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Abstract

This paper aims at providing a small-volume expansion framework for the scat-
tering resonances of an open cavity perturbed by small particles. The induced shift
of the scattering frequencies by the small particles is derived without neglecting
the radiation effect. The formula holds for arbitrary-shaped particles. It shows a
strong enhancement in the frequency shift in the case of plasmonic particles. The
formula is used to image small particles located near the boundary of an open res-
onator which admits whispering-gallery modes. Numerical examples of interest for
applications are presented.

Mathematics Subject Classification (MSC2000). 35R30, 35C20.

Keywords. Open cavity, shift of scattering resonances, whispering-gallery modes,
bio-sensing, plasmonic nanoparticles.

1 Introduction

The influence of a small particle on a cavity mode plays an important role in fields such
as optical sensing, cavity quantum electrodynamics, and cavity optomechanics [22, 35,
41]. In this paper, we consider the transverse magnetic polarization case and provide a
formal derivation of the perturbations of scattering resonances of an open cavity due to
a small-volume particle without neglecting the radiation effect. Note that the radiation
effect has been omitted in the physics literature (see, for instance, [20]). Indeed, the
Bethe-Schwinger closed cavity perturbation formula [13, 16] has been widely employed
for radiating cavities. The small-volume asymptotic formula in this paper generalizes to
the open cavity case those derived in [5,6,9,13]. It is valid for arbitrary-shaped particles.
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It shows that the perturbations of the scattering resonances can be expressed in terms
of the polarization tensor of the small particle. Two cases are considered: the one-
dimensional case and the multi-dimensional case. Its applicability to the perturbations of
whispering-gallery modes by external arbitrary-shaped particles is also discussed. Finally,
we characterize the effect that a plasmonic nanoparticle, of arbitrary geometry and which
is bound to the surface of the cavity, has on the whispering-gallery modes of the cavity.
Since the shift of the scattering frequencies is proportional to the polarization of the
plasmonic nanoparticles [2, 7, 8, 11], which blows-up at the plasmonic resonances, the
effect of a plasmonic particle on the cavity modes can be significant.

For the analysis of the transverse electric case we refer the reader to [1]. Note that
in the one-dimensional case, the scattering resonances are simple while in the multi-
dimensional case, they can be degenerate or even exceptional. For the analysis of excep-
tional points, we again refer the reader to [1]. The analysis of such a challenging problem
is much simpler in the transverse electric case than in the transverse magnetic one. The
reader is also referred to [23–25] for small amplitude sensitivity analyses of the scatter-
ing resonances. Numerical computation of resonances has been addressed, for instance,
in [21, 26, 30, 31, 38, 45].

The paper is organized as follows. In Section 2, using the method of matched asymp-
totic expansions, we derive the leading-order term in the shifts of scattering resonances of
a one-dimensional open cavity and characterize the effect of radiation. Section 3 general-
izes the method to the multi-dimensional case. In Section 4, we consider the perturbation
of whispering-gallery modes by small particles. The formula obtained for the shifting of
the frequencies shows a strong enhancement in the frequency shift in the case of plasmonic
particles, which allows for their recognition in spite of their small size. The splitting of
scattering frequencies of the open cavity of multiplicity greater than one due to small
particles is also discussed. In Section 5, we present some numerical examples to illustrate
the accuracy of the formulas derived in this paper and their use in the sensing of small
particles. The paper ends with some concluding remarks.

2 One dimensional case

We first consider a one dimensional cavity. We let the magnetic permeability µδ be µm

in (a, b) \ (−δ/2, δ/2) and µc in (−δ/2, δ/2) and the electric permittivity εδ be εm in
(a, b) \ (−δ/2, δ/2) and εc in (−δ/2, δ/2), see Figure 1. Here, 0 < δ < 1/2 and µm, µc, εm,
and εc are positive constants.

Let ω0 be a scattering resonance of the unperturbed cavity and let u0 denote the
corresponding eigenfunction, that is,







∂x ((1/εm)∂xu0) + ω2
0µmu0 = 0 in (a, b),

(1/εm)∂xu0 + iω0u0 = 0 at a,

(1/εm)∂xu0 − iωδu0 = 0 at b,
´ 1/2

−1/2
|u0|2 dx = 1.

We now consider the perturbed problem: for δ small, we seek a solution uδ, for which
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Figure 1: One dimensional cavity.

