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Summary

TheMultiple Multipole Program is a Trefftz method approximating the electromagnetic field in a

domainfilledwith ahomogeneous linearmedium.MMPcaneasily copewith unboundeddomains;

yet, it cannot accommodate inhomogeneous or nonlinear materials, situations well within the

scope of the standard Finite ElementMethod.

We propose to couple FEM andMMP to model Maxwell’s equations for materials with spatially-

varying properties in an unbounded domain. In some bounded parts of the domain, we use

Nédélec’s first family of curl-conforming elements; in the unbounded complement, multipole

expansions. Several approaches are developed to couple both discretizations across the common

interface:

1. Least-squares-based coupling using techniques from PDE-constrained optimization.

2. Multi-field variational formulation in the spirit of mortar finite elementmethods.

3. Discontinuous Galerkin coupling between the FEMmesh and the single-entityMMP subdomain.

4. Coupling by tangential components traces.

We study the convergence of these approaches in a series of numerical experiments.

KEYWORDS:

finite element method, multiple multipole program, method of auxiliary sources, Trefftz method,

computational electromagnetics

1 INTRODUCTION

Weconsider the following second-order vector elliptic boundary valueproblem thatmodels amagnetostatic regime in vector potential formulation:

{

∇× [M (x) ∇× u] +∇φ = f

∇ · u = 0
in R

3, (1a)

u (x) = O
(

‖x‖−1
)

for ‖x‖ → ∞ uniformly. (1b)

0Abbreviations: FEM: Finite ElementMethod.MMP:MultipleMultipole Program. Superscript f in formulas: FEM. Superscript m in formulas: MMP. PDE:
Partial Differential Equation. DG: Discontinuous Galerkin. Subscript n in formulas (e.g.,un,vn): discrete.
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• M : R3 → R
3,3 is a symmetric, bounded, uniformly positive-definitematerial coefficient.We assume thatM agreeswith the identitymatrix

I ∈ R
3,3 outside of a bounded domainΩ⋆ ⊂ R

3:

M (x) = I ∀x ∈ R
3 \ Ω⋆. (2)

• u : R
3 → R

3 represents themagnetic vector potential. The first equation in (1a) is the Ampère’s law, the second the Coulomb gauge.

• φ : R
3 → R is a Lagrange multiplier to impose the Coulomb gauge. φmust be subject to a further constrain such that it is uniquely defined

by (1a). In the scope of this work, we set
∫

R3 φ dx = 0 .

• f : R
3 → R

3, with∇ · f = 0, represents the stationary current that generates themagnetic field. f has compact support inΩ⋆.

• For the decay condition (1b), please refer to [1, p. 180, (5.28)].

The weak solutionu ∈ Hloc

(

curl,R3
)

of (1) belongs to the continuous Trefftz space1

T (D) :=
{

v ∈ Hloc (curl,D) : ∇× (∇× v) = 0 , ∇ · v = 0 , v satisfies the decay condition (1b)
}

(3)

forD = R
3 \ Ω⋆.

Trefftz methods seek to approximate u on subdomains of R3 \ Ω⋆ in some finite-dimensional subspace of T (D). Our approach uses spaces

spanned by multipole expansions that exhibit point singularities outside ofD. We refer to this discretization as the MMP approximation after the

Trefftz method known asMultiple Multipole Program; see Section 2 for details.

However, functions in a Trefftz space cannot approximate u in Ω⋆. There we use a standard finite element spaceVn ⊂ H (curl,Ω⋆), together

with the usual primal variational formulation of (1).

The main issue arising is how to impose the coupling between the MMP domain and the finite element domain. Several algorithms will be pre-

sented in Section 3. Their convergence will be shown numerically in Section 4.1.Wewill discuss their complete numerical analysis in a forthcoming

publication.

1.1 RelatedWork

The coupling between FEM and MMP for the Poisson’s equation has been discussed by the authors from the perspective of numerical analysis in

[2]. The approaches we propose to realize the coupling have been described there for the first time, except for the approach of Section 3.3.

