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The aim of this paper is to present a new approach, based on singular volume integral
equations, in order to compute the size dependency of plasmonic resonances. The paper also
provides rigorous derivations of the extinction and absorption cross sections for elliptical
particles.
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1 Introduction

1.1 Position of the problem

The optical properties of metallic nanoparticle have been a subject of great interest in the past
decades. They have the ability to exhibit plasmonic resonances, which are strong enhancement
of the scattering and absorption cross sections at certain frequencies. This capacity to interact
strongly with light is a key to many major innovations in nanophotonics [34, 8, 38], in biomedical
imaging [23, 28], cancer treatment therapy [9]. For a nice review of some of these applications
we refer the reader to [16].

These resonances have been theoretically and experimentally studied by the physics commu-
nity. It has been experimentally shown [29] (via measurements of the extinction and absorption
cross sections) and numerically (simulations of the Maxwell equations, often via a coupled dipoles
method, see [27, 21]) that the frequency at which a metallic nanoparticle resonates depends on

(i) the shape of the particle;

(ii) the type of metal;

(iii) the surrounding medium;

(iv) the size of the particle.
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Plasmonic resonances have been the subject of some theoretical work as well in the physics
community. In the case of a spherical particle, the classical Mie theory explains points (ii) to
(iv). In the case where the particle is not spherical, using the quasi-static approximation and
solving Laplace equation, computations of the polarizability for some simple shapes have given
a lot of insights on points (i), (ii), and (iii); see, for instance, [41]. Moreover, the conservation
of energy fails in the quasi-static theory, due to the absence of radiative loss. This issue has
been dealt by adding a radiative correction [1].

The size dependence has been more problematic. Some corrections of the quasi-static ap-
proximation, sometimes called the modified long-wavelength approximation, or computations of
a dynamic polarizability have tackled this issue [30, 39, 27, 32]. Nevertheless, they heavily rely
on strong assumptions and are valid only for spheroidal shapes.

In the mathematical community, plasmonic resonances are a more recent subject of interest.
In the quasi-static approximation, plasmonic resonances were shown to be an eigenvalue problem
linked to the Neumann Poincaré operator [20, 6, 24]. It was then showed that Maxwell’s equation
yields a similar type of eigenvalue problems, and a computation of the polarizability for small
plasmonic particle was given, solving items (i) to (iii) for a general regular shape [2]. Note that
these studies were all done in the case where the shape of the particle is assumed to have some
regularity, and the theory breaks down when the particle has corners. Some recent progress has
been made on this topic [10, 22, 36].

The size dependance has been justified in [4, 7] in the scalar case (transverse electric or
transverse magnetic) and in [5] in the Maxwell setting. However, practical computations of
this size dependency remains complicated. We aim here at presenting a new approach, based
on a singular volume integral equation, to compute this size dependency. Our integral volume
approach can be extended to the case where the shape of the particle has corners.

1.2 Main contribution

In this work we show, using a volume integral equation that the resonant frequencies at which
a nanoparticle of characteristic size δ exhibits plasmonic resonances occurs can be written as a
nonlinear eigenvalue problem:

Find ω such that f(ω) ∈ σ
(

T (ωδ)
)

(1.1)

for some nonlinear function f and some operator T (ωδ) (see Definition 2.2).
These types of problems are extremely difficult to handle in their generality. In this work,

we add some assumptions arising from experimental observations and classical electromagnetic
theory to compute solutions of (1.1) in a regime that corresponds to practical situations.

The perturbative analysis presented in this work is based on the following assumptions:

(i) The size δ of the particle is small compared to the wavelenght of the lights at plasmonic
frequencies:

δ
ω

c
≪ 1;

(ii) The particle is constituted of metal, whose permittivity can be described by a Drude-
Lorentz type model [35].

2



In this regime, we show that (Theorem 5.1):

∂

∂ω
σ(T (ωδ)) ∼ δ

c
≪ 1.

And using that we give the following procedure for solving (1.1):

• Find ω0 such that f(ω0) ∈ σ(T (0));

• Compute σ(T (δω0)) by a perturbative method;

• Find ω1 such that f(ω1) ∈ σ(T (δω0)).

Since, in practical situations ∂
∂ωf(ω) ≫ δ

c (this comes from the fact that the particle is metallic
and can be checked numerically, see appendix A for more details), one can see that ω1 is a good
approximated solution of problem (1.1).

1.3 Additional contributions

In this paper, we also show that in the case where the particle has an elliptic shape, the dipole
resonance of the nanoparticle (and its dependence on the size of the particle) can be very easily
computed using the L dyadic that can be found in the physics literature [43, 44]. This dyadic
L is often incorrectly derived in the literature. In Appendix B we give a correct derivation of
L, as well as some precisions on some common misconceptions about singular integrals found
in the classical literature on electromagnetic fields. We also give formulas for the computations
of some observable quantities such as the extinction and absorption cross sections for elliptical
particles (see Section 6). To the best of our knowledge, this is the first time that a formal proof
is given for these type of computations.

2 Model and definition

2.1 Helmholtz equation

We consider the scattering problem of a time-harmonic wave incident on a plasmonic nanoparti-
cle. Denote by ε0 and µ0 the electric permittivity and the magnetic permeability of the vacuum
and by c0 = (ε0µ0)

−1/2 the speed of light in the vacuum. The homogeneous medium is charac-
terized by its relative electric permittivity εm and relative magnetic permeability µm, while the
particle occupying a bounded and simply connected domain of center of mass z0:

D = z0 + δB ⋐ R
2

with C1,α boundary is characterized by its electric permittivity εc and its magnetic permeability
µc, both of which may depend on the frequency. We assume that ℜεc < 0,ℑεc > 0 and define

km =
ω

c0

√
εmµm, kc =

ω

c0

√
εcµc, (2.1)

and

εD(ω) = εmχ(R2\D̄) + εc(ω)χ(D̄), µD = µmχ(R2\D̄) + µcχ(D), (2.2)
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z0

Ei(x, ω)

εmεc(ω)

D = z0 + δB

Es(x, ω) = ?

δ

δω ≪ 1

Figure 1: Schematic representation of the scattering problem.

where χ denotes the characteristic function. Let ui(x) = eikmd·x be a transverse magnetic
incident wave. Here, ω is the frequency and d is the unit direction of incidence. We assume that
the particle is nonmagnetic, i.e., µm = µc. Throughout this paper, we assume that εm is real
and strictly positive and that ℜkc < 0 and ℑkc > 0.