ωδ → ω0 as δ → 0 of the following equation:







∂x ((1/εδ)∂xuδ) + ω2
δµδuδ = 0 in (a, b),

(1/εm)∂xuδ + iωδuδ = 0 at a,

(1/εm)∂xuδ − iωδuδ = 0 at b,
´ 1/2

−1/2
|uδ|2 dx = 1.

(1)

Remark 2.1. The above one-dimensional scattering resonance problems govern scattering
resonances of slab-type structures. They are a consequence of Maxwell’s equations, under
the assumption of time-harmonic solutions. They correspond to the transverse magnetic
polarization; see [24]. The scattering resonances ω0 and ωδ lie in the lower-half of the
complex plane. The eigenfunctions u0 and uδ satisfy the outgoing radiation conditions
at a and b and, consequently, grow exponentially at large distances from the cavity. To
give a physical interpretation of scattering resonances, we must go to the time domain,
see, for instance, [21, 24].

Proposition 2.2. As δ → 0, we have

ωδ = ω0 + δω1 +O(δ2),

where

ω1 =
α(∂xu0(0))

2 + ω2
0εm(µc − µm)(u0(0))

2

2ω0µmεm
´ 1/2

−1/2
u2
0 dx+ iεm((u0(a))

2 + (u0(b))
2)
. (2)
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The polarization α is defined by

α =

(
εm
εc

− 1

)

∂xv
(1)(

1

2
)
∣
∣
−
, (3)

and v(1) is the unique solution (up to a constant) of the auxiliary differential equation:

{

∂x(1/ε̃)∂xv
(1) = 0,

v(1)(ξ) ∼ ξ |ξ| → +∞,

with ε̃ = εcχ(−1/2,1/2) + εmχR\(−1/2,1/2). Here, |− indicates the limit at (1/2)− and χI

denotes the characteristic function of the set I.

Remark 2.3. Note that the polarization α can be computed explicitly. It is given by
α = 1− (εc/εm).

Proof. Using the method of matched asymptotic expansions for δ small, see [6], we con-
struct asymptotic expansions of ωδ and uδ.

To reveal the nature of the perturbations in uδ, we introduce the local variable ξ = x/δ
and set eδ(ξ) = uδ(x). We expect that uδ(x) will differ appreciably from u0(x) for x
near 0, but it will differ little from u0(x) for x far from 0. Therefore, in the spirit of
matched asymptotic expansions, we shall represent uδ by two different expansions, an
inner expansion for x near 0, and an outer expansion for x far from 0. We write the outer
and inner expansions:

uδ(x) = u0(x) + δu1(x) + . . . for |x| ≫ δ,

and
uδ(x) = e0(ξ) + δe1(ξ) + . . . for |x| = O(δ).

The asymptotic expansion of ωδ must begin with ω0, so we write

ωδ = ω0 + δω1 + . . . .

In order to determine the functions ui(x) and ei(ξ), we have to equate the inner and the
outer expansions in some “overlap” domain within which the stretched variable ξ is large
and x is small. In this domain the matching conditions are:

u0(x) + δu1(x) + · · · ∼ e0(ξ) + δe1(ξ) + . . . .

Now, if we substitute the inner expansion into (1) and formally equate coefficients of δ−2

and δ−1, then we obtain
∂ξ((1/ε̃)∂ξe0) = 0,

and
∂ξ((1/ε̃)∂ξe1) = 0,

where the stretched coefficient ε̃ is equal to εc in (−1/2, 1/2) and to εm in (−∞,−1/2)∪
(1/2,+∞). From the first matching condition, it follows that e0(ξ) = u0(0) for all ξ.
Similarly, we have

e1(ξ) ∼ ξ∂xu0(0) as |ξ| → +∞. (4)
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Let v(1)(ξ) be such that

{

∂ξ((1/ε̃(ξ))∂ξv
(1)(ξ)) = 0,

v(1)(ξ) ∼ ξ as |ξ| → +∞.

Let G(ξ) = |ξ|/2 be the free space Green function,

∂2
ξG(ξ − ξ′) = δ0(ξ − ξ′).