The FEM–MMP coupling has also been tackled before from an engineering perspective by one of the authors [3]. The numerical experiment

proposed in that work is a 2-dimensional version of themodel discussed here in Section 4.2. A differentmethodology for coupling FEMandMMP is

used: coupling is done by ad-hoc pointmatching of field values, theDirichlet data, on the interface between the FEMandMMPdomains (collocation

method), while the Neumann data enter through a boundary term of the variational formulation. The resulting overdetermined FEM–MMP system

of equations is solved in the least-squares sense.

To the best of our knowledge, outside of these papers little work has been devoted to the investigation of strategies combining Trefftz methods

with conventional finite elementmethods.

2 MULTIPLEMULTIPOLE PROGRAM

The concept of the Multiple Multipole Program was proposed by Ch. Hafner in his dissertation [4] based on the much older work of G. Mie and

I. N. Vekua [5, 6]. Essentially, theMie-Vekua approach expands the field in a 2Dmultiply-connected domain by amultipole expansion supplemented

with generalized harmonic polynomials. Extending these ideas, MMP introduces more multipoles (multiple multipoles) than required according to

Vekua’s theory [6].

2.1 Multipoles

Basis functions spanning the MMP Trefftz spaces (3) are the so-called multipoles, potentials spawned by (anisotropic) point sources. Given (3),

multipoles are exact solutions of the homogeneous system of PDEs∇× (∇× u) = 0, ∇ · u = 0 subject to the decay condition (1b).

1The subscript “loc” indicates that functions belong to the reported space after multiplication with a compactly supported smooth function inR3 .
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FIGURE 1 Sample domainsΩ⋆,Ωf, andΩm.

A multipole can be written as v (x) := f (rxc) g (θxc, ϕxc) in a spherical coordinate system inR3 (r ∈ [0,∞), θ ∈ [0, 2π),ϕ ∈ [0, π]) with respect

to its center c ∈ R
3. Here, (rxc, θxc, ϕxc)

⊤ are the spherical coordinates of the vectorxc := x− c.

The radial dependence f (rxc) includes a singularity at the center, |f (r)| → ∞ for r → 0, and the desired decay condition at infinity. Because of

the singularity, multipoles must always be centered outside of the domain where they are used as a tool for approximation.

The spherical dependenceg (θxc, ϕxc) is usually formulated in terms of vector spherical harmonics [7, p. 289]. Additional constraints on the basis

functions, like the Coulomb gauge in (1), are taken into account in the vector spherical harmonics that express g.

Specifically, themultipoles chosen for our numerical experiments in Section 4 are:

vlm (rxc, θxc, ϕxc) = − 1
l(2l+1)

1

r
l+1
xc

Φlm (θxc, ϕxc) , l = 1, . . . ,∞, m = −l, . . . , l,

Φlm (θ, ϕ) := r×∇sphYlm (θ, ϕ) , r = (r, 0, 0)⊤,
(4)

where∇sph denotes the gradient in spherical coordinates and Ylm (θ, ϕ) the spherical harmonics [1, p. 108–109]. It can be shown that Φlm (θ, ϕ)

does not depend on r despite the presence of r in its expression. Thesemultipoles satisfy the decay condition (1b).

Each multipole is characterized by a location, i.e. its center c, and the parameters l (degree) and m. In our convergence tests we always place

several multipoles at a given location up to a certain order, which is the maximum degree of multipoles with that center. Hence, we use the term

multipole expansionwhen referring to several multipoles in one point up to a certain order, which is the degree where the expansion is truncated.

3 COUPLING STRATEGIES

We consider the partition R3 = Ωf ∪ Γ ∪ Ωm, Γ := ∂Ωf = ∂Ωm, Ωf ∩ Ωm = ∅. Ωf is a bounded Lipschitz domain, the FEM domain, whereasΩm

is dubbed theMMP domain. The terminology indicates the type of approximation of u to be employed in each subdomain. Coupling is done across

the interface Γ. We demandΩ⋆ ⊂ Ωf, but not necessarilyΩ⋆ = Ωf. IfΩ⋆ 6= Ωf, Γ is an artificial interface.