Let u be the transverse magnetic field. We can write:











∇ · 1

εD(ω)
∇u+

ω2

c20
µmu = 0 in R

2\∂D,

us := u− ui satisfies the Sommerfeld radiation condition.

(2.3)

Proposition 2.1. Problem (2.3) is well posed, and if u is its unique solution, then

u ∈ C2
(

R
2 \ ∂D

)

∩ C0
(

R
2
)

.

Moreover, if ∂Ω is of class C2,α, then

u
∣

∣

D
∈ C2,α

(

D
)

.

Proof. The well-posedness is addressed in [4]. The interior regularity is addressed in [19].

We also denote by Gkm the outgoing Green function for the homogeneous medium, i.e., the
unique solution of:

(

∆+
ω2

c20
εmµm

)

Gkm(·, z) = −δz in R
2 (2.4)

4



satisfying the Sommerfeld radiation condition. Gkm is given by (see [33]):

Gkm(x, z) =− 1

4i
H1

0 (km|x− z|), (2.5)

G0(x, z) =− 1

2π
log |x− z|.

2.2 Volume integral equation for the electric field

We start by defining a singular integral operator, sometimes known as the magnetization integral
operator [17].

Definition 2.1. Introduce

T k
D :

L2(D,R2) −→ L2(D,R2)

f 7−→ ∇
∫

D
∇Gk(·, y) · f(y)dy.

We then give the equation satisfied by the electric field:

Proposition 2.2. The electric field inside the particle satisfies the volume integral equation (or
Lippman-Schwinger equation):

(

εc

εm − εc
I − T k

D

)

∇u =
εc

εm − εc
∇ui. (2.6)

Proof. First, subtract from (2.3) the following equation:

1

εm
∆ui +

ω2

c20
µmui = 0.

Then multiplying by Gkm(y, z) and integrating by parts (using the radiation condition for u−ui),
we find:

−
∫

D

(

1

εD
− 1

εm

)

∇u(y) · ∇Gkm(y, z)dy −
∫

R3

1

εm
∇
(

u(y)− ui(y)
)

· ∇Gkm(y, z)dy

+

∫

R3

ω2

c20
µmGkm(y, z)

(

u(y)− ui(y)
)

dy = 0.

Now, integrating by parts a second time and using (2.4), we arrive at:

1

εm

(

u(z)− ui(z)
)

−
∫

D

(

1

εD
− 1

εm

)

∇u(y) · ∇Gkm(y, z)dy = 0.

Taking the gradient of the above equation and evaluating it at x = z0 we obtain the desired
equation:

∇u(z0)−
(

εm

εc
− 1

)

∇
∫

D
∇u(y) · ∇Gkm(y, z0)dy = ∇ui(z0).
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2.3 Plasmonic resonances as an eigenvalue problem

Definition 2.2. We say there is a plasmonic resonance if εc
εm−εc

∈ σ
(

T k
D

)

.

2.4 Dipole resonance

Definition 2.3. The dipole moment of a particle is given by:

P =

∫

D
p(x)dx =

∫

D
ε0χ(x)E(x)dx =

∫

D
(εc − ε0)E(x)dx.

We say that there is a dipolar plasmonic resonance if the dipole moment P satisfies

P =

∫

D
(εc − ε0)∇u(x)dx ≫ (εc − ε0)

∫

D
∇ui(x)dx.

Therefore, we want to compute the values of εc and εm such that

(i)

λ :=
εc

εm − εc
∈ σ

(

T k
D

)

;

(ii) One of the eigenvectors ϕλ associated with λ has non zero average:

1

|D|

∫

D
ϕλ 6= 0.

3 The quasi-static approximation

In this section we study the case when the particle has finite size δ 6= 0 and δkm ≪ 1. This
corresponds to the usual quasi-static approximation. It has already been shown in [2, 4] that the
solution of Maxwell’s or Helmholtz equation converge uniformly when δkm → 0 to the solution
of the quasi-static problem in the case of negative index materials.

Proposition 3.1. In the quasi-static approximation, the excitation potential ui becomes linear
and the scattering problem described by (2.6) becomes:

Find u such that

{

∇ · (εD(x)∇u) = 0,

u− ui = O
(

|x|−1
)

.

Equivalently, u is a solution of the following integral equation:

(

εc

εm − εc
I − T 0

D

)

∇u =
εc

εm − εc
∇ui. (3.1)
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Remark 3.1. These types of transmission / exterior problems have been extensively treated in
the literature. For more details on the well posedness, the appropriate functional spaces, and the
study of small conductivity inhomogeneities we refer to [33, 3].

Proposition 3.2. Let y = z0 + δỹ and write ũ(ỹ) = u(y), and ũi(ỹ) = ui(y). Then ũ solves:

(

εc

εm − εc
I − T 0

B

)

∇ũ =
εc

εm − εc
∇ũi.

Proof. This is a direct consequence of Theorem B.3.

3.1 Spectral analysis of the static operator, link with Neumann-Poincaré

operator

It has been shown in [2, 4] that the plasmonic resonances are linked to the eigenvalues of the
Neumann-Poincaré operator. In this subsection, we show that the surface integral approach and
the volume integral approach are coherent. The link between the volume integral operator and
the Neumann Poincaré operator is summed up in Corollary 3.1.

Recall the orthogonal decomposition

L2(D,R2) = ∇H1
0 (D)⊕H(div 0, D)⊕W,

where H(div 0, D) is the space of divergence free L2 vector fields and W is the space of gradients
of harmonic H1 functions. We start with the following result from [14]:

Proposition 3.3. The operator T 0
D is a bounded self-adjoint map on L2(D,R2) with ∇H1

0 (D),
H(div 0, D) and W as invariant subspaces. On ∇H1

0 (Ω), T 0
D[ϕ] = ϕ, on H(div 0, D), T 0

D[ϕ] = 0
and on W:

ν · T 0
D[ϕ] =

(

1

2
+K∗

D

)

[ϕ · ν] on ∂D.

Proof. The proof can be found in [17, 14]. �

From this, it immediately follows that the following corollary holds.

Corollary 3.1. Let λ 6= 1. Let ϕD 6≡ 0 be such that

λϕD − T 0
D[ϕD] = 0 in D.