Since

∂2
ξv

(1)(ξ) = (1− (εm/εc))∂ξv
(1)(−1/2)|+ + ((εm/εc)− 1)∂ξv

(1)(1/2)|−,

we have

v(1)(ξ) = ξ+(1−(εm/εc))∂ξv
(1)(−1/2)|+G(ξ+1/2)+((εm/εc)−1)∂ξv

(1)(1/2)|−G(ξ−1/2),

where the subscripts + and − indicate the limits at (1/2)− and (1/2)+, respectively.
Moreover,

ˆ 1/2

−1/2

∂2
ξv

(1) dξ = 0,

yields
∂ξv

(1)(−1/2)|+ = ∂ξv
(1)(1/2)|−.

Hence,

v(1)(ξ) = ξ+((εm/εc)−1)∂ξv
(1)(1/2)|−G(ξ+1/2)− ((εm/εc)−1)∂ξv

(1)(1/2)|−G(ξ−1/2).

On the other hand,
G(ξ − 1/2) ∼ |ξ| − ξ/(2|ξ|) + . . . ,

and
G(ξ + 1/2) ∼ |ξ|+ ξ/(2|ξ|) + . . . as |ξ| → +∞.

Therefore,
v(1)(ξ) ∼ ξ − ((εm/εc)− 1)∂ξv

(1)(1/2)|− ξ/|ξ|+ . . . .

The second matching condition (4) yields

u1(x) ∼
(

− ∂xu0(0)((εm/εc)− 1)∂ξv
(1)(1/2)|−

)

ξ/|ξ| for x near 0.

Assume first that µm = µc. To find the first correction ω1, we multiply

∂x((1/εm)∂xu1) + ω2
0µmu1 = −2ω1ω0µmu0

by u0 and integrate over (a,−ρ/2) and (ρ/2, b) for ρ small enough. Upon using the
radiation condition and Green’s theorem, we obtain as ρ goes to zero,

iω1((u0(a))
2 + (u0(b))

2)− 1

εm
α(∂xu0(0))

2 = −2ω1ω0µm

ˆ 1/2

−1/2

u2
0 dx,
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where the polarization α is given by

α = ((εm/εc)− 1)∂ξv
(1)(1/2)|− = 1− εc

εm
. (5)

Therefore, we arrive at

ω1 =
α(∂xu0(0))

2

2ω0µmεm
´ 1/2

−1/2
u2
0 dx+ iεm((u0(a))

2 + (u0(b))
2)
. (6)

The term iεm((u0(a))
2 + (u0(b))

2) accounts for the effect of radiation on the shift of the
scattering resonance ω0.

Now, if µc 6= µm, then we need to compute the second-order corrector e2. We have

∂ξ((1/ε̃)∂ξe2) + ω2
0µ̃e0 = 0,

and
e2(ξ) ∼ ξ2∂2

xu0(0)/2 as |ξ| → +∞.

Here, the stretched coefficient µ̃ is equal to µc in (−1/2, 1/2) and to µm in (−∞,−1/2)∪
(1/2,+∞).

From the equation satisfied by u0, we obtain

∂2
xu0(0) = −ω2

0µmεmu0(0).

Recall that e0(ξ) = u0(0) and let v(2) be such that

{

∂ξ((1/ε̃(ξ))∂ξv
(2)(ξ)) = (1/(εmµm))µ̃(ξ),

v(2)(ξ) ∼ ξ2/2 as |ξ| → +∞.

It is easy to see that ∂ξ((1/ε̃(ξ))∂ξ(v
(2)(ξ) − ξ2/2)) is (1/εm)((µc/µm) − 1) for ξ ∈

(−1/2, 1/2) and is 0 for |ξ| > 1/2. Therefore,

v(2)(ξ)− ξ2/2 ∼ ((µc/µm)− 1)|ξ| as |ξ| → +∞.

Then

u1(x) ∼ ∂xu0(0)(ξ − ((εm/εc)− 1)∂ξv
(1)(1/2)ξ/|ξ|+ . . . ) + ∂2

xu0(0)((µc/µm)− 1)|ξ|+ . . . ,

and so

iω1((u0(a))
2+(u0(b))

2)− 1

εm
α(∂xu0(0))

2+
1

εm
∂2
xu0(0)((µc/µm)−1)u0(0) = −2ω1ω0µm

ˆ 1/2

−1/2

u2
0 dx,

which yields the result. �
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d \ Ω

Cavity perturbed by an internal particle

Figure 2: Multi-dimensional cavity.

3 Multi-dimensional case

In this section, we generalize (2) to the multi-dimensional case. In dimension two, the
obtained formula corresponds, as in the one-dimensional case, to an open cavity with the
transverse magnetic polarization [25]. We use the same notation as in Section 3.