We define

uf := u|Ωf ∈ H (curl,Ωf) , um := u|Ωm ∈ Hloc (curl,Ωm) , (5a)

and

φf := φ|Ωf ∈ H1
∗ (Ωf) , φm := φ|Ωm = 0, (5b)

as the divergence-free condition is already imposed strongly for functionsum ∈ T (Ωm) . H1
∗ (Ωf) is defined as

{

v ∈ H1 (Ωf) :
∫

Ωf
v dx = 0

}

.
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Wedenote by γm themagnetic trace operator:

γm : Hloc (curl curl,Ω◦) → H− 1
2 (div, Γ) , γmv := n× (M∇× v) , v ∈ Hloc (curl curl,Ω◦) . (6)

• Hloc (curl curl,Ω◦) is the space of functionsv ∈ Hloc (curl,Ω◦) for which∇× (∇× v) ∈ L2
loc (Ω◦), given ◦ = f,m.

• We always taken as the normal pointing outwards with respect toΩf intoΩm: see Figure 1.

Across Γ the solutionu of (1) has to satisfy the transmission conditions [8, p. 107, Lemma 5.3]

n× uf
∣

∣

Γ
= n× um

∣

∣

Γ
, (7a)

γmu
f
∣

∣

Γ
= γmu

m
∣

∣

Γ
, (7b)

n · uf
∣

∣

Γ
= n · um

∣

∣

Γ
. (7c)

(7a) and (7b) stem from the first line (Ampère’s law) of the system (1a), (7c) from the second line (Coulomb gauge).

The starting point of all coupling approaches is the weak form of (1) in Ωf. By testing the first PDE with v
f ∈ H (curl,Ωf) and the second with

ψf ∈ H1
∗ (Ωf), integrating by parts overΩf, and using the transmission conditions (7b) and (7c), we obtain















∫

Ωf

(

M∇× uf
)

·
(

∇× vf
)

dx+
∫

Γ

γmu
m · vf dS+

∫

Ωf

∇φf · vf dx =
∫

Ωf

f · vf dx ∀vf ∈ H (curl,Ωf)

∫

Ωf

uf · ∇ψf dx−
∫

Γ

(n · um) ψf dS = 0 ∀ψf ∈ H1
∗ (Ωf)

(8)

We end upwith different coupling approaches depending on howwe impose the additional transmission condition (7a). Each coupling approach

can be expressed as a minimization problem for different Lagrangian functionals, to be discussed in the following sections. The resulting linear vari-

ational saddle point problems will also be illustrated. An exception is the approach described in Section 3.4, where a Lagrangian formulation is not

possible.

Discretization

Throughoutwe use tetrahedralmeshesMf onΩf.We discretizeu
f ∈ H (curl,Ωf)with the lowest-orderH (curl,Ωf)-conforming edge elements of

the first family due to Nédélec [9], i.e.

Vn (Mf) :=
{

vn ∈ H0 (curl,Ωf) : vn|K (x) = aK + bK × x, aK,bK ∈ R
3, x ∈ K ∀K ∈ Mf

}

, (9a)

and φf ∈ H1
∗ (Ωf)with piecewise linear Lagrangian finite elements, i.e.

Vn (Mf) :=
{

vn ∈ C0 (Ωf) : vn|K (x) = aK + bK · x, aK ∈ R, bK ∈ R
3, x ∈ K ∀K ∈ Mf

}

. (9b)

On discrete functions φfn ∈ Vn (Mf) ⊂ H1 (Ωf)we impose the condition
∫

Ωf
φfn dx = 0 bymeans of a scalar Lagrangemultiplier.

For Ωm we take some multipoles to form the discrete space T n (Ωm) ⊂ T (Ωm). The dimension of T n (Ωm) is determined by the number of

multipole expansions chosen for the approximation and their orders.

3.1 PDE-constrained Least-Squares Coupling

Taking the cue from (7a), we seekuf ∈ H (curl,Ωf) , u
m ∈ T (Ωm) ,

• minimizing

JΓ

(

uf,um
)

:= ‖n× uf − n× um‖2
H

− 1
2 (divΓ,Γ)

(10)

(see [8, p. 244] for a definition ofH− 1
2 (divΓ, Γ))

• and satisfying the constraint (8).