Then,

ϕD ∈ W,

∇ ·ϕD = 0 in D,

λϕD = ∇SD[ϕD · ν] in D,

λϕD · ν =

(

1

2
+K∗

D

)

[ϕD · ν] on ∂D.
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Letting uD = SD[ϕD · ν], we have:

{

∆uD = 0 in R
2 \ ∂D,

[∂nuD] = ϕD · ν on ∂D.
(3.2)

Proposition 3.4. If the boundary of D is C1,α, then T 0
D

∣

∣

W
: W −→ W is a compact operator.

Proof. The operator T 0
D is a bounded map from W to H1(D,R2) [17, 31]. The C1,α regularity

of ∂D and the usual Sobolev embedding theorems ensure its compactness (see [12, Chapter 9]).

Proposition 3.5. The set of eigenvalues (λn)n∈N of T 0
D

∣

∣

W
is discrete, and the associated eigen-

functions (ϕn) form a basis of W. We have:

T 0
D

∣

∣

W
=
∑

n

λn〈ϕn, ·〉ϕn.

3.2 Link between σ(LB) and σ(T 0
B ), and the dipole resonances for an ellipse

As explained in Section 2.4, to understand the dipole resonance of the particle, we need to
compute the eigenvectors of T 0

B that have a non zero average, i.e., that are not orthogonal in
the L2(B) sense to both e1 and e2, where (e1, e2) is an orthonormal basis of R2.

In general, constant vector fields over B are not eigenvectors of TB. Nevertheless in the case
where B is an ellipse, then constant vector fields can be eigenvectors for TB. This is essentially
a corollary of Newton’s shell theorem.

Theorem 3.1. If B is an ellipse centered at the origin, then the following holds: Let ϕ ∈
L2(B,R2) and let λ ∈ R \ {0, 1} be such that:







λϕ− T 0
B [ϕ] = 0,
∫

B
ϕ 6= 0.

Then

(λI − LB)

∫

B
ϕ0 = 0.

Remark 3.2. The operator we are considering is essentially the double derivative of a classical
Newtonian potential. When the domain is an ellipse, the Newtonian potential of a constant is a
second order polynomial. Therefore, its second derivative is a constant. Hence the possibility to
have constant eigenvectors for TB. This property characterizes ellipses. In fact, it is the weak
Eshelby conjecture; see [25] for more details.

Proof. For the proof we need the following lemma from [15]:

Lemma 3.1. If B is an ellipse, then for any ϕ0 ∈ R
2 :

TB[ϕ0] = LBϕ0.
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Combining this with Proposition 3.5, and using the orthogonality between the eigenvectors
of T 0

B , one gets the result. �

Corollary 3.2. Let E ∈ R
2 \ {0} be such that λE = LBE. Then,

T 0[E] = λE.

Proof. This is a direct consequence of Lemma 3.1.

3.3 Static polarizability of an ellipse

In this subsection, we assume that B is an ellipse.

Definition 3.1. The polarizability M is the matrix linking the average incident electrical field
to the induced dipolar moment. It is defined by

p = M
(

1

|D|

∫

D
∇ui

)

.

Theorem 3.2. The static polarizability M of the particle B is given by

M = δ2ε0 (εc − 1)

(

εc

εm − εc
+ LB

)−1

. (3.3)

Remark 3.3. The polarizability is used to compute different observables such as the scattering
and extinction cross sections of the particle (see Section 6).

Proof. We recall equation (3.1) for the electric field inside the particle

(

εc

εm − εc
I − T 0

D

)

∇u =
εc

εm − εc
∇ui.

We now remark that the operator

P : L2(D,R2) −→L2(D,R2)

f 7−→
∫

D
f

is the projector onto the subspace of L2 spanned by constant functions. Compose the previous
equation with P we get:

P ◦
(

εc

εm − εc
I − T 0

D

)

[∇u] = P[∇ui].

We now use Proposition 3.5 to diagonalise T 0:

P
(

∑

i

(

εc

εm − εc
+ λi

)

〈ϕn,∇u〉ϕn

)

= P[∇ui].
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Since the particle is an ellipse, we know by Corollary 3.2 that E1 ∈ R
2 and E2 ∈ R

2, the
eigenvectors of LB for eigenvalues λL,1 and λL,1, are also eigenvectors for T 0 for some eigenvalues
λi1 and λi2 . Moreover, λi1 = λL,1 and λi2 = λL,2. We can also note that (E1,E2) span the
image of the projector P. By orthogonality of the eigenvectors of T 0, we get

P
(

∑

i

(

εc

εm − εc
+ λi

)

〈ϕn,∇u〉ϕn

)

=

(

εc

εm − εc
+ λL,1

)

〈E1,∇u〉E1

+

(

εc

εm − εc
+ λL,2

)

〈E2,∇u〉E2.

Noticing that 〈Ei,∇u〉 = 〈Ei,P(∇u)〉 = Ei · P(∇u) we obtain that the right-hand side of the
previous equation is exactly the expression of

(

εc

εm − εc
+ LB

)

P(∇u)

in the basis (E1,E2). Therefore, we have shown that

P ◦
(

εc

εm − εc
I − T 0

D

)

[∇u] =

(

εc

εm − εc
+ LB

)

P(∇u).

Thus

∫

D
∇u =

(

εc

εm − εc
+ LB

)−1 ∫

D
∇ui.

Using Definition 2.3 of the induced dipole moment, we get the result. �

3.4 Static polarizability of an arbitrary particle

In the case where the particle occupies an arbitrary C1,α domain, the volume integral approach
does not yield a simple expression for the polarizability. Nevertheless, the layer potential ap-
proach gives the well known polarization tensor. The validity of the polarization tensor formula
for negative index material has been shown in [4, 2].

We recall here the formula for completeness:

Theorem 3.3. [4, 2] The static polarizability is given by

α = δ2ε0(ε− 1)

∫

∂B
y

(

ε+ 1

2(ε− 1)
I −K∗

B

)−1

[νj ](y)dσ(y),

where ε = εc
εm

.
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4 Perturbative approach: spectral analysis of the dynamic op-

erator

In this section, we aim at finding λ̃ such that there exists some f 6≡ 0 ∈ L2(B,R2) such that

(

λ̃I − T δk
B

)

[f ] = 0.

Let λn0 be an eigenvalue of T 0. Let V ⊂ C be a neighborhood of λn0 such that λI − T 0 is
invertible for every λ ∈ V . Let ϕn0

∈ L2(B,R2) be a unitary eigenvector associated with λn0 .

