , n} the time grids

ti = t0 + (t− t0)
i
∑

j=1

bj and si = t0 + (t− t0)
i
∑

j=1

aj (2.6)

and for any two Hamiltonians H1 and H2 write6

(ΦH2

(a,b)◦ ΦH1)(t, t0) :=
n−1
∏

i=0

ΦH2(ti+1, ti)ΦH1(si+1, si).

Our splitting scheme for (H) then reads

ΦH(t, t0) ≈ (Φ−∆+HB

(a,b)◦ ΦV )(t, t0) =
n−1
∏

i=0

Φ−∆(ti+1, ti)ΦHB
(ti+1, ti)ΦV (si+1, si)

where we used part (ii) of Lemma 2.3. The equality

ρ(R)(f · ψ) = (ρ(R)f) · (ρ(R)ψ)

holds for all7 ψ ∈ L2(Rd), f ∈ L∞(Rd) and all R ∈ SO(d). We apply it to the special
choice R = U(t, t′) and f(x) = e−i

∫
s

s′
V (x,s̃)ds̃. Lemma 2.1 yields then

ΦHB
(t, t′)ΦV (s, s

′) = Φρ(U(t,t′))V (s, s
′)ΦHB

(t, t′) (2.7)

for all t, t′, s, s′ ∈ R. This is crucial for proving Lemma 2.4 below, which provides an

expression for (Φ−∆+HB

(a,b)◦ ΦV )(t, t0) in terms of rotated potentials and a single rotation
of the initial data.

Lemma 2.4. For splitting coefficients (ai, bi)i∈{1,...,n} and times s0, . . . , sn, t0, . . . , tn, t as
in (2.6), we have

(Φ−∆+HB

(a,b)◦ ΦV )(t, t0) =

( n−1
∏

i=0

Φ−∆(ti+1, ti)Φρ(U(tn,ti))V (si+1, si)

)

ΦHB
(tn, t0).

Proof. We proceed by induction on n. For n = 1, the assertion follows immediately from
(2.7). Suppose now that the formula holds for any set of coefficients of length n−1. Using

5For example we obtain the Strang splitting by a = ( 1
2
, 1

2
) and b = (1, 0).

6The order of the product is “lowest index first”:
∏

n

i=1
Ai := An · · ·A1

7Even if f /∈ L2(Rd) we still define ρ(R)f as in (2.3).
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this hypothesis on the last n− 1 factors and Lemma 2.3, we obtain

(Φ−∆+HB

(a,b)◦ ΦV )(t, t0) =

( n−1
∏

i=1

Φ−∆(ti+1, ti)Φρ(U(tn,ti))V (si+1, si)

)

ΦHB
(tn, t1)× · · ·

· · · × Φ−∆(t1, t0)ΦHB
(t1, t0)ΦV (s1, s0)

=

( n−1
∏

i=1

Φ−∆(ti+1, ti)Φρ(U(ti+1,ti))V (si+1, si)

)

× · · ·

· · · × Φ−∆(t1, t0)ΦHB
(tn, t0)ΦV (s1, s0)

=

( n−1
∏

i=1

Φ−∆(ti+1, ti)Φρ(U(tn,ti))V (si+1, si)

)

× · · ·

· · · × Φ−∆(t1, t0)Φρ(U(tn,t0))V (s1, s0)ΦHB
(tn, t0)

which is exactly the claim for n factors.

2.5 The Main Result

The application of ΦHB
requires rotation of functions in their argument. This is impossible

if the functions are defined on a grid as in the Fourier grid approach used for Φ−∆.
However, we can rotate the initial data ψ0(x) and the potential V (x, t) if they are given as
concrete expressions. This is done by Equation (2.8) below, our main result. It provides an
approximation of the flow map of (H) in terms of rotated potentials and a single rotation
of the initial data. It uses only the flow maps Φ−∆,ΦHB

,ΦV which were discussed above.
In Lemma 2.4 we have only treated a single timestep [t0, t]. If we generalize the idea to
N steps of length h := t− t0, we arrive at the following formula: For splitting coefficients
(ai, bi)i∈{1,...,n} and times s0, . . . , sn, t0, . . . , tn as in (2.6), we have

ΦH(t0 +Nh, t0) =

(N−1
∏

j=0

n−1
∏

i=0

Φ−∆(ti+1, ti)Φρ(U(t0+Nh,ti+jh))V (si+1 + jh, si + jh)

)

ΦHB
(t0 +Nh, t0) . . .