These two conditions determine a quadraticminimization problemunder a linear variational constraintwherewe switch the usualmeaning of these

two components: here the constraint is given by the variational form of the minimization problem that satisfies the system of PDEs (8) inΩf, while

the functional JΓ to beminimized is the additional transmission condition not imposed by the variational form.
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This problem can be rephrased as seeking a saddle point of the following Lagrangian:

L
(

uf,um, φf,pf, ξf
)

:= 1
2
‖n× uf − n× um‖2

H
− 1

2 (divΓ,Γ)
+

∫

Ωf

(

M∇× uf
)

·
(

∇× pf
)

dx+
∫

Γ

γmu
m · pf dS+

∫

Ωf

∇φf · pf dx−
∫

Ωf

f · pf+

∫

Ωf

uf · ∇ξf dx−
∫

Γ

(n · um) ξf dS .

(11)

• φf ∈ H1
∗ (Ωf), as discussed in Section 3.

• pf ∈ H (curl,Ωf) is the Lagrangemultiplier imposing the first line of (8).

• ξf ∈ H1
∗ (Ωf) is the Lagrangemultiplier imposing the second line of (8).

The norm ‖·‖
H

− 1
2 (divΓ,Γ)

is nonlocal. Thus, for practicality we replace (10) with theL2 (Γ)-norm,

JΓ

(

uf,um
)

:= ‖n× uf − n× um‖2
L2(Γ) , (12)

by seekinguf ∈ HΓ (curl,Ωf) :=
{

v ∈ H (curl,Ωf) : n× v|Γ ∈ L2
t (Γ)

}

.

The necessary and sufficient optimality conditions of (11) considering (12) give rise to the saddle point problem

Seek uf ∈ HΓ (curl,Ωf) , u
m ∈ T (Ωm) , φ

f ∈ H1
∗ (Ωf) , p

f ∈ H (curl,Ωf) , ξ
f ∈ H1

∗ (Ωf) :










aLS
[(

uf,um
)

,
(

vf,vm
)]

+ bLS
[(

vf,vm, ψf
)

,
(

pf, ξf
)]

= 0

bLS
[(

uf,um, φf
)

,
(

qf, ζf
)]

=
∫

Ωf

f · qf dx
(13)

∀vf ∈ HΓ (curl,Ωf) , ∀v
m ∈ T (Ωm) , ∀ψ

f ∈ H1
∗ (Ωf) , ∀q

f ∈ H (curl,Ωf) , ∀ζ
f ∈ H1

∗ (Ωf) ,

where

aLS
[(

uf,um
)

,
(

vf,vm
)]

:=

∫

Γ

[

n×
(

uf − um
)]

·
[

n×
(

vf − vm
)]

dS , (14a)

bLS
[(

uf,um, φf
)

,
(

qf, ζf
)]

:=

∫

Ωf

(

M∇× uf
)

·
(

∇× qf
)

dx+

∫

Γ

γmu
m · qf dS+

∫

Ωf

∇φf · qf +

∫

Ωf

uf · ∇ζf dx−

∫

Γ

(n · um) ζf dS . (14b)

We propose the following discretization for (13):

• uf,vf,pf,qf ∈ Vn (Mf) of (9a),

• φf, ψf, ξf, ζf ∈ Vn (Mf) of (9b), and

• um,vm ∈ T n (Ωm) .

3.2 Multi-Field Coupling

The multi-field domain decomposition method allows to use FEM with nonconforming meshes on different domains for the same boundary value

problem [10]. This is well-suited for the coupling because one can think of MMP as FEMwith special functions acting on a “mesh with a single cell”

defined onΩm.

For Maxwell’s equations, the multi-field method imposes tangential continuity in a weak sense by means of a Lagrange multiplier λ := γmu
m.

