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Abstract. For time-homogeneous stochastic differential equations (SDEs) it is

enough to know that the coefficients are Lipschitz to conclude existence and

uniqueness of a solution, as well as the existence of a strongly convergent nu-

merical method for its approximation. Here we introduce a notion of piecewise

Lipschitz functions and study SDEs with a drift coefficient satisfying only this

weaker regularity condition. For these SDEs we can construct a strongly conver-

gent approximation scheme, if the set of discontinuities is a sufficiently smooth

hypersurface satisfying the geometrical property of being of positive reach. We

then arrive at similar conclusions as in the Lipschitz case. We will see that, al-

though SDEs are in the center of our interest, we will talk surprisingly little about

probability theory here.

1 Introduction

Stochastic differential equations (SDEs) are essential for many models in mathe-

matical finance, risk theory, biology, physics, and chemistry. Usually, these equa-

tions cannot be solved explicitly. Hence, we are interested in finding numerical

methods with positive convergence speed for solving them.

We consider general SDEs on the R
d , which are of the form

dXt = µ(Xt)dt +σ(Xt)dWt X0 = x , (1)

with initial value x ∈ R
d , drift coefficient µ : Rd −→ R

d , diffusion coefficient

σ : Rd −→ R
d×m, and m-dimensional standard Brownian motion W (thus adding
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noise to the ordinary differential equation). Little generality is lost if we assume

m = d, and we will do so throughout this article.

By a (strong) solution we mean a continuous stochastic process X that is adapted

to the filtration generated by W and that satisfies

Xt = x+
∫ t

0
µ(Xs)ds+

∫ t

0
σ(Xs)dWs (2)

for all t ≥ 0 almost surely. The solution X is unique, if the paths of any other

solution to (2) coincide with those of X almost surely.

The second integral in (2) is Itô’s stochastic integral, the construction of which

we will not repeat here. Suffice it to mention that for K from a suitable class of

stochastic processes it holds that

∫ t

0
Ks dWs = lim

n→∞

⌊2nt⌋−1

∑
k=1

Kk2−n(W(k+1)2−n −Wk2−n) ,

reminding us of the Riemann integral (but with evaluation of the integrand only

in the left boundary of small intervals). A particularity of Itô’s integral is that

there appears a correction term in the fundamental theorem of calculus, that is, for

Xt = X0 +
∫ t

0 Hsds+
∫ t

0 KsdWs and for a sufficiently regular function f : R−→ R,

f (Xt) = f (X0)+
∫ t

0
f ′(Xs)Hsds+

∫ t

0
f ′(Xs)KsdWs +

1

2

∫ t

0
f ′′(Xs)K

2
s ds .

This is known as Itô’s formula. The rigorous construction of the stochastic in-

tegral gave meaning to the concept of a solution of an SDE. In addition to that

Itô [4] proved that a unique solution to (1) exists, whenever µ and σ are Lipschitz-

continuous.

Under the same assumptions Maruyama [12] proved that the Euler-Maruyama

(EM) scheme

Xδ
t = x+

∫ t

0
µ(Xδ

s )ds+
∫ t

0
σ(Xδ

s )dWs ,

with s = jδ for s ∈ [ jδ,( j+1)δ), j = 0, . . . ,(T − δ)/δ, (which reminds us of the

Euler scheme for ordinary differential equations, but with an additional term cor-

responding to the stochastic integral) converges with strong order 1/2. In general

we say that a numerical approximation Xδ converges with strong order γ, if for

any fixed T > 0, there exists a constant C such that for sufficiently small step-size

δ > 0 it holds that

E

(
sup

0≤t≤T

‖Xt −Xδ
t ‖

2
)1/2

≤Cδγ .
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Higher order algorithms exist under stronger regularity conditions on the coeffi-

cients, most notably the Milstein method and stochastic Runge-Kutta schemes,

see Kloeden and Platen [7].

The question of how to solve SDEs with irregular (non-globally Lipschitz) coef-

ficients approximately is a very active topic of research. There is still a big gap

between the assumptions on the coefficients of these equations under which strong

convergence with convergence rate has been proven in the scientific literature, and

the assumptions that equations in real-world applications satisfy.

In contrast to that, several delimiting results have been proven recently, stating that

a certain SDE with relatively well-behaved (infinitely often differentiable) coeffi-

cients cannot be solved approximately in finite time, cf. Hairer et al. [3], Jentzen

et al. [5], Müller-Gronbach and Yaroslavtseva [13], Yaroslavtseva [24]. However,

there is still a big discrepancy between the assumptions on the coefficients under

which convergence with strong convergence rate has been proven and the proper-

ties of the coefficients of the SDE presented in Hairer et al. [3].