Let Ω be a bounded domain in R
d for d = 2, 3, with smooth boundary ∂Ω, see Figure

2. Let ω0 be a simple eigenvalue of the unperturbed open cavity. Then there exists a non
trivial solution u0 to the equation:







∇ · ((1/ε)∇u) + ω2
0µu = 0 in R

d,
ˆ

Ω

|u|2 dx = 1,

u satisfies the outgoing radiation condition,

(7)

where µ = 1 + (µm − 1)χΩ and ε = 1 + (εm − 1)χΩ. Here, χΩ denotes the characteristic
function of the domain Ω. We refer to [21] for a precise statement of the outgoing radiation
condition.

For simplicity, we assume that Ω is the ball of radius R centered at the origin, and
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introduce the capacity operator Tω, which is given by [10]

Tω : φ =







∑

m∈Z

φme
imθ

+∞∑

m=0

m∑

l=−m

φl
mY

l
m

7→







∑

m∈Z

zm(ω,R)φme
imθ,

+∞∑

m=0

zm(ω,R)
m∑

l=−m

φl
mY

l
m,

where

zm(ω,R) =







ω(H(1)
m )′(ωR)

H(1)
m (ωR)

if d = 2,

ω(h(1)
m )′(ωR)

h(1)
m (ωR)

if d = 3.

Here, θ is the angular variable, Y l
m is a spherical harmonic, and H(1)

m (respectively, h(1)
m )

is the Hankel function of integer order (respectively, half-integer order). This explicit
version of the capacity operator will be used in Section 5 to test the validity of our
formula. Then, (7) is equivalent to







(1/εm)∆u0 + ω2
0µu0 = 0 in Ω,

(1/εm)
∂u0

∂ν
= Tω0

[u0] on ∂Ω,
´

Ω
|u0|2 = 1,

(8)

where ν denotes the normal to ∂Ω. As in the one-dimensional case, the scattering reso-
nances lie in the lower-half of the complex plane and the associated eigenfunctions grow
exponentially at large distances from the cavity since they satisfy the outgoing radiation
condition. We also remark that since on one hand, z−m(ω,R) = zm(ω,R) for all m ∈ Z,

and on the other hand, Y −l
m = (−1)lY

l
m, we have

ˆ

∂Ω

Tω[f ]g dσ =

ˆ

∂Ω

fTω[g] dσ for all f, g ∈ H1/2(∂Ω), (9)

for d = 2, 3, where Hs(∂Ω) is the standard Sobolev space of order s.
Let D ⋐ Ω be a small particle of the form D = z + δB, where δ is its characteristic

size, z its location, and B is a smooth bounded domain containing the origin. Denote
respectively by εc and µc the electric permittivity and the magnetic permeability of the
particle D. The eigenvalue problem is to find ωδ such that there is a non-trivial couple
(ωδ, uδ) satisfying







(1/εm)∆uδ + ω2
δµmuδ = 0 in Ω \ D̄,

(1/εc)∆uδ + ω2
δµcuδ = 0 in D,

(1/εm)
∂uδ

∂ν

∣
∣
+
= (1/εc)

∂uδ

∂ν

∣
∣
−

on ∂D,

(1/εm)
∂uδ

∂ν
= Tωδ

[uδ] on ∂Ω,

where the subscripts + and − indicate the limits from outside and inside D, respectively.
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Proposition 3.1. As δ → 0, we have

ωδ = ω0 + δdω1 +O(δd+1),

where

ω1 =
M(εm/εc, B)∇u0(z) · ∇u0(z) + ω2

0|B|εm(µc − µm)(u0(z))
2

2ω0µmεm
´

Ω
u2
0 dx+ εm

´

∂Ω
∂ωTω|ω=ω0

[u0]u0 dσ
, (10)

where M is the polarization tensor associated with the domain B and the contrast εm/εc
defined by (13) with v(1) being given by (12). Note that M has the same form as α defined
in (3).

Proof. Assume, for now, that µc = µm. Let λ0 = ω2
0, λδ = ω2

δ . We expand

ωδ = ω0 + δdω1 + . . . and λδ = λ0 + δdλ1 + . . . .

Let the outer expansion of uδ be

uδ(y) = u0(y) + δdu1(y) + . . . ,

and the inner one, eδ(ξ) = uδ((x− z)/δ), be

eδ(ξ) = e0(ξ) + δe1(ξ) + . . . .