However, given the defining equation of λ and the generalized Stokes’ theorem inH (curl,Ω) [8, p. 59, Theorem 3.31], what is actually imposed is

the continuity of the tangential components trace,

n×
(

n× uf
)
∣

∣

Γ
= n×

(

n× um
)
∣

∣

Γ
, (15)

instead of the continuity between twisted tangential traces implied by (7a). Note that (15) is an equation connecting traces inH− 1
2 (curlΓ, Γ) and

therefore it has to be tested with functions in the dual spaceH− 1
2 (divΓ, Γ).

Hence, themulti-field coupling can be expressed by the following Lagrangian:

L
(

uf,um, φf,λ
)

:= JΩf

(

uf, φf
)

+ JΩm

(

um
)

+

∫

Γ

{

n×
[

n×
(

uf − um
)]}

· λ dS . (16)
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The functional JΩf expresses the saddle point problem that satisfies (1a) foru
f inΩf:

JΩf

(

uf, φf
)

:=
1

2

∫

Ωf

(

M∇× uf
)

·
(

∇× uf
)

dx−

∫

Ωf

f · uf dx+

∫

Ωf

uf · ∇φf dx−

∫

Γ

(

n · uf
)

φf dS . (17a)

The functional JΩm foru
m inΩm has a similar formulation, but for a homogeneous problem:

JΩm

(

um
)

:=
1

2

∫

Ωm

‖∇ × um‖2
ℓ2

dx =
1

2

∫

Γ

γmu
m · um dS . (17b)

A Lagrangemultiplier φm to impose the divergence-free condition is not required givenum ∈ T (Ωm): see (5b).

We therefore obtain the following saddle point problem:

Seek uf ∈ H (curl,Ωf) , u
m ∈ T (Ωm) , φ

f ∈ H1
∗ (Ωf) , λ ∈ H− 1

2 (divΓ, Γ) :










aMF
[(

uf,um
)

,
(

vf,vm
)]

+ bMF
[(

vf,vm
)

,
(

φf,λ
)]

=
∫

Ωf

f · vf dx

bMF
[(

uf,um
)

,
(

ψf,χ
)]

= 0

(18)

∀vf ∈ H (curl,Ωf) , ∀v
m ∈ T (Ωm) , ∀ψ

f ∈ H1
∗ (Ωf) , χ ∈ H− 1

2 (divΓ, Γ) ,

where

aMF
[(

uf,um
)

,
(

vf,vm
)]

:=

∫

Ωf

(

M∇× uf
)

·
(

∇× vf
)

dx+

∫

Γ

γmu
m · vm dS , (19a)

bMF
[(

uf,um
)

,
(

ψf,χ
)]

:=

∫

Ωf

uf · ∇ψf dx−

∫

Γ

(n · um) ψf dS+

∫

Γ

{

n×
[

n×
(

uf − um
)]}

· χ dS . (19b)

We inserted (7c) into (17a) to define bMF (·, ·).

For the discretization of (18), we suggestuf,vf ∈ Vn (Mf) of (9a), φ
f, ψf ∈ Vn (Mf) of (9b), andu

m,vm ∈ T n (Ωm).

The discretization of λ ∈ H− 1
2 (divΓ, Γ) is a topic debated in the literature [11, Section 4]. We opted for the tangential trace on Γ of the ele-

ments of the Nédélec’s spaceVn. Note that we ignore the duality ofλ, choosing a nonconformingλn 6∈ H− 1
2 (divΓ, Γ), which is the most common

discretization strategy [11, Section 4.1].

3.3 Discontinuous Galerkin

As for themulti-field coupling (Section 3.2), we again treatMMP as a single element of FEM. Here we exploit the other main approach for imposing

weak continuity on nonconforming meshes, which is the Discontinuous Galerkin method. Specifically, we want to impose weak continuity of the

tangential components (7a) [12].

Under this idea, the coupling can be expressed as a discreteminimization problem for the following Lagrangian:

L
(

ufn,u
m
n , φ

f
n

)

:= JΩf

(

ufn, φ
f
n

)

+ JΩm

(

umn

)

+

∫

Γ

[

n×
(

ufn − umn

)]

·Pn

(

ufn − umn

)

dS , (20)

whereufn ∈ Vn (Mf) of (9a), φ
f
n ∈ Vn (Mf) of (9b), andu

m
n ∈ T n (Ωm) . JΩf and JΩm are the same as in (17a) and (17b).