Here we narrow the gap described above by settling convergence with positive

convergence speed of a numerical method for d-dimensional SDEs with discon-

tinuous drift and degenerate diffusion coefficient. First steps in this direction have

previously been made by Ngo and Taguchi [16], who proved convergence of order

up to 1/4 of the Euler-Maruyama method for d-dimensional SDEs which have a

discontinuous, bounded drift that satisfies a one-sided Lipschitz condition and a

Hölder continuous, bounded, and uniformly non-degenerate diffusion coefficient.

In Ngo and Taguchi [14, 15] they do not need the one-sided Lipschitz condition

any more, but the result only works for one-dimensional SDEs and relies on uni-

form non-degeneracy of the diffusion coefficient.

SDEs with discontinuous drift appear naturally when studying stochastic optimal

control problems with bang-bang type optimal strategies, that is with strategies of

the form 1S (X) for a measurable set S ⊆ R
d . If in addition only a noisy signal

of the underlying state process X is available, then filtering this signal leads to a

degenerate diffusion coefficient and increases the dimension substantially. Exam-

ples can be found in Sass and Haussmann [20], Rieder and Bäuerle [18], Frey et al.

[2], Leobacher et al. [11], Szölgyenyi [23], Shardin and Szölgyenyi [21], Shardin

and Wunderlich [22].

The idea for tackling the problem is illustrated in Figure 1: to overcome the issues

caused by a discontinuous drift coefficient, we want to find a transform G with

the property that the coefficients of the transformed SDE for G(X) are Lipschitz.

Then we want to apply the EM scheme to that SDE, which converges with strong

order 1/2, to obtain an approximation of the solution to the transformed SDE. In

the end, we want to transform back to obtain an approximation of the solution to

the original SDE (1). In Figure 1, the set of discontinuities of the drift is illustrated

by a smooth curve. Indeed, we need to make some assumptions to that end so that

we can carry through our idea.
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x0
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G−1
G(x0)

discontinuous drift Lipschitz drift

Figure 1 – A sketch of the idea for the construction of our numerical method.

Thus, we have to solve the following tasks:

1. construct G and all prove necessary properties;

2. prove an existence and uniqueness result;

3. construct a numerical method using G (called GM) and prove convergence

and convergence rate;

4. prove convergence and convergence rate for EM starting from GM.

We will start with presenting our results in dimension one, and subsequently we

will show how these ideas can be extended to general dimension.

This is a review article; the results and examples presented here, can be found in

Leobacher and Szölgyenyi [8, 9, 10].

2 Result in dimension one

In order to construct an appropriate G : R −→ R, we have to know how such a

transform acts on the coefficients: assuming existence of a solution X and also

validity of Itô’s formula for X and G we get

G(Xt) = G(x)+
∫ t

0
G′(Xs)µ(Xs)ds+

∫ t

0
G′(Xs)σ(Xs)dWs +

∫ t

0

1

2
G′′(Xs)σ(Xs)

2ds .
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Thus Z = G(X) is the solution of an SDE with coefficients

µ̃(Z) = G′(G−1(Z))µ(G−1(Z))+
1

2
G′′(G−1(Z))σ(G−1(Z))2 ,

σ̃(Z) = G′(G−1(Z))σ(G−1(Z)) .

Hence, G maps X 7→ Z and it transforms µ,σ into µ̃, σ̃.

We see that if G ∈ C2 – the classical assumption for Itô’s formula – then µ̃, σ̃
are continuous, if and only if µ,σ are continuous. However if G ∈ C1 and σ is

continuous and non-zero, then we can offset jumps of µ with jumps of G′′. So we

can get continuous µ̃ from discontinuous µ with a less smooth transform. Note that

σ̃ is continuous in either case. Hence, we choose G ∈ C1 to be able to eliminate

the discontinuities from the drift. Note that we will have to verify that the heuristic

application of Itô’s formula above is valid, since the classical Itô formula holds

for C2 functions.

With this, we are able to relax the Lipschitz condition on the drift.

Definition 2.1. A function µ : R −→ R is called piecewise Lipschitz, if there are

finitely many points ξ1 < · · · < ξm such that the restriction of µ to each of the

intervals (−∞,ξ1),(ξm,∞) and (ξk,ξk+1), k = 1, . . . ,m−1, is Lipschitz.