. . .+O(hp), (2.8)

for h → 0 and p ∈ N is the order of the splitting scheme (see Table 1). Here we assume
that U(t, t0) ∈ SO(d) is the exact flow map defined in Equation (2.2). The right-hand
side of (2.8) is an N -fold concatenation of

(Φ−∆+HB

(a,b)◦ ΦV )(t, t0),

followed by subsequent applications of (2.7). Since we can represent each of the involved
propagators exactly, we expect the order of our method to be the order of the splitting
scheme. However, we only provide a proof of consistency and convergence in the simplest
case of the Lie-Trotter splitting (n = a1 = b1 = 1) in Theorem 2.2 below. For higher order
splittings we refer to the numerical experiments in Section 3, see Table 1 for a complete
list of splitting methods used in these experiments. Algorithm 1 provides a pseudo-code
for efficient computing of the right-hand side of (2.8).
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Method Order p Author(s) Reference(s)

SS 2 Strang [19], [9]: Page 42, Eq. 5.3
PRKS6 4 Blanes/Moan [2]: Page 318, Table 2, ’S6’
BM42 4 Blanes/Moan [2]: Page 318, Table 3, ’SRKNb6’
Y61 6 Yoshida [21], [9]: Page 144, Eq. 3.11
KL6 6 Kahan/Li [12], [9]: Page 144, Eq. 3.12
KL8 8 Kahan/Li [12], [9]: Page 145, Eq. 3.14

Table 1: Several splitting methods. The first row provides labels for the legends of the
plots in Section 3.

Algorithm 1 Compute the RHS of (2.8)

Input: first time step [t0, t]; number of time steps N ; meshgrid X; initial wave func-
tion ψ0 at time t0; potential V ; splitting coefficients (ai, bi)i∈{1,...,n}; flow maps Φ−∆,ΦV

and U corresponding to (K),(P) and (B);
Output: Y is the solution at time (t − t0) · N + t0 evaluated on

X;

1: h := t− t0
2: ta := t0
3: tb := t0
4: R := U(t0 +N · h, t0)
5: Y := ψ0 ◦R−1(X) {= (ρ(R)ψ0)(X)}
6: for j = 0 to N − 1 do
7: for i = 1 to n do
8: Ṽ := V ◦R−1 {= ρ(R)V }
9: Y = ΦṼ (ta + ai · h, ta)Y
10: R = R · U−1(tb + bi · h, tb)
11: Y = Φ−∆(tb + bi · h, tb)Y
12: ta = ta + ai · h
13: tb = tb + bi · h
14: end for
15: end for
16: return Y

Remark 2.1. It only remains to approximate the flow U(t, t0), for instance by a Magnus
expansion as discussed in Example 2.1. Since this problem is low-dimensional, we can
approximate U(t, t0) up to machine precision by brute force in every timestep. Thus the
order of convergence in (2.8) remains valid if we replace U(t, t0) by its approximation. In
the simulations in Section 3, we implement this as follows: We divide the time interval
into Ñ = ⌈1001 · (t− t0)⌉ equidistant sub-intervals. Then we apply the Magnus expansion
to each sub-interval und multiply the resulting rotation matrices. Since the Magnus
expansion happens in a low-dimensional setting, the impact on the overall runtime is
neglectable. The choice of Ñ is tuned for the particular examples we consider. Other
examples might require different tuning.

Remark 2.2. If for all t ∈ R the potential V (x, t) is spherically symmetric, i.e.

∀R ∈ SO(d) : ρ(R)V (x, t) = V (x, t),

then we may replace ρ(U(t0 +Nh, ti + jh))V = V in (2.8).
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In [5], the authors give a general consistency and convergence result, stating that the
classical order of consistency and convergence of splitting schemes carries over to the
setting of time-independent, unbounded operators. We conjecture that the same ideas as
in [5] can be used for splittings of time-dependent unbounded operators. However, for
the sake of simplicity, we restrict ourselfs to the simplest possible case of the Lie-Trotter
splitting (n = a1 = b1 = 1), which contains already the basic ideas. Note that this was
already done in a similar context in [4]. Moreover, we consider only formal computations
to avoid the technicalities arising in the context of unbounded operators. To this end, we
treat time-dependent operators, say C(t), such that iC(t) is self-adjoint for all times. We
denote the corresponding unitary propagator by ΦC(t, t0), meaning that formally

d

dt
ΦC(t, t0) = C(t)ΦC(t, t0), ΦC(t0, t0) = id .