Therefore, we have

Tωδ
≃ T

ω0+δ
d
ω1

≃ Tω0
+ δdω1∂ωTω|ω0

+ . . . .

Moreover, we obtain






((1/εm)∆ + λ0µm)u1(y) = −λ1µmu0(y) for |y − z| ≫ O(δ),

(1/εm)
∂u1

∂ν
= Tω0

[u1] + ω1∂ωTω|ω=ω0
[u0] on ∂Ω,

(11)

and 





∆ξej = 0 in R
d \ B̄,

∆ξej = 0 in B,
∂ej
∂ν

|+ = (εm/εc)
∂ej
∂ν

|− on ∂B,

for j = 1, 2. Imposing the matching conditions

u0(y) + δdu1(y) + · · · ∼ e0(ξ) + δe1(ξ) + . . . as |ξ| → +∞,

and y → z, we arrive at e0(ξ) → u0(z) and e1(ξ) ∼ ∇u0(z) · ξ. So, we have e0(ξ) = u0(z)

for every ξ and e1(ξ) = ∇u0(z) · v(1)(ξ), where v(1) is such that (see [6])






∆ξv
(1) = 0 in R

d \ B̄,

∆ξv
(1) = 0 in B,

∂v(1)

∂ν
|+ = (εm/εc)

∂v(1)

∂ν
|− on ∂B,

v(1)(ξ) ∼ ξ as |ξ| → +∞.

(12)
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Let Γ be the fundamental solution of the Laplacian in R
d. Let M(εm/εc, B) be the

polarization tensor associated with the domain B and the contrast εm/εc given by [4]

M(εm/εc, B) = (
εm
εc

− 1)

ˆ

∂B

∂v(1)

∂ν

∣
∣
−
(ξ)ξ dσ(ξ). (13)

Then, by the same arguments as in [6, Section 4.1], it follows that

u1(y) ∼ −M(εm/εc, B)∇Γ(y − z) · ∇u0(z) as y → z. (14)

Multiplying (11) by u0 and integrating by parts over Ω \ B̄δ, we obtain from (9) that

−λ1µm

ˆ

Ω\Bρ

(u0)
2 dx =

ˆ

∂Ω

(
Tω0

[u1]u0 − Tω0
[u0]u1

)
dσ

︸ ︷︷ ︸
=0

+ω1

ˆ

∂Ω

∂ωTω|ω=ω0
[u0]u0 dσ

+
1

εm

ˆ

∂Bδ

(u0

∂u1

∂ν
− u1

∂u0

∂ν
) dσ.

From (14), we have

ˆ

∂Bδ

(u0

∂u1

∂ν
− u1

∂u0

∂ν
) dσ −−→

δ→0
−M(εm/εc, B)∇u0(z) · ∇u0(z).

Therefore,

−λ1µm

ˆ

Ω

u2
0 dx− λ1

2ω0

ˆ

∂Ω

∂ωTω|ω=ω0
[u0]u0 dσ = − 1

εm
M(εm/εc, B)∇u0(z) · ∇u0(z),

and finally, we arrive at

λ1 =
M(εm/εc, B)∇u0(z) · ∇u0(z)

εmµm

´

Ω
u2
0 dx+ (1/(2ω0)) εm

´

∂Ω
∂ωTω|ω=ω0

[u0]u0 dσ
, (15)

or equivalently,

ω1 =
M(εm/εc, B)∇u0(z) · ∇u0(z)

2ω0µmεm
´

Ω
u2
0 dx+ εm

´

∂Ω
∂ωTω|ω=ω0

[u0]u0 dσ
. (16)

In the multi-dimensional case, the effect of radiation on the shift of the scattering reso-
nance ω0 is given by εm

´

∂Ω
∂ωTω|ω=ω0

[u0]u0 dσ. Note also that formula (16) reduces to
(6) in the one-dimensional case. In fact, the polarization tensor M reduces to α defined
by (5) and the operator Tω corresponds to the multiplication by −iω at a and +iω at b. If
one relaxes the assumption µc = µm, one can easily generalize formula (16) by computing,
as in [6] and in Section 2, the second-order corrector e2. We then get the desired result.
�
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Figure 3: Perturbed cavity by an external particle.