For the presentation here, we now assume that µ is piecewise Lipschitz with only

one jump in ξ, but note that our result also holds for multiple jumps. Let

• µ be Lipschitz on (−∞,ξ) and (ξ,∞);

• σ : R−→ R be Lipschitz with σ(ξ) 6= 0.

Note that the last condition is by far weaker than uniform non-degeneracy, as for

non-degeneracy one would need σ to be bounded away from 0 on the whole of R.

We define the transform G : R−→ R by

G(x) = x+α(x−ξ)|x−ξ|φ

(
x−ξ

c

)
=: x+αφ̄(x) , (3)

where α,c are appropriate constants, and

φ(u) =

{
(1+u)3(1−u)3 if |u| ≤ 1 ,

0 else

localizes the impact of G. If 0 < c < 1/6|α|, then G′ > 0, and hence G is globally

invertible. Furthermore, we can prove that G and G−1 are Lipschitz.

Setting Z = G(X), we have

dZt = µ̃(Zt)dt + σ̃(Zt)dWt ,
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where

µ̃(z) = µ(G−1(z))+
1

2
αφ̄′′(G−1(z))σ(G−1(z))2 +αφ̄′(G−1(z))µ(G−1(z)) ,

σ̃(z) = σ(G−1(z))+αφ̄′(G−1(z))σ(G−1(z)) .

In order to offset the jump of µ in ξ by the jump of G′′ (by construction also in ξ),

we choose α as

µ(ξ+)+
1

2
αφ̄′′(ξ+)σ(ξ)2 = µ(ξ−)+

1

2
αφ̄′′(ξ−)σ(ξ)2 =⇒ α =

µ(ξ−)−µ(ξ+)

2σ(ξ)2
.

With this choice of α we have that µ̃ is continuous.

Lemma 2.2 (Elementary but essential). Let µ̃ : R−→ R be a function satisfying

1. µ̃ is continuous;

2. µ̃ is piecewise Lipschitz.

Then µ̃ is Lipschitz.

Altogether we have that the coefficients of the SDE for Z are Lipschitz.

Now, we are ready to prove the following theorem.

Theorem 2.3 (Leobacher and Szölgyenyi [8]). Let µ be piecewise Lipschitz and

let σ be Lipschitz and µ(ξ+) 6= µ(ξ−) =⇒ σ(ξ) 6= 0.

Then there exists a unique strong solution to the one-dimensional version of (1).

The proof works as follows:

• show that the SDE for Z = G(X) has Lipschitz coefficients using Lemma

2.2;

• then by Itô’s theorem, there exists a unique strong solution to this SDE;

• set X = G−1(Z) and apply Itô’s formula to it, to see that

dXt = µ(Xt)dt +σ(Xt)dWt .

So we have constructed a process X that solves our SDE. There is one issue that

we have already mentioned above: G−1 /∈ C2. But in 1D, Itô’s formula holds

nevertheless, see [6, Problem 7.3].

As sketched in Figure 1 above, the transformation method in a natural way also

leads to the following numerical scheme.
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Algorithm 2.4 (Leobacher and Szölgyenyi [8]). Given µ,σ,x,T , and the step-size

δ > 0,

1. precompute G,G−1, µ̃, σ̃;

2. solve dZ = µ̃(Z)dt + σ̃(Z)dW , Z0 = G(x) on [0,T ] using the EM method to

obtain the EM approximation Zδ;

3. compute the numerical approximation X̄t = G−1(Zδ
t ), for t ∈ [0,T ].

Theorem 2.5 (Leobacher and Szölgyenyi [8]). Let µ be piecewise Lipschitz and

let σ be Lipschitz and µ(ξ+) 6= µ(ξ−) =⇒ σ(ξ) 6= 0.

Then Algorithm 2.4 converges with strong order 1/2.

The proof is straightforward: Maruyama [12] showed that for sufficiently small

step-size δ > 0,

E

(
sup

0≤t≤T

|Zt −Zδ
t |

2
)1/2

≤Cδ1/2 .

Denote by LG−1 the Lipschitz constant of G−1. We get

E

(
sup

0≤t≤T

|Xt − X̄t |
2
)1/2

= E

(
sup

0≤t≤T

|G−1(Zt)−G−1(Zδ
t )|

2
)1/2

≤ LG−1 E

(
|Zt −Zδ

t |
2
)1/2

≤ LG−1 Cδ1/2 .