Lemma 4.1. For any λ ∈ V , the following decomposition holds:

(

λI − T 0
)−1

=
〈ϕn0

, ·〉
λ− λn0

ϕn0
+R(λ),

where

C −→
(

L2(B,R2) → L2(B,R2)
)

λ 7−→R(λ)

is holomorphic in λ.

Proof. Denote by P1 : L2(B,R2) → L2(B,R2) and P2 : L2(B,R2) → L2(B,R2) the orthogonal
projections on ∇H1

0 (B) and H(div 0, B), respectively. Using Propositions 3.3 and 3.5, we can
write:

λI − T 0 =
∑

(λ− λn)〈ϕn, ·〉ϕn + (λ− 1)P1 + λP2.

The result immediately follows. �

Lemma 4.2. Let λn0 be an eigenvalue for T 0. Then, if |k| is small enough, there exists a
neighborhood V ⊂ C of λn0 such that T δk

B has exactly one eigenvalue in V .

Proof. We start by writing:

λI − T δk = λI − T 0 +
(

T 0 − T δk
)

.

There exists V ⊂ C such that λI − T 0 is invertible for every λ ∈ V \ {λn0}. Therefore,

λI − T δk =
(

λI − T 0
)

(

I +
(

λI − T 0
)−1

(

T 0 − T δk
))

.

Using Lemma 4.1, we get

(

λI − T δk
)

[f ] = f +
〈ϕn0

,
(

T 0 − T δk
)

[f ]〉
λ− λn0

ϕn0
+R(λ)

(

T 0 − T δk
)

[f ].

11



We can show that
∥

∥

∥
T 0 − T δk

∥

∥

∥
−→ 0 (δk → 0).

Since λ 7→ R(λ) is holomorphic, the compact operator

λ 7−→ R(λ)
(

T 0 − T δk
)

converges uniformly to 0 with respect to λ when k goes to 0. Since the operator

Kk :

L2(B,R2) −→ L2(B,R2)

f 7−→ 〈ϕn0
,
(

T 0 − T δk
)

[f ]〉
λ− λn0

ϕn0

is a rank one linear operator, the operator I +Kδk
B is invertible.

Therefore, there exists K > 0 such that λI − T k = I +Kδk +R(λ)
(

T 0 − T δk
)

is invertible
for every λ ∈ V \ {λn0} and every |δk| < K. �

We can now give an asymptotic formula for the perturbed eigenvalues λ̃ of T δk:

Proposition 4.1. The following asymptotic formula for the perturbed eigenvalues holds:

λ̃ ∼ λn0 −
〈(

T 0 − T δk
)

ϕn0
,ϕn0

〉

L2(B,R2)
(4.1)

Proof. We use the same notations as in the previous lemmas. We have:

λ̃ ∈ σ
(

T δk
)

∪ V \ {λn0} ⇔ ∃f 6≡ 0 such that
(

λ̃I − T δk
)

[f ] = 0

⇔ ∃f 6≡ 0 such that

(

I +
(

T 0 − T δk
)(

λ̃I − T 0
)−1

)

[f ] = 0.

Using the decomposition of Lemma 4.1 for
(

λ̃I − T 0
)−1

we get the following equation for f and

λ̃:

f +
〈ϕn0

, f〉
λ̃− λn0

(

T 0 − T δk
)

[ϕn0
] +
(

T 0 − T δk
)

R(λ̃)[f ] = 0. (4.2)

We start by proving that 〈ϕn0
, f〉 6= 0. Indeed, if one has 〈ϕn0

, f〉 = 0 then (4.2) becomes

(

I +
(

T 0 − T δk
)

R(λ̃)
)

[f ] = 0.

If k is close enough to 0, then ‖
(

T 0 − T δk
)

R(λ̃)‖ < 1 and then I+
(

T 0 − T δk
)

R(λ̃) is invertible
and we have f = 0, which is a contradiction.

We then note that f and
〈ϕn0

,f〉

λ̃−λn0

(

T 0 − T δk
)

[ϕn0
] are terms of order O(|f |) whereas the

regular part, the term
(

T 0 − T δk
)

R(λ̃)[f ] is of order O(δk|f |).

12



We drop the regular part, and take the scalar product against ϕn0
to get:

〈ϕn0
, f〉+ 〈ϕn0

, f〉
λ̃− λn0

〈(

T 0 − T δk
)

[ϕn0
],ϕn0

〉

= 0. (4.3)

We divide equation (4.3) by 〈ϕn0
, f〉 6= 0 to obtain:

λ̃ = λn0 −
〈(

T 0 − T δk
)

[ϕn0
],ϕn0

〉

.

�

We also prove the following lemma, giving an approximation of the resolvent of T k
D along

the direction of the eigenfunction ϕn0
:

Proposition 4.2. Let g ∈ L2(B,R2). If f ∈ L2(B,R2) is a solution of

(

λI − T δk
B

)

f = g,

then the following holds, for λ ∼ λn0:

〈f ,ϕn0
〉L2(B,R2) ∼

〈g,ϕn0
〉L2(B,R2)

λ− λn0 +
〈

(T 0 − T δk) [ϕn0
],ϕn0

〉

L2(B,R2)

.

Proof. The result follows directly from Lemma 4.1 and (4.2) with g in the right-hand side. �

5 Dipolar resonance of a finite sized particle

5.1 Computation of the perturbation via change of variable

By the change of variables: y = z0 + δỹ, ũ(ỹ) = u(y), ũi(ỹ) = ui(y), and (2.6) becomes:

(

εc

εm − εc
I − T δk

B

)

∇ũ =
εc

εm − εc
∇ũi.

We are now exactly in the right frame to apply the results of Section 4. We know that there is a

neighborhood Vi ⊂ C of λ
(0)
i , i ∈ {1, 2} such that T δkm

B has exactly one eigenvalue in Vi (Lemma
4.2) and that the perturbed eigenvalue is given by

Theorem 5.1.

λ̃ ∼ λ
(0)
i −

〈(

T 0
B − T δkm

B

)

ϕi,ϕi

〉

L2(B,R2)
, (5.1)

where ϕi is a unitary eigenvector of T 0
B associated with λ

(0)
i .
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5.2 The case of an ellipse

5.2.1 The perturbative matrix

In the case where B is an ellipse, since the eigenmodes associated with a dipole resonance are
constant ϕi ≡ Ei ∈ R

2 (see Section 3.2) and therefore formula (5.1) simplifies to:

Proposition 5.1. We have

〈(

T 0
B − T δkm

B

)

[ϕi],ϕi

〉

= Ei ·Mδkm
B Ei

with

Mδkm
B :=

∫∫

∂B×∂B

(

G0(x̃, z̃)−Gδkm(x̃, z̃)
)

ν(x̃)ν(z̃)⊤dσ(x̃)dσ(z̃).