4 Perturbations of whispering-gallery modes by an

external particle

Whispering-gallery modes are modes which are confined near the boundary of the cavity.
Their existence can be proved analytically or by a boundary layer approach based on
WKB (high frequency) asymptotics [20, 29, 32, 34, 35, 37, 40]. Whispering-gallery modes
are exploited to probe the local surroundings [27,28,36]. Biosensors based on the shift of
whispering-gallery modes in open cavities by small particles have been also described by
use of Bethe-Schwinger type formulas, where the effect of radiation is neglected [14, 20,
43,44]. In this section, we provide a generalization of the formula derived in the previous
section and discuss its validity for whispering-gallery modes.

Assume that ω0 is a whispering-gallery mode of the open cavity Ω. Let Ωρ be a

small neighborhood of Ω. Suppose that the particle D is in Ωρ \ Ω, see Figure 3. If
the characteristic size δ of D is much smaller than ρ, which is in turn much smaller
than 2π/(

√
εmµmω0), then by the same arguments as those in the previous section, the

leading-order term in the shift of the resonant frequency ω0 is given by

ω1 ≃
M(1/εc, B)∇v0(z) · ∇v0(z) + ω2

0|B|(µc − 1)(v0(z))
2

2ω0µmεm
´

Ω
u2
0 dx+ εm

´

∂Ω
∂ωTω|ω=ω0

[u0]u0 dσ
.

Here, the polarization tensor M(εm/εc, B) in (15) is replaced by M(1/εc, B) since ε in
the medium surrounding the particle is equal to 1 and v0 is defined in R

d by

v0(x) = −ω2
0(µm−1)

ˆ

Ω

Γ(x−y;ω0)u0(y) dy+(
1

εm
−1)

ˆ

Ω

∇yΓ(x−y;ω0)·∇u0(y) dy, (17)
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where Γ(·;ω0) is the fundamental solution of ∆ + ω2
0, which satisfies the outgoing radi-

ation condition. We remark that v0 = u0 in Ω. Moreover, the assumption that ω0 is a
whispering-gallery mode is needed in order to have the gradient of v0 at the location of
the particle to have a significant magnitude.

Now, assume that the particle D is plasmonic, i.e., εc depends on the frequency ω
and can take negative values. In this case, there is a discrete set of frequencies, called
plasmonic resonant frequencies, such that at these frequencies problem (12) is nearly
singular, and therefore the polarization tensor associated with the particle D blows up
at those frequencies, see [2, 8, 11]. Assume that the plasmonic particle is coupled to the
cavity, i.e., there is a whispering-gallery cavity mode ω0 such that ℜω0 is a plasmonic
resonance of the particle.

Then when the particle D is illuminated at the frequency ℜω0, its effect on the cavity
mode ω0 is given by the following proposition.

Proposition 4.1. We have

ω1 ≃
M((1/εc)(ℜω0), B)∇v0(z) · ∇v0(z) + ω2

0|B|(µc − 1)(v0(z))
2

2ω0µmεm
´

Ω
u2
0 dx+ εm

´

∂Ω
∂ωTω|ω=ω0

[u0]u0 dσ
, (18)

where v0 is defined by (17).

Proposition 4.1 shows that despite their small size, plasmonic particles significantly
change the cavity modes when their plasmonic resonances are close to the cavity modes.

Finally, suppose that ω0 is of multiplicity m. Then, following [12, 18, 19], ω0 can be
split into m scattering resonances ωδ,j having the following approximations:

ω2
δ,j ≃ ω2

0 + δdηj, (19)

with ηj being the j-th eigenvalue of the matrix

(

M∇v0,p(z) · ∇v0,q(z) + ω2
0|B|(µc − 1)v0,p(z)v0,q(z)

µmεm
´

Ω
u0,pu0,q dx+ (1/(2ω0)) εm

´

∂Ω
∂ωTω|ω=ω0

[u0,q]u0,p dσ

)m

p,q=1

. (20)

Here, {v0,q}q=1,...,m are obtained by (17 with {u0,q}q=1,...,m being an orthonormal eigenspace
associated with ω0.

5 Numerical illustrations

In two dimensions, when the cavity and the small-volume particle are disks we can use the
multipole expansion method to efficiently compute the perturbations of the whispering-
gallery modes [33]. Our approach is as follows. We first use a projective eigensolver [15] to
obtain a coarse estimate of the locations of the resonances of a two disk system. We then
focus on the particular resonances in this set that correspond to the whispering-gallery
modes of the open cavity and obtain a refined estimate of their locations using Muller’s
method [3].