The following theorem is of particular relevance for the practical implementation

and efficiency of our algorithm and shows that in 1D our result is already quite

satisfactory:

Theorem 2.6 (Leobacher and Szölgyenyi [8]). We can define an alternative trans-

form Ĝ which fulfills all the necessary properties and which is piecewise cubic.

The relevance of this theorem lies in the fact that for a piecewise cubic function

the inverse can easily be computed explicitly.

3 Result in general dimension

Extending our results to the multidimensional setting poses several challenges:

1. introduce a notion of piecewise Lipschitz functions;

2. prove that piecewise Lipschitz + continuous implies Lipschitz;

3. find a transform G that makes the drift continuous;

4. show that G has a global inverse;

5. show that Itô’s formula holds for G−1.

In this section we will sketch how these challenges were addressed.
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3.1 Piecewise Lipschitz functions on the R
d

There is no unique or universally accepted notion of a piecewise Lipschitz func-

tion on a subset of the R
d . Below we propose such a definition that generalizes

the one-dimensional notion.

We call a continuous function γ : [0,1]−→ A ⊆ R
d a curve in A from γ(0) to γ(1)

and we denote by

ℓ(γ) := sup
{ n

∑
k=1

|γ(tk)− γ(tk−1)| : n ∈ N, 0 = t0 < · · ·< tn = 1
}

its (possibly infinite) length.

Definition 3.1. Let /0 6= A ⊆ R
d . Define the intrinsic metric on A by

ρ(x,y) := inf{ℓ(γ) : γ a curve in A from x to y} .

Here, the infimum over an empty set is defined as ∞.

Definition 3.2. A function µ : Rd −→ R
m is piecewise Lipschitz, if there exists a

hypersurface Θ with finitely many connected components such that the restriction

µ|
Rd\Θ is Lipschitz w.r.t. the intrinsic metric on R

d\Θ, and w.r.t. the Euclidean

metric on R
m.

In that case we call Θ an exceptional set for µ.

Note that the definition coincides with Definition 2.1 for d = 1. It shares also

some basic and well-known properties with the elementary definition.

Proposition 3.3. Let Θ be a hypersurface in R
d and let µ : Rd −→ R

m be a func-

tion such that µ|
Rd\Θ is differentiable with bounded derivative.

Then µ is piecewise Lipschitz with exceptional set Θ and

sup
x,y∈Rd\Θ:ρ(x,y)>0

‖µ(x)−µ(y)‖

ρ(x,y)
= sup

x∈Rd\Θ

‖µ′(x)‖ .

The following lemma is almost trivial in dimension one, but not so in general

dimension:

Lemma 3.4. Let µ : Rd −→ R
m be a function such that

1. µ is continuous;

2. µ is piecewise Lipschitz with exceptional set Θ;

3. Θ is such that for all x,y ∈ R
d\Θ and all η > 0 there exists a curve γ in the

R
d from x to y such that ℓ(γ)< ‖y− x‖+η and #(γ∩Θ)< ∞.
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Figure 2 – An example for a hypersurface with bounded derivative of the unit normal

vector which is not of positive reach.

Then µ is Lipschitz (w.r.t. the Euclidean norm) with Lipschitz constant

Lµ = sup
x,y∈Rd\Θ:ρ(x,y)>0

‖µ(x)−µ(y)‖

ρ(x,y)
.

Lemma 3.4 differs from Lemma 2.2 essentially by item 3, which is trivially satis-

fied in dimension one by our definition of ‘piecewise Lipschitz’.

Figure 2 shows an example of a two-dimensional C∞-hypersurface (i.e. a curve)

for which item 3 of Lemma 3.4 is not satisfied. The following notion will prove

useful for this issue:

Definition 3.5. A subset Θ ⊆ R
d is of positive reach, if there exists ε > 0 such

that for every x ∈ R
d with d(x,Θ) < ε there is a unique p ∈ Θ with ‖x− p‖ =

d(x,Θ) := inf{‖x−ξ‖ : ξ ∈ Θ}.

If Θ has positive reach, then the projection map p which assigns to x its closest

point p(x) on Θ is a well-defined single-valued map on Θε := {x ∈R
d : d(x,Θ)<

ε} for some ε > 0. Examples of hypersurfaces having this property include hy-

perplanes and all compact C2-hypersurfaces, which follows from the lemma in

Foote [1], where it is also shown that the projection map p is in Ck−1 if Θ is in Ck.