Proof. From

〈(

T 0
B − T δkm

B

)

[ϕi],ϕi

〉

= Ei ·
∫

B
∇
∫

B
∇
[

G0(x, y)−Gδkm(x, y)
]

dydxEi,

an integration by parts yields the result. �

5.2.2 The algorithmic procedure

We now give a practical way to compute this perturbation in the case of an elliptical particle:

(i) Compute the resonant value associated with the static problem:

• Compute the matrix LB ∈ M2(R);

• Compute its spectrum λ1, λ2, and corresponding unitary eigenvectors E1 and E2;

(ii) Compute the perturbative matrix Mδkm
B and the perturbed eigenvalues

λ̃i = λi −Ei ·Mδkm
B Ei.

6 Computation of observables for an elliptical nanoparticle

6.1 Dipole moment beyond the quasi-static approximation

Denote by λ1 and λ2 the two eigenvalues of LB. Denote by E1, E2 the two eigenvectors (∈ R
2)

associated with λ1 and λ2 such that (E1,E2) forms an orthonormal basis of R2. Denote by
Q = (E1,E2) ∈ O(2) the matrix associated with this basis.

Since Ei are eigenmodes for T 0, we can use Lemma 4.2 to find:

〈∇u,Ei〉 ∼
〈∇ui,Ei〉

λ− λi + 〈(T 0 − T δk) [Ei],Ei〉
.

14



We can then write:

P ∼ δ2ε0(ε− 1)Q





1
λ−λ1+〈(T 0−T δk)[E1],E1〉 0

0 1
λ−λ2+〈(T 0−T δk)[E2],E2〉



Qt

(

1

|D|

∫

D
∇ui

)

.

(6.1)

Remark 6.1. This expression is valid near the resonant frequencies when the corresponding
mode is excited, i.e., when λ ∼ λi and ∇ui(z0) ·Ei ∼ |∇ui(z0)|.
Remark 6.2. The expression

Mdyn := δ2ε0(ε− 1)Q





1
λ−λ1+〈(T 0−T δk)[E1],E1〉 0

0 1
λ−λ2+〈(T 0−T δk)[E2],E2〉



Qt

is a dynamic version of the usual quasi-static polarization tensor.

6.2 Far-field expansion

Since we have an approximation of the dipole moment of the particle we can find an approxima-
tion of the electric field radiated far away from the particle. The far-field expansions written in
[4] is still valid (equation (4.8) in the aforementioned paper), one just has to replace the dipole
moment M(λ,D)∇ui(z0) where M is the usual polarization tensor defined with the Neumann
Poincaré operator by the new corrected expression obtained in (6.1). We get, for km|x−z0| ≫ 1,
λ ∼ λ1 or λ ∼ λ2:

us(x) ∼ ∇zG
km(x, z0) ·P.

6.2.1 Scattering amplitude

In this section we assume, for simplicity, that z0 = 0. In order to use the optical theorem [4, Sec-
tion 4], we want to compute the scattering amplitude defined by the asymptotic representation
of the scattered field in the far-field:

Definition 6.1. Let ui(x) = eikmx·d. Let x ∈ R
2 be such that |kmx| ≫ 1. Then

us(x) ∼ eikm|x|

√

km|x|
A∞

(

x

|x| ,d
)

(6.2)

with A∞ being the scattering amplitude.

We have the following formula for the scattering amplitude:

Proposition 6.1. We have

A∞

(

x

|x| ,d
)

= Ckm
x

|x| · Mdynd [1 + f(D, km,d)]

15



with

C =
1

4i

√

2

π
e−

i3π
4

f(D, km, d) =
1

|D|

∫

D

(

1− eikmd·x
)

dx,

and Mdyn being the dynamic polarization tensor introduced in Remark 6.2.

Remark 6.3. f represents the correction of the average illuminating field over the particle due
to the finite ratio between the size of the particle and the wavelength. Its magnitude is of the
order of δk.

6.3 Scattering and absorption cross sections

We recall here the following definitions from [11]:

Definition 6.2. Denote by U i the quantity

U i :=
∣

∣

∣ui(x)∇ui(x)− ui(x)∇ui(x)
∣

∣

∣
(= 2km).

The scattering cross section Qs is defined by:

Qs := − iω

εmU i

∫

∂BR

[us(x)∇us(x)− us(x)∇us(x)] · ν(x)dσ(x),

and the extinction cross section is defined by

Qext := − iω

εmU i

∫

∂BR

[

ui(x)∇us(x)− us(x)∇ui(x) + us(x)∇ui(x)− ui(x)∇us(x)
]

· ν(x)dσ(x).

Remark 6.4. One can see that Qs and Qext do not depend on R as long as BR contains D.
See [4, Section 4] for more details on these definitions.

We start by giving the following useful lemma:

Lemma 6.1. The following holds:

∫

∂BR

[

ui(x)∇us(x)− us(x)∇ui(x)
]

· ν(x)dσx ∼ −2
√
2πA∞(d,d) (R → ∞),

as well as

[us(x)∇us(x)− us(x)∇us(x)] · x

|x| ∼ 2ikm

∣

∣

∣

∣

A∞

(

x

|x| ,d
)∣

∣

∣

∣

2

(|x| → ∞).

Proof. The proof of the first estimate is based on the stationary phase method. It is given in
Appendix D.1. The second estimate can be obtained from (6.2) and the Sommerfeld radiation
condition. �

We use the optical theorem:
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Theorem 6.1. If ui(x) = eikmd·x, where d ∈ S
1, then:

Qext =
4
√
2πω

εm
I [A∞ (d,d)] ,

Qs =
ω

εm

∫

S1

|A∞ (x̂,d)|2 dσ(x̂).

Proof. This is a direct consequence of Lemma 6.1.
In the same spirit as in [4] we can then write the cross sections as follows.

Proposition 6.2. Near plasmonic resonant frequency, the leading-order term of the average over
the orientation of the extinction (respectively absorption) cross section of a randomly oriented
nanoparticle is bounded by:

Qext
m ≤ ω

2πεm
I [TrMdyn] ,

Qa
m ≤ ω

2πεm
k2m |TrMdyn|2 ,

where Tr denotes the trace.