We denote its formal derivative by Ċ(t). If for example C(t) = i∆ − iHB(t), we have
Ċ(t) = −iH∂tB(t), where ∂tB(t) is the magnetic field matrix differentiated in every entry.
Likewise, if C(t) = −iV (x, t), we have Ċ(t) = −i∂tV (x, t). The next theorem provides a
formal consistency and convergence result. The proof is analog to the one of [5, Thm 2].

Theorem 2.1. Let iA(t) and iB(t) be two time-dependent, self-adjoint operators on a
Hilbert space H. Fix t, t0 ∈ R and let Φ(t, t0) = ΦB(t, t0)ΦA(t, t0) denote the Lie-Trotter
splitting operator. Then for all φ ∈ H, we have

‖Φ(t, t0)φ− ΦA+B(t, t0)φ‖ ≤ (c1(t0, t,A,B, φ) + c2(t0, t,A,B, φ)) |t− t0|2

provided that the following constants exist

c1(t0, t,A,B, φ) = max
t0≤s,s̃≤t

‖[ΦB(s, t0), Ȧ(s)] ΦA(s̃, t0)φ‖

c2(t0, t,A,B, φ) = max
t0≤s,s̃≤t

‖[B(s),A(s)] ΦB(s, t0)ΦA(s̃, t0)φ‖.

Now let ϕN denote the approximate solution of the Lie-Trotter splitting after N ∈ N

timesteps up to a final time T = N(t − t0) + t0, applied to initial data ϕ(t0) ∈ H, where
ϕ denotes the exact solution. Then

‖ϕN − ϕ(T )‖ ≤ max
t0≤s0≤T

(c1(s0, T,A,B, ϕ(s0)) + c2(s0, T,A,B, ϕ(s0))) |t− t0|,

provided that the maximum exists.

Proof. We compute the formal derivative of the splitting operator

d

dt
Φ(t, t0) = (A(t) + B(t)) Φ(t, t0) +R(t, t0),

where
R(t, t0) = [ΦB(t, t0),A(t)] ΦA(t, t0).

Thus the defect operator L(t, t0) := Φ(t, t0)−ΦA+B(t, t0) satisfies the initial value problem

d

dt
L(t, t0) = (A(t) + B(t))L(t, t0) +R(t, t0), L(t0, t0) = 0.

The variation-of-constants formula thus yields the integral expression

L(t, t0) =

t
∫

t0

ΦA+B(t, s)R(s, t0)ds.
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We decompose R(s, t0) = r(s, t0)ΦA(s, t0) with r(s, t0) = [ΦB(s, t0),A(s)]. We construct
an integral expression for r(s, t0) in the same way we did before for L(t, t0). Observe that
r(s, t0) solves the initial values problem

d

ds
r(s, t0) = B(s)r(s, t0) + R̃(s, t0), r(t0, t0) = 0,

where
R̃(s, t0) = [ΦB(s, t0), Ȧ(s)] + [B(s),A(s)] ΦB(s, t0).

As before, the variation-of-constants formula thus yields the integral expression

r(s, t0) =

s
∫

t0

ΦB(s, s̃)R̃(s̃, t0)ds̃.

If we insert this into the integral expression for L(t, t0), we obtain

L(t, t0) =

t
∫

t0

ΦA+B(t, s)





s
∫

t0

ΦB(s, s̃)R̃(s̃, t0)ds̃



ΦA(s, t0)ds.

Hence for all φ ∈ H, we have

‖L(t, t0)φ‖ ≤
(

max
t0≤s,s̃≤t

‖[ΦB(s, t0), Ȧ(s)] ΦA(s̃, t0)φ‖

+ max
t0≤s,s̃≤t

‖[B(s),A(s)] ΦB(s, t0)ΦA(s̃, t0)φ‖
)

|t− t0|2.

This implies the local error formula in the claim. The global error follows by a standard
Lady Windermere’s Fan argument (see [5, Eq (5.6)] and [8, Fig 7.1]).

The idea is that a rapidly decaying and smooth initial data compensates for a growing but
smooth potential V (x, t), so that the constants c1 and c2 in Theorem 2.1 can be uniformly
bounded on a compact time interval. Then we can infer local and global convergence
of order 1 in case of the Lie-Trotter splitting. But instead of searching for minimal
requirements in our context, we will just make this part of our assumptions.