Depending on the choice of the discrete operatorPn : H
1
2 (Γ) → H− 1

2 (Γ), we obtain different DG approaches. We follow the Interior Penalty

DGmethod [13]:

Pn (u) := ǫn M (∇× u) +
η

h
M (n× u) . (21)

• ǫn (x) : R
3 → R is = +1 if you are integrating on an intersection of the FEM meshMf on Γ from the side of Ωf and = −1 if you are

integrating from the side ofΩm.

• M (x) : R
3 → R

3 is themean of thematerial parameters2 ofΩf andΩm on Γ:

M (x) :=
M (x) + I

2
∀x ∈ Γ . (22)

• η ∈ R is a penalty parameter that needs to be set heuristically. It should depend on the number of degrees of freedom ofMMP.

• h ∈ R is themeshwidth ofMf restricted to Γ.

2If the first equation in (1a) is not linear with respect to the material parameter, e.g.,∇ ×
[

m−1
∇ × u

]

+ ∇φ = f with material parameterm ∈ R, then

we definePn (u) := ǫn m−1
∇ × u + η

h
m−1

uwherem := (m + 1) /2.
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Finding the stationary point of (20) leads to the discrete saddle point problem

Seek ufn ∈ Vn ⊂ H (curl,Ωf) , u
m
n ∈ T n ⊂ T (Ωm) , φ

f
n ∈ Vn ⊂ H1

∗ (Ωf) :










aDGn
[(

ufn,u
m
n

)

,
(

vfn,v
m
n

)]

+ bDGn
[(

vfn,v
m
n

)

, φfn
]

=
∫

Ωf

f · vfn dx

bDGn
[(

ufn,u
m
n

)

, ψfn
]

= 0

(23)

∀vfn ∈ Vn ⊂ H (curl,Ωf) , ∀v
m
n ∈ T n ⊂ T (Ωm) , ∀ψ

f
n ∈ Vn ⊂ H1

∗ (Ωf) .

In (23) we define a symmetric bilinear form aDGn (·, ·) and linear form bDGn (·, ·) as

aDGn

[(

ufn,u
m
n

)

,
(

vfn,v
m
n

)]

:=

∫

Ωf

(

M∇× ufn

)

·
(

∇× vfn

)

dx+

∫

Γ

γmu
m
n · vmn dS − (24a)

∫

Γ

[

M ∇×
(

ufn + umn

)]

·
[

n×
(

vfn − vmn

)]

dS−

∫

Γ

[

n×
(

ufn − umn

)]

·
[

M ∇×
(

vfn + vmn

)]

dS +

∫

Γ

2 η

h

[

M n×
(

ufn − umn

)]

·
[

n×
(

vfn − vmn

)]

dS ,

bDGn

[(

ufn,u
m
n

)

, ψfn

]

:=

∫

Ωf

uf · ∇ψf dx−

∫

Γ

(n · um) ψf dS . (24b)

We inserted (7c) into (17a) to define bDGn (·, ·).

3.4 Coupling by Tangential Traces

Instead of the continuity between twisted tangential traces implied by (7a), we take into account the continuity of the tangential components trace

(15), as in Section 3.2. (15) is imposed in weak form by testing it withvm ∈ T (Ωm):
∫

Γ

[

n×
(

n× uf
)]

· vm dS −

∫

Γ

[

n×
(

n× um
)]

· vm dS = 0 ∀vm ∈ T (Ωm) . (25)

Combining (25) with the variational form of (8), we end upwith the following system:

Seek uf ∈ H (curl,Ωf) , u
m ∈ T (Ωm) , φ

f ∈ H1
∗ (Ωf) :



























∫

Ωf

(

M∇× uf
)

·
(

∇× vf
)

dx +
∫

Γ

γmu
m · vf dS +

∫

Ωf

∇φf · vf dx =
∫

Ωf

f · vf dx

∫

Γ

[

n×
(

n× uf
)]

· vm dS −
∫

Γ

[

n×
(

n× um
)]

· vm dS = 0

∫

Ωf

uf · ∇ψf dx −
∫

Γ

(n · um) ψf dS = 0

(26)

∀vf ∈ H (curl,Ωf) , ∀v
m ∈ T (Ωm) , ∀ψ

f ∈ H1
∗ (Ωf) .