Proof. We use Theorem 6.1, Proposition 6.1 and integrate over all orientations d ∈ S
1 to obtain:

Qext
m =

1

2π

∫

S1

4
√
2πω

2εmkm
I [A∞ (d,d)] dσ(d)

≤ 1

2π

ω

εm

∫

S1

I [d · Mdynd (1 + f(D, km,d))] dσ(d).

The term f(D, km,d) is a small correction of the order of kmδ that is due to the fact that what
determines the dipole moment is not the incident field at the center of the particle, but the
average of the field over the particle. Therefore, it reduces the dipole response of the particle.
Ignoring it gives an upper bound on the cross sections:

Qext
m ≤ 1

π

ω

εm
I [TrMdyn] .

Similarly, we have

Qs
m =

1

2π

∫

S1

iω

εm

∫

S1

|A∞(x,d)|2dσ(x)dσ(d)

≤ ω

2εmπ
k2m |TrMdyn|2 .

A Justification of the asymptotic regime

To quickly justify the model and the regime we are working in, we give some values for the
physical parameters used in the model corresponding to practical situations.

In practice:

• ω ∈ [2, 5] · 1015Hz
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Figure 2: Numerical values of the real part of f(ω) = λ(ω) = εc(ω)
εm−εc(ω)

for a gold nanoparticle
in water.

• δ ∈ [5, 100] · 10−9m

• εm ∼ 1.8ε0 ∼ 1.5 · 10−11F ·m−1 for water

• µ0 ∼ 12 · 10−7H ·m−1

• c0 ∼ 3 · 108m · s−1

• km ∼ 107m−1

Therefore, one can see that we have δk ≤ 10−2 for very small particles, and δk ∼ 1 for bigger
100nm particles.

For the permittivity of the metal, one can use a Lorentz-Drude type model:

εc(ω) = ε0

(

1−
ω2
p

ω(ω + iτ−1)

)

with

• τ = 10−14 s;

• ωp = 2 · 1015s−1.

This model is enough to understand the behavior of ε but for numerical computations, it is
better to use the tabulated parameters that can be found in [37]. We plot f(ω) on Figure 2
and df

dω on Figure 3. One can see that df
dω is of order 10−15 while δ

c ∼ 10−16 for particles under
100nm. So the procedure described in Section 1.2 is justified.

B Singular integrals, Calderón Zygmund type operators

There is an abundant literature on singular integral operators, yet these type of principal values
integral are misunderstood and misused in some of the physics literature. We include here some
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Figure 3: Numerical values of the real part of df
dω (ω) for a gold nanoparticle in water.

properties that are well known for people who are familiar with these types of operators, but
seem to be misunderstood in other communities.

There have been numerous contributions in the twentieth century. Some notable ones are

• Tricomi (1928) [42];

• Kellogg (1929) [26];

• Calderón-Zygmund (1952) [13];

• Seeley (1959) [40];

• Gel’fand-Shilov (1964) [18];

• Mikhlin (1965) [31].

In the following, we do not state the results in their most general settings and assumptions.
We use some notations and hypotheses that are adapted to our problem (Green’s function
method).

B.1 Principal value integral

Let D ⊂ R
d be a bounded domain. We are concerned with the existence and manipulation of

integrals of the type

∫

D
f

(

x− y

|x− y|

)

1

|x− y|du(y)dy, x ∈ D, (B.1)

where u is a function defined on D and f a function defined on S
d−1. We denote by B(x, ε) the

ball centered at x of radius ε.

19



Definition B.1. The principal value of the integral (B.1) is defined by

lim
ε→0

∫

D\B(x,ε)
f

(

x− y

|x− y|

)

1

|x− y|du(y)dy.

We now give sufficient conditions for the existence of the principal value.

Theorem B.1. if u ∈ C0,α(D), α > 0 and
∫

Sd−1 f(θ)dθ = 0 then the principal value of (B.1)
does exist.

Remark B.1. These conditions are not necessary, and singular integrals can be defined for a
much larger class of functions. f can be replaced by f(x, θ) and u does not need to be chosen as
Hölder continuous, one can choose u in some Lebesgue space u ∈ Lp(D).

Example 1. Consider the Green function for the free space Laplace equation in two and three
dimensions:

G(x, y) =











1

2π
log |x− y| if d = 2,

1

4π

1

|x− y| if d = 3,

then ∂xi,xj
G(x, y) = f

(

x−y
|x−y|

)

1
|x−y|d

with

f

(

x− y

|x− y|

)

=















1

2π

(

δij − 2
(xi − yi)(xj − yj)

|x− y|2
)

if d = 2,

− 1

4π

(

δij − 3
(xi − yi)(xj − yj)

|x− y|2
)

if d = 3.

One can check that
∫

Sd−1 f(θ)dθ = 0. Therefore, for u ∈ C0,α(D) one can write:

∫

D
∂xi,xj

G(x, y)u(y)dy = lim
ε→0

∫

D\B(x,ε)
∂xi,xj

G(x, y)u(y)dy.

B.2 Non spherical volume of exclusion

One common misconception found in the physics literature is that the limit of the integral over
the domain minus a small volume around the singularity does not depend on the shape of the
volume when the maximum cord of the volume of exclusion goes to zero. The limit does depend
on the shape of the volume. This issue has been dealt with by Mikhlin [31, p. 40]. We include
here the formula for the limit, using the notations used in physics literature. Assume that
V (x, ε) ⊂ D is a small volume of exclusion such that its boundary is given, in polar coordinates
by:

∂V (x, ε) =

{

y ∈ D, |x− y| = εβ

(

x− y

|x− y|

)}

.
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Theorem B.2. Under the assumptions of Theorem B.1,

lim
ε→0

∫

D\V (x,ε)
f

(

x− y

|x− y|

)

1

|x− y|du(y)dy =

∫

D
f

(

x− y

|x− y|

)

1

|x− y|du(y)dy

− u(x)

∫

Sd−1

f(θ) log β(θ)dθ.