We will always assume that the set of discontinuities of the drift coefficient is of

positive reach.

The projection map p will play a prominent role in the construction of the multi-

variate transform G.

One consequence of the positive reach property for Θ is that item 3 of Lemma 3.4

is automatically satisfied. This is the assertion of Leobacher and Szölgyenyi [9,
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Lemma 3.11], the proof of which is surprisingly technical. Another useful conse-

quence is that the derivative of the unit normal vector is bounded, see Leobacher

and Szölgyenyi [9, Lemma 3.10].

3.2 Definition of the transform and main results

Our choice of the transform G is

G(x) = x+α(p(x))φ̃(x) ,

where

φ̃(x) = (x− p(x)) ·n(p(x))‖x− p(x)‖φ

(
‖x− p(x)‖

c

)
.

This should be compared to the 1D analog, equation (3). In Leobacher and

Szölgyenyi [9, Theorem 3.14 and Lemma 3.18] it is proven that under the as-

sumptions of Theorem 3.7 below, c can always be chosen sufficiently small, so

that G has a global inverse by Hadamard’s global inverse function theorem [19,

Theorem 2.2]. In 1D the constant α had the purpose of making sure that the

jump of µ is offset by the jump of G′′. In general dimension, α is defined on the

hypersurface Θ:

α(ξ) = lim
h→0

µ(ξ−hn(ξ))−µ(ξ+hn(ξ))

2‖σ(ξ)⊤n(ξ)‖2
, ξ ∈ Θ . (4)

Although α depends on the choice of the normal unit vector, it is readily checked

that G does not.

We will need to make additional assumptions on µ and σ to guarantee existence

and sufficient regularity of α and, a fortiori, of G.

It remains to show that Itô’s formula holds for G−1. This follows from the follow-

ing special case of [17, Theorem 2.1].

Theorem 3.6 (Itô’s formula). Let X be a d-dimensional Itô process and let b :

R
d−1 −→ R be a C2-function. Let furthermore f1, f2 : Rd −→ R be C2-functions

such that the function f : Rd −→ R defined by

f (x) = f1(x)1xd≤b(x1,...,xd−1)+ f2(x)1xd>b(x1,...,xd−1)

is in C1. Then Itô’s formula holds for X and f .

We have the following existence and uniqueness result.
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Theorem 3.7 (Leobacher and Szölgyenyi [9]). Let the following assumptions

hold:

• µ : Rd −→ R
d is piecewise Lipschitz with exceptional set Θ;

• Θ ∈C3 and has positive reach;

• σ : Rd −→ R
d×d is Lipschitz and ‖σ(ξ)⊤n(ξ)‖2 ≥ c0 > 0 for all ξ ∈ Θ;

• µ,σ are bounded on Θε for some ε > 0;

• µ,σ are such that α, as described in (4), is well-defined and has bounded

derivatives up to order 3.

Then there exists a unique strong solution to (1).

We remark that the assumptions of Theorem 3.7 impose extra regularity on µ,σ
only close to, and on Θ. Away from Θ we basically have the classical Lipschitz

requirements. In analogy to the one-dimensional result, we have the following:

Theorem 3.8 (Leobacher and Szölgyenyi [9]). Let the assumptions of Theorem

3.7 hold. Then, also in the multidimensional setting, Algorithm 2.4 converges

with strong order 1/2.

3.3 Example

We apply our Algorithm 2.4 to solve an example of an SDE where the drift is

discontinuous on the unit circle in the R2, i.e. the exceptional set Θ= {x∈R
2|x2

1+
x2

2 = 1}, and the diffusion coefficient is degenerate. Let

dXt = µ(X1
t ,X

2
t )dt +σ(X1

t ,X
2
t )dWt ,

where

µ(x1,x2) =

{
(1,1)⊤, x2

1 + x2
2 > 1

(−x1,x2)
⊤, x2

1 + x2
2 ≤ 1 ,

σ(x1,x2) =
1

1+ x2
1 + x2

2

(
x1 0

x2 0

)
.

Figure 3 shows the estimated L2-error of GM for this example. We observe

that GM shows the convergence behaviour we expect from our theoretical result,

namely it converges as fast as δ1/2, i.e. the purple dotted line has the same slope

as the yellow line. So in principle we could be satisfied. We have constructed

the first numerical method that is proven to converge for a rather general class

of SDEs with discontinuous drift and we have established its convergence speed.
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Figure 3 – Estimated L2-error of GM and EM.