Theorem 2.2. Let U(t, t0) ∈ SO(d) be the exact flow map defined in Equation (2.2).
Suppose that the constants c1 and c2 in Theorem 2.1 exist and are finite on the interval
[t0, T ] when applied to iA(t) = V (x, t) and iB(t) = −∆ + HB(t). Then, in the case
of the Lie-Trotter splitting (n = a1 = b1 = 1), the method (2.8) is of consistency and
convergence order 1.

Proof. The right-hand side of (2.8) is an N -fold concatenation of Lemma 2.4, followed by
subsequent applications of (2.7). Hence the order of convergence is equal to the one of
the single step method in Lemma 2.4, i.e. of

(Φ−∆+HB
◦ ΦV )(t, t0).

Recall that Φ−∆+HB
= Φ−∆ ◦ ΦHB

by Lemma 2.3. Since we can represent all three flow
maps Φ−∆,ΦHB

,ΦV exactly, Theorem 2.1 finishes the proof.
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3 Examples

The Pauli Hamiltonian (1.2) (and thus also its abstract version (1.3)) contains many
physically relevant cases. In order to investigate them, it is convenient to introduce the
notation

Ω( ~B) :=





0 −B3 B2

B3 0 −B1

−B2 B1 0



 , ~B =





B1

B2

B3



 ∈ R
3.

Example 3.1 (N particles in three dimensions). Consider a system of N particles of
mass m > 0 and charge e ∈ R where n ∈ {1, . . . , N}, subject to an electric potential

φ(~x1, . . . , ~xN , t) and a homogeneous magnetic field ~B(t). This system is modeled by the
Pauli Hamiltonian

HN =
1

2m

N
∑

n=1

(

~pn − e ~A(~xn, t)
)2

+ eφ(~x1, . . . , ~xN , t)

where ~pn := −i~~∇n and the vector potential is given by

~A(~x, t) :=
1

2
~B(t)× ~x.

By choosing d = 3N and

B(t) = diag
(

Ω(− ~B(t)), . . . ,Ω(− ~B(t))
)

in (1.1) we can obtain this as special case of (1.2).

Example 3.2 (N particles in two dimensions). The setting of Example 3.1 can be adapted
to N particles moving only in the (x, y)-plane. The magnetic field can be assumed per-

pendicular to the plane of motion, say ~B(t) = (0, 0, B3(t))
T. Thus we have to choose

d = 2N and

B(t) = diag

(

(

0 B3

−B3 0

)

, . . . ,

(

0 B3

−B3 0

)

)

in (1.1) to retrieve this system as a special case of (1.2).

Remark 3.1. By Remark 1.1, we can recover (1.2) (up to scaling) from (1.3) by choosing

V (x, t) = ‖B(t)x‖2
Rd + φ(x, t).

The integral of the magnetic part in the associated unitary flow

ΦV (t, t0) = exp

(

− i

∫ t

t0

V (x, s)ds

)

can be computed independently of x ∈ R
d (and thus efficiently) since

∫ t

t0

V (x, s)ds =

∫ t

t0

〈

B(s)x,B(s)x
〉

Rd
ds+

∫ t

t0

φ(x, s)ds

=

〈

x,

(

−
∫ t

t0

B2(s)ds

)

x

〉

Rd

+

∫ t

t0

φ(x, s)ds

where we used the skew-symmetry of B in the last step. For the integral of the electric
potential part, we require an analytical expression, as computing an integral at every
point x ∈ R

d is expensive.
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Remark 3.2. The assumption that all particles share the same mass and charge is only
for simplicity. Redefining the coordinates x, t as well as B and V allows us to reduce the
general case to one of the examples above.

Remark 3.3. Note that the block form of B(t) in the previous examples simplifies the
computation of the exponential in the Magnus expansion (2.5): In the notation of (2.5),

the matrices Ωm(t, t0) inherit the block form. Similarly, Ω[n](t, t0) and Un(t, t0) = eΩ
[n](t,t0)

become block-diagonal.

3.1 Spin

We have only treated spinless particles so far. However, in case of a single particle in a
time-dependent, but homogeneous (in space) magnetic field, this is not a restriction. To
see this, we consider a single particle (N = 1) of spin 1

2
. We obtain the corresponding

Hamiltonian if we extend H1 of Example 3.1 by the Stern-Gerlach term,

H
1
2
1 =

(

H1 0
0 H1

)

− e~

2m
~σ · ~B(t),

where we have introduced the Pauli matrices

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ2 =

(

1 0
0 −1

)

, ~σ =





σ1
σ2
σ3





and H
1
2
1 acts on the two-component wave function

ψ (~x, t) =

(

ψ+ (~x, t)
ψ− (~x, t)

)

.