Example 2. Let d = 2 and let

f

(

x− y

|x− y|

)

=
1

2π

(

1− 2
(x1 − y1)

2

|x− y|2
)

be corresponding to the angular term of ∂1,1G(x, y). If V (x, ε) is an ellipse of semi-axis ε and
eccentricity e where x is at one of the focal point

∂V (x, ε) =

{

y ∈ D, |y − x| = ε
(1− e2)

1− ex1−y1
|x−y|

}

,

then the correction term is

u(x)

2π

∫

θ∈S1

(

1− 2θ21
)

log

(

1− e2

1− eθ1

)

dθ =
u(x)

2π

∫ 2π

0
(1− 2 cos2(t)) log

(

1− e2

1− e cos(t)

)

dt.

Remark B.2. Note that the correction term does not only depend on the shape of the volume of
exclusion, but also on the position of x inside it. In the previous example, if x is at the center of
the ellipse instead of being one of the focal point, the polar equation, hence the correction term,
is modified.

B.3 Change of variables

This issue has also been dealt with by Seeley [40] and Mikhlin [31, p. 41]. The classical
formula for a change of variable in an integral cannot be applied in a straightforward way, and
some precautions have to be taken into account. Consider a region D̃ and an homeomorphism
ψ : D −→ D̃. Consider f̃ = f ◦ ψ−1, ũ = u ◦ ψ−1, and denote by J(x̃) the non vanishing
Jacobian of ψ−1. The corrective term to the usual change of variable formula is given by the
reciprocal image of the unit sphere by ψ. One can establish formulae of the form:

|x− y|2 = |ψ(x)−ψ(y)|2F
(

ψ(x),
ψ(x)−ψ(y)
|ψ(x)−ψ(y)|

)

+O
(

|ψ(x)−ψ(y)|3
)

,

and then the change of variable can be written as follows:

Theorem B.3. We have
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∫

D
f

(

x− y

|x− y|

)

1

|x− y|du(y)dy =

∫

D̃
f̃

(

x̃− ỹ

|x̃− ỹ|

)

1

|x̃− ỹ|d ũ(ỹ)J(ỹ)dỹ

+ ũ(x̃)J(x̃)

∫

Sd−1

f̃(θ̃) logF (x̃, θ̃)dθ̃.

Remark B.3. For a dilation : x̃ = x−z0
δ , the image of the unit sphere is still a sphere and

therefore, F = 1 and the usual change of variable formula is valid.

B.4 Differentiation of weakly singular integrals, integration by parts

We want to differentiate integrals of the type

∫

D
g

(

x− y

|x− y|

)

1

|x− y|d−1
u(y)dy, x ∈ D.

The following results can be found in [40, 31]:

Theorem B.4. If u is Hölder continuous, and if g and its first derivative are bounded then:

(i) Differentiation formula under the integral sign:

∂

∂xi

∫

D
g

(

x− y

|x− y|

)

1

|x− y|d−1
u(y)dy =

∫

D

∂

∂xi

[

g

(

x− y

|x− y|

)

1

|x− y|d−1

]

u(y)dy

+ u(x)

∫

Sd−1

g(θ)θidθ;

(ii) Integration by parts formula:

∫

D
g

(

x− y

|x− y|

)

1

|x− y|d−1

∂

∂xi
[f(y)] dy = −

∫

D

∂

∂xi

[

g

(

x− y

|x− y|

)

1

|x− y|d−1

]

f(y)dy

+

∫

∂D
g

(

x− y

|x− y|

)

f(y)

|x− y|d−1
ν(y) · eidσ(y) + f(x)

∫

Sd−1

g(θ)θidθ.

Remark B.4. Once again we only give sufficient conditions for the validity of theses formulas,
corresponding to our framework. These formulas are valid for u ∈ Lp and for more general
kernels.

Example 3. Let d = 2 and consider the second derivative of a Newtonian potential:

∂xi,xj

∫

D

1

2π
log |x− y|u(y)dy = ∂xi

∫

D

xj − yj

|x− y|
1

|x− y|u(y)dy.
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We can apply Theorem B.4 with g(θ) = θj to obtain:

∂xi,xj

∫

D

1

2π
log |x− y|u(y)dy =

∫

D

1

2π

(

δij −
2(xi − yi)(xj − yj)

|x− y|2
)

1

|x− y|2u(y)dy + u(x)
1

2π

∫

S1

θjθidθ

=

∫

D

1

2π

(

δij −
2(xi − yi)(xj − yj)

|x− y|2
)

1

|x− y|2u(y)dy + u(x)
δij

2

=

∫

D
∂xi,xj

[log |x− y|]u(y)dy + u(x)
δij

2
.

Example 4. Let d = 3 and consider the second derivative of a Newtonian potential:

∂xi,xj

∫

D

1

4π
|x− y|−1u(y)dy = −∂xi

∫

D

1

4π

xj − yj

|x− y|3u(y)dy.

We can apply Theorem B.4 with g(θ) = θj and get, similarly to the previous example:

∂xi,xj

∫

D

1

4π
|x− y|−1u(y)dy =

∫

D

1

4π
∂xi,xj

[

|x− y|−1
]

u(y)dy + u(x)
δij

3
.

B.5 The L dyadic

Lemma B.1. Let x ∈ D. Denote by LD(x) the matrix

∫

∂D
∇G(x, y)ν⊤(y)dσ(y).

Assume that D can be written in polar coordinates as

D =

{

y ∈ R
d, |x− y| ≤ ρ

(

x− y

|x− y|

)}

.

Then,

(LD(x))i,j =

∫

∂D
∂xj

G(x, y)ν(y) · eidσ(y) = −1

d
+

∫

θ∈Sd−1

fi,j(θ) log ρ(θ)dθ

with fi,j being defined in Example 1.

Proof. We start by using the integration by part formula from Theorem B.4, with g(θ) = 1
2πθj

if d = 2, g(θ) = 1
4πθj if d = 3, and f = 1. We obtain

∫

D
∂xi,xj

G(x, y)dy =

∫

∂D
∂xj

G(x, y)ν(y) · eidσ(y) +
1

d
.

In order to compute
∫

D ∂xi,xj
G(x, y)dy, we use the change of variables [40, 31] : y = x+ tθ,
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θ ∈ S
d−1 and t ∈ [0, ρ(θ)],

∫

D
∂xi,xj

G(x, y)dy =

∫

θ∈Sd−1

∫

t∈[0,ρ(θ)]
fi,j(θ)t

−dtd−1dtdθ

=

∫

θ∈Sd−1

fi,j(θ) log ρ(θ)dθ.

�

B.6 The formula found in physics literature

In this section we show that

Proposition B.1. Let V ∗ ⊂ R
d such that

(i) 0 ∈ V ∗;

(ii) ∂V ∗ is a piece-wise smooth;

(iii) V ∗ is radially convex with respect to the origin.