It is well-known that boundary integral formulations of the exterior and transmission
scattering problems are prone to so-called spurious resonances which can interfere with

12



the search for the true scattering resonances [17]. In order to achieve a better separa-
tion between the spurious resonances and the true resonances when using the projective
eigensolver, a combined field integral equation approach can be used [39,42].

Throughout this section, Ω is a disk of radius 1 centered at the origin and ω0 is the
frequency of a whispering-gallery mode. Let D be a disk of radius δ centered at (1+2δ, 0).
Suppose that εm = εc = 1/5. The behavior of ωδ,1, ωδ,2 as δ → 0 is plotted in Figure
4. Formula (19) matches the behavior of the eigenvalue perturbation as can be seen
in Figure 5. On the other hand, we can easily reconstruct δ from a single scattering
resonance shift.

Re(!)
6.248 6.25 6.252 6.254 6.256 6.258 6.26 6.262 6.264

Im
(!

)

-0.21

-0.2

-0.19

-0.18

-0.17

-0.16

-0.15

!0

!/;1
!/;2

Figure 4: As the size of the small disk δ → 0, the perturbed whispering-gallery modes ωδ,1 and ωδ,2

converge towards the unperturbed mode ω0.

Multipole expansion method

Asymptotic formula

-8 -7 -6 -5 -4 -3
Log2(δ)

-14
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-10
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-6

-4

-2

Log2 |ωδ, j2-ω02 |

Figure 5: Comparison between the asymptotic formula for the perturbation |ω2

δ,1−ω2

0 | of the whispering-
gallery mode and the perturbation computed numerically as the size of the small disk δ → 0.
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Next, consider a disk Dδ of radius δ = 0.1 centered at (z, 0). A plot of |ω2
δ,j − ω2

0| as
z varies between 1.2 and 6 is presented in Figure 6.

Multipole expansion method

Asymptotic formula

2 3 4 5 6
|z|

0.01

0.02

0.03

0.04

0.05

|ωδ, j2-ω02 |

Multipole expansion method

Asymptotic formula

2 3 4 5 6
|z|

0.01

0.02

0.03

0.04

|ωδ, j2-ω02 |

Figure 6: Comparison between the asymptotic formula for the perturbation |ω2

δ,j−ω2

0 | of the whispering-
gallery mode and the perturbation computed numerically as the position of the inclusion (z, 0) varies.
The plot on the left corresponds to the perturbed resonance ωδ,1 and the plot on the right corresponds
to the perturbed resonance ωδ,2.

By using (19), one can also reconstruct the polarization tensor. We highlight here the
case of plasmonic particles. In this case we have a strong enhancement in the frequency
shift, which allows for the recognition of much smaller particles.

Consider a disk D of radius 0.1 centered at (1.2, 0). Suppose εm = 1/5. A plot of
|ω2

δ,1−ω0
2| as 1/εc varies is presented in Figure 7. Notice the high peak in the perturbation

as εc approaches the value −1.

-2 -1 1 2

1μc

-15

-10

-5

Log2 |ωδ, j2-ω02 |

Figure 7: Resonance perturbation |ω2

δ,1 − ω2

0 | as a function of 1/εc, here allowed to also take negative
values.

Finally, suppose we have n particles arranged outside Ω as vertices of a regular n-gon,
and tangent to ∂Ω. Suppose all the particles have the same polarization tensor M . As
δ → 0, we can consider the contribution of each particle independently, and thus summing
up (19) we have

ω2
δ,j − ω2

0 ≃
n∑

i=1

δdηi,j, (21)
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where ηi,j is the j-th eigenvalue of (20) with z substituted by zi, the center of the i-
th particle. Considering different frequencies, we can reconstruct n by looking for a
minimizer of an appropriate discrepancy functional.

6 Concluding remarks

In this paper, the leading-order term in the shifts of scattering resonances by small
particles is derived and the effect of radiation on the perturbations of open cavity modes
is characterized. The formula is in terms of the position and the polarization tensor of
the particle. It is valid for arbitrary-shaped particles. By reconstructing the polarization
tensor of the small particle, the orientation of the perturbing particle can be inferred,
which affords the possibility of orientational binding studies in biosensing. It is also
worth mentioning that, based on [5, 13], the derived formula can be generalized to open
electromagnetic and elastic cavities.
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