We provide an expression for the time evolution of H
1
2
1 , in terms of the evolution operators

for H1 and for the Schrödinger equation of the Stern-Gerlach term

i∂tψ (~x, t) = − e~

2m
~σ · ~B(t)ψ (~x, t) . (S)

We apply the same reasoning to Equation (S) as for Equation (M): By [18, Thm X.69], the
evolution operator of (S) is given by some U(t, t0) ∈ SU(2), independent of ~x. Here, we

use that ~B is independent of ~x. Moreover, since U(t, t0) is independent of ~x, it commutes

with the time evolution ΦH1(t, t0) of H1. Thus, the time evolution of H
1
2
1 reads

Φ
H

1
2
1

(t, t0) =

(

ΦH1(t, t0) 0
0 ΦH1(t, t0)

)

· U(t, t0) = U(t, t0) ·
(

ΦH1(t, t0) 0
0 ΦH1(t, t0)

)

.

One can approximate U(t, t0) by a Magnus expansion as explained in Subsection 2.2. The
time evolution of H1, i.e. the spinless case, was discussed in detail above.

3.2 Order of Convergence (Harmonic Potential)

We now examine the order of convergence of our method for different splittings (see
step 5). Therefore, we solve (H) for t ∈ [0, 2π] with magnetic field

B(t) = Ω(− ~B(t)), ~B(t) =
cos(t)√

3





1
1
1



 .
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The potential in (1.3) is chosen as8

V (~x, t) = x21 + x22 + x23.

The initial data at time t0 = 0 shall be the Gaussian

ψ0(~x) =
1

(2πσ2)
3
4

exp

(

− (~x− ~µ)2

4σ2
+ 2ix1

)

, ~µ :=





1
1
1



 , σ2 :=
1

2
(3.1)

of L2-norm one. This setting admits periodic solutions of period 2π. In particular, the
solution ψ(~x, t) to this IVP satisfies ψ0(~x) = ψ(~x, 2π) for all ~x ∈ R

3. The initial data
will thus serve as reference solution for the convergence plots in Figure 1. They indicate
that the order of our method is equal to the order of the underlying splitting scheme. In
particular, it is not limited by the order 4 of the Magnus expansion, see Remark 2.1 for
an explanation. We use a dense Fourier grid of equidistant meshwidth 8π · 2−7 in each
spacial direction filling the cube [−4π, 4π]3.
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10 3

10 1
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r

Order of Convergence

SS
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x4

Y61
x6

2 4 2 3 2 2

step size

10 11

10 9

10 7

10 5

10 3

er
ro

r
Order of Convergence

BM42
x4

KL6
x6

KL8
x8

Figure 1: Order of convergence using different splittings. See Table 1 for the legend.

3.3 Order of Convergence (Mexican Hat Potential)

Now we consider the more involved example of a Mexican hat potential

φ(~x) =
1

32
‖~x‖4

R3 − x21 −
3

2
x22 − 2x23.

The magnetic field is given by

B(t) = Ω(− ~B(t)), ~B(t) =
1√
3





cos(t)
sin(t)
1



 .

Thus we arrive at the time-dependent potential (see Remark 1.1)

V (~x, t) = ‖B(t)~x‖2
R3 + φ(~x).

8This is not a special case of the Pauli Hamiltonian (1.2) since V (~x, t) is independent of the magnetic
field. Compare to Remark 1.1.
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We solve the corresponding time-dependent Schrödinger equation (H) on t ∈ [0, 2π] using
different splitting schemes. As before, (3.1) serves as initial data. The accurate KL8
splitting with time steps of size h = 2π · 2−8 provides the reference solution for the
results in Figure 2. The order of convergence is not limited by the order 4 of the Magnus
expansion, see Remark 2.1 for an explanation. We use a dense Fourier grid of equidistant
meshwidth 8π · 2−7 in each spacial direction filling the cube [−4π, 4π]3.
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10 3
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r

Order of Convergence
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10 3

10 1
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Order of Convergence
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x4
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x6

KL8
x8

Figure 2: Order of convergence using different splittings. See Table 1 for the legend.