Let V (x, ε) = x+ εV ∗. Then,

∂xi,xj

∫

D
G(x, y)u(y)dy = lim

ε→0

∫

D\V (x,ε)
∂xi,xj

G(x, y)u(y)dy − (LV ∗)ij u(x).

Proof. Let x ∈ D and let V (x, ε) ⊂ D. Assume that V (x, ε) can be described by some polar
equation:

V (x, ε) =

{

y ∈ D, |x− y| ≤ ερ

(

x− y

|x− y|

)}

. (B.2)

Before the computation we also recall that ∂xi,xj
G(x, y) can be written as

∂xi,xj
G(x, y) = fij

(

x− y

|x− y|

)

|x− y|−d,

as it was seen in Example 1. Then we have

∂xi,xj

∫

D
G(x, y)u(y)dy =∂xi

∫

D
∂xj

G(x, y)u(y)dy (B.3)

=
1

d
u(x) +

∫

D
∂xi,xj

G(x, y)u(y)dy. (B.4)

Using Theorem B.2 we obtain:

∫

D
∂xi,xj

G(x, y)u(y)dy = lim
ε→0

∫

D\V (x,ε)
∂xi,xj

G(x, y)u(y)dy − u(x)

∫

Sd−1

fij(θ) log ρ(θ)dθ
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and therefore,

∂xi

∫

D
∂xj

G(x, y)u(y)dy = lim
ε→0

∫

D\V (x,ε)
∂xi,xj

G(x, y)u(y)dy − u(x)

(

−1

d
+

∫

θ∈Sd−1

fi,j(θ) log ρ(θ)dθ

)

.

Using Lemma B.1 we arrive at

∂xi

∫

D
∂xj

G(x, y)u(y)dy = lim
ε→0

∫

D\V (x,ε)
∂xi,xj

G(x, y)u(y)dy − (LV ∗)ij u(x).

�

Remark B.5. There are several issues and misconceptions in the literature with this formula:

(i) The shape V ∗ cannot be completely arbitrary as often mentioned. It has to satisfy some
regularity condition, since the construction of LV ∗ uses some integration on the boundary
of V ∗ involving the normal vector.

(ii) The exclusion volume V (x, ε) needs to be taken small in the numerical evaluation of the
integral. Only if the test function u is constant then ε does not need to be small.

(iii) The derivation of this formula often contains mistakes. One common derivation of this
formula is through a splitting of the integral of the form

∂xi

∫

D
∂xj

G(x, y)u(y)dy =

∫

D\V (x,ε)
∂xi,xj

G(x, y)u(y)dy

+

∫

V (x,ε)
∂xi,xj

G(x, y) [u(y)− u(x)] dy + u(x)∂xi

(

∫

V (x,ε)
∂xj

G(x, y)dy

)

,

which is a wrong application of Leibnitz’s rule. The reason why it is wrong is that, if the
limit when ε → 0 is to be taken, then one has to take into account the dependency of the
volume of integration on D\V (x, ε) on the variable x and use Reynold’s transport theorem
to compute the derivative and add some boundary integral terms. The correct splitting
would be:

∂xi

∫

D
∂xj

G(x, y)u(y)dy =

∫

D\V (x,ε)
∂xi,xj

G(x, y)u(y)dy−
∫

∂V (x,ε)
∂xj

G(x, y)u(y)ν(y)·eidσ(y)

+

∫

V (x,ε)
∂xi,xj

G(x, y) [u(y)− u(x)] dy +

∫

∂V (x,ε)
∂xj

G(x, y) [u(y)− u(x)]ν(y) · eidσ(y)

+∂xi
u(x)

∫

V (x,ε)
∂xj

G(x, y)dy+u(x)

(

∫

∂V (x,ε)
∂xj

G(x, y)ν(y) · eidσ(y) +
1

d
+

∫

V (x,ε)
∂xi,xj

G(x, y)dy

)

.

In the limit ε → 0, the extra terms compensate and the first (wrong) splitting gives the
same (correct) result as the second one.
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C The Neumann Poincaré operator

Definition C.1. K∗
D : L2(∂D) → L2(∂D) is defined by

K∗
D[ϕ](x) :=

1

ωd

∫

∂D

(x− y) · ν(x)
|x− y|d ϕ(y)dσ(y) , (C.1)

with ν(x) being the outward normal at x ∈ ∂D. We note that K∗
D maps L2

0(∂D) onto itself.

D Various proofs

D.1 Proof of Lemma 6.1

We give elements of the proof of:

Lemma D.1.
∫

∂BR

[

ui(x)∇us(x)− us(x)∇ui(x)
]

· ν(x)dσx− ∼ 2
√
2πA∞(d,d) (R → ∞).

Proof. Using the Sommerfeld radiation condition, we have, when R → ∞, ∇us(x) · ν(x) ∼
ikmus(x) for x ∈ ∂BR. Hence, when R → ∞:

W :=

∫

∂BR

[

ui(x)∇us(x)− us(x)∇ui(x)
]

· ν(x)dσ(x)

∼
∫

∂BR

ikm
eikm(|x|−d·ν(x))

√

km|x|
(d · ν(x) + 1)A∞

(

x

|x| ,d
)

dσ(x)

= ikm
1√
kmR

∫

∂BR

e−ikmR[ν(x)·(d−ν(x))] (d · ν(x) + 1)A∞(ν(x),d)dσ(x)

=
ikmR√
kmR

∫ 2π

0
e−ikmR[cos θ cos θ0+sin θ sin θ0−1][cos θ cos θ0 + sin θ sin θ0 + 1]A∞ ((cos θ, sin θ), (cos θ0, sin θ0)) dθ

with d = (cos θ0, sin θ0).
Since this integral has the form

∫ b

a
f(θ)eiλg(θ)dθ

with λ ≫ 1, it can be handled with a standard stationary phase argument. g here has two
critical points in θ = θ0 and in θ = θ0 + π. Since f(θ0) = (d · d + 1)A∞(d,d), f(θ0 + π) = 0),
g(θ0) = 0 and g”(θ0) = 1 we get:

W ∼ ikmR√
kmR

f(θ0)e
ikmRg(θ0)

√

2π

kmR|g”(θ0)|
e
iπ
4

g”(θ0)
|g”(θ0)|

∼ −2
√
2πA∞(d,d).
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