Galerkin discretization of (26) is straightforward: as in Section 3.3, we replaceH (curl,Ωf)with the Nédélec’s finite element spaceVn (Mf) of

(9a),H1 (Ωf)with the Lagrangian finite element spaceVn (Mf) of (9b), andT (Ωm)with a finite-dimensional subspaceT n (Ωm).

4 NUMERICAL EXPERIMENTS

To study the convergence we employ uniform h-refinement ofMf and p-refinement of the Trefftz approximation, in the sense that we increase the

number of multipole expansions.Wemonitor the followingL2-errors:

• The error in the FEMdomain, which is the relativeL2 (Ωf)-error compared to the reference solution inΩf, i.e.
∥

∥

∥

∥

∥

u−

n
∑

i=1

αi vi (x)

∥

∥

∥

∥

∥

L2(Ωf)

/

‖u‖
L2(Ωf)

, αi ∈ R , vi ∈ Vn (Mf) , i = 1, . . . , n . (27)

• TheMMP error on the interface, which is the relativeL2 (Γ)-error compared to the reference solution on Γ.

The sum of the relativeL2-error for FEM inΩf and the relativeL
2-error forMMP on Γ is the total relative error of the coupling.

We can ignore the impact of numerical integration for FEM because we use a local Gaussian quadrature rule that is exact for polynomials of

degree 2 (order 3).
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FIGURE 2 Cross-section of the 3D mesh of

the FEMdomainΩf along theYZ-plane.

The blue mesh represents Ω⋆. The green

mesh covers a hollow ball centered in the

origin that, in themesh shown, has radius 2.

Implementation

Meshes were generated using COMSOL [14].

Our code iswritten in C++14, using C++11multithreading for parallelization.Weuse Eigen v3.3.4 [15] for linear algebra and HyDi [16] for theFEM

component. The PARDISO v5.0.0 solver [17] provides the sparse LUdecomposition to invert thematrices of the coupling, characterized by nontrivial

sparsity patterns.

4.1 Maxwell’s Equations with Exact Solution

Wesolve∇×∇×u = j, ∇·u = 0. Ω⋆ is a torus of radius 0.1 centered at (0, 0, 0.5)
⊤ andwith normal axis

(

0,
√

2
2
,
√
2

2

)⊤
. InΩ⋆, ‖j‖ = 1.05 · 106

and is tangential to the loop; elsewhere, j = 0. A samplemesh is shown in Figure 2.

We consider two different auxiliary boundaries Γ between Ωf and Ωm: two spheres centered in the origin of radius 4 and 2. Given that we use

tetrahedral meshes, Γ is actually a polyhedral approximation of a sphere.

Multipole expansions are uniformly positioned on a circle of radius 1 centered in the origin and lying on theXY-plane. This positioning has been

chosen to show that with auxiliary boundaries Γ one can properly approximate u in Ωm regardless of the locations of the multipoles. We only use

multipole expansions of order 1.
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(a) Plot obtainedwith the PDE-constrained coupling.
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FIGURE 3 h-refinement plots forMaxwell’s equations with exact solution. Γ is a sphere of radius 4. Blue points are for FEM, red ones forMMP.
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FIGURE 4 h-refinement plots forMaxwell’s equations with exact solution. Γ is a sphere of radius 2. Blue points are for FEM, red ones forMMP.

Figures 3 and4 show h-refinement convergence plots for all coupling approaches, which lead to very similar plots.We can clearly identify a linear

convergence of the FEM error when Γ has radius 4, while the convergence is slower with radius 2, when the multipoles are closer to the source of

the field inΩ⋆. In both cases, theMMP error decreasesmuchmore slowly. This is due to the fact that the exact solution is so easy to approximate in

Ωm that it can already be represented by very fewmultipoles. The number of multipoles is set to the natural logarithm of the number of vertices of

the FEMmeshes on the boundary Γ.
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FIGURE 5 Meshwidth h vs. MMP degrees of freedom forMaxwell’s equations with exact solution: total relative error. Γ is a sphere of radius 4.