However, GM has two shortcomings. First, it needs the geometrical structure of

the set of discontinuities of the drift as an input. However, if for example the

discontinuity stems from a discontinuous control policy in a stochastic optimal

control problem, then this geometric structure for the optimal control is not ex-

plicitly known. Finding the discontinuity of a function numerically is a problem

of high complexity on its own. Second, our method requires inversion of G in

each step. In 1D the inverse can be calculated explicitly, see Theorem 2.6, but

in general dimension, we have to resort to numerical inversion, which makes the

calculation of a single path rather costly.

However, Figure 3 tells us even more. We observe that the green dashed line,

which corresponds to the convergence speed of the EM method applied to our

example, also has roughly the same slope as the yellow line. This means that

for our example and our range of δ, the EM method seems to converge, too. To

deal with the issues raised above, it would be desirable to prove a positive strong

convergence rate for the EM method. This is what we are going to study in the

next section.

4 Convergence of the EM method

We seek to estimate the mean square error of the EM approximation by consid-

ering the difference between GM and EM. Here, we only sketch the idea of the

proof.

Let Xδ be the EM approximation of X . Using that X = G(Z), that G−1 is Lips-
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chitz, and that (a+b)2 ≤ 2a2+2b2, we estimate the mean square error of the EM

approximation:

E

(
sup

0≤t≤T

‖Xt −Xδ
t ‖

2
)
= E

(
sup

0≤t≤T

‖G−1(Zt)−G−1(G(Xδ
t ))‖

2
)

≤ 2L2
G−1E

(
sup

0≤t≤T

‖Zt −Zδ
t ‖

2
)
+2L2

G−1E

(
sup

0≤t≤T

‖Zδ
t −G(Xδ

t )‖
2
)
.

With this we have decomposed the error into two error terms. The first term is

the mean square error of the EM approximation of the solution to the transformed

SDE. Since the transformed SDE has Lipschitz coefficients, the EM method con-

verges with strong order 1/2, i.e.

E

(
sup

0≤t≤T

‖Zt −Zδ
t ‖

2
)
≤Cδ .

For estimating

E

(
sup

0≤t≤T

‖Zδ
t −G(Xδ

t )‖
2
)

the crucial estimate is the one of the drift. For this the main tasks are:

• estimating the probability of the event Ωε that during one step the distance

between the interpolation of the EM method and the previous EM step be-

comes greater than some given ε > 0. Lemma 3.3 in [10] states that

P(Ωε)≤C exp

(
−

ε

‖σ‖∞δ1/2

)
;

• estimating the occupation time of the Euler-Maruyama approximation of X

close to the hypersurface Θ by constructing a 1D process Y that has the

same occupation time close to 0 as Xδ has close to Θ. The process Y is

essentially a signed distance of Xδ from Θ. Again we make extensive use of

the positive reach property of Θ, which guarantees regularity of a distance

function. Theorem 2.7 in [10] says that

∫ T

0
P

(
{Xδ

s ∈ Θε}
)

ds ≤Cε .

We are free to choose ε as a function of the step-size δ, and if we do so in an

optimal way, we obtain the following convergence rate.

Theorem 4.1 (Leobacher and Szölgyenyi [10]). Let the assumptions of Theorem

3.7 hold, and let µ,σ be bounded.

Then the Euler-Maruyama method converges with strong order 1/4− ζ for arbi-

trarily small ζ > 0 to the solution of SDE (1).
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Figure 4 – Estimated L2-error of the EM approximation.

Now the question arises why one would apply EM instead of GM, since GM has

a much higher convergence speed. However, as already mentioned at the end of

Section 3, the computation of a single path with GM can be so slow, that obtaining

comparable errors with GM can take more time for practical purposes. We refer

to [10] for more details.

Figure 4 shows the estimated L2-error of the EM approximation for three exam-

ples: one where the drift is a certain step-function, a five-dimensional example

from insurance mathematics (Dividends 5D), and the example from above where

the drift is discontinuous on the unit circle. We see that for the step-function ex-

ample the convergence seems to be approximately as fast as δ1/4 for larger δ, but

for smaller δ the slope of the dashed green line seems to become steeper. For the

other two examples the EM method clearly converges at a higher rate for this ex-

ample. This supports the claim from above that in many examples the EM method

is the preferred choice.
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CH 8092 Zürich. email michaela.szoelgyenyi@sam.math.ethz.ch

16