3.4 Norm and Energy Conservation (Morse Potential)

In this example we focus on the conservation of the L2-norm and of the energy. The latter
is conserved if the Hamiltonian is constant in time. We thus consider a modification of
the Example 3.2 to the threefold Morse potential (see Figure 3)

10 5 0 5 10

10

5

0

5

10

Potential V(x)

0

2

4

6

8

10

12

14

16

Figure 3: The threefold Morse potential. We expect a high probability of finding the
particle within the back region, which is confirmed by Figure 5 below.

φ(x) = 16

(

1− exp

(

− ‖x‖2
R2

32

(

1− cos(3 arctan2(x2, x1))
)2
)

)2
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and the constant magnetic field

B(t) =
1

2

(

0 −1
1 0

)

perpendicular to the plane of motion. The overall potential is hence now time-independent
(see Remark 1.1)

V (x, t) = ‖B(t)x‖2
R2 + φ(x) =

1

4
‖x‖2

R2 + φ(x)

Finally, we take the Gaussian initial data

ψ0(x) =
1√
2πσ2

exp

(

− (x− µ)2

4σ2
+ 2ix1

)

, µ :=

(

2
2

)

, σ2 :=
1

2

of L2-norm one. Write ψ(t) = ψ(x, t) and denote by 〈 · , · 〉L2 the inner product on L2(Rd).
We consider the energies

Ekin(t) := 〈ψ(t),−∆ψ(t)〉L2 (kinetic energy)

Emag(t) := 〈ψ(t), (H−B(t) + ‖B(t)x‖2
Rd)ψ(t)〉L2 (magetic energy)

Epot(t) := 〈ψ(t), φ(x)ψ(t)〉L2 (potential energy)

Etot(t) := Ekin(t) + Emag(t) + Epot(t). (total energy)

for d = 2. Figure 4 indicates that the total energy is preserved, although its components
exhibit non-trivial behavior. Note also that H−B(t) is not a positive semidefinite operator
and hence the magnetic energy can be negative. Moreover, the L2-norm is approximately
constant as well. For the simulation, we use a dense Fourier grid of equidistant meshwidth
8π · 2−8 in each spacial direction filling the square [−4π, 4π]2.
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0
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1e 12+1 Norm of the Solution

|| ||L2(t)

Figure 4: Energies and L2-norm along the solution in the setting above. Note the scale
on the right: The norm has oscillations of roughly 10−12 around 1.
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Figure 5: Initial data and solution in the setting above. A complex valued wave-function
ϕ is plotted as follows: The color at x encodes the phase of ϕ(x), while we darken the
pixel according to the modulus |ϕ(x)|. A black pixel indicates a vanishing wave function
at this point and the larger the value of |ϕ(x)|, the brighter the pixel at x.

3.5 Two Particles (Mie(4,2) Potential)

We consider two particles in two dimensions, i.e. Example 3.2 for N = 2. The initial data
is given by

ψ0

(

x(1), x(2)
)

=
1

2πσ2
exp

(

− (x(1) − µ(1))2 + (x(2) − µ(2))2

4σ2
+ 2ix

(1)
1

)

,

where x(1), x(2) ∈ R
2 correspond to the first and second particle, and

µ(1) :=

(

−2
−1

)

, µ(2) :=

(

1
1

)

, σ2 :=
1

2
.

We use the time-independent magnetic field

B(t) =









0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0









,

which corresponds to B3(t) ≡ 1 in Example 3.2. The electric potential is given by

φ
(

x(1), x(2)
)

=M0.1

(

‖x(1) − x(2)‖R2

)

,

where for small ε ≥ 0,

Mε (r) = 32

(

34

(r4 + ε)
− 32

(r2 + ε)

)

+ 8

approximates a repulsive Mie(4, 2) potential [16]. We use ε = 0.1 in the simulations below
to avoid division by zero. See Figure 6 for plots of M0(r) and M0.1(r). Because B(t) is
constant in time, the total energy is conserved. Norm and energy of the solution to (H)
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in this setting are presented in Figure 7. Here, we use a dense Fourier grid of equidistant
meshwidth 8π · 2−6 in each spacial direction filling the hypercube [−4π, 4π]4.
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= 0.0
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Figure 6: The potential Mε(r), where r > 0 is the distance between the two particles.
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Figure 7: Energies and L2-norm along the solution in the two-particle setting above. The
separate energies are defined the same way as in Subsection 3.4. Note the scale on the
right: The norm has oscillations of roughly 10−12 around 1.
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