Figures 5 and 6 show surface plots of the total relativeL2-error for all coupling approaches. The error is much lower for Γ as a sphere of radius 4

than 2, decreases with h (algebraic convergence), and is generally independent of the number of multipoles. However, the error also increases with

the coarsest meshes and highest numbers of multipoles considered, when the coupling is mostly difficult due to a disproportionately large number
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FIGURE 6 Meshwidth h vs. MMP degrees of freedom forMaxwell’s equations with exact solution: total relative error. Γ is a sphere of radius 2.

of degrees of freedom forMMP (dense blocks of the couplingmatrices) with respect to FEM (sparse blocks). In these cases, it is difficult for a direct

solver to properly solve such an ill-conditioned system, and theMMP error dominates.

All coupling approaches lead to similar plots, except for themulti-field andDG-based coupling approaches, which exhibit even larger errors with

the coarsest meshes and highest numbers of multipoles considered. Some of these errors for the multi-field coupling are so large that they have

been omitted from the plots.

4.2 Magnetostatic Inductor

We solve∇× (κ∇× u) = j, ∇ · u = 0. Ω⋆ is composed of three regions: two hollow cylinders and one hollow rectangular prism (see Figure 7a).

In the cylinders, j is tangential to the lateral surfaces, with opposite directions and ‖j‖ = 1.05 · 106 or= 1.25 · 106 in each of the cylinders. In the

prism, κ ∼ ∇× u according to a given curve (hysteresis loop). Elsewhere, j = 0 and κ = 1. Themesh is shown in Figure 7a.

Multipole expansions are positioned at the corners and uniformly along the edges and faces of a rectangular prism with sizes 0.1 × 0.1 × 0.08

(26 expansions).We only usemultipole expansions of order 1.

Figure 7b shows a plot of the magnitude of the numerical solution ‖un‖ for the coupling by tangential traces. Results were collected after 10

iterations to let κ ∼ ∇× u converge to a stable value for each entity ofMf .

5 CONCLUSIONS

Compared to other hybridmethods, such as FEM coupledwith the boundary elementmethod, the FEM–MMP coupling presents the advantages of

a simpler assembly process, as there are no singular integrals, and exponential convergence forMMPwhen the coupling boundary Γ is far from the

field sources. Conversely, the method suffers from ill-conditioning and lacks of a rigorous theory on the placement of multipoles in 3D. However,

as indicated by the numerical experiments of Section 4, as long as one defines an auxiliary boundary Γ far from the field sources, the number and

positions of multipoles do not impact much on the numerical solution.

Among the four coupling approachespresented in Section3,we recommend thePDE-constrained coupling thanks to its reliability. Themulti-field

and DG-based coupling methods are less expensive, as they rely on less variables, but both are more susceptible to ill-conditioning when dealing

with coarsemeshes and high numbers ofmultipoles. Furthermore, theDG-based coupling requires the additional user input of a penalty parameter.

Future research will involve a full numerical analysis of the coupling approaches forMaxwell’s equations.
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(a)Cross-section of the 3Dmesh of the FEMdomainΩf along theXY-plane.

The blue and violet meshes represents the two regions of Ω⋆ where ‖j‖ = 1.05 · 106 and= 1.25 · 106 ,

respectively. The orange mesh represents the third region of Ω⋆ where κ ∼ ∇ × u, which forms a hollow

rectangular prism. Local refinement at the edges and corners of this prism is needed because the solution is not

smooth there. The greenmesh covers a hollow rectangular prismwith sizes 0.2 × 0.2 × 0.15.

(b) Cross-section of the ℓ2-norm of the numerical solution ‖un‖2 on the FEM domain Ωf along the XY-plane.

Colors are in logarithmic scale. Plot obtainedwith the coupling by tangential traces.

FIGURE 7 Mesh and result of themagnetostatic inductor experiment.
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